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Abstract
A square matrix V is called rigid if every matrix V ′ obtained by altering a small number of entries
of V has sufficiently high rank. While random matrices are rigid with high probability, no explicit
constructions of rigid matrices are known to date. Obtaining such explicit matrices would have
major implications in computational complexity theory. One approach to establishing rigidity of
a matrix V is to come up with a property that is satisfied by any collection of vectors arising
from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In
this paper we propose such a candidate property that has the potential of establishing rigidity
of combinatorial design matrices over the field F2.

Stated informally, we conjecture that under a suitable embedding of Fn2 into Rn, vectors
arising from a low dimensional F2-linear space always have somewhat small Kolmogorov width,
i.e., admit a non-trivial simultaneous approximation by a low dimensional Euclidean space. This
implies rigidity of combinatorial designs, as their rows do not admit such an approximation even
after alterations. Our main technical contribution is a collection of results establishing weaker
forms and special cases of the conjecture above.
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1 Introduction

The notion of matrix rigidity was introduced by Leslie Valiant in 1977 [23]. In this paper we
say that an n× n matrix A defined over a field is (r, d)-rigid, if it is not possible to reduce
the rank of A below r by arbitrarily altering each row of A in up to d coordinates. Explicit
rigid matrices are known to imply lower bounds for computational complexity of explicit
functions.
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The most prominent reduction of this nature is due to Valiant [23] who showed that for
each (Ω(n), nε)-rigid matrix A ∈ Fn×n the linear transformation induced by A cannot be
computed by a linear circuit that simultaneously has size O(n) and depth O(logn). Two
other reductions that call for explicit (r, d)-rigid matrices with a sub-linear value of the
remaining rank r, are given in [15, 18]. Reductions above naturally lead to the challenge of
constructing rigid matrices explicitly. After more than three decades of efforts, however, this
challenge remains elusive [13].

None of the existing techniques for constructing rigid matrices [11, 12, 3, 17, 5, 2] surpasses
the basic untouched minor argument of [19] that amounts to taking a matrix where every
minor has full rank, and using the bound from the Zarankiewicz problem [9, p. 25] to show
that after up to d arbitrary changes per row there remains a somewhat large minor that has
not been touched. Quantitatively, this yields explicit(

r,Ω
(n
r

log n
r

))
rigid matrices over fields of size Ω(n), when log2 n ≤ r ≤ n/2. Similar parameters are known
to be attainable over small finite fields [6]. Rigidity parameters above are vastly weaker the
parameters of random matrices. In particular, it is not hard to show that a random matrix
over any field is at least (n

2 ,Ω(n)
)

rigid with a very high probability.

1.1 Combinatorial designs
A family F of w-subsets of a universe of size n is called an (n,w, λ) design if every pair of
distinct elements of [n] belongs to exactly λ sets in F . A combinatorial design is symmetric
if |F| = n. Geometric designs are a well studied class of symmetric combinatorial designs. A
geometric design is defined by the incidence relation between points and hyperplanes in an
m-dimensional projective space PG(m+ 1, q) over the finite field Fq. Such a relation yields
(n,w, λ) symmetric designs, where

n = qm+1 − 1
q − 1 w = qm − 1

q − 1 λ = qm−1 − 1
q − 1 . (1)

With a slight abuse of notation we write Gm,q or just Gm to denote both geometric designs
and their incidence matrices.

In his original paper [23, Problem 4] Valiant proposed matrices G2 defined above as
natural candidates for (Ω(n), nε)-rigidity over the field F2. Taken literally, this conjecture is
not true as some matrices G2 have low rank over F2. In fact, the rank of geometric designs is
a well studied quantity in design theory. Let rankp denote matrix rank over the field Fp. We
have [20]:

rankpGm,q =


n if q 6= pe, w + (n− 1)λ 6= 0 mod p;
n− 1 if q 6= pe, w + (n− 1)λ = 0 mod p;(
p+m−1
m

)e if q = pe.

(2)

Thus in some cases the rank of geometric designs turns out to be surprisingly low, e.g., when
char Fq = 2, for fixed m and growing q we have

rank2Gm,q = O
(
n

log2(m+1)
m

)
. (3)
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Identity (3) implies that any proof of (r, d)-rigidity of matrices Gm with r = Ω(n) cannot
just rely on the combinatorial structure of these matrices as this structure does not seem to
change much with the characteristic of the field underlying the projective space. Thus any
rigidity proof that relies solely on the design properties of Gm (and thus applies to all designs
with the parameters of geometric designs) has to be aiming at the regime of polynomially
low remaining rank r = O(nδ). In Section 1.3 we outline our approach to proving a result
like this.

1.2 Hamada’s conjecture
In what follows let Vm denote an incidence matrix (or the set of rows of an incidence matrix)
of a combinatorial (n,w, λ) design that has the parameters of the geometric design Gm,q.
Clearly, any proof of (r, d)-rigidity of Vm has to imply that matrices Vm have rank at least
r when no alterations are allowed. Bounding the rank of matrices Vm over finite fields has
received some attention in design theory.

It is not hard to show that when q 6= pe we have, rankpVm ≥ n− 1. A conjecture [7] due
to Noboru Hamada from 1973, asserts that when q = pe, geometric designs Gm,q have the
lowest possible Fp-rank among all designs Vm with the same parameters. Relatively little
is known about the validity of Hamada’s conjecture [10, Section 4]. (A stronger version of
Hamada’s conjecture that asserts that every design Vm whose Fp-rank equals that of Gm,q
has to be isomorphic to Gm,q is known to be false [10].)

One easier natural question to ask that fits well with our approach to rigidity is whether one
can prove any non-trivial lower bounds on the rank of design matrices Vm.We are particularly
interested in the asymptotic setting of fixed m and growing q. Hamada’s conjecture and
identity (2) suggest that

rankpVm ≥ Ω
(
n

logp( p+m−1
m )

m

)
. (4)

The trivial lower bound is rankpVm ≥ n
1
m . We are not aware of any better bound.

1.3 Our approach
In order to establish rigidity of matrices Vm over the field F2 we propose a certain property
that is not satisfied by the rows of Vm even after alterations, yet that we conjecture to hold
for any collection of vectors arising from a low-dimensional F2-linear space.

As a first step of our argument we consider a natural embedding of the space Fn2 into
Rn. We treat elements of Fn2 as real {0, 1}-vectors and normalize them to have L2 norm one.
Thus a non-zero x ∈ Fn2 gets mapped to x

‖x‖ . In what follows we assume that this embedding
is implied and treat vectors in Fn2 as real vectors.

Next for sets X ⊆ Rn we consider the quantity Ar(X) that we call the approximability
measure. Ar(X) is defined to be the maximum over all r-dimensional Euclidian linear spaces
W of the square of the smallest projection of a vector from X onto W. Thus sets with large
value of Ar are precisely those that are well approximated by some r-dimensional Euclidian
linear space, i.e., the ones that have small Kolmogorov width.

Now let m = 1
ε . We argue that for all values of r = ω(n1−ε), the approximability measure

Ar(Vm) ≈ Ar (Fn2 ) . Thus for sufficiently large r, approximating rows of an incidence matrix
of a combinatorial design is no easier than approximating all of the Hamming space. The
claim remains true even if we allow rows of Vm be altered in up to O

(
n1−2ε) coordinates.

CCC 2015
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Finally, we conjecture that for any F2-linear space L, dim L ≤ n2ε+δ, and some r =
ω(n1−ε), the approximability measure Ar(L) ≥ (1 + α)Ar (Fn2 ) , for some positive α. In
other words, we conjecture that low dimensional F2-linear spaces keep some tiny amount of
resemblance to Euclidian linear spaces after the embedding, and can be approximated better
than all of the Hamming cube. It is easy to see that this conjecture implies (n2ε+δ, n1−2ε)-
rigidity of matrices Vm, since if one of these matrices had low rank after alterations, its rows
would belong to a low dimensional F2-linear space, and thus admit a non-trivial Euclidian
approximation.

We measure our progress towards the conjecture by looking at the largest value of
dimension k for that we are indeed able to prove that all k-dimensional F2-linear spaces L
satisfy Ar(L) ≥ (1 + α)Ar (Fn2 ) , for some r = ω(n1−ε). Currently, our main Theorem 5.5
gives this for all k = o(nε logn). Apart from this result, we also establish the conjecture for a
certain restricted class of linear spaces called cut-spaces. While substantial further progress
is needed to establish rigidity of matrices Vm, our current results (Corollary 5.6) already
suffice to get the bound

rankpVm ≥ Ω
(
n

1
m log2 n

)
, (5)

for all values of p, a results that seems to be new.
From the technical viewpoint our main contribution is a new relation between discrete

(F2) linear spaces and Euclidian linear spaces, yielding some insight into combinatorics of
low weight codewords in linear codes.

1.4 Organization
In Section 3 we formally introduce the approximability measure Ar. We argue that for
sufficiently large values of dimension r, we have Ar(Vm) ≈ Ar(Fn2 ). We establish a similar
result for perturbed matrices Vm. Next, we introduce our main conjecture stating that
low-dimensional F2-linear spaces L always have a somewhat large value of Ar. We show how
this conjecture implies rigidity of matrices Vm.

In Sections 4 through 6 we prove our main results regarding approximability of low-
dimensional F2-linear spaces L. In Section 4 we deal with low-dimensional approximations
and obtain a bound for A1(L). In Section 5 we deal with high dimensional approximations
and state the implications of our results for the Hamada’s conjecture. All our results in
Sections 4 and 5 apply not just to F2-linear spaces but to all families of vectors that have
bounded triangular rank [14].

In Section 6 we establish our main approximability conjecture for a certain class a linear
spaces called cut-spaces and give a simpler proof of a slightly weaker version of the results
from Section 5. Our constructions of approximating real spaces use low weight vectors in
the dual space of L. Finally, in Section 7 we discuss the relation of our approach to matrix
rigidity to the natural proofs lower bounds barrier of Razborov and Rudich [16].

2 Notation

We use the following standard mathematical notation:
‖ · ‖ denotes the Euclidian norm;
For an integer n, [n] = {1, . . . , n};
For a vector v, the set of non-zero coordinates of v is denoted supp(v);
We write f(n) ≈ g(n), if f(n) = g(n)(1 + o(1)). We adopt the same agreement for .,& .
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3 The conjecture

We now introduce our approximability measure Ar. Following that, in Section 3.2 we argue
that for sufficiently large values of dimension r, collections of rows of incidence matrices of
combinatorial designs have essentially the smallest possible value of Ar even after alterations.
Finally, in Section 3.3 we introduce our main conjecture stating that low-dimensional F2-linear
spaces always have a somewhat large value of Ar. We show how this conjecture implies
rigidity of incidence matrices of combinatorial designs.

3.1 The approximability measure
We consider a natural embedding of Fn2 into Rn.We treat elements of Fn2 as real {0, 1}-vectors
and normalize them to have L2 norm one. Thus a non-zero v ∈ Fn2 gets mapped to v

‖v‖ .

Zero is mapped to zero. In what follows we assume that this embedding is implied and treat
vectors in Fn2 as real vectors. Let V be an arbitrary subset of Fn2 . Our approach is centered
around the following approximability measure

Ar(V ) = max
dimW≤r

min
v∈V
‖PrW (v)‖2, (6)

where the maximum is taken over all linear spaces W ∈ Rn,dimW = r, and minimum is
taken over the non-zero elements of V. Observe that our notion of approximability measure is
equivalent to the classical concept of Kolmogorov width Kr(V ) =

√
1−Ar(V ), also known

as "poperechnik" of a family of vectors. See [21, 22].
We remark the importance of the normalization step in formula (6). In essence normalizing

elements of V pushes all high weight vectors in V to the center of the positive orthant in Rn,
and makes Ar(V ) governed by the distribution of low weight vectors in V as needed for our
approach. We now derive a formula for approximability measure of the whole Boolean cube.

I Lemma 3.1. Let r = o(n) be arbitrary. We have

Ar (Fn2 ) ≈ r

n
. (7)

Proof. Let ei, i ∈ [n] denote the i-th unit vector. First we show that

Ar (Fn2 ) ≤ Ar ({e1, . . . , en}) ≤
r

n
. (8)

Let W be an arbitrary r-dimensional linear space with an orthonormal basis {w1, . . . ,wr}.
Consider an n× r matrix M, where Mij = (ei,wj)2. Clearly, the sum of values in M is equal
to r. Thus for some i ∈ [n] we have

∑
j(ei,wj)2 ≤ r

n and (8) follows.
We now exhibit a space W such that for all non-zero binary vectors v, ‖PrW (v)‖2 & r

n .

The space W is spanned by r unit vectors {wi}. These vectors have disjoint supports that
partition [n]. Every support is of size dnr e or b

n
r c. Each vector wi is constant on its support.

Let v be an arbitrary vector of weight w. Assume that the support of v intersects the
supports of t different vectors {wi}, namely, wi1 , . . . ,wit . Clearly, t ≤ w. For j ≤ t, let
aj = |supp(v) ∩ supp(wij )|. We have

∑t
j=1 aj = w. We also have

t∑
j=1

(v,wij )2 ≥
t∑

j=1

a2
jr

(n+ r)w = r

(n+ r)w

t∑
j=1

a2
j ≥

r

w(n+ r)

(w
t

)2
t &

r

n
.

This concludes the proof. J

CCC 2015
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3.2 Inapproximability of combinatorial designs
In this Section we argue that approximating rows of a combinatorial design by a high-
dimensional real space is as hard as approximating all of the Boolean cube. We also establish
a robust version of this result.

I Lemma 3.2. Let V ⊆ Fn2 , |V | = n. Let B be the n× n real matrix, where the rows of B
are the normalized elements of V. Let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of BBt; then for
all r,

Ar(V ) ≤ 1
n

∑
i≤r

λi. (9)

Proof. This is a simple corollary of a result in [8]. A special case of this result states that
for all r

1
n

∑
i≤r

λi = max
dimW≤r

Ev∈V ‖PrW (v)‖2, (10)

where the expectation is taken with respect to the uniform distribution on V . Since the RHS
of this equality is at least as large as Ar(V ), the claim of the Lemma follows. J

Let Vm be an incidence matrix of a combinatorial (n,w, λ) design with the parameters (1)
of the geometric design Gm,q for some value of q. Let m = 1

ε . We assume that m is fixed and
q grows to infinity. Thus w ≈ n1−ε and λ ≈ n1−2ε. Lemma 3.2 yields

I Corollary 3.3. With the notation above, we have

Ar
(
V1/ε

)
.
n1−ε + r

n
. (11)

Proof. Let B be the n× n matrix, where the rows of B are the normalized elements of Vm.
Clearly, B = 1√

w
Vm. We have

BBt = w − λ
w

I + λ

w
J,

where I denotes the identity matrix and J denotes the all-ones matrix. It is not hard to see
that the eigenvalues of BBt are given by

λ1 ≈ n1−ε and λ2 = . . . = λn ≈ 1.

An application of Lemma 3.2 completes the proof. J

Combining (7) and (11), we conclude that for r = ω(n1−ε) and r = o(n),

Ar(V1/ε) ≈ Ar(Fn2 ) ≈ r

n
. (12)

Observe that identity (10) and the eigenvalue computation above can be used to show that
matrices Vm are inapproximable on average and not just in the worst case. The following
Lemma gives a stability result for Ar :

I Lemma 3.4. Let V = {v1, . . . ,vn} ⊆ Fn2 be a set of vectors of Hamming weight w. Assume
the new set V ′ = {v′1, . . . ,v′n} ⊆ Fn2 is obtained from V by altering at most d coordinates of
each vi, where d < w; then for all r,

Ar(V ′) ≤
(√

Ar(V ) +
√
d

w

)2

. (13)



A. Samorodnitsky and I. Shkredov and S. Yekhanin 353

Proof. Let v,v′ be arbitrary binary vectors such that the Hamming weight of v is w and
the Hamming distance between v and v′ is at most d. It is not hard to see that after the
embedding in the real space we have

(v,v′) ≥
√

1− d

w
. (14)

The minimum in (14) is attained by a vector v′ of Hamming weight w− d, where the support
of v′ is a subset of the support of v. Let W be an r-dimensional real space in Rn that attains
the maximum in (6) for approximating the set V ′. Let w1, . . . ,wn be a family of unit vectors
in W such that for all i ∈ [n], (v′i,wi)2 ≥ Ar (V ′) . Let A =

√
Ar(V ). By definition of A

there exists i ∈ [n] such that

(vi,wi) ≤ A. (15)

We introduce notation for angles between vectors vi,v′i, and wi. Let

α = ∠(v′i,wi), β = ∠(vi,v′i), γ = ∠(vi,wi).

Clearly α, β ∈ [0, π/2] and α ≥ γ − β. First suppose that γ − β ≥ 0; then

(v′i,wi) = cosα ≤ cos γ cosβ + sin γ sin β ≤ max{0, cos γ}+ sin β ≤ A+
√
d

w
,

where the last inequality follows from (14) and (15). Now note that if 0 ≤ γ ≤ β ≤ π/2; then

(v′i,wi) ≤ 1 ≤ cos γ + sin β ≤ A+
√
d

w
.

The inequality (13) follows. J

The above Lemma and identity (12) yield

I Proposition 3.5. Let Vm be an n×n matrix of a combinatorial design with the parameters
of a geometric design Gm. Assume m = 1

ε is fixed and n grows to infinity. Let V ′m be obtained
from Vm by altering each row in up to O

(
n1−2ε) coordinates. Let r = ω(n1−ε). We have

Ar

(
V ′1/ε

)
≈ r

n
. (16)

3.3 The conjecture and rigidity implications
We now introduce our main conjecture stating that low-dimensional F2-linear spaces L always
have a somewhat large value of Ar and show how this conjecture implies rigidity of design
matrices Vm. We begin with a formal definition of rigidity.

I Definition 3.6. Let V be an n × n matrix over a field F. We say that V is (r, d)-rigid;
if for every matrix V ′ that differs from V in at most d coordinates in each row, we have
rankFV ≥ r.

I Conjecture 3.7. There exists positive constants α, δ, and ε = 1
m (for an integer m) such

that for all linear spaces L ⊆ Fn2 where dimL ≤ n2ε+δ, for some r = ω(n1−ε),

Ar(L) ≥ (1 + α) r
n
. (17)

CCC 2015
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The conjecture above trivially implies
(
n2ε+δ, n1−2ε)-rigidity of design matrices Vm over

the field F2. If some matrix V ′m had rank below n2ε+δ after O(n1−2ε) alterations in each
row; then its rows would belong to a n2ε+δ-dimensional linear space over F2, and thus have
non-trivial approximation measure, contradicting Proposition 3.5. Currently we can only
prove the conjecture for all linear spaces L with dimL = o (nε logn) . (Theorem 5.5).
I Remark. Replacing the condition dim(L) ≤ n2ε+δ in the Conjecture above by the condition
dim(L) ≤ O

(
nε log( 1

ε+1)
)
makes the Conjecture invalid as by formula (3) matrices V1/ε may

have have F2 rank of O
(
nε log( 1

ε+1)
)
.

4 Low dimensional approximations from bounded triangular rank

In this and the following two Sections we prove our main results regarding approximability
of low-dimensional F2-linear spaces L. In the current Section we deal with low-dimensional
approximations and obtain a bound for A1(L). All results obtained in this Section apply not
just to F2-linear spaces but to all families of vectors that have bounded triangular rank.

I Definition 4.1. Let T = {v1, . . . ,vt} be a sequence of binary vectors of of dimension n.
We say that T is a tower of height t if for all j ≤ t :

supp(vj) 6⊆
⋃

s≤j−1
supp(vs).

Further, let V be an arbitrary collection of binary vectors. We define the triangular rank of
V, denoted trk(V ) to be the largest height of a tower that can be constructed from elements
of V.

It is easy to see that for any subset V of an F2-linear space L we always have trk(V ) ≤ dimL.

Let L ⊆ Fn2 , trk(L) ≤ k. For i ∈ [n], let

wi = min
v∈L : i∈supp(v)

|supp(v)|. (18)

If i ∈ [n] does not belong to the support of any vector in L; we define wi =∞. We set

µ = µ(L) =
n∑
i=1

w−1
i . (19)

Our proof of the following Lemma resembles some of the arguments in [14, Section 2].

I Lemma 4.2. Let L ⊆ Fn2 , trk(L) ≤ k; then

µ(L) ≤ k.

Proof. Assume µ > k.We derive a contradiction by exhibiting a collection V = {v1, . . . ,vk+1}
⊆ L such that for every j ∈ [k + 1], there exists ij ∈ supp(vj), such that ij 6∈ supp(vs), for
all s < j. Consider an n-node hypergraph, where the hyperedges are the supports of the
elements of L. Color all nodes white. Set Φ = µ, V = ∅. On the j-th step:
1. We choose a white node i whose wi is the smallest among the white nodes;
2. We set vj to be a weight-wi element of L such that i ∈ supp(vj);
3. We set

∆ =
∑

s∈supp(vj) | s is white
w−1
s .

It is important to note that ∆ is necessarily at most 1.
4. We reduce Φ by ∆ and color all nodes s ∈ supp(vj) black.
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On each step we reduce Φ by at most one and increase trk(V ) by one. Thus after k+ 1 steps
we necessarily have trk(V ) > k. J

I Theorem 4.3. Let L ⊆ Fn2 , trk(L) ≤ k; then

A1(L) ≥ 1
k
.

Proof. Let {wi} and µ be as defined in (18) and (19). Fix a vector w ∈ Rn, where for all
i ∈ [n], wi =

√
1
µwi

. Clearly ‖w‖ = 1. Let v ∈ L be arbitrary, |supp(v)| = w. Note that for
all i ∈ supp(v), wi ≤ w. It remains to note that

(w,v) ≥
w
√

1/µw√
w

= 1
√
µ
≥ 1√

k
,

where the last inequality follows from Lemma 4.2. J

Theorem 4.3 exhibits a vast gap between A1 (Fn2 ) ≈ 1
n and A1(L) ≥ 1

k for F2-linear spaces
L that have polynomially low dimension k. This Theorem alone already implies that our
main Conjecture 3.7 holds for all linear spaces of dimension up to o(nε). In fact it shows that
even one-dimensional approximations of discrete linear spaces suffice to get this result.

5 High dimensional approximations from bounded triangular rank

In this Section we deal with high dimensional approximations and state the implications of
our results for the Hamada’s conjecture. Our main result is given by Theorem 5.5. As in
the previous Section our arguments apply not just to F2-linear spaces but to all families of
vectors that have bounded triangular rank. To simplify notation in this Section we do not
distinguish between binary vectors v and their support sets supp(v).

I Definition 5.1. Let L be a family of subsets of some universe. Let S be a subset of the
same universe. We say that S is a (c, k)-attractor for L if trk(L) ≤ k and for all v ∈ L such
that v ∩ S 6= ∅,

|v ∩ S| ≥ c · |S|
k
. (20)

Informally, an attractor is a subset of coordinates such that every low weight vector (i.e., a
vector of weight around n

k or less) in L whose support intersects the subset, intersects it by
more than one would expect. Below is the key Lemma of this Section.

I Lemma 5.2. Let L be a family of binary vectors. Let [N ] be the union of supports of vectors
in L. Let trk(L) ≤ k. Assume that Hamming weights of all vectors in L lie in the segment
[w, 2w]. Further assume k ≥ 25c+2 where c is an integer. Then there exists a (c, k)-attractor
for L of size at least N

24c .

Proof. Note that if N
24c+2 < w, then the set [N ] is a (c, k)-attractor for L. In fact, let v ∈ L

be arbitrary. We have

|supp(v) ∩ [N ]| ≥ w ≥ N

24c+2 ≥ c ·
N

25c+2 ≥ c ·
|[N ]|
k

.

Thus without loss of generality we assume
N

24c+2 ≥ w. (21)

We now execute the following simple greedy algorithm that constructs a tower in the family L.

CCC 2015
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1. Set the tower T to be an empty family of sets. Set R = [N ].
2. WHILE R 6= ∅ DO
3. BEGIN
4. Identify a set v ∈ L that minimizes |v ∩R|;
5. Add v to the tower T ;
6. Drop the elements in v from R;
7. END
The algorithm above terminates producing a tower of height at most k. On step j the
algorithm adds a new vector to T and reduces the set R by ∆j = T ∩R. We partition the
steps of the algorithm into stages. A step falls into stage number i if in the beginning on the
step

N

2i < |R| ≤
N

2i−1 . (22)

Observe that among the first 4c stages there is at least one stage i, such that the height of T
increases by t ≤ k

4c during that stage. Let S be the change in the set R on the stage i. We
have

|S| ≥
(

N

2i−1 − 2w
)
− N

2i ≥
N

2i+1 .

The first inequality above follows from the fact that in the beginning of stage i the size of R
is at least N

2i−1 minus the size of the last step of stage (i− 1) and the fact that every step
size is bounded by 2w. The second inequality follows from (21). Let a be the index of the
first step of stage i. We have

a+t−1∑
j=a

|∆j | = |S| ≥
N

2i+1 .

Thus at stage i there exists a step j such that

|∆j | ≥
N

2i+1 ·
4c
k
.

Let A be the set R at the beginning of step j. As step j belongs to stage i, by (22) we have

|A| ≤ N

2i−1 .

Combining the last two inequalities we get

|A|
|∆j |

≤ k

c
.

Therefore by the greedy property of our algorithm for every set v ∈ L that intersects A we
have

|A|
|A ∩ v| ≤

k

c
,

or equivalently

|A ∩ v| ≥ c · |A|
k
.

Thus A is a (c, k)-attractor for L of size at least N
24c . J
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I Lemma 5.3. Let L be a family of binary vectors, trk(L) ≤ k. Assume that Hamming
weights of all vectors in L lie in some segment [

√
2w, 2w]. Further assume k ≥ 25c+2 where c

is an integer. We have

Ac·24c (L) ≥ Ω
( c
k

)
, (23)

where the constant in Ω-notation is absolute.

Proof. Set [N ] be the union of supports of vectors in L. Clearly, N ≤ 2wk.We now construct
a basis for the approximating real space.
1. π = {πi}i≥0 is a partition of [N ]. Initially π consists of a single set π0 = [N ] and i = 0.
2. WHILE ((i < c · 24c) AND (π0 6= ∅)) DO
3. BEGIN
4. Identify a (c, k)-attractor πi for L of relative size at least 1

24c;
5. Remove elements of πi from π0 and from all sets v ∈ L;
6. Add the set πi to π;
7. Drop every element v such that |v| < w from L;
8. Increment i;
9. END
Lemma 5.2 ensures that the attractor constructed on step 4 above always exists. Observe
that by the end of the execution of the algorithm we have

|π0| ≤ N ·
(

1− 1
24c

)c·24c

≤ N

c
. (24)

Recall that π = {πi}i≥0 is a partition of [N ]. LetW be the real linear space spanned by binary
vectors p0, . . . ,pr whose supports are elements of this partition. Clearly, dimW ≤ c · 24c.

We claim that W approximates all v ∈ L well. Consider two cases:
|v ∩ π0| < w. At least (

√
2− 1)w elements of supp(v) fall onto (c, k)-attractors in π. To

approximate v ∈ L consider the set J = {j | v∩πj 6= ∅ and j 6= 0}. For all j ∈ J by (20)
we have

|v ∩ πj | ≥ c ·
|πj |
k
.

Therefore

|πj | ≤ |v ∩ πj | ·
k

c
. (25)

Consider the vector p =
∑
j∈J pj . Summing (25) over all j ∈ J we obtain

wt(p) ≤ 2w · k
c
,

where wt(p) denotes the Hamming weight. Thus(
p
‖p‖ ,

v
‖v‖

)2
≥ |v ∩ supp(p)|2

wt(v) · c

2wk ≥
(
√

2− 1)2

4 · c
k
.

|v ∩ π0| ≥ w. By (24) we have |π0| ≤ 2wk
c . Consider the binary real vector p whose

support is π0. We have (
p
‖p‖ ,

v
‖v‖

)2
≥ w2

2w ·
c

2wk = c

4k . J
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In what follows all log’s are base 2 unless otherwise specified.

I Theorem 5.4. Let L ⊆ Fn2 , trk(L) ≤ k. Assume k ≥ 25c+2 where c is an integer. We have

A2c·24c·logn (L) ≥ Ω
( c
k

)
, (26)

where the constant in Ω-notation is absolute.

Proof. Partition the set L into 2 logn subsets L1, . . . , L2 logn where every set Li contains
elements of L whose Hamming weight is between 2(i−1)/2 an 2i/2. Apply Lemma 5.3 to each
Li. Consider the joint span of 2 logn resulting real spaces to approximate L. J

I Theorem 5.5. Let L ⊆ Fn2 , trk(L) ≤ k; then
For all τ > 0 and sufficiently large k and n,

Anτ (L) ≥ Ω
(

log k
k

)
, (27)

where the constant in the Ω-notation depends only on τ.
The bullet above implies that for all α and all ε > 0 our main Conjecture 3.7 holds for
all linear spaces L, where dimL = o(nε logn).

Proof. We start with the first bullet. Set c =
⌊
min

{
τ
8 log k, log k−2

5

}⌋
. Theorem 5.4 yields

A τ
4 log k lognkτ/2(L) ≥ Ω

(
log k
k

)
,

which immediately yields (27) for large enough n.
We proceed to the second bullet. Let k = dimL = β(n)nε logn, where β(n) → 0 but

β logn grows. Fix an arbitrary τ < 1− ε. By (27)

Anτ (L) ≥ c log k
k

,

for some constant c. Set r(n) = cεn1−ε

β(n)(1+α) . Observe that for sufficiently large n,

Ar(L) ≥ Anτ (L) ≥ c log k
k
≥ cε logn
βnε logn = cε

βnε
= (1 + α) r

n
.

This concludes the proof. J

The following Corollary gives the implication of Theorem 5.5 for the triangular rank of
combinatorial designs.

I Corollary 5.6. Let m = 1
ε and let Vm be the n × n incidence matrix of a combinatorial

design that has the parameters of the geometric design Gm,q. We have

trk(Vm) = Ω (nε log2 n) , (28)

where trk(Vm) denotes the triangular rank of the collection of rows of Vm.

Proof. Let trk(Vm) = k. Set r = n1−ε. From Corollary 3.3 we have Ar(Vm) . 2
nε . However

from Theorem 5.5 we have Ar(Vm) ≥ Ω
(

log k
k

)
. Therefore

2
nε
≥ Ω

(
log k
k

)
.

Thus k = Ω (nε log2 n) . J

Note that triangular rank of Vm gives a lower bound for the rank of Vm over any field.
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6 High dimensional approximations from short dual vectors

In this Section we establish Conjecture 3.7 for a certain class a linear spaces called cut-spaces
and give a simpler proof of a slightly weaker version of Theorem 5.5. In both of these
results we use low weight vectors in the dual space of an F2-linear space L to construct the
approximating real space for L. As in the previous Section, we often write v to denote both
a vector v and its support set supp(v).

I Definition 6.1. Let L be a family of subsets of [n].We say that the r-partition π =
⊔
j≤r πj

of [n] is attractive for L, if for some constant α > 0 for every v ∈ L we have∣∣∣∣∣∣
⊔

j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ |supp(v)|
(1 + α) ·

n

r
. (29)

I Lemma 6.2. Let L be a set of n-dimensional binary vectors. Suppose there exists an
r-partition of [n] that is attractive for L; then Ar(L) ≥ (1 + α) rn .

Proof. Let W be the real linear space spanned by binary vectors p1, . . . ,pr whose supports
are elements of the attractive r-partition. To approximate v ∈ L consider the vector
p =

∑
j : v∩πj 6=∅ pj . We have

wt(p) ≤ wt(v)
(1 + α) ·

n

r
.

Thus (p/‖p‖,v)2 ≥ (1 + α) rn . J

6.1 Approximating cut spaces
A cut space is a subspace of Fn2 that has a k × n generator matrix where every column has
weight two. Equivalently, a cut space is defined by a k-node graph G with n edges. Elements
of the cut space are incidence vectors of cuts in the graph. Elements of the dual space are
incidence vectors of even degree subgraphs of G. In what follows we restrict our attention to
connected graphs G. For such graphs the dimension of the corresponding cut space is k − 1.
We now argue that cut spaces satisfy Conjecture 3.7.

I Theorem 6.3. Let L ⊆ Fn2 be a cut space, dimL ≤ o
(

n
logn

)
. Then for some r = Θ

(
n

logn

)
and α > 0 we have

Ar(L) ≥ (1 + α) r
n
.

Proof. We rely on the fact that any graph with k nodes and n edges contains a cycle of length
at most 2 logn provided n ≥ 3k. We consider the graph G corresponding to L. We construct
a family π of disjoint subsets of edges of G (coordinates of L). We start by executing the
following simple algorithm:
1. Start with an empty family of sets π.
2. WHILE n ≥ 3k DO
3. BEGIN
4. Identify a cycle C in G, |C| ≤ 2 logn;
5. Include C into π as a new set;
6. Drop edges in C from G;
7. END

CCC 2015



360 Kolmogorov Width of Discrete Linear Spaces: an Approach to Matrix Rigidity

Our next goal is to make sure that most sets in π have approximately the same size. Firstly,
we repeatedly join together any two sets in π, if the sum of their sizes is below 2 logn. Secondly,
we drop the smallest set from π. Now every set in π has size in the range [logn, 2 logn]. We
fix a small δ > 0 and consider two alternatives:

The average size of a set in π is larger than (1 + δ) logn. We extend π to become a
partition of the set [n] by including all remaining coordinates as singleton sets. Let
r = |π|. We have

r ≤ n

(1 + δ) logn + 3k + logn .
n

(1 + δ) logn.

We claim that π is attractive for L. Observe that every element v ∈ L intersects each
non-singleton element of π in an even number of coordinates. Therefore we have∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)
2 · 2 logn = wt(v) · logn.

It remains to note that

wt(v) · n
r
& (1 + δ) · wt(v) · logn.

The average size of a set in π is below (1 + δ) logn. The fraction of sets of size above
1.5 logn is at most 2δ. We pair up sets of size less than 1.5 logn arbitrarily (possibly
dropping one set). We replace pairs by their unions. This leads us to a new family of
sets, where the size of each set is in the range [1.5 logn, 3 logn] and the average size is
above 1.5(1 + δ′) logn. Here we apply the argument from the previous bullet.

This concludes the proof. J

6.2 Approximating general F2-linear spaces
We now apply the method used in the previous Section to approximate cut spaces to generic
linear spaces.

I Theorem 6.4. Let L ⊆ Fn2 be a linear space, dimL = k, k ≤ n
1
2−β . Then for some

r = Θ
(
n
k log k

)
and α > 0,

Ar(L) ≥ (1 + α) r
n
. (30)

Proof. Fix ε > 0 such that k1+ε = o
(
n
k log k

)
. We rely on the fact that by the Hamming

bound for any linear subspace of Fm2 of dimension k, there is a dual vector of weight at most
ck/ log k provided k1+ε ≤ m, for a universal constant c. We construct a family π of disjoint
subsets of [n]. We start by executing the following simple algorithm:
1. Start with an empty family of sets π.
2. WHILE n ≥ k1+ε DO
3. BEGIN
4. Identify a light dual vector v, wt(v) ≤ ck

log k ;
5. Include supp(v) into π as a new set;
6. Drop the coordinates in supp(v) from [n]. Reduce n appropriately.
7. END
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Our next goal is to make sure that most sets in π have approximately the same size.
Firstly, we repeatedly join together any two sets in π, if the sum of their sizes is below
2ck/ log k. Secondly, we drop the smallest set from π. Now every set in π has size in the
range [ck/ log k, 2ck/ log k]. We fix a small δ > 0 and consider two alternatives:

The average size of a set in π is larger than (1 + δ)ck/ log k. We extend π to become
a partition of the set [n] by including all remaining coordinates as singleton sets. Let
r = |π|. We have

r ≤ n log k
(1 + δ)ck + k1+ε + ck

log k .
n log k

(1 + δ)ck .

We claim that π is attractive for L. Observe that every element v ∈ L intersects each
non-singleton element of π in an even number of coordinates. Therefore we have∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)
2 · 2ck

log k = wt(v) · ck

log k .

It remains to note that

wt(v) · n
r
& wt(v) · (1 + δ) · ck

log k .

The average size of a set in π is below (1 + δ)ck/ log k. The fraction of sets of size above
1.5ck/ log k is at most 2δ.We pair up sets of size less than 1.5ck/ log k arbitrarily (possibly
dropping one set). We replace pairs by their unions. This leads us to a new family of
sets, where the size of each set is in the range [1.5ck/ log k, 3ck/ log k] and the average
size is above 1.5(1 + δ′)ck/ log k. Here we apply the argument from the previous bullet.

This concludes the proof. J

Similarly to Theorem 5.5, Theorem 6.4 above can be used to argue that Conjecture 3.7
holds for all linear spaces of dimension up to o(nε logn), i.e., if we set k = β(n) · nε logn,
where β(n)→ 0, and r = Θ

(
n
k logn

)
= Θ

(
n1−ε

β

)
; then (30) yields

Ar(L) ≥ (1 + α) r
n
. (31)

Theorem 5.5 however presents a stronger result. Firstly, in the proof of Theorem 5.5 we use
real spaces of dimension as low as nτ to arrive at the bound (31) for some r = ω(n1−ε). This
leaves plenty of room for potential further improvements. Secondly, Theorem 5.5 applies to
all sets of vectors of bounded triangular rank, while Theorem 6.4 only deals with F2-linear
spaces.

7 Relation to natural proofs

In [16] Razborov and Rudich introduced the natural proofs barrier for proving lower bounds
for computational complexity of Boolean functions. Stated informally their results say that
if a certain property of Boolean functions is shown to imply hardness then; either typical
(random) functions do not have this property, or the property should be hard to recognize,
or some well accepted hardness conjectures are invalid. While the theory developed in [16]
deals with properties of Boolean functions one can make an analogy in the linear setting by
defining a natural property of a matrix to be a property that holds for most matrices and
can be verified efficiently [1]. In this case however the respective ”hardness conjectures" are
not as standard.
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In light of the above it is interesting to ask if establishing our main Conjecture 3.7 for
some ε would necessarily certify rigidity of random binary matrices where each element is set
to 1 independently with probability n−ε. The answer to this seems to depend on the value
of α for that one proves the Conjecture. If α is sufficiently small; then rigidity of random
matrices would likely not be implied. The following Theorem shows that unlike the rows of
a combinatorial design V1/ε, the rows of a random binary matrix of density n−ε with high
probability admit a non-trivial approximation on average even in the regime of a fairly large
dimension of the approximating real space.

I Theorem 7.1. Let V be a random n× n matrix of zeros and ones where every entry is set
to 1 independently with probability p = n−ε, ε < 1

4 . Let B be the real matrix, where the rows
of B are the normalized elements of V. Let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of BBt.
There exists α > 0 such that with high probability over the choice of V for all r = o(n) we
have,

max
dimW≤r

Ev∈V ‖PrW (v)‖2 = 1
n

∑
i≤r

λi ≥ (1 + α) r
n
. (32)

Proof. The equality above is given by (10). We need to prove the inequality, which is a
straightforward corollary of the Marchenko-Pastur law [4] determining the limiting behavior
of the spectral distribution of large inner product matrices. We state a special case of this
law that will suffice for our purposes (see Theorem 3.10 in [4]).

Let {Mn} be a sequence of n× n random matrices, such that the entries of Mn are i.i.d.
random variables with expectation µn and variance 1. Let λ1, . . . , λn be the eigenvalues of
1
nMnM

t
n. Then, for any 0 ≤ a ≤ 4 holds, with probability 1, that

# {i : λi ≥ a}
n

−→ 1
2π

∫ 4

a

√
4− x
x

dx (33)

Fix a = 2. Let c = 1
2π
∫ 4

2

√
4−x
x dx = π−2

2π ≈ 0.18. Taking Mn = 1√
p(1−p)

· V , we observe

that, with probability tending to one with n, at least cn− o(n) eigenvalues of 1
p(1−p)nV V

t

are greater or equal 2.
To complete the proof, we will argue that the spectral distribution of 1

p(1−p)nV V
t is close

to that of BBt. In fact, a special case of the perturbation inequality A.41 in [4] states that
for any two symmetric n× n matrices X and Y , with eigenvalues λ1, . . . , λn and µ1, . . . , µn,
and for any real number a holds that∣∣∣∣# {i : λi ≥ a}

n
− # {i : µi ≥ a}

n

∣∣∣∣ ≤ ( 1
n
· Tr

(
(X − Y )2

))1/3
(34)

We will apply this inequality to slightly perturbed versions of the matrices 1
p(1−p)nV V

t and
BBt. The goal of this modification would be to cancel the problematic effect of the maximal
eigenvalues of the two matrices. With this in mind, we set U = V − pJ , where J is the all-1
matrix. Let W = (wij) = UU t. We take X = 1

p(1−p)nW .
Next, we consider the norms of the rows of V . Since V is a 0-1 matrix, the norm of its ith

row is √ri, where ri is the row sum. We take Y =
(

wij√
rirj

)
.

Note that the matrices X and Y are rank-1 perturbations of 1
p(1−p)nV V

t and BBt. It is
well-known that if two matrices differ by a matrix of rank 1, their eigenvalues interlace.
Hence, using the perturbed matrices changes the LHS of (34) by at most an additive factor
of O (1/n), which we may ignore.
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In the following analysis we may and will assume all ri to lie in the interval np± t
√
np logn,

for a sufficiently large absolute constant t, since this holds with probability tending to one
with n, by the Chernoff bound.
With this assumption, we can bound the distance between the entries of X and Y as follows.

(xij − yij)2 =
(

wij
p(1− p)n −

wij√
rirj

)2
≤ O

(
1
n2

)
· w2

ij

In the last inequality we have used the fact that np2 �
√
n logn, which we may do since

p = n−ε and, by assumption, ε < 1/4.
To complete the argument about proximity of the spectral distributions of X and Y , we need
to estimate from above the `2 norm of W . Note first that by (33) we may assume all the
eigenvalues of X to lie between 0 and 4. Hence

∑n
i,j=1 x

2
ij = O(n). Since W = p(1− p)n ·X,

we deduce
∑n
i,j=1 w

2
ij ≤ n2p2 ·

∑n
i,j=1 x

2
ij ≤ O

(
n3p2).

Finally, we can estimate the RHS of (34) from above as follows:

(
1
n
· Tr

(
(X − Y )2

))1/3
≤ O

(
1
n

)
·

 n∑
i,j=1

w2
ij

1/3

≤ O
(
p2/3

)
= o(n)

We deduce that at least cn− o(n) eigenvalues of the matrices Y and (hence) BBt are greater
or equal 2, for an absolute constant c ≈ 0.18. The claim of the theorem follows. J

8 Conclusions

In this paper we suggested a new path to establishing rigidity of design matrices over the
field F2. Our approach is centered around the conjecture that says that after the natural
”normalizing" embedding of the Boolean cube into Rn, low dimensional F2-linear spaces
exhibit some tiny amount of resemblance to real linear spaces. In particular it is easier to
approximate them by Euclidian linear spaces than to approximate all of the Boolean cube.
We showed that the conjecture is indeed true (by a huge margin) when approximating real
spaces are of low dimension. However our approximability results for high-dimensional real
spaces are not strong enough.

Currently it feels that the weakness of our results stems from the fact in that we use
relatively little combinatorial structure of F2-linearity. In particular our strongest result
(Theorem 5.5) applies to all sets of bounded triangular rank. Note that while it is plausible
that one can make further progress based just on triangular rank; one cannot establish
Conjecture 3.7 is such generality.
I Remark. Replacing the condition dim(L) ≤ n2ε+δ in the Conjecture 3.7 by the condition
trk(L) ≤ n2ε+δ makes the Conjecture invalid.

Proof. Let m = 1
ε be an integer. Let V ′m be a matrix that is obtained from Vm by

independently flipping every zero entry to one with probability n−2ε. It is not hard to see that
with overwhelming probability V ′m does not contain an all-zeros minor of size Ω(n2ε logn).
Thus trk(V ′m) = O(n2ε logn). However Proposition 3.5 implies that for any r = ω(n1−ε), we
have Ar(V ′m) ≈ r

n . Thus rows of V
′
m give a counterexample to this stronger version of the

Conjecture. J
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