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Abstract
We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials
over the free non-commutative polynomial ring F〈x1, . . . , xN 〉, where variables do not commute.
We consider circuits that are restricted in the ways in which they can compute monomials: this
can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions
capture essentially all non-commutative circuit models for which lower bounds are known. We
prove several results about such circuits.
1. We show explicit exponential lower bounds for circuits with up to an exponential number of

parse trees, strengthening the work of Lagarde, Malod, and Perifel (ECCC 2016), who prove
such a result for Unique Parse Tree (UPT) circuits which have a single parse tree.

2. We show explicit exponential lower bounds for circuits whose parse trees are rotations of
a single tree. This simultaneously generalizes recent lower bounds of Limaye, Malod, and
Srinivasan (Theory of Computing 2016) and the above lower bounds of Lagarde et al., which
are known to be incomparable.

3. We make progress on a question of Nisan (STOC 1991) regarding separating the power of
Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by
showing a tight lower bound of nΩ(log d) for any UPT formula computing the product of d
n× n matrices.
When d ≤ logn, we can also prove superpolynomial lower bounds for formulas with up to
2o(d) many parse trees (for computing the same polynomial). Improving this bound to allow
for 2O(d) trees would yield an unconditional separation between ABPs and Formulas.

4. We give deterministic white-box PIT algorithms for UPT circuits over any field (strengthening
a result of Lagarde et al. (2016)) and also for sums of a constant number of UPT circuits
with different parse trees.
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41:2 Non-Commutative Arithmetic Circuits with Restricted Parse Trees

1 Introduction

In this paper, we study questions related to Arithmetic Circuits, which are computational
devices that use arithmetic operations (such as + and ×) to compute multivariate polynomials
over a field F. While the more standard work in this area deals with the commutative
polynomial ring F[x1, . . . , xN ], there is also a line of research, initiated by Hyafil [12] and
Nisan [21], that studies the complexity of computing polynomials from the non-commutative
polynomial ring F〈x1, . . . , xN 〉, where monomials are simply strings over the alphabet X =
{x1, . . . , xN}. The motivation for this is twofold: firstly, the study of polynomial computations
over non-commutative algebras (e.g. the algebra of matrices over F) naturally leads to such
questions [7, 6], and secondly, computing, say, the Permanent non-commutatively1 is at least
as hard as computing it in the commutative setting, and thus the lower bound question
should be easier to tackle in the non-commutative setting.

In an influential result, Nisan [21] justified this by proving exponential lower bounds
for non-commutative formulas, and more generally Algebraic Branching Programs (ABPs),
computing the Determinant and Permanent (and also other polynomials). The method
used by Nisan to prove this lower bound can also be seen as a precursor to the method of
Partial derivatives in Arithmetic circuit complexity (introduced by Nisan and Wigderson [22]),
variants of which have been used to prove a large body of lower bound results in the area
[22, 25, 9, 14, 16].

While lower bounds for general non-commutative circuits remain elusive, we do have
other lower bounds that strengthen Nisan’s result. Recently, Malod, along with two of the
authors of this paper showed [19] that Nisan’s method can be extended to prove lower bounds
for skew circuits, which are circuits where every ×-gate has at most one non-variable input.
Also, the first author, Malod and Perifel [18] proved lower bounds for another variant of
non-commutative circuits that they defined to be unambiguous circuits (which we describe
below). While these two results both strengthen Nisan’s result, they are incomparable to
each other, as shown in [18].

In this paper, we build on the above work to prove lower bounds that generalize these
results significantly and also make progress on other problems related to non-commutative
circuits. The circuits we consider are restricted in the ways they are allowed to compute
monomials. We do this by restricting the “parse trees” that are allowed to appear in the
circuits. Informally, the polynomial computed by any arithmetic circuit C can be written
down as an exponentially-large sum of subcircuits, each of which contains only multiplication
gates and hence computes a single monomial2; each such subcircuit gives rise to a tree, which
we call a parse tree of C (see [18] and references therein for the background of parse trees),
that tells us how the monomial was computed. For example, for the circuit C in Figure 1,
the monomial x1x2x3x4 may be computed in C as (x1 · x2) · (x3 · x4) or as (x1 · (x2 · x3) · x4),
each of which comes from a parse tree of C.

All the non-commutative circuit classes for which we know lower bounds can be defined
by restrictions on the parse trees that appear in them. ABPs are circuits where all parse
trees are left combs (i.e. a tree where every internal node has two children and the left child
is always a leaf); skew circuits are equivalent in power to circuits where the parse trees are
twisted combs (i.e. a tree where every internal node has two children and at least one of the

1 We can define the Permanent in the non-commutative polynomial ring by ordering the variables in each
monomial in the commutative permanent, say, in increasing order of the rows in which they appear.

2 different subcircuits could compute the same monomial
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Figure 1 From left to right: a non-commutative arithmetic circuit C; two ways in which the
monomial x1x2x3x4 is computed in the circuit; the corresponding parse trees.

two children is always a leaf); and unambiguous circuits (that we will call Unique Parse Tree
(UPT) circuits below) are defined to be circuits that have only one parse tree. It is thus
natural to consider other restrictions on the structure of the parse trees that appear in a
circuit. We prove the following results about such circuits.

We prove lower bounds for circuits that only contain a few different parse trees. The
motivation for this is the lower bound of [18] for the case of circuits with a single parse
tree and a construction in [19] that shows that poly(N, d)-sized circuits with exp(Ω(d))
many parse trees3 evade all currently known techniques for proving lower bounds for
non-commutative circuits. We show explicit exponential lower bound for circuits with up
to exp(dΩ(1)) parse trees (Theorem 13).
We also consider structural restrictions on the collections of parse trees that appear in
our circuits. As mentioned above, skew circuits are circuits where all parse trees are
twisted combs, which can be seen as trees obtained by starting with a left comb (which
defines an ABP) and successively applying rotations to the internal nodes that swap the
children. We say that a circuit C is rotation Unique Parse tree (rotUPT) if there is a
single tree T such that all the parse trees of C can be obtained as rotations of T .4
We show an explicit exponential lower bound for rotUPT circuits (Theorem 17). Note
that this result simultaneously generalizes the skew circuit lower bound of Limaye et
al. [19] as well as the UPT circuit lower bound of Lagarde et al. [18].
We consider the problem of separating ABPs from formulas, which was posed by Nisan [21]
and is the non-commutative arithmetic analogue of separating NL from NC1. Equivalently,
this is the question of whether (an entry of) the product of d n× n matrices, all of whose
entries are distinct variables, can be computed by a poly(n, d)-sized non-commutative
formula. The standard divide-and-conquer approach yields, for every even ∆, a non-
commutative formula of depth ∆ and size nO(∆d2/∆) computing this polynomial and a
size nO(log d) formula in general. Further, these formulas can be seen to have a unique
parse tree (i.e. they are UPT).
We show that this upper bound is nearly tight for UPT formulas and every choice of
∆ by showing a lower bound of nΩ(∆d1/b∆/2c).5 (Theorem 18). In particular, our result
implies that any UPT formula for this polynomial must have size nΩ(log d). We can extend
this (Theorem 19) to prove a superpolynomial lower bound even in the case that the
formula has at most k parse trees, where k = 2o(d) (however, for this result, we need the
assumption that d ≤ logn).

3 A close look at the circuits in [19] indicates that just about all parse trees of fan-in 2 appear in these
circuits.

4 There can be exp(Ω(d)) of these, as in the case of skew circuits.
5 Our bounds are actually better stated in terms of the ×-depth of the formula.

MFCS 2017
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Finally, we consider the Polynomial Identity Testing (PIT) problem for non-commutative
circuits with restricted parse trees. Lagarde et al. [18] show that deterministic PIT
algorithms for UPT circuits can be obtained by adapting a PIT algorithm for ABPs due
to Arvind, Joglekar and Srinivasan [3]. However, this technique only works over fields of
characteristic zero. Here, we give a straightforward adaptation of an older PIT algorithm
of Raz and Shpilka [24] (also for non-commutative ABPs) to show that PIT for UPT
circuits can be solved in deterministic polynomial time over all fields (Theorem 20). We
also consider circuits that are sums of UPT circuits (with possibly different parse trees).
By using ideas from the work of Gurjar, Korwar, Saxena and Thierauf [10], we show
that PIT for a sum of constant number of UPT circuits can be solved in deterministic
polynomial time over any field (Theorem 21).

For lack of space, many of the proofs of the above statements have been omitted from
this extended abstract. We refer the reader to the full version [17] for detailed proofs.

Related work. Hrubeš, Wigderson and Yehudayoff [11] initiated a study of the asymptotics
of the classical sum-of-squares problem in mathematics and showed that a suitable result
in this direction would yield strong lower bounds against general non-commutative circuits.
While this line of work is currently the only feasible attack on the problem of general circuit
lower bounds, we do not yet have any lower bounds using this technique.

Nisan and Wigderson [22] prove results that imply6 some lower bounds for UPT formulas
computing iterated matrix product. For depth-3 formulas, they prove an optimal nd bound
on computing the product of d n× n matrices. For depths ∆ > 3 though, the lower bound is
only exp(Θ(d1/∆)) and thus does not yield anything non-trivial when ∆ approaches log d.
Indeed, the proof method of this result in [22] is not sensitive to the value of n and holds for
any n ≥ 2. Such a method cannot yield non-trivial lower bounds for general formulas since
we do have poly(d)-sized formulas in the setting when n = O(1).

The results of Kayal, Saha, and Saptharishi [15] and Fournier, Limaye, Malod, and
Srinivasan [8] together also prove a superpolynomial lower bound on the size of regular
formulas (defined by [15]) computing the product of d n× n matrices in the commutative
setting. While these formulas (in the non-commutative setting) are definitely UPT, the
converse is not true.

Arvind, Mukhopadhyay and Raja [4] and Arvind, Joglekar, Mukhopadhyay and Raja [2]
have some recent work on PIT algorithms for general non-commutative circuits that run in
time polylogarithmic in the degree of the circuit and polynomial in the size of the circuit.
Our results are incomparable with theirs, since our algorithms run in time polynomial in both
degree and size but are deterministic, whereas the algorithms of [4, 2] are faster (especially
in terms of degree) but randomized.

An earlier manuscript of Arvind and Raja [5] contains a claim that the PIT problem for
non-commutative skew circuits has a deterministic polynomial time algorithm, but the proof
is unfortunately flawed.7

Techniques. The techniques used to prove the lower bounds in this paper are generalizations
of the techniques of Hyafil [12] and Nisan [21]. Given a homogeneous polynomial f ∈ F〈X〉
of degree d, we associate with it an Nd/2×Nd/2 matrix whose rows and columns are labelled

6 The results of [22] in fact hold in the stronger commutative set-multilinear setting.
7 Private communication with the authors.
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by monomials (i.e. strings over X) m of degree d/2 each. Nisan [21] considers the matrix
M [f ] where the (m1,m2)th entry is the coefficient of the monomial m1m2 in f . In [19, 18],
along with our co-authors, we considered the more general family of matrices MY [f ] where
Y ⊆ [d] is of size d/2 and the (m1,m2)th entry of MY [f ] is the coefficient of the monomial
m such that the projection of m to the locations in Y gives m1 and the locations outside Y
give m2.

This is the general technique we use in this paper as well, though choosing the right Y
requires some work. In the lower bound for circuits with few parse trees, it is chosen at
random (in a similar spirit to a multilinear lower bound of Raz [23]). In the lower bound
for rotUPT circuits, it is chosen in a way that depends on the structure of the parse trees
in the circuit (combining the approaches of [19, 18]). In the separation of UPT formulas
from ABPs, it is applied (after a suitable restriction) in a way that keeps the iterated matrix
product polynomial high rank but reduces the rank of the UPT formula.

For the PIT algorithm for sums of UPT circuits, we use an observation of Gurjar et
al. [10] (also see [21, 24]) that any polynomial P that has a small ABP has a small set of
characterizing identitites such that Q = P iff Q satisfies these identities. We are able to show
(using a suitable decomposition lemma of [18]) that a similar fact is also true more generally
in the case that P has a small UPT circuit. If Q also has a small UPT circuit, then checking
these identities for Q reduces to a PIT circuit for a single UPT circuit, for which we already
have algorithms. In this way, given two UPT circuits (with different parse trees) computing
P,Q, we can check if P −Q = 0. Extending this idea exactly as in [10], we can efficiently
check if the sum of any small number of UPT circuits is 0.

2 Preliminaries

We refer the reader to the survey [26] for standard definitions regarding arithmetic circuits.

2.1 Non-commutative polynomials

Throughout, we use X = {x1, . . . , xN} to denote the set of variables. We work over the
non-commutative ring of polynomials F〈X〉 where monomials are strings over the alphabet X:
for example, x1x2 and x2x1 are distinct monomials in this ring. For d ∈ N, we useMd(X)
to denote the set of monomials (i.e. strings) over the variables in X of degree exactly d.

For i, j ∈ N, we define [i, j] to be the set {i, i+ 1, . . . , j} (the set is empty if i > j). We
also use the standard notation [i] to denote the set [1, i].

Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and dh respectively and an
integer j ∈ [0, dh], we define the j-product of g and h – denoted g ×j h – as follows:

When g and h are monomials, then we can factor h uniquely as a product of two monomials
h1h2 such that deg(h1) = j and deg(h2) = dh − j. In this case, we define g ×j h to be
h1 · g · h2.
The map is extended bilinearly to general homogeneous polynomials g, h. Formally, let
g, h be general homogeneous polynomials, where g =

∑
` g`, h =

∑
i hi and g`, hi are

monomials of g, h respectively. For j ∈ [0, dh], each hi can be factored uniquely into
hi1 , hi2 such that deg(hi1) = j and deg(hi2) = dh − j. And g ×j h is defined to be∑
i

∑
` hi1g`hi2 .

Note that g ×0 h and g ×dh
h are just the products g · h and h · g respectively.

MFCS 2017
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2.2 The partial derivative matrix
Here we recall some definitions from [21] and [19]. Let Π denote a partition of [d] given by
an ordered pair (Y,Z), where Y ⊆ [d] and Z = [d] \ Y . In what follows we only use ordered
partitions of sets into two parts. We say that such a Π is balanced if |Y | = |Z| = d/2.

Given a monomial m of degree d and a set W ⊆ [d], we use mW to denote the monomial
of degree |W | obtained by keeping exactly the variables in the locations indexed by W .

I Definition 1 (Partial Derivative matrix). Let f ∈ F〈X〉 be a homogeneous polynomial of
degree d. Given a partition Π = (Y, Z) of [d], we define an N |Y | ×N |Z| matrix M [f,Π] with
entries from F as follows: the rows of M [f,Π] are labelled by monomials from M|Y |(X)
and the columns by elements of M|Z|(X). Let m′ ∈ M|Y |(X) and m′′ ∈ M|Z|(X); the
(m′,m′′)th entry of M [f,Π] is the coefficient in the polynomial f of the unique monomial m
such that mY = m′ and mZ = m′′.

We will use the rank of the matrix M [f,Π] – denoted rank(f,Π) – as a measure of the
complexity of f . Note that since the rank of the matrix is at most the number of rows, we
have for any f ∈ F〈X〉 rank(f,Π) ≤ N |Y |.

I Definition 2 (Relative Rank). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d.
For any Y ⊆ [d], we define the relative rank of f w.r.t. Π = (Y,Z) – denoted rel-rank(f,Π) –
to be

rel-rank(f,Π) := rank(M [f,Π])
N |Y |

.

Fix a partition Π = (Y,Z) of [d] and two homogeneous polynomials g, h of degrees
dg and dh respectively. Let f = g ×j h for some j ∈ [0, dh]. This induces natur-
ally defined partitions Πg of [dg] and Πh of [dh] respectively in the following way. Let
Ig = [j + 1, j + dg] and Ih = [d] \ Ig. We define Πg = (Yg, Zg) such that Yg = {j ∈
[dg] | Y contains the jth smallest element of Ig}; Πh = (Yh, Zh) is defined similarly with
respect to Ih. Let |Yg|, |Zg|, |Yh|, |Zh| be denoted d′g, d′′g , d′h, d′′h respectively.

In the above setting, we have a simple description of the matrix M [f,Π] in terms of
M [g,Πg] and M [h,Πh]. We use the observation that monomials of degree |Y | = d′g + d′h are
in one-to-one correspondence with pairs (m′g,m′h) of degrees d′g and d′h respectively (and
similarly for monomials of degree |Z|). The following appears in [19].

I Lemma 3 (Tensor Lemma). Say f = g×jh as above. Then, M [f,Π] = M [g,Πg]⊗M [h,Πh].

I Corollary 4. Say f = g×j h as above. We have rank(f,Π) = rank(g,Πg) · rank(h,Πh). In
the special case that one of Yg, Zg, Yh, or Zh is empty, the tensor product is an outer product
of two vectors and hence rank(f,Π) ≤ 1.

We associate any partition Π = (Y, Z) with the string in {−1, 1}d that contains a −1
in exactly the locations indexed by Y . Given partitions Π1,Π2 ∈ {−1, 1}d, we now define
∆(Π1,Π2) to be the Hamming distance between the two strings or equivalently as |Y1∆Y2|
where Π1 = (Y1, Z1) and Π2 = (Y2, Z2).

I Proposition 5. Let f ∈ F〈X〉 be homogeneous of degree d and say Π ∈ {−1, 1}d. Then,
rank(f,Π) = rank(f,−Π).

Proof. Follows from the fact that M [f,−Π] is the transpose of M [f,Π]. J

I Lemma 6 (Distance lemma). Let f ∈ F〈X〉 be homogeneous of degree d and say Π1,Π2 ∈
{−1, 1}d. Then, rank(f,Π2) ≤ rank(f,Π1) ·N∆(Π1,Π2).

Proof. See the full version [17]. J
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2.3 Standard definitions related to non-commutative circuits
We consider noncommutative arithmetic circuits that compute polynomials over the ring
F〈X〉. These are arithmetic circuits where the children of each × gate are ordered and the
polynomial computed by a × gate is the product of the polynomials computed by its children,
where the product is computed in the given order. Further, unless mentioned otherwise, we
allow both + and × gates to have unbounded fan-in and the + gates to compute arbitrary
linear combinations of its inputs (the input wires to the + gate are labelled by the coefficients
of the linear combination). A noncommutative formula is a circuit where the underlying
directed acyclic graph is a rooted tree. The size of an arithmetic circuit or formula is the
number of edges or wires in the circuit (which can be assumed to be at least the number of
gates in the circuit).

We always assume that the output gate of the circuit is a + gate (possibly of fan-in 1)
and that input gates feed into + gates. We also assume that + and × gates alternate on any
path from the output gate to an input gate (some of these gates can have fan-in 1). Any
circuit can be converted to one of this form with at most a constant blow-up in size.

Throughout, our circuits and formulas will be homogeneous in the following sense. Define
the formal degree of a gate as follows: the formal degree of an input gate is 1, the formal
degree of a + gate is the maximum of the formal degrees of its children, and that of a × gate
is the sum of the formal degrees of its children. We say that a circuit is homogeneous if each
gate computes a homogeneous polynomial and any gate computing a non-zero polynomial
computes one of degree equal to the formal degree of the gate. Note, in particular, that every
input node is labelled by a variable only (and not by constants from F).

Homogeneity is not a strong assumption on the circuit: it is a standard fact that any
homogeneous polynomial of degree d computed by a non-commutative circuit of size s can
be computed by a homogeneous circuit of size O(sd2) [11].

We also consider homogeneous Algebraic Branching Programs (ABPs), defined by
Nisan [21] in the non-commutative context. We give here a slightly different definition
that is equivalent up to polynomial factors.

Assume that N = n2 · d for positive n, d ∈ N and let IMMn,d(X) denote the following
polynomial in N variables (see, e.g. [22]). Assume X is partitioned into d sets of variables
X1, . . . , Xd of size n2 each and let M1, . . . ,Md be n × n matrices such that the entries of
Mi (i ∈ [d]) are distinct variables in Xi. Let M = M1 ·M2 · · ·Md; each entry of M is a
homogeneous polynomial of degree d from F〈X〉. We define the polynomial IMMn,d to be
the sum of the diagonal entries of M .

A homogeneous ABP for a homogenous polynomial f ∈ F〈X〉 of degree d is a pair (n1, ρ)
where n1 ∈ N and ρ is a map from X ′ = {x′1, . . . , x′n2

1d
} to homogeneous linear functions

from F〈X〉 such that f can be obtained by substituting ρ(x′i) for each x′i in the polynomial
IMMn1,d(X ′). The parameter n1 is called the width of the ABP.

2.4 Non-commutative circuits with restricted parse trees
In this paper, we study restricted forms of non-commutative arithmetic circuits. The
restrictions are defined by the way the circuits are allowed to multiply variables to compute
a monomial. To make this precise we need the notion of a parse tree of a circuit, which has
been considered in many previous works [13, 1, 20, 18].

Fix a homogeneous non-commutative circuit C. A parse formula of C is a formula C ′
obtained by making copies of gates in C as follows:

Corresponding to the output + gate of C, we add an output + gate to C ′,

MFCS 2017
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Figure 2 From left to right: a non-commutative arithmetic circuit; two parse formulas in the
circuit; the corresponding parse trees. (To simplify the picture, we have not depicted the edges that
carry the constant 1. Also we have not introduced + gates between the two layers of × gates; the
reader should assume that the edges between the two layers carry + gates of fan-in 1.)

For every + gate Φ′ added to C ′ corresponding to a + gate Φ in C, we choose exactly
one child Ψ of Φ in C and add a copy Ψ′ to C ′ as a child of Φ′. The constant along the
wire from Ψ′ to Φ′ remains the same as in C.
For every × gate Φ′ added to C ′ corresponding to a × gate Φ in C and every wire from
a child Ψ to Φ in C, we make a copy of Ψ′ to C ′ and make it a child of Φ.

Any such parse formula C ′ computes a monomial (with a suitable coefficient) and the
polynomial computed by C is the sum of all monomials computed by parse formulas C ′ of C.
We define val(C ′) to be the monomial computed by C ′.

A parse tree of C is a rooted, ordered tree obtained by taking a parse formula C ′ of C,
“short circuiting” the + nodes (i.e. we remove the + nodes and connect the edges that were
connected to it directly), and deleting all labels of the nodes and the edges of the tree. See
Figure 2 for an example. Note that in a homogeneous circuit C, each such tree has exactly d
leaves. We say that the tree T is the shape of the parse formula C ′.

The process that converts the parse formula C ′ to T associates each internal node of T
with a multiplication gate of C ′ and each leaf of T with an input gate of C ′.

Let T be a parse tree of a homogeneous circuit C with d leaves. Given a node v ∈ V (T ),
we define the deg(v) to be the number of leaves in the subtree rooted at v and pos(v) :=
(1+the number of leaves preceding v in an in-order traversal of T ). The type of v is defined
to be type(v) := (deg(v), pos(v)). (The reason for this definition is that in any parse formula
C ′ of shape T , the monomial computed by the multiplication gate or input gate corresponding
to v in C ′ computes a monomial of degree deg(v) which sits at position pos(v) w.r.t. the
monomial computed by the circuit C ′.) We also use I(T ) to denote the set of internal nodes
of T and L(T ) to denote the set of leaves of T .

We use T (C) to denote the set of parse trees that can be obtained from parse formulas
of C. We say that a homogeneous non-commutative arithmetic circuit is a Unique Parse
Tree circuit (or UPT circuit) if |T (C)| = 1. More generally if |T (C)| ≤ k, we say that C is
k-PT. Finally, if T (C) ⊆ T for some family T of trees, we say that C is T -PT. Similarly, we
also define UPT formulas, k-PT formulas and T -PT formulas. If C be a UPT circuit with
T (C) = {T}, we say that T is the shape of the circuit C.

We say that a UPT circuit C is in normal form if we can associate with each gate Φ of
the circuit a node v(Φ) ∈ V (T ) such that the following holds: if Φ is an input gate, then
v(Φ) is a leaf; if Φ is a × gate with children Ψ1, . . . ,Ψt (in that order), then the nodes
v(Ψ1), . . . , v(Ψt) are the children of v(Φ) (in that order); and finally, if Φ is a + gate with
children Ψ1, . . . ,Ψt (which are all × or input gates since we assume that + and × gates are
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alternating along each input to output path), then v(Φ) = v(Ψ1) = · · · = v(Ψt). (Intuitively,
what this means is that in any unravelling of a parse formula containing a (multiplication or
input) gate Φ to get the parse tree T , the gate Φ always takes the position of node v(Φ).)

We state below some simple structural facts about UPT circuits. (See [17] for proof.)

I Proposition 7.
1. Let C be a UPT formula. Then C is in normal form.
2. For any UPT circuit C of size s and shape T , there is another UPT circuit C ′ of size

O(s2) and shape T in normal form computing the same polynomial as C. Further, given
C and T , such a C ′ can be constructed in time poly(s).

Let C be either a UPT formula or a UPT circuit of shape T in normal form. We say
that a + gate Φ in C is a (v,+) gate if v(Φ) = v. Similarly, we refer to a × gate Φ in C as
a (v,×) gate if v(Φ) = v. For simplicity of notation, we also refer to an input gate Φ as a
(v,×) gate if v(Φ) = v. Note that the output gate is a (v0,+) gate where v0 is the root of T .

We now observe that any UPT formula or circuit in normal form can be converted to
another (of a possibly different shape) where each multiplication gate has fan-in at most 2.

I Lemma 8. Let C be a normal form UPT circuit (resp. formula) of size s and shape T .
Then there is a tree T ′ and normal form UPT circuit (resp. formula) C ′ of size O(s) and
shape T ′ such that C ′ computes the same polynomial as C and every multiplication gate in
C ′ has fan-in at most 2. (This implies that every internal node of T ′ also has fan-in at
most 2.) Further, there is a deterministic polynomial-time algorithm, which when given C,
computes C ′ as above.

Proof. See the full version [17]. J

Let C be a UPT circuit of shape T computing a homogeneous polynomial f of degree
d. Given any node u ∈ V (T ), we define partition Πu of [d] so that Πu = (Yu, Zu) where
Yu = {pos(v) | v a leaf and descendant of u}.

We will need the following lemma of Lagarde et al. [18].

I Lemma 9 ([18]). Let C be a normal form UPT circuit of size s computing a homogeneous
polynomial f ∈ F〈X〉 of degree d. Assume that the fan-in of each multiplication gate is
bounded by 2. Then, for any u ∈ V (T ), rank(f,Πu) ≤ s, where Πu is as defined above.

2.5 A polynomial that is full rank w.r.t. all partitions
The following was shown in [19].

I Theorem 10. For any even d and any positive N ∈ N, there is a q0(N, d) such that the
following holds over any field of size at least q0(N, d). There is an explicit homogeneous
polynomial FN,d ∈ F〈X〉 of degree d such that for any balanced partition Π = (Y,Z) of [d],
rank(f,Π) = Nd/2 (equivalently, rel-rank(f,Π) = 1). Further, FN,d can be computed by an
explicit homogeneous non-commutative arithmetic circuit of size poly(N, d).

3 Lower bounds for k-PT circuits

In this section, we show that any k-PT circuit computing a polynomial of degree d where k
is subexponential in d cannot compute the polynomial FN,d from Theorem 10. We will show
that if both k and the size of the circuit are subexponential in d, then there is a Π such that
rel-rank(f,Π) < 1.

Our proof is based on the following lemmas.

MFCS 2017
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I Lemma 11. Let C be a k-PT circuit (resp. formula) of size s with T (C) = {T1, . . . , Tk}
computing f ∈ F〈X〉. Then there exist normal form UPT circuits (resp. formulas) C1, . . . , Ck
of size at most s2 each such that T (Ci) = {Ti} and f =

∑k
i=1 fi, where fi the polynomial

computed by Ci.

Proof. See the full version [17]. J

I Lemma 12. Let C be a UPT circuit in normal form over F〈X〉 of size s = N c and f a
homogeneous polynomial of degree d computed by C. Let Π be a uniformly random partition
of the variables of [d] into two sets. Then for any parameter b ∈ N,

Pr
Π

[
rank(f,Π) ≥ Nd/2−b

]
≤ exp(−Ω(d/(b+ c)2)).

Before proving Lemma 12, let us see that the above lemmas imply the following lower
bound for homogeneous non-commutative circuits with few parse trees. Note that when the
field F is large enough, this proves a lower bound for FN,d from Theorem 10.

I Theorem 13. Assume that N ≥ 2 is any constant and d an even integer parameter
that is growing. Let F ∈ F〈X〉 be any polynomial such that for each balanced partition Π,
rank(F,Π) = Nd/2. Then, for any constant ε ∈ (0, 1), any circuit that computes F and
satisfies |T (C)| = k ≤ 2d

1
3−ε

must have size at least 2d
1
3−

ε
2 .

Proof. Let C be any circuit of size s ≤ N c for c = d1/3−ε/2 with |T (C)| = k ≤ 2d1/3−ε and
computing f ∈ F〈X〉. We show that there is a balanced partition Π such that rank(f,Π) <
Nd/2. This will prove the theorem.

To show this, we proceed as follows. Using Lemma 11, we can write f =
∑
i∈[k] fi where

each fi ∈ F〈X〉 is computed by a normal form UPT circuit Ci of size at most s2 ≤ N2c.
Fix any i ∈ [k]. By Lemma 12, the number of partitions Π for which rank(fi,Π) ≥ N d

2−c

is at most 2d · exp(−Ω(d/c2)). In particular, since the number of balanced partitions is(
d
d/2
)

= Θ( 2d
√
d
), we see that for a random balanced partition Π,

Pr
Π balanced

[
rank(fi,Π) ≥ Nd/2−c

]
≤
√
d · exp(−Ω(d/c2)) ≤ exp(−d1/3).

Say fi is good for Π if rank(fi,Π) ≥ Nd/2−c. By the above, we have

Pr
Π balanced

[∃i ∈ [k] s.t. fi good for Π] ≤ k · exp(−d1/3) ≤ 2d
1/3−ε

· exp(−d1/3) < 1.

In particular, there is a balanced Π such that no fi is good for Π. Fix such a balanced
partition Π. By the subadditivity of rank, we have

rank(f,Π) ≤
∑
i∈[k]

rank(fi,Π) ≤ k ·Nd/2−c ≤ 2d
1/3−ε

·Nd/2−c

= Nd/2 · exp(O(d1/3−ε)− Ω(d1/3−ε/2)) < Nd/2.

This proves the theorem. J

Proof of Lemma 12 . Recall from Section 2.2 that we identify each partition Π with an
element of {−1, 1}d. Given partitions Π1,Π2 ∈ {−1, 1}d we use 〈Π1,Π2〉 to denote their inner
product: i.e., 〈Π1,Π2〉 :=

∑
i∈[d] Π1(i)Π2(i). Note that the Hamming distance ∆(Π1,Π2) is

∆(Π1,Π2) = d

2 −
1
2 〈Π1,Π2〉. (1)
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Let T (C) = {T}. Recall that |L(T )| = d and by Lemma 8, we can assume that the fan-in
of each internal node of T is bounded by 2. For any u ∈ I(T ) (recall I(T ) is the set of
internal nodes of T ), let L(u) denote the set of leaves of the subtree rooted at u. We identify
each leaf ` ∈ V (T ) with pos(`) ∈ [d]. For each u ∈ I(T ), we can define the partition Πu from
Section 2.4 by Πu(`) = −1 iff ` ∈ L(u).

For γ > 0, define a partition Π to be γ-correlated to T if for each u ∈ I(T ), we have∣∣∣∑`∈L(u) Π(`)
∣∣∣ ≤ γ.

Lemma 12 immediately follows from Claims 14 and 15, stated below.

I Claim 14. Let Π be any partition of [d] such that rank(f,Π) ≥ Nd/2−b. Then Π is
O(b+ c)-correlated to T .

Proof. We know from Lemma 9 and Proposition 5 that for each u ∈ I(T ), rank(f,Πu) and
rank(f,−Πu) are at most N c. If Π is a partition such that either ∆(Π,Πu) or ∆(Π,−Πu)
is strictly smaller than d

2 − (b + c) for some u ∈ I(T ), then by Lemma 6 we would have
rank(f,Π) < Nd/2−b.

Thus, if rank(f,Π) ≥ Nd/2−b, we must have min{∆(Π,Πu),∆(Π,−Πu)} ≥ d
2 − (b + c)

for each u ∈ I(T ). By (1), this means that for each u ∈ I(T ), |〈Π,Πu〉| ≤ γ for some
γ = O(b+ c).

Let v be the root of T . Note that Πv ∈ {−1, 1}d is the vector with all its entries being
−1. Hence, we have for any u ∈ I(T ),∣∣∣∣∣∣

∑
`∈L(u)

Π(`)

∣∣∣∣∣∣ =
∣∣∣∣〈Π, −(Πu + Πv)

2 〉
∣∣∣∣ ≤ 1

2(|〈Π,Πu〉|+ |〈Π,Πv〉|) ≤ O(γ).

This proves the claim. J

I Claim 15. Say Π ∈ {−1, 1}d is chosen uniformly at random and γ ≤
√
d. Then

PrΠ [Π is γ-correlated to T ] ≤ exp(−Ω( dγ2 )).

The following technical subclaim is useful for proving Claim 15. (See [17] for proof.)

I Subclaim 16. Assume that r, t ∈ N such that rt ≤ d/4. Then we can find a sequence
u1, . . . , ur ∈ I(T ) such that for each i ∈ [r] we have |L(ui) \

⋃i−1
j=1 L(uj)| ≥ t.

Proof of Claim 15. We apply Subclaim 16 with t = Θ(γ2) and r = Θ(d/γ2) to get a sequence
u1, . . . , ur ∈ I(T ) such that for each i ∈ [r], we have |L(ui) \

⋃i−1
j=1 L(uj)| ≥ t.

By the definition of γ-correlation, we have

Pr
Π

[Π γ-correlated to T ] ≤ Pr
Π

∀i ∈ [r],

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ


≤
∏
i∈[r]

Pr
Π

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ
∣∣∣∣∣∣ {Π(`) | ` ∈

⋃
j<i

L(uj)}

 (2)

Fix any i ∈ [r] and Π(`) for each ` ∈ L<i :=
⋃
j<i L(uj). The event |

∑
`∈L(ui) Π(`)| ≤ γ

is equivalent to
∑
`∈L(ui)\L<i

Π(`) ∈ I for some interval I of length 2γ = O(
√
t). This is the

probability that the sum of at least t {−1, 1}-valued random variables chosen i.u.a.r. lies in
an interval of length O(

√
t). By the Central Limit theorem, this is at most 1− Ω(1). By (2),

we get PrΠ [Π γ-correlated to T ] ≤ exp{−Ω(r)}, which proves the claim. J
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4 Other results

We refer the reader to the full version of the paper [17] for proofs of the results stated below.

Lower bounds for circuits with rotations of one parse tree. Given two parse trees T1 and
T2 with the same number of leaves, we say that T1 is a rotation of T2, denoted T1 ∼ T2, if
T1 can be obtained from T2 by repeatedly reordering the children of various nodes in T2.
Clearly, ∼ is an equivalence relation. We use [[T ]] to denote the equivalence class of tree T.
We say that a homogeneous circuit C is rotation UPT or rotUPT if there is a tree T such
that T (C) ⊆ [[T ]]. We can show the following result.

I Theorem 17. Let N, d ∈ N be parameters with d even. Let C be a rotUPT circuit of size s
computing a polynomial f ∈ F〈X〉 of degree d over N variables, then there exists a partition
Π = ΠC s.t. rel-rank(f,Π) is at most poly(s) ·N−Ω(d). In particular, if |F| > q0(N, d) where
q0(N, d) is as in Theorem 10, any rotUPT circuit for FN,d has size NΩ(d).

Separation between Few PT formulas and ABPs. We now state two lower bounds for
formulas against IMMn,d, yelding separations with ABPs.

We define the ×-depth of a formula to be the maximum number of ×-gates that one can
meet on a path from the root to a leaf. Note that if a formula has alternating + and × gates
on each path and has depth ∆′ and ×-depth ∆, then ∆′ ≥ ∆ ≥ d∆′

2 e. We will state our first
lower bound in terms of ×-depth.

I Theorem 18. Let F be a UPT formula of ×-depth ∆, size s, computing IMMn,d ∈ F〈X〉.
Then, s ≥ nΩ(∆d1/∆). In particular, any UPT formula for IMMn,d must have size nΩ(log d).

This lower bound is actually tight for every ×-depth ∆, since the standard divide and
conquer approach to computing IMMn,d gives in fact a UPT formula of size nO(∆d1/∆) and
×-depth ∆, for any ∆ ≤ log d.

We can also prove a lower bound on the size of k-PT formulas computing IMMn,d as long
as k is significantly smaller than 2d and d ≤ logn.

I Theorem 19. Let n, d be growing parameters with d ≤ logn. Then, any k-PT formula F
computing IMMn,d has size at least n` where ` = Ω(lg d− lg lg k). In particular, if k = 2o(d),
the size(F ) ≥ nω(1) and if k = 2d1−Ω(1) , then size(F ) ≥ nΩ(log d).

Deterministic PIT for UPT and k-PT circuits. We now state two results regarding de-
terministic whitebox PIT algorithms for UPT and k-PT circuits. The first result was already
known in characteristic 0 via the result of Lagarde et al. [18]. However, the algorithm we
give, adapting the work of Raz and Shpilka [24], works over fields of any characteristic and
runs in time polynomial in the size of the circuit. The second result uses additionally the
ideas of Gurjar et al. [10] to extend the above algorithm to a deterministic PIT for sums of k
UPT circuits; the algorithm runs in polynomial time as long as k is a constant.

I Theorem 20 (PIT for UPT circuits). Let N, s ∈ N be parameters. There is a deterministic
algorithm running in time poly(s) which, on input a UPT circuit C of size at most s over N
variables, checks if C computes the zero polynomial or not.

I Theorem 21 (PIT for sums of k UPT circuits). Let N, s, k ∈ N be parameters. There is a
deterministic algorithm running in time sO(2k) which, on input k UPT circuits C1, . . . , Ck
(of possibly differing shapes) each of of size at most s over N variables, checks if

∑k
i=0 Ci

computes the zero polynomial or not.
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