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Abstract

We present an upper bound on the exponent of the asymptotic
behaviour of the tensor rank of a family of tensors defined by the
complete graph on k vertices. For k ≥ 4, we show that the exponent
per edge is at most 0.77, outperforming the best known upper bound
on the exponent per edge for matrix multiplication (k = 3), which
is approximately 0.79. We raise the question whether for some k
the exponent per edge can be below 2/3, i.e. can outperform matrix
multiplication even if the matrix multiplication exponent equals 2. In
order to obtain our results, we generalise to higher order tensors a
result by Strassen on the asymptotic subrank of tight tensors and a
result by Coppersmith and Winograd on the asymptotic rank of matrix
multiplication. Our results have applications in entanglement theory
and communication complexity.

1. Introduction

A famous open problem in algebraic complexity theory is the problem of
determining the tensor rank of large tensor powers of the 2 × 2 matrix
multiplication tensor. Let V1, . . . , Vk be finite-dimensional complex vector
spaces and let φ ∈ V1 ⊗ · · · ⊗ Vk be a k-tensor. The tensor rank R(φ) of φ is
the smallest number r such that φ can be written as a sum of r simple tensors
v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk. We define the Nth tensor power φ⊗N as the
k-tensor obtained by taking the tensor product of N copies of φ and grouping
such that φ ∈ (V ⊗N1 ) ⊗ · · · ⊗ (V ⊗Nk ). For any n, let b1, . . . , bn denote the
standard basis of Cn. The 2× 2 matrix multiplication tensor is the 3-tensor∑

i∈{0,1}3
(bi1 ⊗ bi2)⊗ (bi2 ⊗ bi3)⊗ (bi3 ⊗ bi1) ∈ (C2 ⊗ C2)⊗3.
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This paper is motivated by the study of the tensor rank of powers of tensors
that are generalizations of the matrix multiplication tensor. Consider a graph
with two vertices connected by a single edge. We define the corresponding
2-tensor as

T
( )

=
∑

i∈{0,1}

bi ⊗ bi ∈ C2 ⊗ C2.

Let G be any graph. Then we define T(G) to be the |V |-tensor obtained
by taking the tensor product of the tensors corresponding to the edges
of G, grouping corresponding vertices together (the full definition is in
Theorem 1.1.1). For example, for the complete graph on four vertices K4 we
have

T
( )

= T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

=
∑

i∈{0,1}6
(bi1⊗bi4⊗bi5)⊗ (bi2⊗bi4⊗bi6)⊗ (bi3⊗bi5⊗bi6)⊗ (bi1⊗bi2⊗bi3)

living in (C8)⊗4. We can ignore the dependence of this tensor on the order
of the edges, since tensor rank is invariant under this choice. Let Kk be the
complete graph on k vertices. The 2× 2 matrix multiplication tensor is the
tensor T(K3).

The main result of this paper is an upper bound on the tensor rank of
large tensor powers of T(Kk): for any k ≥ 4 and large N ,

R(T(Kk)
⊗N ) ≤ 20.772943(k2)N+o(N). (1)

We say that the exponent ω(T(Kk)) is at most 0.772943
(
k
2

)
and we say that

the exponent per edge τ(T(Kk)) is at most 0.772943. This improves, for k ≥ 4,
the bound τ(T(Kk)) ≤ 0.790955 that can be derived from the well-known
upper bound of Le Gall [LG14] on the exponent of matrix multiplication
ω := ω(T(K3)). Note that τ(T(K3)) = ω/3.

By a “covering argument” we can show that τ(T(Kk)) is nonincreasing
when k increases (Theorem 1.1.25). On the other hand, a standard “flat-
tening argument” (see Theorem 1.1.19) yields the lower bound τ(T(Kk)) ≥
1
2k/(k − 1) if k is even and τ(T(Kk)) ≥ 1

2(k + 1)/k if k is odd. As a
consequence, if the exponent of matrix multiplication ω equals 2, then
τ(T(K4)) = τ(T(K3)) = 2

3 . We raise the following question: is there a
k ≥ 5 such that τ(T(Kk)) <

2
3? More open questions are discussed in

Section 1.3.
Our method to prove (1) is a generalization of a method of Strassen, and

Coppersmith and Winograd for obtaining upper bounds on the exponent
of the matrix multiplication tensor. To use the generalized Coppersmith–
Winograd method we have to get a handle on the monomial subrank of tensor
powers of yet another type of combinatorially defined tensors. The definition
of rank given above is equivalent to saying that the rank R(φ) of a tensor
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φ ∈ V1 ⊗ · · · ⊗ Vk is the smallest number r for which there exist linear maps
A1 : Cr → V1, . . . , Ak : Cr → Vk such that φ = (A1 ⊗ · · · ⊗Ak) Tr(k), where
Tr(k) =

∑r
i=1(bi)

⊗k is the rank-r unit k-tensor. The subrank Q(φ) of φ is
the largest number s for which there exist linear maps A1 : V1 → Cs, . . . ,
Ak : Vk → Cs such that Ts(k) = (A1⊗ · · · ⊗Ak)φ. In fact, we need a slightly
restricted notion. A monomial matrix is a matrix such that any row or
column has at most one nonzero entry. Let φ ∈ V1⊗ · · · ⊗ Vk be a tensor in a
fixed basis. The monomial subrank QM(φ) is the largest number s for which
there exist monomial matrices A1, . . . , Ak such that Ts(k) = (A1⊗· · ·⊗Ak)φ.
We are interested in lower bounding QM(φ⊗N ) for large N . In particular,
in the course of proving (1) we face the problem of computing QM(D⊗N(2,2)),
where

D(2,2) = b1 ⊗ b1 ⊗ b2 ⊗ b2 + b1 ⊗ b2 ⊗ b1 ⊗ b2 + b1 ⊗ b2 ⊗ b2 ⊗ b1
+ b2 ⊗ b1 ⊗ b1 ⊗ b2 + b2 ⊗ b1 ⊗ b2 ⊗ b1 + b2 ⊗ b2 ⊗ b1 ⊗ b1

is the weight-(2, 2) Dicke tensor.
Our second result solves this problem. Namely, we prove a general

asymptotic lower bound on the monomial subrank of tensor powers of so-
called tight tensors (Theorem 1.2.4). These are tensors φ ∈ V1 ⊗ · · · ⊗ Vk for
which there is a choice of bases B1, . . . , Bk for V1, . . . , Vk respectively and
injective maps α1 : B1 → Z, . . . , αk : Bk → Z such that

∀ (b1, . . . , bk) ∈ suppB(φ) α1(b1) + · · ·+ αk(bk) = 0.

For example, applied to the tensor D(2,2), which is a tight tensor, our result
yields the monomial subrank QM(D⊗N(2,2)) = 2N−o(N), which is asymptotically
optimal. We say that the monomial subexponent qM(D(2,2)) equals 1. This
solves a conjecture posed in [VC15] for the special case D(2,2).

In quantum information theoretical terms, the tensor T(Kk) encodes a k-
partite quantum state in which each two systems share an Einstein–Podolski–
Rosen (EPR) pair. The tensor T2(k) encodes the k-partite Greenberger–
Horne–Zeilinger (GHZ) state. If the rank of T(Kk) is r, then dlog2 re copies
of the state T2(k) are needed to generate T(Kk) by stochastic local oper-
ations and classical communication (SLOCC). See [DVC00] for a discus-
sion of SLOCC. Asymptotically, we can generate N copies of T(Kk) using
ω(T(Kk))N + o(N) copies of T(k).

In the next subsection we discuss preliminary definitions and known
results. After that we state our results and discuss open questions.

1.1. Preliminaries

Let U1, . . . , Uk and V1, . . . , Vk be complex finite-dimensional vector spaces.
For any number n ∈ N, define the set [n] := {1, 2, . . . , n}. All our graphs will
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be simple graphs, that is, they are unweighted, undirected, containing no
self-loops or multiple edges.

We first define the two families of tensors that play an important role
in this paper, namely the tensors T(G) with G a graph and the tensors Dλ

with λ a partition. We start with T(G).

Definition 1.1.1. Let G = (V,E) be a graph and let n be a natural number.
Let b1, . . . , bn be the standard basis of Cn. We define the |V |-tensor Tn(G)
as

Tn(G) :=
∑
i∈[n]E

⊗
v∈V

(⊗
e∈E:
v∈e

bie

)
,

where the sum is over all tuples i indexed by E with entries in [n]. Equivalently,
one can define Tn(G) as a tensor product over edges of G, as follows, letting
subscripts denote the position of tensor legs,

Tn(G) =
⊗
e∈E

∑
i∈[n]

(bi ⊗ bi)e ⊗ (1⊗ · · · ⊗ 1)V \e.

Here, the element 1 should be regarded as an element of C and the large tensor
product inputs and outputs |V |-tensors by the natural regrouping. We will
denote T2(G) by T(G). The definition naturally generalizes to hypergraphs,
see [VC17].

Note that the tensor Tn(G) behaves as follows under the tensor Kronecker
product: Tn(G)⊗ Tm(G) ∼= Tnm(G).

We can ignore the fact that the tensor in the above definition depends
on the choice of order of the edges and vertices of the graph G, since tensor
rank and subrank do not depend on this order.

Let Kk be the complete graph on k vertices and let Ck be the cycle graph
on k vertices.

Example 1.1.2. We give some examples of tensors of type Tn(G). Let n ∈ N.
For any j1, j2, j3 ∈ [n], we define bj1j2 := bj1 ⊗ bj2 and bj1j2j3 := bj1 ⊗ bj2 ⊗ bj3 .
Then

Tn(K2) =
∑
i∈[n]2

bi1 ⊗ bi1 ∈ Cn ⊗ Cn

Tn(K3) =
∑
i∈[n]3

bi1i2 ⊗ bi2i3 ⊗ bi3i1 ∈ Cn
2⊗ Cn

2⊗ Cn
2

Tn(K4) =
∑
i∈[n]6

bi1i2i5 ⊗ bi2i3i6 ⊗ bi3i4i5 ⊗ bi1i4i6 ∈ (Cn
3
)⊗4

Tn(C5) =
∑
i∈[n]5

bi1i2 ⊗ bi2i3 ⊗ bi3i4 ⊗ bi4i5 ⊗ bi5i1 ∈ (Cn
2
)⊗5
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In algebraic complexity theory, the tensor Tn(C3) is called the n× n matrix
multiplication tensor, since it encodes the bilinear map that multiplies two
n× n matrices. It is usually denoted by 〈n, n, n〉. For k ≥ 3, Tn(Ck) is the
iterated matrix multiplication tensor; it encodes the multilinear map that
multiplies k matrices of size n × n. Note that C3 = K3, so any results on
Tn(Kk) or Tn(Ck) are generalizations of results on the matrix multiplication
tensor.

We now introduce the second family of tensors, Dλ.

Definition 1.1.3 (Dicke tensor [Dic54, SGDM03, VC17]). Let k be a positive
integer and let λ = (λ1, . . . , λn) `n k be a partition of k of length at
most n. Let b1, . . . , bn be the standard basis of Cn. Define the weight-λ Dicke
tensor Dλ as

Dλ :=
∑
i∈[n]k:

type(i)=λ

bi1 ⊗ · · · ⊗ bik ∈ (Cn)⊗k

where type(i) = λ means that i is a permutation of the tuple

(1, . . . , 1︸ ︷︷ ︸
λ1

, 2, . . . , 2︸ ︷︷ ︸
λ2

, . . . , n, . . . , n︸ ︷︷ ︸
λn

).

Example 1.1.4. We give some examples of tensors of type Dλ.

D(2,1) = b1 ⊗ b1 ⊗ b2 + b1 ⊗ b2 ⊗ b1 + b2 ⊗ b1 ⊗ b1,

D(1,1,1) = b1 ⊗ b2 ⊗ b3 + b1 ⊗ b3 ⊗ b2 + b2 ⊗ b1 ⊗ b3
+ b2 ⊗ b3 ⊗ b1 + b3 ⊗ b1 ⊗ b2 + b3 ⊗ b2 ⊗ b1.

In quantum information theory, the tensor D(2,1) encodes a quantum state
known as the W-state, and D(k−1,1) encodes a generalized W-state on k
systems.

We now wish to define the exponent and (monomial) subexponent of
a tensor, which should be thought of as our complexity measures for ten-
sors. First we define (monomial) restriction, degeneration and asymptotic
conversion rate.

Let φ ∈ U1 ⊗ · · · ⊗ Uk and ψ ∈ V1 ⊗ · · · ⊗ Vk be k-tensors.

Definition 1.1.5. We say φ restricts to ψ, written φ ≥ ψ, if there exist linear
maps Ai : Ui → Vi such that ψ = (A1 ⊗ · · · ⊗Ak)φ. We say φ is isomorphic
to ψ if both φ ≥ ψ and φ ≤ ψ. We will often tacitly treat isomorphic tensors
as being equal. We say φ degenerates to ψ, written φD ψ, if ψ is in the orbit
closure Gφ in the Zariski topology, where G = GL(U1)× · · · ×GL(Uk).

A matrix is a monomial matrix if on any of its rows or columns there
is at most one nonzero entry. Fix bases for U1, . . . , Uk and V1, . . . , Vk. We
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say that there is a monomial restriction from φ to ψ, written φ ≥M ψ, if
there exist monomial matrices A1, . . . , Ak such that ψ = (A1 ⊗ · · · ⊗ Ak)φ
in the chosen basis. We say that there is a monomial degeneration from φ
to ψ, written φDM ψ, if ψ is in the orbit closure Mφ in the Zariski topology,
where M is the subgroup of G consisting of k-tuples of monomial matrices.

Monomial degeneration has a nice combinatorial description for which we
refer to Theorem 6.1 in [Str87]. It is clear from the definition that φ ≥M ψ
implies φDM ψ. We refer to [Str87] for other basic properties of ≥M and DM.

Definition 1.1.6. Define the asymptotic conversion rate from φ to ψ as

ω(φ, ψ) := lim
n→∞

1

n
min{m ∈ N | φ⊗m ≥ ψ⊗n}, (2)

and the asymptotic monomial conversion rate from φ to ψ as

ωM(φ, ψ) := lim
n→∞

1

n
min{m ∈ N | φ⊗m DM ψ⊗n}. (3)

The minimum of the empty set is considered to be ∞.

Proposition 1.1.7. The limit in Equation (2) exists and equals the supre-
mum supn

1
n min{m ∈ N | φ⊗m ≥ ψ⊗n}. The limit in Equation (3) exists

and equals the supremum supn
1
n min{m ∈ N | φ⊗m DM ψ⊗n}.

Proof. See Lemma 1.1 in [Str88].

Theorem 1.1.8. Restriction and degeneration are asymptotically equivalent,
in the sense that

ω(φ, ψ) = lim
n→∞

1

n
min{m ∈ N | φ⊗m D ψ⊗n}.

Proof. See [Str87]. A proof can also be found in [VC15].

Remark 1.1.9. We do not know whether in (3) one may equivalently re-
place DM by ≥M. We therefore defined ωM using the more powerful DM.

Strassen introduced the asymptotic study of restriction in the context
of the algebraic complexity of bilinear maps [Str88, Str91]. In quantum
information theory, if φ and ψ are pure quantum states, then φ ≥ ψ means
precisely that ψ can be obtained from φ by means of stochastic local operations
and classical communication (SLOCC). We refer to [VC15] and [VC17] for
general properties of ω(φ, ψ).

Restriction and asymptotic conversion rate can be used to compare any
two k-tensors. In this context, the following tensor will serve as an absolute
reference tensor.
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Definition 1.1.10 (GHZ tensor or unit tensor). Let k, r ∈ N, and let
b1, . . . , br be the standard basis of Cr. Define Tr(k) as the k-tensor

Tr(k) :=
∑
i∈[r]

bi ⊗ · · · ⊗ bi ∈ (Cr)⊗k.

We will denote Tr(k) by Tr when the order k is understood and we will
denote T2(k) by just T(k) or T. In quantum information theory, the tensor
Tr(k) encodes the Greenberger–Horne–Zeilinger (GHZ) quantum state of
rank r on k systems. In algebraic complexity theory, for k = 3 this tensor is
called the rank-r unit tensor and is denoted by 〈r〉. Note that Tr(k) equals
the hypergraph tensor Tr(H) where H is the hypergraph on k vertices with a
single hyperedge containing all vertices. We refer to [VC17] for the definition
of hypergraph tensor.

Definition 1.1.11. The rank of ψ, denoted R(ψ), is the smallest number r
such that ψ ≤ Tr. Equivalently, it is the smallest number r such that ψ can
be written as a sum of r simple tensors v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk. The
border rank of ψ, denoted R(ψ) is the smallest number r such that ψ E Tr.

Definition 1.1.12. The subrank of φ, denoted Q(φ), is the largest number s
such that Ts ≤ φ. The monomial subrank of φ, denoted QM(φ), is the largest
number s such that Ts ≤M φ. In the same way, one defines the border
subrank Q(φ) and the monomial border subrank Q

M
(φ) using E and EM

respectively.

Definition 1.1.13. The exponent of ψ is defined as the asymptotic conversion
rate from T to ψ and is denoted by ω(ψ),

ω(ψ) := ω(T, ψ).

Definition 1.1.14. The subexponent of φ is defined as the inverse of the
asymptotic conversion rate from ψ to T, and is denoted by q(φ),

q(φ) := ω(φ,T)−1.

Definition 1.1.15. Let φ ∈ U1 ⊗ · · · ⊗ Uk be a k-tensor in a fixed basis.
The monomial subexponent of φ is defined as the inverse of the asymptotic
monomial conversion rate from ψ to T, and is denoted by qM(φ),

qM(φ) := ωM(φ,T)−1.

The parameters ω, q and qM have the following two useful descriptions
in terms of R, Q and Q

M
.

Proposition 1.1.16. Let φ and ψ be k-tensors. Then,

ω(ψ) = lim
n→∞

1
n log2 R(ψ⊗n),

q(φ) = lim
m→∞

1
m log2 Q(φ⊗m),

qM(φ) = lim
m→∞

1
m log2 Q

M
(φ⊗m).
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Proof. To prove the first equality, we have

ω(T, ψ) = lim
n→∞

1

n
min{m ∈ N | T⊗m ≥ ψ⊗n}

= lim
n→∞

1

n
dlog2 R(ψ⊗n)e

= lim
n→∞

1

n
log2 R(ψ⊗n).

To prove the second equality, we have

ω(φ,T) = lim
n→∞

1

n
min{m ∈ N | φ⊗m ≥ T⊗n}

= lim
m→∞

max{n ∈ N | φ⊗m ≥ T⊗n}−1m

= lim
m→∞

blog2 Q(φ⊗m)c−1m

= lim
m→∞

(
log2 Q(φ⊗M )

)−1
m

= q(φ)−1.

The statement for qM follows from a similar proof.

Proposition 1.1.17. Let φ and ψ be k-tensors. Then,

ω(ψ) = inf{β ∈ R | R(ψ⊗N ) ≤ 2βN+o(N)},
q(φ) = sup{β ∈ R | Q(φ⊗N ) ≥ 2βN−o(N)},

qM(φ) = sup{β ∈ R | Q
M

(φ⊗N ) ≥ 2βN−o(N)}.

Proof. If R(ψ⊗N ) ≤ 2βN+o(N), then ω(ψ) ≤ limN→∞ β + o(N)/N = β, by
Theorem 1.1.16. Conversely, suppose that ω(ψ) < β. Then R(ψ⊗N ) ≤
O(2βN ), by Theorem 1.1.16, so R(ψ⊗N ) ≤ 2βN+o(N). The statement for q
and qM follows similarly from Theorem 1.1.16.

For tensors of type T(G) we have the following characterization of ω, q
and qM.

Proposition 1.1.18. Let G be a graph. Then,

ω(T(G)) = inf{β ∈ R | R(Tn(G)) = O(nβ)},
q(T(G)) = sup{β ∈ R | Q(Tn(G)) = Ω(nβ)},

qM(T(G)) = sup{β ∈ R | Q
M

(Tn(G)) = Ω(nβ)}.

Proof. Suppose that R(Tn(G)) = O(nβ). Then,

R(T2(G)⊗N ) = R(T2N (G)) = O(2Nβ).

8



so ω(T(G)) ≤ β by Theorem 1.1.16. Here we used T2(G)⊗N ∼= T2N (G). On
the other hand, suppose that ω(T(G)) < β. Then,

R(T2N (G)) = R(T2(G)⊗N ) = O(2βN )

by Theorem 1.1.16, so

R(Tn(G)) ≤ R(T2N (G)) = O(2βN ) = O(nβ)

where N = dlog2 ne.
The proofs for q and qM follow similarly from Theorem 1.1.16.

Note that ω(Tr(G)) = ω(T(G)) log2 r.

Definition 1.1.19. Let φ ∈ U1⊗ · · · ⊗Uk be a k-tensor. A flattening of φ is
a 2-tensor (a matrix) obtained by any grouping of the tensor legs U1, . . . , Uk
into two groups.

Flattenings are useful for obtaining bounds on tensor rank and related
notions.

Proposition 1.1.20. Let φ be a k-tensor and let Aφ be any flattening of φ.
Then R(Aφ) ≤ R(φ) and Q(φ) ≤ Q(Aφ). On the asymptotic level, we have
the inequalities q(φ) ≤ q(Aφ) = log2 Q(Aφ) = log2 R(Aφ) = ω(Aφ) ≤ ω(φ).

Proof. A flattening of a simple k-tensor is a simple 2-tensor (a rank-1 matrix),
and hence for an arbitrary k-tensor φ we have R(Aφ) ≤ R(φ). Similarly,
Q(φ) ≤ Q(Aφ).

For matrices, rank is multiplicative under tensor product and coincides
with subrank. Therefore, for any n ∈ N,

Q(A⊗n) ≤ Q(A⊗nφ ) = Q(Aφ)n = R(Aφ)n = R(A⊗nφ ) ≤ R(φ⊗n).

Taking the nth root, taking the logarithm log2 and letting n go to infinity,
gives

q(φ) ≤ q(Aφ) = log2 Q(Aφ) = log2 R(Aφ) = ω(Aφ) ≤ ω(φ),

by Theorem 1.1.16, finishing the proof.

Example 1.1.21. A cut of a graph G = (V,E) is a partition of V into
two disjoint nonempty sets. A max-cut is a cut with maximal number of
edges crossing these two sets. A min-cut is a cut with minimal number of
edges crossing these two sets. For any graph G, let f(G) denote the size
of a max-cut of G, and g(G) the size of a min-cut. Flattening along the
appropriate cuts yields

Q(T(G)) ≤ 2g(G) ≤ 2f(G) ≤ R(T(G))

9



and thus
q(T(G)) ≤ g(G) ≤ f(G) ≤ ω(T(G)). (4)

While for a 2-tensor φ, we have Q(φ) = R(φ) and q(φ) = ω(φ), the above
observation gives us many examples of higher-order tensors for which this is
not the case. For example, let φ = T(Ck). Then g(Ck) = 2 and f(Ck) = k−1.

Let us discuss the exponent in more detail.

Definition 1.1.22. Define the real number ω := ω(T(C3)). This number is
called the exponent of matrix multiplication.

In algebraic complexity theory, the number ω is a measure for the asymp-
totic complexity of multiplying two n× n matrices, and has been receiving
much attention since the discovery of Strassen’s matrix multiplication algo-
rithm [Str69]. See also the standard reference for algebraic complexity theory
[BCS97]. The following bounds on ω are the state of the art. The upper
bound is by Le Gall [LG14] and the lower bound is by a standard flattening
argument (Theorem 1.1.21).

Theorem 1.1.23. 2 ≤ ω ≤ 2.3728639.

Computing ω(T(G)) will be a hard task in general, since it includes
computing the matrix multiplication exponent ω. One may however try to
prove bounds on ω(T(G)) in terms of the matrix multiplication exponent ω or
the dual exponent α. The number α is defined as sup{γ ∈ R | ω(1, 1, γ) = 2},
where ω(1, 1, γ) is defined as inf{β ∈ R | R(〈n, n, bnγc) = O(nβ)} and for
n1, n2, n3 ∈ N the tensor 〈n1, n2, n3〉 is the rectangular matrix multiplication
tensor

〈n1, n2, n3〉 :=
∑

i∈[n1]×[n2]×[n3]

(bi1 ⊗ bi2)⊗ (bi2 ⊗ bi3)⊗ (bi3 ⊗ bi1)

∈ (Cn1 ⊗ Cn2)⊗ (Cn2 ⊗ Cn3)⊗ (Cn3 ⊗ Cn1).

The state of the art bounds on α are 0.3029805 < α ≤ 1 [LG12]. In [CZ18]
we used a technique called tensor surgery to obtain such a result for cycle
graphs Ck. Namely, let k ∈ N≥1. Then

ω(T(Ck)) = k when k is even, (5)

k − 1 ≤ ω(T(Ck)) ≤
k − 1

2
ω when k is odd. (6)

Also, in terms of the dual exponent α, for odd k,

ω(T (Ck)) ≤ k − α
(

1 +
1− α

k − 1 + α

)
≤ k − α.

In particular, if ω = 2 (equivalently α = 1), then ω(T(Ck)) = k − 1 when k
is odd. We will see a similar type of result for complete graphs in the next
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subsection, see (9). We note that tensor surgery seems to work well for sparse
graphs like cycle graphs, and not so well for dense graphs like the complete
graph. However, one could use the complete graph tensors as starting tensors
in a tensor surgery procedure.

Definition 1.1.24. For any graph G = (V,E), we define the exponent per
edge

τ(T(G)) := ω(T(G))/|E|.
The letter τ is borrowed from the Schönhage asymptotic sum inequality, also
known as the τ -theorem.

For complete graphs, the exponent per edge has the following monotonicity
property.

Proposition 1.1.25. Let k ≥ ` ≥ 2 be integers. Then τ(T(Kk)) ≤ τ(T(K`)).

Proof. Let τ` = τ(T(K`)). Label the vertices of Kk by 1, . . . , k. Then, for
any subgraph G in Kk isomorphic to K` we have, with subscripts denoting
tensor leg positions,(

(T(G))V (G) ⊗ (1⊗ · · · ⊗ 1)[k]\V (G)

)⊗N ≤ T⊗
(
(`2)τ`N+o(N)

)
and so⊗

G⊆Kk:
G∼=K`

(
(T(G))V (G) ⊗ (1⊗ · · · ⊗ 1)[k]\V (G)

)⊗N ≤ T⊗
(
(`2)τ`N+o(N)

)
(k`),

the tensor product taken over all subgraphs G in Kk isomorphic to K`. The
left-hand side is isomorphic to T(Kk)

⊗N(k−2
`−2). Therefore, we have the upper

bound ω(T(Kk)) ≤
(
`
2

)(
k
`

)(
k−2
`−2

)−1
τ` =

(
k
2

)
τ`, so τ(T(Kk)) ≤ τ`.

Having discussed the exponent, we now wish to focus on the (monomial)
subexponent, and primarily on an important result about the (monomial)
subexponent of so-called tight 3-tensors.

Definition 1.1.26. Let φ be an element of V1⊗ · · · ⊗ Vk. Let B1, . . . , Bk be
bases for V1, . . . , Vk respectively. Write φ in terms of these bases,

φ =
∑
bi∈Bi

φ(b1, . . . , bk) b1 ⊗ · · · ⊗ bk with φ(b1, . . . , bk) ∈ C.

Then the support of φ with respect to B = (B1, . . . , Bk) is defined as the set
of k-tuples

suppB φ := {(b1, . . . , bk) ∈ B1 × · · · ×Bk | φ(b1, . . . , bk) 6= 0}.

When the basis is clear from the context we will simply write suppφ. It is
often convenient to identify each Bi = {b1, b2, . . . , b|Bi|} with its index set
{1, 2, . . . , |Bi|} by bj 7→ j so that suppB φ becomes a set of tuples of natural
numbers. (Sometimes the index set starts at 0 instead of 1.)
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Definition 1.1.27. Let B1, . . . , Bk be bases for V1, . . . , Vk respectively and
let α1 : B1 → Z, . . . , αk : Bk → Z be injective maps such that

α1(b1) + · · ·+ αk(bk) = 0 for each tuple (b1, . . . , bk) ∈ suppφ.

Then we say φ is tight with respect to α = α1 × · · · × αk. We say φ is tight if
it is tight with respect to α = α1 × · · · × αk for some αi : Bi → Z.

The following lemma is easy to prove.

Lemma 1.1.28. Tensor products of tight tensors are tight in the tensor
product basis. Therefore, any graph tensor T(G) is tight in the standard basis.

Example 1.1.29. T(Ck) =
∑

i∈[2]k(bi1 ⊗ bi2)⊗ (bi2 ⊗ bi3)⊗ · · · ⊗ (bik ⊗ bi1)
is tight for any k by Theorem 1.1.28. Explicitly, let

α1 : bi1 ⊗ bi2 7→ i1 − 2(i2 − 1),

α2 : bi2 ⊗ bi3 7→ 2(i2 − 1)− 4(i3 − 1),

...

αk : bik ⊗ bi1 7→ 2k−1(i1 − 1)− i1.

These maps are injective and α1(bi1 ⊗ bi2) + · · · + αk(bik ⊗ bi1) = 0 for
any i ∈ [2]k.

Example 1.1.30. For any partition λ `d k, the Dicke tensor Dλ is a tight
tensor. Namely, let s =

∑d
j=1 λj · j, and let

α1 : bi 7→ i,

α2 : bi 7→ i,

...
αk : bi 7→ i− s.

Then α1(b1) + · · ·+ αk(bk) = 0 for any (b1, . . . , bk) ∈ suppDλ.

For tight 3-tensors, Strassen proved the following theorem. For a discrete
probability distribution P = (p1, . . . , pn), let H(P ) be the Shannon entropy
of P , which is defined by H(P ) := −

∑n
i=1 pi log2 pi. Recall that if P is a

probability distribution on a set X consisting of k-tuples (x1, . . . , xk), then
the marginal distribution Pi on the ith component Xi = {xi | x ∈ X} is
defined by Pi(y) :=

∑
x∈X:xi=y

P (x).

Theorem 1.1.31 ([Str91]). Let φ be a 3-tensor which is tight in some basis B.
Then

qM(φ) = q(φ) = max
P∈PΦ

min{H(P1), H(P2), H(P3)}, (7)

where PΦ consists of the probability distributions P on suppB φ, and Pi is
the marginal distribution of P on the ith component of suppB φ.
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Interestingly, Theorem 1.1.31 says that if φ is a tight tensor in basisB, then
the subexponent q(φ) is a function of suppB φ, that is, q(φ) is independent of
the coefficients of φ in basis B. This is not in general the case for higher-order
tight tensors as we will see in Theorem 1.1.38.

Example 1.1.32. From Theorem 1.1.30 we know that D(1,1,1) is tight. Let P
be the uniform distribution on the support of D(1,1,1). Then each marginal Pi
is uniform on {b1, b2, b3}. Therefore by Theorem 1.1.31, we have q(D(1,1,1)) ≥
qM(D(1,1,1)) ≥ log2 3. On the other hand, q(D(1,1,1)) ≤ log2 3, because the
tensor D(1,1,1) has a flattening of rank 3.

Example 1.1.33. From Theorem 1.1.28 and Theorem 1.1.29 we know that
φ = T(C3) is tight. Let P be the uniform distribution on

suppφ = {((bi ⊗ bj), (bj ⊗ bk), (bk ⊗ bi)) | i, j, k ∈ [2]}.

Then the marginals Pi are uniform on {bi ⊗ bj | i, j ∈ [2]}, and hence the
Shannon entropy of each marginal is H(Pi) = log2 4 = 2. Therefore, by
Theorem 1.1.31, q(T(C3)) ≥ 2. On the other hand, q(T(C3)) ≤ 2, because
the tensor T(C3) has a flattening of rank 4.

There are two extensions of Theorem 1.1.31 to certain higher-order tensors,
namely to W-state tensors (Theorem 1.1.34) and to (hyper)graphs with a
certain connectedness property (Theorem 1.1.37), which includes cycle tensors.
We begin with the extension to W-state tensors, obtained by generalising
a construction of Coppersmith and Winograd and generalising Strassen’s
support functionals. Define the binary entropy function h(p) as −p log2(p)−
(1− p) log2(1− p) with h(0) = h(1) = 0.

Theorem 1.1.34 (Vrana–Christandl [VC15]). Let k ≥ 2. Then the subexpo-
nent of D(1,k−1) satisfies q(D(1,k−1)) = qM(D(1,k−1)) = h(1/k).

(The original proof contained a small mistake for which we provide a fix in
Section 3.5.) It is conjectured in [VC15] that in general q(Dλ) = qM(Dλ) =
H(λ/k), see also Theorem 1.3.3.

Remark 1.1.35. In [FK14] the Coppersmith–Winograd construction for
k = 3 was used to prove lower bounds on the query complexity of testing
triangle-freeness of Boolean functions. This construction was later extended
to cover odd-cycle-freeness [HX15], thus independently proving part of the
statement of Theorem 1.1.34.

Example 1.1.36. Let φ ∈ (C2)⊗3 be nonzero. Then one of the following
statements holds.

1. φ ∼= T and q(φ) = 1.

2. φ ∼= D1,2 and q(φ) = h(1/3).
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3. φ ∼= T
( )

, T
( )

, T
( )

or T
( )

and q(φ) = 0.

Indeed, it is well-known that any element φ ∈ (C2)⊗3 is equivalent to precisely
one of the six tensors listed above, see [DVC00] where ∼= is called “equivalence
under SLOCC”. In the terminology of the reference, the first tensor is in the
GHZ-class, the second tensor is in the W-class and the remaining classes
are called A-BC, AB-C, AC-B and A-B-C. In the first case, by definition
q(φ) = ω(T,T)−1 = 1. In the second case, q(φ) = q(D1,2) = h(1/3) by
Theorem 1.1.34. In the third case, every representative corresponds to a
graph with min-cut of size 0, so q(φ) ≤ g(φ) = 0 (see Theorem 1.1.21).

Recall that we defined g(G) to be the size of a minimum cut of G in
Theorem 1.1.21. The following theorem is a special case of the result proved
in [VC17].

Theorem 1.1.37 (Vrana–Christandl [VC17]). Let G be a graph. Then

qM(T(G)) = q(T(G)) = g(G).

In particular, if k ≥ 3, then the subexponent of T(Ck) satisfies q(T(Ck)) = 2.

Example 1.1.38. Strassen’s Theorem 1.1.31 does not generalize to k ≥ 4 by
simply replacing the right-hand side of (7) by maxP min{H(P1), . . . ,H(Pk)}
as the following example shows. Let φ be the 4-tensor

φ = T
( )

= (b0⊗b0 + b1⊗b1)⊗ (b0⊗b0 + b1⊗b1)

= b0⊗b0⊗b0⊗b0 + b0⊗b0⊗b1⊗b1
+ b1⊗b1⊗b0⊗b0 + b1⊗b1⊗b1⊗b1.

This tensor is tight. Take for example

α1 : bi 7→ i, α3 : bi 7→ i,

α2 : bi 7→ −i, α4 : bi 7→ −i.

Let P be the uniform distribution on suppφ. Its marginals Pi are uniform
on {b0, b1} so H(Pi) = 1. However, q(φ) = 0, since φ by construction has a
flattening of rank 1.

This example also shows that q(φ) cannot simply be a function of the
support of φ, since, for 0 < p < 1, the tensor

p(b0⊗b0⊗b0⊗b0 + b0⊗b0⊗b1⊗b1) + b1⊗b1⊗b0⊗b0 + b1⊗b1⊗b1⊗b1
has no flattenings of rank at most 1, and hence q(φ) is strictly positive (see
Lemma 4 in [VC15]).

Remark 1.1.39. Theorem 1.1.38 suggests that to generalize Theorem 1.1.31
to k-tensors φ one either has to find a stronger condition when k ≥ 4 to
guarantee that q(φ) = maxP min{H(P1), . . . ,H(Pk)}, or find a different lower
(and possibly upper) bound on the subexponent q(φ). Our Theorem 1.2.4 is
a result of the second type.
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1.2. Our results

This paper is motivated by the following problem on complete graph tensors.
Recall that we defined the exponent per edge for the complete graph tensor
as τ(T(Kk)) = ω(T(Kk))/

(
k
2

)
Problem 1.2.1. For k ≥ 4, what is the value of τ(T(Kk))?

First of all, it is not hard to prove the following bounds on τ(T(Kk)).
For the complete graph Kk, the maximum cut size f(Kk) is k2/4 for even k
and (k − 1)(k + 1)/4 for odd k (maximum cut is defined in Theorem 1.1.21).
Then, flattening T(Kk) along a max-cut yields a matrix of rank 2f(Kk) and
therefore (Theorem 1.1.20)

τ(T(Kk)) ≥
f(Kk)(

k
2

) =

{
1/2 + 1/(2k) for odd k
1/2 + 1/(2(k − 1)) for even k.

(8)

On the other hand, τ(T(K3)) = ω/3 and thus by Theorem 1.1.25 we have
τ(T(Kk)) ≤ ω/3 for all k ≥ 3. Plugging in the Le Gall upper bound
ω ≤ 2.3728639 (Theorem 1.1.23), yields the “triangle covering” upper bound

τ(T(Kk)) ≤ 0.790955. (9)

Our aim is to improve on this upper bound.
Our main result is an upper bound on the exponent per edge of T(Kk)

that is independent of ω.

Theorem 1.2.2. Let k ≥ 2. For any q ≥ 1, τ(T(Kk)) ≤ logq

( q + 2

2qM(D(2,k−2))

)
.

Our second result is a lower bound on the monomial subexponent qM(φ)
of any tight tensor φ.

Definition 1.2.3. Let φ be a k-tensor, B a basis, Φ the corresponding
support as in Theorem 1.1.26. Suppose φ is tight with respect to α. For
R ⊆ Φ× Φ, define rα(R) to be the rank of the matrix with rows

{α(x)− α(y) | (x, y) ∈ R}.

We will denote rα(R) by r(R) when the actual α is clear or not important.
For any i ∈ {1, . . . , k}, define

Ri := {(x, y) ∈ Φ× Φ | xi = yi}.

Theorem 1.2.4. Let φ be a k-tensor, B a basis, Φ the corresponding support.
Suppose φ is tight with respect to α. Then,

qM(φ) ≥ max
P∈PΦ

(
H(P )− (k − 2) max

R∈RΦ

maxQ∈QΦ,(P1,...,Pk),R
H(Q)−H(P )

rα(R)

)
,

(10)
where
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• PΦ consists of all probability distributions P on Φ; and P1, . . . , Pk are
the marginal distributions of P on the k components respectively;

• RΦ consists of all subsets R ⊆ Φ × Φ that are not contained in the
diagonal set ∆Φ := {(x, x) | x ∈ Φ}, and such that R ⊆ Ri for some
i ∈ {1, . . . , k}.

• QΦ,(P1,...,Pk),R consists of all probability distributions Q on R whose
marginals on the 2k components of R satisfy Qi = Qk+i = Pi for
i ∈ {1, . . . , k}.

(The symbols P, R, Q are script versions of the letters P , R and Q.)
The lower bound in Theorem 1.2.4 extends the lower bound in Theo-

rem 1.1.31. We will prove this in Section 3.5.
We will use Theorem 1.2.4 to compute the (monomial) subexponent of

the weight-(2, 2) Dicke tensor D(2,2). We give the proof in Section 3.5.

Corollary 1.2.5. qM(D(2,2)) = q(D(2,2)) = 1.

Theorem 1.1.25, Theorem 1.2.2 with k = 4 and Theorem 1.2.5 together
directly imply the following upper bound on the exponent per edge of the
complete graph tensor T(Kk) for any k ≥ 4.

Corollary 1.2.6. For k ≥ 4, τ(T(Kk)) ≤ minq≥2 logq

(q + 2

2

)
= log7(9/2)

which is approximately 0.772943.

Note that 0.772943 is strictly smaller than the triangle cover upper bound
0.790955 from (9).

In the following table we summarize, for small k: the flattening lower
bound on ω(T(Kk)); the upper bound from Theorem 1.2.6 on ω(T(Kk)) (and
Le Gall’s upper bound for k = 3); the trivial upper bound on ω(T(Kk)) given
by the number of edges; and the resulting bounds on τ(T(Kk)).

k ω(T(Kk))
(
k
2

)
τ(T(Kk))

lower upper lower upper

3 2 2.37287 3 0.666666 0.790955
4 4 4.63766 6 0.666666 0.772943
5 6 7.72943 10 0.6 0.772943
6 9 11.5942 15 0.6 0.772943
7 12 16.2319 21 0.571428 0.772943
8 16 21.6425 28 0.571428 0.772943
9 20 27.8260 36 0.555555 0.772943
10 25 34.7825 45 0.555555 0.772943
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1.3. Questions

We discuss three open questions related to our results. Our first question is
about complete graph tensors. From (8) we know that

τ(T(Kk+1)) ≥ τ(T(Kk)) ≥
(k − 1)(k + 1)

4
(
k
2

)
holds for all odd k. The lower bound goes to 1

2 when k goes to infinity. On the
other hand, if ω = 2, then τ(T(Kk)) ≤ 2

3 holds for all k ≥ 3 (Theorem 1.1.25),
and in particular τ(T(K3)) = τ(T(K4)) = 2

3 . We thus ask the following
question.

Question 1.3.1. Is there a k ≥ 5 such that τ(T(Kk)) <
2
3?

Our second question is a more precise version of the above question for
general graph tensors.

Question 1.3.2. Is it true that for every graph G, we have ω(T(G)) = f(G)?

The answer is known to be yes only for bipartite graphs. (This follows
directly from the lower bound in (4).) If the answer to Theorem 1.3.2 is
yes, then the answer to Theorem 1.3.1 is yes. For G = C3, this question
specializes to the long-standing open question whether the exponent of
matrix multiplication ω equals 2. It might therefore be interesting to ask
Theorem 1.3.2 with the additional assumption that ω = 2. The answer is then
known to be yes for all odd cycles (see (6)), the bipartite graphs, the complete
graph K4 and graphs that are composed of these in a certain (natural) way;
namely by taking the disjoint union and then identifying pairs of nonadjacent
vertices of choice.

Our third question is about the (monomial) subexponent of Dicke tensors.
In [VC17] the upper bound q(Dλ) ≤ H(λ/k) was proven for any λ ` k, and
the following problem was posed.

Question 1.3.3. Is it true that for every partition λ ` k,

qM(Dλ) = q(Dλ) = H(λ/k)? (11)

For k = 3 this question was affirmatively answered in [Str91] (see Theo-
rem 1.1.31 above), and for λ = (k − 1, 1) and any k ≥ 3 this question was
affirmatively answered in [VC17] (see Theorem 1.1.34 above). Theorem 1.2.4
extends both results and covers more cases, including λ = (2, 2), see Theo-
rem 1.2.5. We also numerically confirmed (11) for λ = (`, `) and 2 ≤ ` ≤ 1000
using Theorem 1.2.4. We conjecture that Theorem 1.2.4 is strong enough to
prove the lower bound qM(Dλ) ≥ H(λ/k) for any λ ` k.

17



1.4. Outline

The rest of this paper is organized as follows. In Section 2 we will prove
Theorem 1.2.2 on the exponent of T(Kk). In Section 3 we will prove Theo-
rem 1.2.4 on the monomial subexponent of tight tensors and we will compute
the monomial subexponent of the weight-(2, 2) Dicke tensor.

2. Upper bound on the exponent of the complete graph tensor

The main structure of the proof of Theorem 1.2.2 is a generalization of
a construction of Strassen [Str86] which was improved by Coppersmith
and Winograd [CW87], which involves finding a “cheap” starting tensor,
generalizing Schönhage’s asymptotic sum inequality [Sch81] and choosing a
good block decomposition.

2.1. Preliminaries

We start by discussing border rank in more detail, then we introduce the gen-
eralized asymptotic sum inequality and finally we review block decompositions
of tensors.

Let φ ∈ V1 ⊗ · · · ⊗ Vk be a tensor.

Definition 2.1.1. Let Rh(φ) be the smallest number r such that there are
matrices A1(ε) : Cr → V1, . . . , Ak(ε) : Cr → Vk with entries in C[ε], such
that (A1(ε)⊗ · · · ⊗Ak(ε)) Tr = εhφ+O(εh+1). Here, O(εh+1) denotes any
expression of the form

∑`
i=1 ε

h+iφi with φi ∈ V1 ⊗ · · · ⊗ Vk for some `.

Theorem 2.1.2 ([BCS97, Theorem 20.24]). R(φ) = minh Rh(φ).

It is well-known that rank and border rank are related as follows.

Proposition 2.1.3. Let k, h ∈ N. Let ch =
(
h+k−1
k−1

)
. For all m1, . . . ,mk ∈ N

and all tensors φ ∈ Cm1⊗· · ·⊗Cmk , we have R(φ) ≤ ch Rh(φ). Note that for
fixed k, the number ch is upper bounded by a polynomial in h; ch ≤ (h+1)k−1.

Proof. Let φ be a tensor in Cm1 ⊗ · · · ⊗Cmk with Rh(φ) = r. Then there are
vectors vji ∈ (C[ε])mj such that

r∑
i=1

v1
i ⊗ · · · ⊗ vki = εhφ+O(εh+1).

Without loss of generality the highest power of ε in each vji is h. Decomposing
every vji into ε-homogeneous components vji =

∑h
aj=0 ε

ajvji (aj), and collecting
powers of ε gives

r∑
i=1

∑
a∈[h]k

εa1+···+ak v1
i (a1)⊗ · · · ⊗ vki (ak) = εhφ+O(εh+1).
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Taking only the summands such that a1 + · · ·+ ak = h gives a rank decom-
position of φ. There are

(
h+k−1
k−1

)
r such summands. Therefore, the statement

of the proposition holds for ch =
(
h+k−1
k−1

)
which is at most (h+ 1)k−1.

As a consequence of Theorem 2.1.3 we can upper bound the exponent of
a tensor by the border rank of that tensor. (The following proposition also
follows from the more general Theorem 1.1.8.)

Proposition 2.1.4. Let ψ be a tensor. Then

ω(ψ) ≤ log2 R(ψ).

Proof. Suppose R(ψ) = r. Let h ∈ N such that Rh(ψ) = r (Theorem 2.1.2).
Then for all s ∈ N, Rhs(ψ

⊗s) ≤ rs. Therefore, R(ψ⊗s) ≤ chsr
s (Theo-

rem 2.1.3). Thus the exponent ω(ψ) is at most 1
s log2 r

s + 1
s log2 chs, which

converges to log2 r when s goes to infinity.

Let G = (V,E) be a graph and let f : E → N be a function that assigns
to every edge a natural number. We define a “nonuniform” version of T(G)
as follows. Define Tf (G) by

Tf (G) :=
⊗
e∈E

∑
i∈[f(e)]

(bi ⊗ · · · ⊗ bi)e ⊗ (1⊗ · · · ⊗ 1)V \e.

Here, the large tensor product inputs and outputs |V |-tensors. In algebraic
complexity theory, the tensor Tf (C3) with f(1) = n1, f(2) = n2, f(3) = n3

is denoted by 〈n1, n2, n3〉. This tensor corresponds to the bilinear map that
multiplies an n1 × n2 matrix with an n2 × n3 matrix. We view the set
{f : E → N} as a group under pointwise multiplication, so that we can write

Tf (G)⊗ Tg(G) ∼= Tfg(G). (12)

Equation (12) generalises the self-reducibility property of matrix multiplica-
tion tensors: 〈m1,m2,m3〉 ⊗ 〈m1,m2,m3〉 ∼= 〈m1n1,m2n2,m3n3〉.

Recall that an automorphism of a graph G = (V,E) is a permutation σ
of V such that for all u, v ∈ V the pair (u, v) is in E if and only if σ · (u, v) :=
(σ(u), σ(v)) is in E. The automorphisms form a group Γ under composition.
The group Γ thus acts on V and on E. We say G is edge-transitive if the
action of Γ on E is transitive, meaning that for any two edges e1, e2 ∈ E
there is a permutation σ ∈ Γ such that σ · e1 = e2.

Example 2.1.5. The automorphism group of the cycle graph Ck is the
dihedral group with 2n elements. The automorphism group of the complete
graph Kk is the symmetric group Sk. Both graphs are edge-transitive.

19



Theorem 2.1.6 (Generalized asymptotic sum inequality). Let G = (V,E)
be an edge-transitive graph. Suppose r > p. Suppose φ1, . . . , φp are tensors
from {Tf (G) | f : E → N;

∏
e∈E f(e) ≥ 2} such that

R(φ1 ⊕ · · · ⊕ φp) ≤ r.

Define τ by
∑p

i=1(
∏
e∈E fi(e))

τ = r. Then τ(T(G)) ≤ τ .
In particular, if φ1, . . . , φp ∈ {Tf (G) | f : E → N;

∏
e∈E f(e) = q} for

some integer q ≥ 2, then we have τ(T(G)) ≤ logq(R(φ1 ⊕ · · · ⊕ φp)/p).

Our proof of Theorem 2.1.6 follows the structure of the proof for the cycle
graph case in [BCZ17] which builds upon the exposition in [Blä13].

Proposition 2.1.7. Let G = (V,E) be an edge-transitive graph. Let f : E →
N be a function and N =

∏
e∈E f(e). Assume that N ≥ 2. Then,

τ(T(G)) ≤ logN R(Tf (G)).

Proof. Let Γ be the automorphism group of G. For any edge e ∈ E define the
stabilizer subgroup Γe := {σ ∈ Γ | σ · e = e}. Since G is edge-transitive all
subgroups Γe are conjugates and thus have the same cardinality, say C. This
implies that, for any e1, e2 ∈ E, the set {σ ∈ Γ | σ ·e1 = e2} has cardinality C.
By the orbit-stabilizer theorem the number C satisfies |Γ| = C|E|. The
group Γ acts naturally on Tf (G) by permuting tensor legs. The tensor
product of all elements σ · Tf (G) for σ ∈ Γ equals TNC (G). We thus have,
using Theorem 2.1.4,

ω(T(G)) =
ω(TNC (G))

C log2N

≤
|Γ| log2 R(Tf (G))

C log2N

= |E|
log2 R(Tf (G))

log2N

finishing the proof. In the above we used ω(Tr(G)) = ω(T(G)) log2 r.

We need the following upper bound on the rank of the a-fold direct sum
of the sth tensor power of a tensor.

Lemma 2.1.8. Let a, b ∈ N≥1. Let φ be a tensor such that R(φ⊕a) ≤ b.
Then for all s ∈ N, R((φ⊗s)⊕a) ≤ db/aesa.

Proof. We prove the lemma by induction over s. The base case s = 1 follows
from the assumption. For the induction step, we have

(φ⊗(s+1))⊕a = φ⊗s ⊗ φ⊕a ≤ φ⊗s ⊗ Tb = (φ⊗s)⊕b,
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and thus, by the induction hypothesis,

R((φ⊗(s+1))⊕a) ≤ R((φ⊗s)⊕b)

≤ R((φ⊗s)⊕(adb/ae)) = R(((φ⊗s)⊕a)⊕db/ae)

≤ d bae
sad bae = d bae

s+1a,

proving the lemma.

Theorem 2.1.8 can equivalently be phrased as follows. Let φ be a tensor
such that φ⊗Ta ≤ Tb. Then for all s ∈ N we have φ⊗s⊗Ta ≤ (Tdb/ae)

⊗s⊗Ta.
Formulated in the language of Strassen’s semiring of k-tensors, Theo-

rem 2.1.8 says: a · φ ≤ b⇒ ∀s a · φs ≤ db/aes · a.
Theorem 2.1.7 generalizes to the following inequality relating upper bounds

on the exponent of a direct power Tf (G)⊕a to upper bounds on the exponent
of T(G).

Proposition 2.1.9. Let G = (V,E) be an edge-transitive graph. Let f :

E → N be a function and N =
∏
e∈E f(e). Assume that N ≥ 2. Then,

τ(T(G)) ≤ logNdR(Tf (G)⊕a)/ae, for any a ≥ 1.

Proof. Let b = R((Tf (G))⊕a). Then by Theorem 2.1.8 we have the inequality
R((Tfs(G))⊕a) ≤ db/aesa, where f s denotes taking the pointwise sth power.
Therefore, by Theorem 2.1.7,

τ(T(G)) ≤ logNs R(Tfs(G))

≤ logNs R((Tfs(G))⊕a)

≤ logNsdb/aesa

=
s log2d bae+ log2(a)

s log2(N)
,

which goes to logNdb/ae when s goes to infinity.

Proof of Theorem 2.1.6. Suppose r = R(
⊕p

i=1 Tfi(G)). This implies that
there is an h ∈ N such that Rh(

⊕p
i=1 Tfi(G)) = r. Taking the sth power

gives Rhs

(
(
⊕p

i=1 Tfi(G))⊗s
)
≤ rs. We expand the tensor power to get

Rhs

(⊕
σ

(
Tf

σ1
1

(G)⊗ · · · ⊗ Tf
σp
p

(G)
)⊕(sσ)

)
≤ rs,

where the first direct sum is over all p-tuples σ = (σ1, . . . , σp) of nonnegative
integers with sum s (this is by the multinomial theorem). We can also write
this inequality as

Rhs

(⊕
σ

(
Tf

σ1
1 ···f

σp
p

(G)
)⊕(sσ)

)
≤ rs.
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By Theorem 2.1.3 there exists a number chs which is at most a polynomial
in h and s such that

R
(⊕

σ

(
Tf

σ1
1 ···f

σp
p

(G)
)⊕(sσ)

)
≤ chsrs. (13)

Define τ by
∑p

i=1

(∏
e∈E fi(e)

)τ
= r. Then∑

σ

(
s

σ

)(∏
e∈E

∏
i∈[p]

fi(e)
σi
)τ

= rs, (14)

by the multinomial theorem again. In this sum, consider the maximum
summand and fix σ to be the corresponding σ for the remainder of the proof.

Define f : E → N by f(e) :=
∏
i fi(e)

σi . Let a :=
(
s
σ

)
and let b := chsr

s.
Equation (13) implies R(Tf (G)⊕a) ≤ b which by Theorem 2.1.9 implies

τ(T(G)) ≤ logN
⌈
R(Tf (G)⊕a)/a

⌉
≤ logN

⌈ b
a

⌉
, (15)

where N :=
∏
e f(e). There are

(
s+p−1
p−1

)
≤ (s+1)p−1 p-tuples σ with sum s, so

there are that many summands in (14). We thus lower bound the maximum
summand by the average of the summands as follows,

aN τ ≥ rs(
s+p−1
p−1

) ≥ rs

(s+ 1)p−1
. (16)

Manipulating (16) gives⌈ b
a

⌉
≤ chsr

s

a
+ 1 ≤ N τ (s+ 1)p−12chs

which we plug into (15) to get

τ(T(G)) ≤ τ log2N + (p− 1) log2(s+ 1) + log2(2chs)

log2N
,

≤ τ +
(p− 1) log2(s+ 1) + log2(2chs)

log2N
,

which goes to τ when s goes to infinity, because (16) implies

N τ ≥ rs

(s+ 1)p−1a
≥ rs

(s+ 1)p−1ps

and therefore log2N is at least s(log2 r − log2 p) − (p − 1) log2(s + 1), and
we assumed r > p.

We are now ready to discuss the final ingredient for the proof of Theo-
rem 1.2.2, which is a generalization of block decompositions of matrices to
block decompositions of tensors.
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Definition 2.1.10 (Set partition and tensor partition). Let A be a finite
set. We define a partition of A as a collection A = {Aj} of disjoint subsets
of A whose union is A. Let B1, . . . , Bk be finite sets, and let B1, . . . ,Bk be
partitions of each set respectively. Then we say B = B1×· · ·×Bk is a product
partition of B1 × · · · ×Bk.

Let φ ∈ V1 ⊗ · · · ⊗ Vk be a tensor and B1, . . . , Bk orthogonal bases for
V1, . . . , Vk respectively. Let B be a product partition of B1 × · · · ×Bk. Let
I ∈ B. Then we define φI as the orthogonal projection of φ onto the linear
space spanned by I. These smaller tensors φI with I ∈ B we think of as
making up the inner structure of φ with respect to B. We define the outer
structure of φ with respect to B to be the tensor φB with entries indexed by
I ∈ B such that φB has a 1 at position I if φI is not the zero tensor, and a 0
otherwise.

Definition 2.1.11. Let B be a product partition of B1 × · · · ×Bk and let C
be a product partition of C1 × · · · × Ck. Define the product partition B ⊗ C
of (B1 × C1)× · · · × (Bk × Ck) by

B ⊗ C := {I ⊗ J | I ∈ B, J ∈ C},

where I ⊗ J = {((b1, c1), . . . , (bk, ck)) | b ∈ I, c ∈ J}.

The following proposition follows directly from the definition.

Proposition 2.1.12. Let φ ∈ U1 ⊗ · · · ⊗ Uk and ψ ∈ V1 ⊗ · · · ⊗ Vk. Let Bi
be a basis of Ui and let Ci be basis of Vi. Let B be a product partition of
B1 × · · · ×Bk and let C be a product partition of C1 × · · · × Ck. Then,

(φ⊗ ψ)B⊗C = φB ⊗ ψC ,

and (φ⊗ ψ)I⊗J = φI ⊗ ψJ for all I ∈ B, J ∈ C.

2.2. Proof of Theorem 1.2.2

We define a modification of the “Coppersmith–Winograd tensor”, which is a
higher-dimensional version of the weight-(2, k − 2) Dicke tensor.

Definition 2.2.1. Let k, q ≥ 2 be integers. Let b0, b1, . . . , bq be the standard
basis of Cq+1. Let CWk

q be the k-tensor

CWk
q :=

∑
i∈{0,1,...,q}k

bi1 ⊗ · · · ⊗ bik ∈ (Cq+1)⊗k

where the sum goes over all i that contain exactly two identical non-zero
entries. One can also think of this tensor as a sum of tensors Tq(e) with e
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going over the edges of the complete graph Kk, that is, using subscripts to
denote the position of tensor legs,

CWk
q =

∑
e∈E(Kk)

q∑
i=1

(bi ⊗ bi)e ⊗ (b0 ⊗ b0 ⊗ · · · ⊗ b0)[k]\e ∈ (Cq+1)⊗k. (17)

Note that in (17) the sums runs over i from 1 to q.

The CWk
q -tensor should be thought of as a cheap tensor, in the following

border rank sense.

Lemma 2.2.2. The border rank of CWk
q is at most q + 2.

Proof. We have

q∑
i=1

ε (b0 + ε2 bi)
⊗k −

(
b0 + ε3

q∑
i=1

bi

)⊗k
+ (1− qε)b⊗k0

= ε5CWk
q +O(ε6).

Therefore, R(CWk
q ) ≤ q + 2.

Theorem 1.2.2 (Repeated). Let k ≥ 2. For any q ≥ 1,

τ(T(Kk)) ≤ logq

( q + 2

2qM(D(k−2,2))

)
.

Proof of Theorem 1.2.2. Define a product partition B = B1 × · · · × Bk of
the standard basis of (Cq+1)⊗k by Bj := {{b0}, {b1, . . . , bq}} for all j. Then
the outer structure (CWk

q )B equals

(CWk
q )B =

∑
e∈E(Kk)

(b1 ⊗ b1)e ⊗ (b0 ⊗ b0 ⊗ · · · ⊗ b0)[k]\e

which is the Dicke tensor D(k−2,2). (We implicitly reorder (k−2, 2) to (2, k−2)

when k ≤ 3.) The inner structure of CWk
q with respect to B consists of tensors

q∑
i=1

(bi ⊗ bi)e ⊗ (b0 ⊗ b0 ⊗ · · · ⊗ b0)[k]\e with e ∈ E(Kk).

By Theorem 1.1.17, we have the following monomial degeneration on the
outer structure level:

T⊗(qM(D(k−2,2))s−o(s)) EM((CWk
q )
⊗s)B⊗s . (18)

Since the degeneration in (18) is monomial, each nonzero entry in the lowest-
degree part of the tensor on the left-hand side corresponds to an inner
structure tensor of (CWk

q )⊗s with respect to B⊗s. Each such inner structure
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tensor is a product of s inner structure tensors of CWk
q with respect to B

(Theorem 2.1.12). Therefore,

φ1 ⊕ · · · ⊕ φp E (CWk
q )
⊗s

with p = 2qM(D(k−2,2))s−o(s) and φi ∈ {Tf (Kk) |
∏
e∈E f(e) = qs}. Then, by

Theorem 2.2.2 we have

R
(
φ1 ⊕ · · · ⊕ φp

)
≤ R((CWk

q )
⊗s) ≤ (q + 2)s

We apply the “in particular” case of the generalized asymptotic sum inequality
Theorem 2.1.6 with r defined as (q + 2)s to the graph G = Kk to obtain

τ(T(Kk)) ≤ logqs
(q + 2)s

2qM(D(k−2,2))s−o(s)

≤ logq
q + 2

2qM(D(k−2,2))−o(1)
.

Letting s go to infinity yields the required inequality.

Summary. We wish to give a short summary of the generalized Coppersmith–
Winograd method as employed above, for k = 4. Let K4 = (E, V ) be the
tetrahedron. We aim to get a good upper bound on the tensor rank of a
tensor power of the goal tensor:

goal tensor = T
( )

=
⊗
e∈E

∑
i∈[2]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}.

To this end, we pick the following starting tensor, for which we have a good
border rank upper bound (Theorem 2.2.2):

starting tensor = Tq

( )
+ Tq

( )
+ Tq

( )
+ Tq

( )
+ Tq

( )
+ Tq

( )
=

∑
e∈E

∑
i∈[q]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}.
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We now choose a product partition of the standard basis for the space
that the starting tensor lives in. This partitions the starting tensors into
blocks (like we can partition matrices into blocks). The partition we use is
{{b0}, {b1, . . . , bq}}×4. The partitioned tensor has, besides the zero block,
the following blocks:

inner structure =
{

Tq

( )
,Tq

( )
,Tq

( )
,

Tq

( )
,Tq

( )
,Tq

( )}
=

{∑
i∈[q]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}

∣∣∣ e ∈ E}.
The following outer structure tensor tells us how the nonzero blocks are
positioned, in block coordinates:

outer structure = D(2,2)

=
∑
e∈E

(b1 ⊗ b1)e ⊗ (b0 ⊗ b0)V \{e}.

We can degenerate D⊗s(2,2) to
∑

i∈[p] bi ⊗ bi ⊗ bi ⊗ bi for p = 2qM(D(2,2))s−o(s)

by a monomial degeneration (Theorem 1.1.15). This implies that we can
degenerate the sth power of the starting tensor to a direct sum of nonuniform
goal tensors, but such that for each nonuniform goal tensor the product of
the edge weights equals qs (by Theorem 2.1.12):

Tf1

( )
⊕ Tf2

( )
⊕ · · · .

We then apply the generalized asymptotic sum inequality Theorem 2.1.6,
whose construction consists of the following two steps. We first restrict a
power of the above tensor to a direct power of a single nonuniform goal tensor

Tf

( )⊕a
.

Second, another tensor power and symmetrization procedure gives a power
of the goal tensor:

T
( )⊗N

.

3. Lower bound on the monomial subexponent of tight tensors

We first discuss some results on k-average-free sets, linear combinations of
independent uniformly random variables and types of sequences, that we
will use in the proof of Theorem 1.2.4. Then we describe a basic procedure
to restrict any tensor to a tensor of the form Tr with a monomial restric-
tion. Then, we give the proof for Theorem 1.2.4. Next we discuss some
computational aspects of Theorem 1.2.4. Finally, we give some applications.
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3.1. Preliminaries

We begin with a result on k-average-free sets which is essentially due to Salem
and Spencer [SS42]. For a self-contained proof, see [VC15, Lemma 10].

Definition 3.1.1. A subset A ⊆ N is k-average-free if a1, . . . , ak, y ∈ A and
a1 + · · ·+ ak = ky implies a1 = · · · = ak = y. For N ∈ N, let νk(N) be the
maximum size of a k-average-free set in [N ] = {1, 2, . . . , N}.
Proposition 3.1.2. For any fixed k, we have νk(N) = N1−o(1) as N →∞.

The following statement about linear combinations of independent uni-
formly random variables is standard.

Proposition 3.1.3. Let M be a prime. Let u1, . . . , un be independent uni-
formly distributed random variables in Z/MZ. Let b1, . . . , bm be (Z/MZ)-
linear combinations of u1, . . . , un. Then the vector b = (b1, . . . , bm) is uni-
formly randomly distributed on the range of b in (Z/MZ)m.

Proof. Suppose bi =
∑

j cijuj . So b = Cu where u = (u1, . . . , un) and C is
the matrix with entries Cij = cij . For any y in the image of C, the cardinality
of the preimage C−1(y) is exactly the cardinality of the kernel of C. Indeed,
if Cx = y, then C−1(y) = x+ ker(C). Since u is uniform, we conclude that b
is uniform on the image of C.

The method of types classifies sequences of symbols according to the
relative proportion of occurrences of each symbol. We have used this method
before in the proof of the generalized asymptotic sum inequality. In the proof
of Theorem 1.2.4 it will play a more important role.

Definition 3.1.4. Let N ∈ N and let X be a finite “alphabet” set. The
type Px of a sequence x = (x1, x2, . . . , xN ) ∈ XN is the relative proportion
of occurrences of each symbol of X. Type is sometimes called empirical
distribution. The possible types for sequences x ∈ XN are called the N -types
on X. If P is an N -type on X, then the set of sequences x ∈ XN of type P
is called the type class of P and is denoted by TNP .

Example 3.1.5. ForX = {0, 1} the type of the sequence x = (1, 0, 0) is given
by Px(0) = 2/3 and Px(1) = 1/3. The possible 3-types are given by P (0) = 0,
P (0) = 1/3, P (0) = 2/3, P (0) = 1 (with P (1) = 1− P (0)). The type class
of the 3-type given by P (0) = 2/3 is T 3

P = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Proposition 3.1.6. Let N ∈ N and let X be a finite set. The number of
N -type classes on X is the binomial coefficient

(N+|X|−1
|X|−1

)
= 2o(N). Let P be

an N -type on X. The number of sequences in the type class of P = (p1, p2, . . .)
is the multinomial coefficient(

N

Np1, Np2, . . .

)
,

which is lower bounded by 2NH(P )−o(N) and upper bounded by 2NH(P ).
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Proof. The first statement can be proved with the famous stars and bars
argument: count the number of ways to arrange N stars and |X| − 1 bars in
a row. For a proof of the second statement see [CT12, Theorem 12.1.3].

3.2. Restriction procedure

We describe a procedure for finding a monomial restriction (see Theorem 1.1.5
for the definition of monomial restriction) from any tensor ψ to Tr for
some r. Despite its simplicity, this algorithm lies at the heart of the proof of
Theorem 1.2.4. Typically, we will apply the algorithm to a tensor ψ of the
form φ⊗N since we care about the monomial subexponent.

In a graph, a connected component is a maximal connected subgraph.
Each vertex of a graph belongs to exactly one connected component.

Lemma 3.2.1. Let G be a graph with n vertices and m edges. Then G has
at least n−m connected components.

Proof. A graph without edges has n connected components. For every edge
that we add to the graph, we lose at most one connected component.

Proposition 3.2.2. Let ψ be a tensor in V1⊗ · · · ⊗Vk and let B1, . . . , Bk be
bases for V1, . . . , Vk. Let Ψ be the corresponding support of ψ. Let C be the
set {{a, a′} ⊆ Ψ | a 6= a′; ∃i ai = a′i}. Then ψ ≥M T|Ψ|−|C|.

Proof. Let G be the graph with vertex set Ψ and edge set C. Let E(Ψ) ⊆ Ψ
be a subset of the vertex set that contains exactly one vertex per connected
component of G. Then |E(Ψ)| ≥ |Ψ| − |C| by Theorem 3.2.1. Moreover,
because the vertices in E(Ψ) are non-adjacent, there is a monomial restriction
ψ ≥M T|Ψ|−|C|.

We illustrate the procedure in Theorem 3.2.2 with a concrete example
where ψ is of the form φ⊗2.

Example 3.2.3. Let Dk = D(1k) be the k-tensor
∑

σ∈Sk σ · b1⊗ b2⊗ · · ·⊗ bk
living in (Ck)⊗k, where the symmetric group Sk acts by permuting tensor legs.
In the standard basis, and identifying bi with i, the tensor Dk has support

Φ = {(σ(1), σ(2), . . . , σ(k)) | σ ∈ Sk} ⊆ [k]k.

Consider the Nth power D⊗Nk ∈ (CkN )⊗k. Let Φ⊗N ⊆ ([k]N )k be its support
in the tensor product basis. We write every element in Φ⊗N as a k-tuple
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(I1, . . . , Ik) of column N -vectors Ii, so that for k = 3 and N = 2 we get

Φ⊗2 =
{([

0
0

]
,
[

1
1

]
,
[

2
2

])
,
([

0
0

]
,
[

1
2

]
,
[

2
1

])
,
([

0
1

]
,
[

1
0

]
,
[

2
2

])
,
([

0
1

]
,
[

1
2

]
,
[

2
0

])
,([

0
2

]
,
[

1
0

]
,
[

2
1

])
,
([

0
2

]
,
[

1
1

]
,
[

2
0

])
,
([

0
0

]
,
[

2
1

]
,
[

1
2

])
,
([

0
0

]
,
[

2
2

]
,
[

1
1

])
,([

0
1

]
,
[

2
0

]
,
[

1
2

])
,
([

0
1

]
,
[

2
2

]
,
[

1
0

])
,
([

0
2

]
,
[

2
0

]
,
[

1
1

])
,
([

0
2

]
,
[

2
1

]
,
[

1
0

])
,([

1
0

]
,
[

0
1

]
,
[

2
2

])
,
([

1
0

]
,
[

0
2

]
,
[

2
1

])
,
([

1
1

]
,
[

0
0

]
,
[

2
2

])
,
([

1
1

]
,
[

0
2

]
,
[

2
0

])
,([

1
2

]
,
[

0
0

]
,
[

2
1

])
,
([

1
2

]
,
[

0
1

]
,
[

2
0

])
,
([

1
0

]
,
[

2
1

]
,
[

0
2

])
,
([

1
0

]
,
[

2
2

]
,
[

0
1

])
,([

1
1

]
,
[

2
0

]
,
[

0
2

])
,
([

1
1

]
,
[

2
2

]
,
[

0
0

])
,
([

1
2

]
,
[

2
0

]
,
[

0
1

])
,
([

1
2

]
,
[

2
1

]
,
[

0
0

])
,([

2
0

]
,
[

0
1

]
,
[

1
2

])
,
([

2
0

]
,
[

0
2

]
,
[

1
1

])
,
([

2
1

]
,
[

0
0

]
,
[

1
2

])
,
([

2
1

]
,
[

0
2

]
,
[

1
0

])
,([

2
2

]
,
[

0
0

]
,
[

1
1

])
,
([

2
2

]
,
[

0
1

]
,
[

1
0

])
,
([

2
0

]
,
[

1
1

]
,
[

0
2

])
,
([

2
0

]
,
[

1
2

]
,
[

0
1

])
,([

2
1

]
,
[

1
0

]
,
[

0
2

])
,
([

2
1

]
,
[

1
2

]
,
[

0
0

])
,
([

2
2

]
,
[

1
0

]
,
[

0
1

])
,
([

2
2

]
,
[

1
1

]
,
[

0
0

])}
.

Order Φ⊗2 as it is written above, and do the procedure as described in
Theorem 3.2.2. This yields for example a tensor with support{([

0
0

]
,
[

1
1

]
,
[

2
2

])
,
([

1
2

]
,
[

0
0

]
,
[

2
1

])}
.

This tensor is isomorphic to T2. We thus have D⊗2
(1,1,1) ≥M T2. Therefore,

qM(D(1,1,1)) ≥M log2(2)/2 = 0.5. In fact, it is not hard to see that there
is a restriction D(1,1,1) ≥M T2, so qM(D(1,1,1)) ≥ log2(2) = 1. The final
answer is given by Strassen’s Theorem 1.1.31: qM(D(1,1,1)) = q(D(1,1,1)) =

H(1
3 ,

1
3 ,

1
3) = log2(3) which is approximately 1.58496.

3.3. Proof of Theorem 1.2.4

We are now ready for the proof of Theorem 1.2.4. In the rest of this section
we will use the following notation.

Notation 3.3.1. Let φ be a k-tensor, B a basis, Φ the corresponding support.
Suppose φ is tight with respect to α.

• PΦ consists of all probability distributions P on Φ; andP = (P1, . . . , Pk)
are the marginal distributions of P on the k components respectively;

• RΦ consists of all subsets R ⊆ Φ × Φ that are not contained in the
diagonal set ∆Φ := {(x, x) | x ∈ Φ}, and such that R ⊆ Ri for some
i ∈ {1, . . . , k}, where Ri := {(x, y) ∈ Φ× Φ | xi = yi}.

• QΦ,P,R consists of all probability distributions Q on R whose marginals
on the 2k components of R satisfy Qi = Qk+i = Pi for i ∈ {1, . . . , k}.

Recall that for R ⊆ Φ× Φ, we defined r(R) = rα(R) to be the rank of the
matrix with rows {α(x)− α(y) | (x, y) ∈ R} over Q.
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Theorem 1.2.4 (Repeated). The monomial subexponent of φ is at least,

qM(φ) ≥ max
P∈PΦ

(
H(P )− (k − 2) max

R∈RΦ

maxQ∈QΦ,P,R
H(Q)−H(P )

rα(R)

)
.

Proof of Theorem 1.2.4. Identify Φ with α(Φ) ⊆ Zk. Let P = (p1, p2, . . .)
be a probability distribution on Φ with rational probabilities pi. Fix a small
number ε > 0 and let N be an integer such that every Npi is an integer (so
P is an N -type). Let P = (P1, . . . , Pk) be the marginal distributions of P on
the k components of Φ ⊆ Zk. Let Φ⊗N be the support of φ⊗N in the tensor
product basis. Each element in Φ corresponds to k integers, so each element
in Φ⊗N corresponds to k vectors I1, I2, . . . , Ik ∈ ZN . (See Theorem 3.2.3.)

Let ψ be the restriction of φ⊗N obtained by keeping only those elements
(I1, . . . , Ik) in the support for which the type of Ii is Pi for each i ∈ [k]. These
include the elements of type P . By Theorem 3.1.6, the number of elements
remaining can be bounded as

|Φ⊗N ∩ (TNP1
× · · · × TNPk)| ≥ |TNP | =

(
N

Np1, Np2, . . .

)
≥ 2NH(P )−o(N),

where TNP denotes the type class of length N strings of k-tuples of integers
with type P , and TNPi denotes the type class of length N strings of integers
with type Pi. After the restrictions, the new support is

Ψ := Φ⊗N ∩ (TNP1
× · · · × TNPk), |Ψ| ≥ 2NH(P )−o(N).

Let M be a prime between b2µNc and 2b2µNc for some µ > 0 chosen later
(this M exists for any µ and N by Bertrand’s Postulate [AZ14]). Let B ⊆ N
be a (k − 1)-average-free set with

max(B) <
M

k − 1
and |B| ≥M1−ε (19)

with ε as chosen above (such a B exists when N is large enough by Theo-
rem 3.1.2). Let v1, . . . , vN , u1, . . . , uk−1 be independent uniformly random
variables in Z/MZ, and compute a hash as follows:

bi(Ii) := ui +

N∑
j=1

(Ii)jvj for 1 ≤ i ≤ k − 1,

bk(Ik) :=
1

k − 1

(
u1 + · · ·+ uk−1 −

N∑
j=1

(Ik)jvj

)
,

with operations understood in Z/MZ (in particular k − 1 is invertible if N
and hence M is large enough). By construction of b1, . . . , bk and since φ is
tight,

b1(I1) + b2(I2) + · · ·+ bk−1(Ik−1) = (k − 1)bk(Ik) (20)
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holds for every element (I1, . . . , Ik) in the support Ψ. Using restrictions again,
we keep only those elements such that bi(Ii) ∈ B modulo M for every i ∈ [k].
Call the remaining tensor ψ′ and its support Ψ′. Since max(B) < M

k−1 , the
equality in (20) then holds in Z for the representatives {0, 1, . . . ,M − 1}
of Z/MZ. By the (k − 1)-average-free property of B this implies b1(I1) =
b2(I2) = · · · = bk(Ik). Summarizing, we restricted ψ to ψ′ with a monomial
restriction in such a way that for every (I1, . . . , Ik) ∈ Ψ′ = suppψ′ we have
b1(I1) = b2(I2) = · · · = bk(Ik).

We apply Theorem 3.2.2 to Ψ′. This yields a monomial restriction

ψ′ ≥M TX−Y (21)

where X = |Ψ′| and Y = |C′| for C′ := {(I, I ′) ∈ Ψ′2 | I 6= I ′; ∃i Ii = I ′i}.
(The elements of C′ are ordered pairs. Equation (21) also holds if we take
unordered pairs, but ordered pairs will be more convenient later.) We will
now find a lower bound on E[X − Y ] (which will also be a lower bound on
the largest possible value of X − Y ) where the expectation is taken over the
independent uniform choice of the ui’s and vi’s in Z/MZ. We claim to have
the following bounds on E[X] and E[Y ]:

• E[X] = |B||Ψ|M−(k−1) (Claim 1)

• E[Y ] ≤ |B| max
R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R)) (Claim 2)

where in the second bound RΦ and QΦ,P,R are as in the statement of the
theorem. Intuitively, we want to choose µ small such that E[X] has a large
exponent, but we want to choose µ large such that E[Y ] has a smaller exponent
than the exponent of E[X]. To make this precise, we put the claimed bounds
together with

• |B| ≥M1−ε

• |Ψ| ≥ 2NH(P )−o(N)

• M ≥ 2µN−o(N)

and use linearity of expectation, to obtain

E[X − Y ] = E[X]− E[Y ]

≥ |B|
(
|Ψ|M−(k−1) − max

R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R))
)

≥M1−ε2NH(P )−o(N)M−(k−1)

·
(

1− max
R∈RΦ

max
Q∈QΦ,P,R

2N(H(Q)−H(P ))+o(N)M−r(R)
)

≥ 2N(H(P )−(k−2+ε)µ)−o(N)

·
(

1− max
R∈RΦ

max
Q∈QΦ,P,R

2N(H(Q)−H(P )−r(R)µ)+o(N)
)
.
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We want to choose µ small such that the first factor has a large exponent,
but we want to choose µ large such that the second factor is bounded away
from 0. We thus set

µ = max
R∈RΦ

maxQ∈QΦ,P,R
H(Q)−H(P ) + o(1)

r(R)
.

After substituting µ, we get that

qM(φ) =
1

ωM(φ,T)
=

1

NωM(φ⊗N ,T)

≥ 1

N
log2 E[X − Y ]

≥ H(P )− (k − 2 + ε) max
R∈RΦ

maxQ∈QΦ,P,R
H(Q)−H(P ) + o(1)

r(R)
− o(1).

We note again that here we used the probabilistic method: the largest value
of X − Y is at least E[X − Y ]. Finally, we let N →∞ and ε→ 0, and take
the supremum over P with rational entries. By continuity, the latter can be
replaced by a maximum over arbitrary real-valued probability distributions
P on Φ, finishing the main argument of the proof. It remains to prove the
two claims.

Claim 1. We will prove the claim

E[X] = |Ψ||B|M−(k−1).

Recall that in the main argument we defined Ψ = Φ⊗N ∩ (TNP1
× · · · × TNPk)

and Ψ′ = {(I1, . . . , Ik) ∈ Ψ | bi(Ii) ∈ B for all i ∈ [k]}. Recall that for
every (I1, . . . , Ik) ∈ Ψ′ we have b1(I1) = b2(I2) = · · · = bk(Ik). The random
variable X is the size of Ψ′ and can be computed as follows:

E[X] =
∑
I∈Ψ

Pr[b1(I1) ∈ B ∧ · · · ∧ bk(Ik) ∈ B] · 1

=
∑
I∈Ψ

∑
b∈B

Pr[b1(I1) = b2(I2) = · · · = bk(Ik) = b]

=
∑
I∈Ψ

∑
b∈B

Pr[b1(I1) = b2(I2) = · · · = bk−1(Ik−1) = b]

=
∑
I∈Ψ

∑
b∈B

M−(k−1)

= |Ψ||B|M−(k−1),

using that the random variables b1(I1), b2(I2), . . . , bk−1(Ik−1) are independent
uniform in Z/MZ because of the presence of ui in the definition of bi.

Claim 2. We will prove the claim

E[Y ] ≤ |B| max
R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R)).
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The number Y is the size of C′ = {(I, I ′) ∈ Ψ′2 | I 6= I ′; ∃i Ii = I ′i}, whose
expectation can be written in terms of C := {(I, I ′) ∈ Ψ2 | I 6= I ′; ∃i Ii = I ′i}
as

E[Y ] =
∑

(I,I′)∈C

Pr[∀i bi(Ii) ∈ B ∧ bi(I ′i) ∈ B]

=
∑

(I,I′)∈C

∑
b∈B

Pr[b1(I1) = · · · = bk(Ik)

= b1(I ′1) = · · · = bk(I
′
k) = b]. (22)

Fix a pair ((I1, . . . , Ik), (I ′1, . . . , I
′
k)) ∈ C. The random variables bi(Ii) and

bi(I
′
i) are linear combinations of independent uniform random variables, and

therefore (b1(I1), . . . , bk(Ik), b1(I ′1), . . . , bk(I
′
k)) is uniform on the image sub-

space in (Z/MZ)2k (see Theorem 3.1.3). This subspace contains (b, b, . . . , b)
for any b ∈ Z/MZ, since u1 = u2 = · · · = uk = b, v1 = · · · = vN = 0 is a
possible assignment. The probability of the event (b, b, . . . , b) is thus equal
to the reciprocal of the cardinality of the image subspace. This cardinality
equals M to the power the rank of the (N + k − 1)× 2k coefficient matrix

1 0 · · · 0 1
k−1 1 0 · · · 0 1

k−1

0 1 0 1
k−1 0 1 0 1

k−1
...

. . .
...

. . .
...

0 0 · · · 1 1
k−1 0 0 · · · 1 1

k−1

I1 I2 · · · Ik−1 − Ik
k−1 I ′1 I ′2 · · · I ′k−1 − I′k

k−1

 (23)

over Z/MZ, with I1, . . . , Ik, I
′
1, . . . , I

′
k thought of as column vectors. With

column and row operations this matrix can be transformed into
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 0 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 0 1 0

I1 − I ′1 I2 − I ′2 · · · Ik−1 − I ′k−1 Ik − I ′k 0 0 · · · 0 0


Here we used that

∑k
i=1 I

′
i is the zero vector. It follows that the rank of the

matrix in (23) is k − 1 plus the rank of the N × k matrix

A(I, I ′) :=
(
I1 − I ′1 I2 − I ′2 · · · Ik − I ′k

)
.

Letting rM (I, I ′) denote the rank of A(I, I ′), equation (22) thus becomes

E[Y ] =
∑

(I,I′)∈C

∑
b∈B

M−(k−1+rM (I,I′))

= |B|
∑

(I,I′)∈C

M−(k−1+rM (I,I′)). (24)
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Again fix a pair ((I1, . . . , Ik), (I ′1, . . . , I
′
k)) ∈ C. Recall that C ⊆ Ψ ×

Ψ ⊆ Φ⊗N × Φ⊗N . Therefore, each row in A(I, I ′) is of the form x − y
for some (x, y) ∈ Φ × Φ. Namely, the ith row of A(I, I ′) equals x − y for
x = ((I1)i, . . . , (Ik)i) and y = ((I ′1)i, . . . , (I

′
k)i). We map every (I, I ′) ∈ C to

the sequence of pairs corresponding to the rows in A(I, I ′),

C → (Φ× Φ)N

(I, I ′) 7→
(
((I1)i, . . . , (Ik)i), ((I

′
1)i, . . . , (I

′
k)i)
)
i∈[N ]

.

The image of this map consists of sequences S ∈ (Φ× Φ)N such that

• there is an R ∈ RΦ

• there is an N -type Q ∈ QΦ,P,R with supp(Q) = R

• S ∈ TNQ .

This map is injective. In words, S is the sequence of pairs (x, y) corresponding
to the rows in the matrix A(I, I ′), and R is the (unique) set of pairs occurring
in S, and Q is the (unique) empirical distribution of the elements of R
in S. Note that the rank of A(I, I ′) only depends on the set R. For any
R ⊆ Φ × Φ we thus define rM (R) to be the rank of the matrix with rows
{x− y | (x, y) ∈ R} over the field Z/MZ and we write (24) as

E[Y ] ≤ |B|
∑
R∈RΦ

∑
Q∈QΦ,P,R:
supp(Q)=R
Q is N -type

∑
S∈TNQ

M−(k−1+rM (R)).

The number of N -types Q on R is at most
(N+|R|−1
|R|−1

)
, while the size of

the type class TNQ is at most 2NH(Q) for any Q ∈ QΦ,P,R (Theorem 3.1.6).
Therefore,

E[Y ] ≤ |B|
∑
R∈RΦ

(
N + |R| − 1

|R| − 1

)
max

Q∈QΦ,P,R

2NH(Q) M−(k−1+rM (R)). (25)

Recall that we defined r(R) as the rank of the matrix with rows x − y
for (x, y) ∈ R, over Q. The value of rM (R) may be less than r(R), but only
for finitely many primes M . Since there are only finitely many possibilities
for choosing R, there is an N0 such that for N > N0 and for all R we have
rM (R) = r(R). In the following we assume that N (and thus M) is already
large enough for this to hold. In (25), we replace rM (R) by r(R) and upper
bound the sum over R by 2|Φ|

2 (a constant) times the largest summand, to
obtain

E[Y ] ≤ |B|2|Φ|2 max
R∈RΦ

(
N + |R| − 1

|R| − 1

)
max

Q∈QΦ,P,R

2NH(Q) M−(k−1+r(R)).

Now use that the binomial coefficient is polynomial in N . This completes
the proof.
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3.4. Computational aspects

We use Theorem 3.3.1. Before discussing applications of Theorem 1.2.4, let
us focus on how to compute the bound

qM(φ) ≥ max
P∈PΦ

(
H(P )− (k − 2) max

R∈RΦ

maxQ∈QΦ,P,R
H(Q)−H(P )

rα(R)

)
,

of Theorem 1.2.4.
Choice of Q. Given P and R, computing maxQ∈QΦ,P,R

H(Q) is a convex
optimization problem (and thus easy) since it amounts to maximizing a
concave function over a convex set for each i ∈ [k].

Choice of R. The set RΦ may be large, but we can greatly reduce its
size as explained in the following two lemmas.

Lemma 3.4.1. If R,R′ ∈ RΦ and R ⊆ R′ and r(R) = r(R′), then

maxQ∈QΦ,P,R
H(Q)

r(R)
≤

maxQ∈QΦ,P,R′ H(Q)

r(R′)
.

Proof. We leave the proof to the reader.

Recall that a subset R ⊆ Φ × Φ is an equivalence relation if for all
x, y, z ∈ Φ we have (x, x) ∈ R; (x, y) ∈ R ⇒ (y, x) ∈ R; and (x, y) ∈
R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R. If Φ = tiΦi is a set partition of Φ, then
R = {(x, y) ∈ Φ × Φ | ∃i : x ∈ Φi ∧ y ∈ Φi} is an equivalence relation.
The set partition into singletons yields the equality equivalence relation
∆Φ = {(x, x) | x ∈ Φ}.

Lemma 3.4.2. Let R ∈ RΦ. Then there is an R′ ∈ RΦ which is an
equivalence relation and such that R ⊆ R′ and r(R) = r(R′). Therefore,
Theorem 1.2.4 still holds if RΦ is replaced by the set

RΦ ∩ {equivalence relations}.

Proof. We can extend R to an equivalence relation without increasing its
rank. Namely, let ∆Φ = {(x, x) | x ∈ Φ}, RT = {(y, x) | (x, y) ∈ R} and
R ◦ R = {(x, z) | (x, y), (y, z) ∈ R}. Then r(R ∪∆Φ) = r(R), r(R ∪ RT ) =
r(R) and r(R ∪ (R ◦ R)) = r(R). As mentioned above, if R ⊆ R′ with
r(R) = r(R′), then only R′ needs to be considered. Therefore, replacing
RΦ by RΦ ∩ {equivalence relations} will not change the optimal value of the
maximization over RΦ.

We state one more simple fact.

Lemma 3.4.3. r(Ri) ≤ k − 2.
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Proof. The support Φ is tight with respect to α, so for every x ∈ Φ we have∑k
j=1 αj(xj) = 0. So any w ∈ SpanQ{α(x) − α(y) | (x, y) ∈ Ri} satisfies

the equations wi = 0 and
∑k

j=1wj = 0 and hence the span has rank at
most k − 2.

Choice of α. Finally, we discuss the choice of the map α = (α1, . . . , αk).
If α and β are such maps then φ is also tight for γ = (γ1, . . . , γk) with
γi := αi + Cβi for any integer C, except that γi may fail to be injective for
finitely many C. For a given R ∈ RΦ, rα(R) is the rank of some matrix X
and rβ(R) is the rank of some other matrix Y , while rγ(R) is the rank of
X + CY . But the latter is at least max{rα(R), rβ(R)} except for at most
finitely many values of C. Taking into account every R still excludes only
finitely many values of C, hence there is at least one good C. So in theory
one can proceed by finding a new k-tuple of injective maps with at least one
r(R) higher than what one already has and then improve by finding suitable
linear combination. There are finitely many relations and the ranks are never
larger than k − 2, therefore only finitely many improvements are possible.

3.5. Applications of Theorem 1.2.4

We finish this section by giving some example applications of Theorem 1.2.4,
one of which is the result on the weight-(2, 2) Dicke tensor that we use in
combination with Theorem 1.2.2 to upper bound the exponent of the complete
graph tensor. We use Theorem 3.3.1.

First, as a sanity check, we derive from Theorem 1.2.4 the lower-bound
part of Strassen’s Theorem 1.1.31 on the monomial subexponent of tight
3-tensors.

Lemma 3.5.1. Fix marginal distributions P = (P1, . . . , Pk) on the k compo-
nents of Φ and let P ∈PΦ be an element that has maximal entropy among
all elements of Φ with marginals P1, . . . , Pk. Let R ∈ RΦ such that R ⊆ Ri
and let Q ∈ QΦ,P,R. Then,

H(Q) ≤ 2H(P )−H(Pi).

Proof. Let i = {1, . . . , î, . . . , k} and let k + i = {k + 1, . . . , k̂ + i, . . . , 2k},
where a hat denotes an omitted index. In this proof, if K ⊆ [2k] is a set
of indices, then for any Q ∈ QΦ,P,R we will write QK for the marginal
distribution of Q on these indices. Let (∗) denote the assumption that among
all distributions in PΦ with marginals P1, . . . , Pk the distribution P is the
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one with maximal entropy. Let Q ∈ QΦ,P,R. Then,

H(Q) = H(Qi) +H(Qi∪(k+[k]) | Qi) (entropy chain rule)

≤ H(Qi) +H(Qi | Qi) +H(Qk+[k] | Qi) (strong sub-additivity)

≤ H(Qi) +H(Qi∪{i})−H(Qi)

+H(Q(k+[k])∪{i})−H(Qi) (entropy chain rule)

≤ H(Qi) +H(Q[k])−H(Qi)

+H(Qk+[k])−H(Qi) (since R ⊆ Ri)
≤ 2H(P )−H(Pi), (by (∗))

which proves the lemma.

Corollary 3.5.2 (Strassen [Str91]). Let φ be a tight 3-tensor. Then

qM(φ) ≥ max
P∈PΦ

min{H(P1), H(P2), H(P3)}.

Proof. Let P ∈PΦ. Then by Theorem 1.2.4,

qM(φ) ≥ H(P )− max
R∈RΦ

maxQ∈QΦ,P,R
H(Q)−H(P )

rα(R)
. (26)

Let P1, . . . , Pk be the marginals of P . We may assume that P has maximal
entropy among all elements of PΦ with marginals P1, . . . , Pk, since QΦ,P,R

depends on P only through its marginals. Let R ∈ RΦ. Then r(R) ≥ 1
(since R 6⊆ ∆Φ) and r(R) ≤ k − 2 = 1 (Theorem 3.4.3). Therefore, r(R) = 1.
Combine this fact with (26) and Theorem 3.5.1 to obtain

qM(φ) ≥ H(P )−max
i

(2H(P )−H(Pi)−H(P )) = min
i
H(Pi),

which proves the corollary.

Second, we derive from Theorem 1.2.4 the lower-bound part of Theo-
rem 1.1.34 on the subexponent of the W-state tensors Wk = D(1,k−1).

Corollary 3.5.3 (Vrana–Christandl [VC15]). Let k ≥ 3. Then

qM(Wk) = q(Wk) = h
(
k−1

)
,

where h(p) denotes the binary entropy function.

Proof. For the proof of the upper bound q(Wk) ≤ h(k−1) we refer to the
proof of Theorem 11 in [VC15]. We will here give a proof for the lower bound
qM(Wk) ≥ h(k−1), fixing a small gap in the proof of [VC15]. Let Φ be suppWk

which we identify with the set {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.
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Let P be the uniform probability distribution on Φ. Then the marginals of P
are Pi(1) = 1− Pi(0) = 1

k . By Theorem 1.2.4,

qM(Wk) ≥ log2 k − (k − 2) max
R∈RΦ

maxQ∈QΦ,P,R
H(Q)− log2 k

r(R)
. (27)

We may assume that RΦ consists of equivalence relations R ⊆ R1 by
Theorem 3.4.2 and the symmetry of Φ. An equivalence relation on Φ is just a
set partition of Φ and we say that the type of such a set partition is the integer
partition consisting of the sizes of the parts occurring in the set partition. Up
to permuting the elements of Φ, an equivalence relation on Φ is characterized
by its type. Let λ = (λ1, λ2, . . . , λ`(λ)) ` k be an integer partition with `(λ)
parts. Let Rλ ∈ RΦ be any equivalence relation of type λ. Since Rλ ⊆ R1, we
have λ`(λ) = 1. It is not difficult to see that r(Rλ) = k− `(λ) (with α chosen
as in Theorem 1.1.30); indeed if C1, . . . , C`(λ) are the equivalence classes of
Rλ in nonincreasing order, then r(Ci) = λi−1 and r(Rλ) =

∑`(λ)
i=1 r(Ci) since

φ = Wk. Therefore,

r(Rλ) =
`(λ)∑
i=1

(λi − 1) = k − `(λ). (28)

A probability distribution Q on Rλ can be identified with a block-diagonal
matrix with λi × λi blocks, and the condition on the marginals means that
the row and column sums are 1

k . Using permutation symmetry and concavity
of the entropy and permutation symmetry of QΦ,P,R, one can see that
maxQ∈QΦ,P,R

H(Q) is attained when Q is constant in each block. In this case

H(Q) =
∑
i

λ2
i

( 1

λik
log2(λik)

)
= 2 log2 k −H

(λ
k

)
. (29)

Combine (27), (28) and (29) to get

qM(Wk) ≥ log2 k − (k − 2) max
λ

log2 k −H(λk )

k − `(λ)
.

If k and ` = `(λ) are fixed, then the minimum of H(λk ) is attained at
the partition λ = (k − ` + 1, 1`−1), because the other distributions can be
expressed as a convex combinations of its permutations. Therefore we need
to look for the maximum of

log2 k −H
( (k−`+1, 1`−1)

k

)
k − `

=
(k − `+ 1) log2(k − `+ 1)

k(k − `)
.

Taking the derivative with respect to `, we get

d

d`

(k − `+ 1) log2(k − `+ 1)

k(k − `)
=

ln(1 + k − `)− (k − `)
k(k − `)2 ln 2

≤ 0,
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using ln(1 + x) ≤ x. Therefore, the optimum is at ` = 2 and this gives

qM(Wk) ≥ log2 k −
(
log2 k − h

(
1
k

))
= h(k−1),

which proves the corollary.

Finally, we compute the (monomial) subexponent of the weight-(2, 2)
Dicke tensor.

Corollary 3.5.4 (Weight-(2, 2) Dicke tensor). Let D(2,2) be the weight-(2, 2)
Dicke tensor,

D(2,2) = b0 ⊗ b0 ⊗ b1 ⊗ b1 + b0 ⊗ b1 ⊗ b0 ⊗ b1 + b0 ⊗ b1 ⊗ b1 ⊗ b0
+ b1 ⊗ b0 ⊗ b0 ⊗ b1 + b1 ⊗ b0 ⊗ b1 ⊗ b0 + b1 ⊗ b1 ⊗ b0 ⊗ b0.

Then qM(D(2,2)) = q(D(2,2)) = 1.

Proof. Let P be the uniform probability distribution on the support Φ ofD(2,2)

which we identify with {(1, 1, 0, 0), (1, 0, 1, 0), . . .}. Then H(P ) = log2 6. Note
that the marginals Pi are uniform distributions on {0, 1}. Let R ⊆ RΦ. By
the permutation symmetry of D(2,2), we may assume that

R ⊆ R1 = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}2

∪{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}2.

By Theorem 3.4.2, we may assume that R is an equivalence relation. Define
the set

S = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}.

If (x, y) ∈ R, then R ⊆ R′ := R ∪ {((1, 1, 1, 1) − x, (1, 1, 1, 1) − y)} ∈ RΦ

and r(R) = r(R′), and hence we may assume that if (x, y) ∈ R then also
((1, 1, 1, 1)−x, (1, 1, 1, 1)−y) ∈ R (Theorem 3.4.1). We thus restrict ourselves
to the equivalence relations R ⊆ R1 of the following three types. In type (3)
all three elements of S are equivalent. There is only one such equivalence
relation, namely the whole set R1, which has size 18. In type (2, 1), two
elements of S are mutually equivalent and inequivalent to the third element
(which is equivalent to itself). Then the size of R is 10. In type (1, 1, 1), all
elements of S are inequivalent. However, this means that R is contained in
the diagonal ∆Φ = {(x, x) | x ∈ Φ}. Such an R is not feasible. So we are left
with the two types (3) and (2, 1). For type (3) we have r(R) = 2 while for type
(2, 1) we have r(R) = 1. In both cases, the uniform probability distribution Q
on R has marginals P1, P2, P3, P4, P1, P2, P3, P4, namely uniform distributions
on {0, 1}. Therefore, this Q is the optimal Q and H(Q) = log2 |R|. Letting
R(3) and R(2,1) be any equivalence relations of type (3) and (2, 1) respectively,
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we obtain

qM(D(2,2)) ≥ min
{
H(P )− 2

r(R(3))

(
log2 |R(3)| −H(P )

)
,

H(P )− 2
r(R(2,1))

(
log2 |R(2,1)| −H(P )

)}
= min{ log2 6− 2

2(log2 18− log2 6),

log2 6− 2
1(log2 10− log2 6)}

= min{1, log2
54
25} = 1

On the other hand, D(2,2) has a flattening of rank 2, so also the upper bound
q(D(2,2)) ≤ 1 holds.
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