
Query-to-Communication Lifting for PNP∗†

Mika Göös1, Pritish Kamath2, Toniann Pitassi3, and
Thomas Watson4

1 Harvard University, Cambridge, MA, USA
mika@seas.harvard.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
pritish@mit.edu

3 University of Toronto, Toronto, ON, Canada
toni@cs.toronto.edu

4 University of Memphis, Memphis, TN, USA
Thomas.Watson@memphis.edu

Abstract
We prove that the PNP-type query complexity (alternatively, decision list width) of any boolean
function f is quadratically related to the PNP-type communication complexity of a lifted version
of f . As an application, we show that a certain “product” lower bound method of Impagliazzo
and Williams (CCC 2010) fails to capture PNP communication complexity up to polynomial
factors, which answers a question of Papakonstantinou, Scheder, and Song (CCC 2014).

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Communication Complexity, Query Complexity, Lifting Theorem, PNP

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.12

1 Introduction

Broadly speaking, a query-to-communication lifting theorem (a.k.a. communication-
to-query simulation theorem) translates, in a black-box fashion, lower bounds on some type of
query complexity (a.k.a. decision tree complexity) [38, 6, 19] of a boolean function f : {0, 1}n →
{0, 1} into lower bounds on a corresponding type of communication complexity [23, 19, 27]
of a two-party version of f . Table 1 lists several known results in this vein.

In this work, we provide a lifting theorem for PNP-type query/communication complexity.

PNP decision trees. Recall that a deterministic (i.e., P-type) decision tree computes an
n-bit boolean function f by repeatedly querying, at unit cost, individual bits xi ∈ {0, 1}
of the input x until the value f(x) is output at a leaf of the tree. A PNP decision tree is
more powerful: in each step, it can query/evaluate a width-k DNF of its choice, at the cost
of k. Here k is simply the nondeterministic (i.e., NP-type) decision tree complexity of the
predicate being evaluated at a node. The overall cost of a PNP decision tree is the maximum
over all inputs x of the sum of the costs of the individual queries that are made on input x.
The PNP query complexity of f , denoted PNPdt(f), is the least cost of a PNP decision tree
that computes f .

∗ A full version of the paper is available at https://eccc.weizmann.ac.il/report/2017/024/.
† P. Kamath was funded in parts by NSF grants CCF-1420956, CCF-1420692, CCF-1218547 and CCF-
1650733. T. Watson was funded by NSF grant CCF-1657377.

© Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.12
https://eccc.weizmann.ac.il/report/2017/024/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Query-to-Communication Lifting for PNP

x3?

x4? x2?

x1?

Deterministic decision tree of cost 3

1 0 1

0 1

0 1

10 0 1

0 1

x3 ∨ x4 ∨ x5?

x6? x1x2 ∨ x5x6?

x4x5 ∨ x1?

PNP decision tree of cost 4

1 0 1

0 1

0 1

10 0 1

0 1

I Example 1. Consider the fabled odd-max-bit function [3, 7, 33, 36, 8] defined by Omb(x) :=
1 iff x 6= 0n and the largest index i ∈ [n] such that xi = 1 is odd. This function admits an
efficient O(logn)-cost PNP decision tree: we can find the largest i with xi = 1 by using a
binary search that queries 1-DNFs of the form

∨
a≤j≤n xj for different a ∈ [n].

PNP communication protocols. Let F : X × Y → {0, 1} be a two-party function, i.e.,
Alice holds x ∈ X , Bob holds y ∈ Y. A deterministic communication protocol can be
viewed as a decision tree where in each step, at unit cost, it evaluates either an arbitrary
predicate of Alice’s input x or an arbitrary predicate of Bob’s input y. A PNP communication
protocol [2, 15] is more powerful: in each step, it can evaluate an arbitrary predicate of the
form (x, y) ∈

⋃
i∈[2k]Ri (“oracle query”) at the cost of k (we always assume k ≥ 1). Here

each Ri is a rectangle (i.e., Ri = Xi × Yi for some Xi ⊆ X , Yi ⊆ Y) and k is just the usual
nondeterministic communication complexity of the predicate being evaluated. The overall
cost of a PNP protocol is the maximum over all inputs (x, y) of the sum of the costs of the
individual oracle queries that are made on input (x, y). The PNP communication complexity
of F , denoted PNPcc(F), is the least cost of a PNP protocol computing F .

Note that if F : {0, 1}n × {0, 1}n → {0, 1} can be written as a k-DNF on 2n variables,
then the nondeterministic communication complexity of F , denoted NPcc(F), is at most
O(k logn) bits: we can guess one of the ≤ 2k

(
n
k

)
many terms in the k-DNF and verify that

the term evaluates to true. Consequently, any PNP decision tree for a function f can be
simulated efficiently by a PNP protocol, regardless of how the input bits of f are split between
Alice and Bob. That is, letting F be f equipped with any bipartition of the input bits, we
have

PNPcc(F) ≤ PNPdt(f) ·O(logn). (1)

1.1 Main result
Our main result establishes a rough converse to inequality (1) for a special class of composed,
or lifted, functions. For an n-bit function f and a two-party function g : X × Y → {0, 1}
(called a gadget), their composition F := f ◦ gn : Xn × Yn → {0, 1} is given by F (x, y) :=
f(g(x1, y1), . . . , g(xn, yn)). We use as a gadget the popular index function Indm : [m]×{0, 1}m

defined by Indm(x, y) := yx.

I Theorem 2 (Lifting for PNP). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) ≥

√
PNPdt(f) · Ω(logn).

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:3

Table 1 Some query-to-communication lifting theorems. The first four are formulated in the
language of boolean functions (as in this paper); the last two are formulated in the language of
combinatorial optimization.

Query model Communication model References

deterministic deterministic [28, 14, 10, 17]
nondeterministic nondeterministic [13, 11]
polynomial degree rank [35, 34, 29, 31]
conical junta degree nonnegative rank [13, 22]

Sherali–Adams LP extension complexity [9, 22]
sum-of-squares SDP extension complexity [24]

The lower bound is tight up to the square root, since (1) can be adapted for composed
functions to yield PNPcc(f ◦ Indn

m) ≤ PNPdt(f) · O(logm + logn). The reason we incur a
quadratic loss is because we actually prove a lossless lifting theorem for a related complexity
measure that is known to capture PNP query/communication complexity up to a quadratic
factor, namely decision lists, discussed shortly in subsection 1.3.

1.2 Application
Impagliazzo and Williams [18] gave the following criteria – we call it the product method –
for a function F to have large PNP communication complexity. Here, a product distribution µ
over X × Y is such that µ(x, y) = µX (x) · µY(y) for some distributions µX , µY . A rectangle
R ⊆ X × Y is monochromatic (relative to F) if F is constant on R.

Product method [18]: Let F : X ×Y → {0, 1} and suppose µ is a product distribution
over X × Y such that µ(R) ≤ δ for every monochromatic rectangle R. Then

PNPcc(F) ≥ Ω(log(1/δ)).

This should be compared with the well-known rectangle size method [20], [23, §2.4] (µ over
F−1(1) such that µ(R) ≤ δ for all monochromatic R implies NPcc(F) ≥ Ω(log(1/δ))), which
is known to characterize nondeterministic communication complexity up to an additive
Θ(logn) term.

Papakonstantinou, Scheder, and Song [25, Open Problem 1] asked whether the product
method can yield a tight PNP communication lower bound for every function. This is
especially relevant in light of the fact that all existing lower bounds against PNPcc (proved
in [18, 25]) have used the product method (except those lower bounds that hold against an
even stronger model: unbounded error randomized communication complexity, UPPcc [26]).
We show that the product method can fail exponentially badly, even for total functions.

I Theorem 3. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.
F has large PNP communication complexity: PNPcc(F) ≥ nΩ(1).
For any product distribution µ over {0, 1}n × {0, 1}n, there exists a monochromatic
rectangle R that is large: log(1/µ(R)) ≤ logO(1) n.

1.3 Decision lists (DLs)
Conjunction DLs. The following definition is due to Rivest [30]: a conjunction decision list
of width k is a sequence (C1, `1), . . . , (CL, `L) where each Ci is a conjunction of ≤ k literals

CCC 2017

12:4 Query-to-Communication Lifting for PNP

and `i ∈ {0, 1} is a label. We assume for convenience that CL is the empty conjunction
(accepting every input). Given an input x, the conjunction decision list finds the least i ∈ [L]
such that Ci(x) = 1 and outputs `i. We define the conjunction decision list width of f ,
denoted DLdt(f), as the minimum k such that f can be computed by a width-k conjunction
decision list. For example, DLdt(Omb) = 1. This complexity measure is quadratically related
to PNP query complexity (for details, see full version of this paper [12]).

I Fact 4. For all f : {0, 1}n → {0, 1}, Ω(DLdt(f)) ≤ PNPdt(f) ≤ O(DLdt(f)2 · logn).

x2x5? x3x4x6? x1x3? x4x5x6? x1x2x3? ∅

A conjunction decision list of width 3

1 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1 1

Rectangle DLs. A communication complexity variant of decision lists was introduced by
Papakonstantinou, Scheder, and Song [25] (they called them rectangle overlays). A rectangle
decision list of cost k is a sequence (R1, `1), . . . , (R2k , `2k) where each Ri is a rectangle and
`i ∈ {0, 1} is a label. We assume for convenience that R2k contains every input. Given
an input (x, y), the rectangle decision list finds the least i ∈ [2k] such that (x, y) ∈ Ri and
outputs `i. We define the rectangle decision list complexity of F , denoted DLcc(F), as the
minimum k such that F can be computed by a cost-k rectangle decision list. We again have
a quadratic relationship [25, Theorem 3] (for details, see full version of this paper [12]).

I Fact 5. For all F : {0, 1}n × {0, 1}n → {0, 1}, Ω(DLcc(F)) ≤ PNPcc(F) ≤ O(DLcc(F)2).

DLs are combinatorially slightly more comfortable to work with than PNP decision
trees/protocols. This is why our main lifting theorem (Theorem 2) is in fact derived as a
corollary of a lossless lifting theorem for DLs.

I Theorem 6 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(logn).

Indeed, Theorem 2 follows because PNPcc(f ◦ Indn
m) ≥ Ω(DLcc(f ◦ Indn

m)) ≥ Ω(DLdt(f) ·
logn) ≥ Ω((PNPdt(f)/ logn)1/2 · logn) = (PNPdt(f) · Ω(logn))1/2, where the first inequality
is by Fact 5, the second is by Theorem 6, and the third is by Fact 4. We mention that
Theorems 2 and 6, as well as Facts 4 and 5, in fact hold for all partial functions.

As a curious aside, we mention that a time-bounded analogue of decision lists (capturing
PNP) has also been studied in a work of Williams [39].

1.4 Separation between PNP and DL
Facts 4 and 5 show that decision lists can be converted to PNP decision trees/protocols with
a quadratic overhead. Is this conversion optimal? In other words, are there functions that
witness a quadratic gap between PNP and DL? We at least show that if a lossless lifting
theorem holds for PNP, then such a quadratic gap indeed exists for communication complexity.

I Conjecture 7. There is an m = m(n) := nΘ(1) such that for every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) = PNPdt(f) ·Θ(logn).

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:5

Our bonus contribution here (proof deferred to the full version [12]) shows that the simple
O(logn)-cost PNP decision tree for the odd-max-bit function is optimal:

I Theorem 8. PNPdt(Omb) ≥ Ω(logn).

I Corollary 9. The second inequality of Fact 4 is tight (i.e., PNPdt(f) ≥ Ω(DLdt(f)2 · logn)
for some f), and assuming Conjecture 7, the second inequality of Fact 5 is tight (i.e.,
PNPcc(F) ≥ Ω(DLcc(F)2) for some F).

This corollary is witnessed by f := Omb (which has DLdt(f) ≤ O(1) and PNPdt(f) ≥
Ω(logn)) and its lifted version F := Omb ◦ Indn

m (which has DLcc(F) ≤ O(logn) and
PNPcc(F) ≥ Ω(log2 n) under Conjecture 7). One caveat is that we have only shown the
corollary for an extreme setting of parameters (constant DLdt(f) and logarithmic DLcc(F)).
It would be interesting to show a separation for functions of nΩ(1) decision list complexity.

2 Preliminaries: Decision List Lower Bound Techniques

We present two basic lemmas in this section that allow one to prove lower bounds on
conjunction/rectangle decision lists. First we recall the proof of the product method, which
will be important for us, as we will extend the proof technique in both section 3 and section 4.

I Lemma 10 (Product method for DLcc). Let F : X ×Y → {0, 1} and suppose µ is a product
distribution over X × Y. Then F admits a monochromatic rectangle R with log(1/µ(R)) ≤
O(DLcc(F)).

Proof (from [18, 25]). Let (R1, `1), . . . , (R2k , `2k) be an optimal rectangle decision list of
cost k := DLcc(F) computing F . Recall we assume that R2k = X × Y contains every input.
We find a monochromatic R with µ(R) ≥ 2−2k via the following process.

We initialize X := X and Y := Y and iterate the following for i = 1, . . . , 2k rounds,
shrinking the rectangle X × Y in each round.

(†) Round i: (loop invariant: Ri ∩X × Y is a monochromatic rectangle)
Write Ri ∩ X × Y = Xi × Yi and test whether µ(Xi × Yi) = µX (Xi) · µY(Yi) is at
least 2−2k. Suppose not, as otherwise we are successful. Then either µX (Xi) < 2−k

or µY(Yi) < 2−k; say the former. We now “delete” the rows Xi from consideration by
updating X ← X rXi.

Note that since Ri ∩ X × Y is removed from X × Y in each unsuccessful round, it must
hold (inductively) that

⋃
j<i Rj is disjoint from X × Y at the start of the i-th round, and

so Ri ∩X × Y is indeed monochromatic (since it only contains points for which Ri is the
first rectangle in the decision list to contain them, which means F evaluates to `i). The
process starts out with µ(X × Y) = 1 and in each unsuccessful round the quantity µ(X × Y)
decreases by < 2−k. Some round must succeed, as otherwise the process would finish with
X × Y = ∅ and hence µ(X × Y) = 0 in 2k rounds, which is impossible. J

Recall that our Theorem 3 states that the product method is not complete for the measure
DLcc. By contrast, we are able to give an alternative characterization for the analogous query
complexity measure DLdt. We do not know if this characterization has been observed in the
literature before.

I Lemma 11 (Characterization for DLdt). Let f : {0, 1}n → {0, 1}. Then DLdt(f) ≤ k iff for
every nonempty Z ⊆ {0, 1}n there exists an ` ∈ {0, 1} and a width-k conjunction that accepts
an input in Z` := Z ∩ f−1(`) but none in Z1−`.

CCC 2017

12:6 Query-to-Communication Lifting for PNP

Proof. Suppose f has a width-k conjunction decision list (C1, `1), (C2, `2), . . . , (CL, `L). The
first Ci that accepts an input in Z (such an i must exist since the last CL accepts every
input) must accept an input in Z`i

but none in Z1−`i
(since all inputs in C−1

i (1) ∩ Z are
such that Ci is the first conjunction in the decision list to accept them).

Conversely, assume the right side of the “iff” holds. Then we can build a conjunction
decision list for f iteratively as follows. Start with Z = {0, 1}n. Let C1 be a width-k
conjunction that accepts an input in some Z`1 but none in Z1−`1 , and remove from Z all
inputs accepted by C1. Then continue with the new Z: let C2 be a width-k conjunction
that accepts an input in some Z`2 but none in Z1−`2 , and further remove from Z all inputs
accepted by C2. Once Z becomes empty (this must happen since the right side of the iff holds
for all nonempty Z), we have constructed a conjunction decision list (C1, `1), (C2, `2), . . .
for f . J

3 Proof of the Lifting Theorem

In this section we prove Theorem 6, restated here for convenience.

I Theorem 6 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(logn).

We use the abbreviations g := Indm : [m]× {0, 1}m → {0, 1} and F := f ◦ gn.
The upper bound of Theorem 6 is straightforward: given a width-k conjunction decision

list for f (which necessarily has length ≤ 2k
(

n
k

)
≤ nO(k)), we can form a rectangle decision

list for F by transforming each labeled conjunction into a set of same-labeled rectangles
(which can be ordered arbitrarily among themselves), one for each of the mk ways of choosing
a row from each of the copies of g corresponding to bits read by the conjunction – for a total
of nO(k) ·mk ≤ nO(k) rectangles and hence a cost of k ·O(logn). For example, if k = 2 and
the conjunction is z1z2, then for each x1, x2 ∈ [m] there would be a rectangle consisting of
all inputs with that value of x1, x2 and with y1, y2 such that g(x1, y1) = 1 and g(x2, y2) = 0.
For the rest of this section, we prove the matching lower bound.

3.1 Overview

Fix an optimal rectangle decision list (R1, `1), . . . , (R2k , `2k) for F . By our characterization
of DLdt (Theorem 11) it suffices to show that for every nonempty Z ⊆ {0, 1}n there is a
width-O(k/ logn) conjunction that accepts an input in Z` := Z ∩ f−1(`) for some ` ∈ {0, 1},
but none in Z1−`. Thus fix some nonempty Z henceforth.

Write G := gn for short. We view the communication matrix of F as being partitioned
into slices G−1(z) = {(x, y) : G(x, y) = z}, one for each z ∈ {0, 1}n; see (a) below. We focus
naturally on the slices corresponding to Z, namely G−1(Z) =

⋃
z∈Z G

−1(z), which is further
partitioned into G−1(Z0) and G−1(Z1); see (b) below. Our goal is to find a rectangle R
that touches G−1(Z`) (for some `) but not G−1(Z1−`), and such that G(R) = C−1(1) for a
width-O(k/ logn) conjunction C; see (c) below. Thus C−1(1) touches Z` but not Z1−`, as
desired.

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:7

[m]n

({0, 1}m)n

G −1(Z
0)

G −1(Z
1)

R

(a) (b) (c)

We find such an R as follows. We maintain a rectangle X × Y , which is initially the whole
domain of F and which we iteratively shrink. In each round, we consider the next rectangle
Ri in the decision list, and one of two things happens. Either:

The round is declared unsuccessful, in which case we remove from X × Y a small number
of rows and columns that together cover all of Ri ∩X × Y ∩G−1(Z). This guarantees
that throughout the whole execution, by the i-th round,

⋃
j<i(Rj ∩G−1(Z)) has been

removed from X × Y – thus every input in Ri ∩X × Y ∩G−1(Z) is such that Ri is the
first rectangle in the decision list that contains it, so it is in G−1(Z`i

) ⊆ F−1(`i) by the
definition of decision lists.

Or,
Success is declared, in which case it will hold that Ri ∩ X × Y touches G−1(Z) – in
fact, it touches G−1(Z`i) but not G−1(Z1−`i), by the above – and we can restrict
Ri ∩X ×Y to a subrectangle R that still touches G−1(Z`i

) but is such that G(R) is fixed
on O(k/ logn) coordinates and has full support on the remaining coordinates. In other
words, G(R) = C−1(1) for a width-O(k/ logn) conjunction C.

This process is a variation of the process (†) from the product method (Theorem 10). The
difference is that the Z-slices, G−1(Z), now play the role of the product distribution, and
we maintain the monochromatic property for Ri ∩X × Y only inside the Z-slices. Another
difference is that in each unsuccessful round we remove both rows and columns from X × Y
(not either–or as in (†)).

To flesh out this outline, we need to specify how to determine whether a round is successful,
which rows and columns to remove if not, and how to restrict to the desired R if so, and we
need to argue that the process will terminate with success.

3.2 Tools
We will need to find a rectangle R such that G(R) is fixed on few coordinates and has full
support on the remaining coordinates. We now describe some tools that help us achieve
this. First of all, under what conditions on R = A×B can we guarantee that G(R) has full
support over all n coordinates?

I Definition 12 (Blockwise-density [13]). A ⊆ [m]n is called δ-dense if the uniform random
variable x over A satisfies the following: for every nonempty I ⊆ [n], the blocks xI have
min-entropy rate at least δ, that is, H∞(xI) ≥ δ · |I| logm. Here, xI is marginally distributed
over [m]I , and H∞(x) := minx log(1/Pr[x = x]) is the usual min-entropy of a random
variable (see, e.g., Vadhan’s monograph [37] for an introduction).

I Definition 13 (Deficiency). For B ⊆ ({0, 1}m)n, we define D∞(B) := mn − log |B|
(equivalently, |B| = 2mn−D∞(B)), representing the log-size deficiency of B compared to the

CCC 2017

12:8 Query-to-Communication Lifting for PNP

universe ({0, 1}m)n. (The notation D∞ was chosen partly because this corresponds to the
Rényi max-divergence between the uniform distributions over B and over ({0, 1}m)n.)

I Lemma 14 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤
m0.3, then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with
G(x, y) = z).

We prove Theorem 14 in subsection 3.4 using the probabilistic method: we show for a
suitably randomly chosen rectangle U ×V ⊆ G−1(z), (i) U intersects A with high probability,
and (ii) V intersects B with high probability. The proof of (i) uses the second moment
method (which is different from how blockwise-density was employed in previous work [13]).
The proof of (ii) is a tightened analysis of a combination of arguments from [28, 14] (which
were not stated in those papers with the high-probability guarantee we need). The latter
papers proved the full support property under a different assumption on A, which they called
“thickness”.

Theorem 14 gives us the full support property assuming A is blockwise-dense and B has
low deficiency. How can we get blockwise-density? Our tool for this is the following claim,
which follows from [13]; we provide the simple argument.

I Claim 15. If A ⊆ [m]n satisfies |A| ≥ mn/2O(k) then there exists an I ⊆ [n] of size
|I| ≤ O(k/ logn) and an A′ ⊆ A such that A′ is fixed on I and 0.9-dense on I := [n] r I.

Proof. If A is 0.9-dense, then we can take I = ∅ and A′ = A, so assume not. Letting x be
the uniform random variable over A, take I ⊆ [n] to be a maximal subset for which there is a
violation of blockwise-density: H∞(xI) < 0.9 · |I| logm. From H∞(x) ≥ n logm−O(k) we
deduce H∞(xI) ≥ |I| logm−O(k) since marginalizing out |I| logm bits may only cause the
min-entropy to go down by |I| logm. Combining these, we get |I| logm−O(k) < 0.9·|I| logm,
so |I| ≤ O(k/ logn).

Let α ∈ [m]I be an outcome for which Pr[xI = α] > 2−0.9·|I| log m, and take A′ := {x ∈
A : xI = α}, which is fixed on I. To see that A′ is 0.9-dense on I, let x′ be the uniform
random variable over A′ and note that if H∞(x′J) < 0.9 · |J | logm for some nonempty J ⊆ I,
a straightforward calculation shows that then xI∪J would also have min-entropy rate < 0.9,
contradicting the maximality of I. J

3.3 Finding R

We initialize X := [m]n and Y := ({0, 1}m)n and iterate the following for i = 1, . . . , 2k

rounds.
(‡) Round i: (loop invariant: Ri ∩X × Y ∩G−1(Z) is monochromatic)

Define a set A ⊆ X of weighty rows as

A := {x ∈ X : |Yx| ≥ 2mn−3n log m} where Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}.

Test whether there are many weighty rows: |A| ≥ mn/2k+1?
If no, we update X ← XrA and Y ← Y r

⋃
x∈XrA Yx and proceed to the next round.

Since Ri ∩G−1(Z) has been removed from X × Y , this ensures our loop invariant, as
explained in subsection 3.1.
If yes, we declare this round a success and halt.

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:9

X

Y

Ri

Ri ∩
X×Y ∩
G−1(Z)

G
−

1(Z
)

A

⋃
x∈XrA Yx

We shortly argue that the process halts with success. First, we show how to find a
desired R assuming the process is successful in round i (with associated sets Ri, X × Y ,
A, and Yx for x ∈ X). Using Claim 15, obtain A′ ⊆ A which is fixed to α on some
I ⊆ [n] of size O(k/ logn) and is 0.9-dense on I. Pick any x′ ∈ A′, and define γ ∈ {0, 1}I

to be a value that maximizes the size of B := {y ∈ Yx′ : gI(α, yI) = γ}. Note that
|B| ≥ |Yx′ |/2|I| ≥ 2mn−3n log m−O(k/ log n) ≥ 2mn−m0.3 since x′ ∈ A and k ≤ n log(2m).

We claim that R := A′ × B can serve as our desired rectangle. Certainly, R touches
G−1(Z`i) (at (x′, y) for any y ∈ B) but not G−1(Z1−`i) by the loop invariant (since R ⊆
Ri ∩X × Y). Also, G(R) is fixed to γ on I. Defining

A′
I

:= {xI ∈ [m]I : αxI ∈ A
′} and BI

:= {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B}

to be the projections of A′ and B to the coordinates I, we have that

A′
I
is 0.9-dense and D∞(BI) ≤ D∞(B) ≤ m0.3

(noting that D∞(BI) is relative to ({0, 1}m)I). Applying Theorem 14 to A′
I
×BI shows that

G(R) has full support on I. In summary, “zI = γ” is the conjunction we were looking for.
We now argue that the process halts with success. In each unsuccessful round, we remove

|A| < mn/2k+1 rows from X and at most
∑

x∈XrA |Yx| < mn · 2mn−3n log m ≤ 2mn/2k+1

columns from Y (since k + 1 ≤ 2n logm). Suppose for contradiction that all 2k rounds are
unsuccessful; then at most half of the rows and half of the columns are removed altogether.
Supposedly the set X×Y we finish with is disjoint from

⋃
i∈[2k](Ri∩G−1(Z)) = G−1(Z). But

since Z is nonempty, this contradicts the fact that G(X ×Y) has full support by Theorem 14
(as it is straightforward to check that since X × Y contains at least half the rows and half
the columns, it also satisfies the assumptions of the lemma).

This concludes the proof of Theorem 6, except for the proof of Theorem 14.

3.4 Full Support Lemma
I Lemma 16 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤
m0.3, then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with
G(x, y) = z).

For coordinates I ⊆ [n] we define BI := {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B} as the
projection of B onto I. Moreover, for V ⊆ {0, 1}m and i ∈ [n] we let Bi,V := {y ∈ B : yi ∈ V }
be the restriction of the i-th coordinate to be in V . We will often use combinations of these
notations; e.g., Bn,V

[n−1] denotes the restriction of the n-th coordinate to be in V , subsequently
projected on the coordinates in [n− 1].

CCC 2017

12:10 Query-to-Communication Lifting for PNP

We write random variables as bold letters. For a random variable y supported on B, yI

denotes the marginal distribution of y on the coordinates in I. In contrast, BI only denotes
the set obtained by projecting B on the coordinates in I, without any distribution associated
to it. Note that while D∞(B) is the deficiency relative to ({0, 1}m)n, the quantity D∞(BI)
is the deficiency relative to ({0, 1}m)I ; i.e., D∞(BI) = m|I| − log |BI |.

Theorem 14 follows from the following two claims.

I Claim 17 (Alice side). Suppose A ⊆ [m]n is 0.9-dense. Choose U := U1× · · · ×Un ⊆ [m]n
uniformly at random where each Ui ⊆ [m] is of size |Ui| = m0.36. Then

Pr[A ∩U 6= ∅] ≥ 1− 2m−0.01.

I Claim 18 (Bob side). Let z ∈ {0, 1} and suppose B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.31.
Choose U ⊆ [m], |U | = m0.36, uniformly at random and let V := {y ∈ {0, 1}m : ∀j ∈ U ,

yj = z}. Then

for n ≥ 2: Pr
[
D∞

(
Bn,V

[n−1]

)
≤ D∞(B) + 1

]
≥ 1− 60m−0.28,

for n = 1: Pr [B ∩ V 6= ∅] ≥ 1− 60m−0.28.

We prove the Alice side claim shortly using the second moment method. The Bob side
claim follows by a tightened analysis of arguments from [28, 14], which we provide in the full
version of the paper [12]. Let us see why these two claims imply Theorem 14.

Proof of Theorem 14. Our goal is to show that for each z ∈ {0, 1}n we have A × B ∩
G−1(z) 6= ∅. Choose U := U1 × · · · × Un ⊆ [m]n, |Ui| = m0.36, uniformly at random.
Correspondingly, define V := V1 × · · · × Vn where Vi := {y ∈ {0, 1}m : ∀j ∈ Ui, yj = zi}.
We have U × V ⊆ G−1(z) by construction so it suffices to show that A × B ∩ U × V is
nonempty with positive probability. To this end, we show that the events A ∩U 6= ∅ and
B ∩V 6= ∅ both happen with high probability, and hence, by a union bound, A×B ∩U ×V

is nonempty with high probability. The Alice side claim (Claim 17) already shows A∩U 6= ∅
w.h.p., so it remains to consider B ∩ V .

Define BBi := B ∩ (({0, 1}m)i×Vi+1× · · · ×Vn). That is, BBi is obtained by restricting
the j-th coordinate to be in Vj for i+ 1 ≤ j ≤ n. Note that BBn = B, BBi−1 = (BBi)i,Vi

and BB0 = B ∩ V . Let B̂Bi := BBi
[i] be the projection of BBi onto [i]. We define the

following events Ei:

for i ≥ 2: Ei ⇐⇒ D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1,

for i = 1: E1 ⇐⇒ B̂B1 ∩ V1 6= ∅.

Note that B̂B1 ∩ V1 6= ∅ implies that BB0 = B ∩ V 6= ∅. Conditioned on En ∩ · · · ∩ Ei+1,
we have

D∞
(
B̂Bi

)
≤ D∞

(
B̂Bn

)
+ n− i− 1 ≤ m0.3 + n ≤ m0.31

and thus for i ≥ 2, we have from Claim 18 that D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1 holds with
probability at least 1− 60m−0.28. Thus

Pr[Ei | En ∩ · · · ∩ Ei+1] ≥ 1− 60m−0.28.

Also, conditioned on En ∩ · · · ∩ E2, we have D∞(B̂B1) ≤ m0.31, and hence using the case of
n = 1 in Claim 18, Pr[B̂B1 ∩ V1 6= ∅] ≥ 1− 60m−0.28. That is,

Pr[E1 | En ∩ · · · ∩ E2] ≥ 1− 60m−0.28.

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:11

Now we are able to show B ∩ V 6= ∅ w.h.p., which concludes the proof:

Pr[B ∩ V 6= ∅] ≥ Pr[E1]
≥ Pr[En ∩ · · · ∩ E1]
=
∏n

i=1 Pr[Ei | En ∩ · · · ∩ Ei+1]
≥ (1− 60m−0.28)n

≥ 1− 60nm−0.28

= 1− 60m−0.03. J

Proof of Claim 17. For each x ∈ A consider the indicator random variable 1x ∈ {0, 1}
indicating whether x ∈ U . Let s :=

∑
x∈A 1x so that s = |A ∩U | and E[s] = δ|A|, where

δ = |U |/mn = m−0.64n. We use the second moment method to estimate

Pr[A ∩U 6= ∅] = 1−Pr[s = 0] ≥ 1− Var[s]
E[s]2 .

Thus, to prove the claim it suffices to show that Var[s] ≤ 2m−0.01 ·E[s]2 = 2m−0.01 · δ2|A|2.
Since

Var[s] =
∑

x,x′ Cov[1x,1x′] =
∑

x,x′ (E[1x1x′]−E[1x]E[1x′]) ,

it suffices to show that, for each fixed x∗ ∈ A,∑
x∈A Cov[1x,1x∗] ≤ 2m−0.01 · δ2|A|.

Fix x∗ ∈ A. Let Ix ⊆ [n] denote the set of all blocks i such that xi = x∗i . First note that
under Ix = ∅ it holds that Cov[1x,1x∗] < 0, i.e., the events “x ∈ U” and “x∗ ∈ U” are
negatively correlated. The interesting case is thus Ix 6= ∅ when the two events are positively
correlated. We note that

Pr[x ∈ U | x∗ ∈ U] =
(

m0.36−1
m−1

)n−|Ix|
≤ m0.64|Ix| · δ. (2)

Let I be the distribution of Ix when x ∈ A is chosen uniformly at random. We have∑
x∈A Cov[1x,1x∗] ≤

∑
x:Ix 6=∅Cov[1x,1x∗]

≤
∑

x:Ix 6=∅E[1x1x∗]

=
∑

x:Ix 6=∅Pr[x ∈ U and x∗ ∈ U]

= Pr[x∗ ∈ U] ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U]

= δ ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U]

= δ|A| ·
∑
∅6=I⊆[n] Pr[I = I] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U]

≤ δ|A| ·
∑
∅6=I⊆[n] Prx∼A[xI = x∗I] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U]

≤ δ|A| ·
∑
∅6=I⊆[n] 2−0.9|I| log m ·m0.64|I| · δ (0.9-density and (2))

= δ2|A| ·
∑
∅6=I⊆[n] 2−0.26|I| log m

= δ2|A| ·
∑

k∈[n]
(

n
k

)
2−0.26k log m

≤ δ2|A| ·
∑

k∈[n](m0.25)k · 2−0.26k log m

≤ δ2|A| · 2 · 2−0.01 log m

≤ 2m−0.01 · δ2|A|. J

CCC 2017

12:12 Query-to-Communication Lifting for PNP

4 Application

In this section we prove Theorem 3, restated here for convenience.

I Theorem 3. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.
F has large PNP communication complexity: PNPcc(F) ≥ nΩ(1).
For any product distribution µ over {0, 1}n × {0, 1}n, there exists a monochromatic
rectangle R that is large: log(1/µ(R)) ≤ logO(1) n.
The function witnessing the separation is F := f ◦ gn where g := Indm is the index

function with m := n4 and f : {0, 1}n → {0, 1} is defined as follows. We interpret the input
M to f as a

√
n×
√
n boolean matrix, and set

f(M) := 1 iff every row of M contains a unique 1-entry.

Complexity class aficionados [1] can recognize f as the canonical complete problem for the
decision tree analogue of ∀·US (⊆ Π2P) where US is the class of functions whose 1-inputs
admit a unique witness [5]. We have F : {0, 1}n log m × {0, 1}nm → {0, 1}, but we can
polynomially pad Alice’s input length to match Bob’s (as in the statement of Theorem 3).

4.1 Lower bound
It is proved in several sources [32, 21, 16] that f cannot be computed by an efficient Σ2P-type
decision tree (i.e., quasi-polynomial-size depth-3 circuit with an Or-gate at the top and small
bottom fan-in), let alone an efficient PNP decision tree. However, for completeness, we might
as well give a simple proof using our characterization (Theorem 11). Applying the lifting
theorem to the following lemma yields the lower bound.

I Lemma 19. DLdt(f) ≥
√
n.

Proof. By Theorem 11 it is enough to exhibit a nonempty subset Z ⊆ {0, 1}n of inputs such
that each conjunction C of width

√
n− 1 accepts an input in Z1 := Z ∩ f−1(1) iff it accepts

an input in Z0 := Z ∩ f−1(0). We define Z as the set of
√
n×
√
n matrices with at most one

1-entry in each row. If C accepts an input M ∈ Z1, then there is some row of M none of
whose entries are read by C; we may modify that row to all-0 and conclude that C accepts
an input in Z0. If C accepts an input M ∈ Z0, then for each all-0 row of M there is some
entry that is not read by C; we may modify each of those entries to a 1 and conclude that C
accepts an input in Z1. J

4.2 Upper bound
Let µ be a product distribution over the domain of F = f ◦ gn. Call a matrix M heavy if
it contains a row with at least two 1-entries. Hence f(M) = 0 for every heavy matrix M .
There is an efficient nondeterministic protocol of cost k ≤ O(logn), call it Π, that checks
whether a particular (x, y) describes a heavy matrix M = gn(x, y). Namely, Π guesses a
row index i ∈ [

√
n] and two column indices 1 ≤ j < j′ ≤

√
n, and then communicates

2 logm+ 1 ≤ O(logn) bits to check that Mij = Mij′ = 1. We view Π as defining a rectangle
covering

⋃
i∈[2k]Ri of all those (x, y) that describe heavy matrices. Note that each Ri is

monochromatic for F .
If there is an Ri with µ(Ri) ≥ 2−4k, the theorem is proved. So suppose not: µ(Ri) < 2−4k

for all i. Starting with S := domain of F and iterating over the Ri exactly as in the proof of
Theorem 10, we can delete from S either the rows or the columns of each Ri, ending up with

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:13

a rectangle S still of measure µ(S) ≥ 1− 2k · 2−2k ≥ 0.99. We will complete the argument
by showing that FS (i.e., F restricted to the rectangle S) admits a large monochromatic
rectangle relative to µS , the conditional distribution of µ given S (which is also product).

∀·US

∀·UP

∀·P

coNP

Large monochr.
rectangle

restrict to S

Yannakakis

=

product
method

All (x, y) ∈ S are such that M = gn(x, y) is not heavy. This means that the function FS is
easier than the (∀·US-complete) function F in the following sense: for each row i ∈ [

√
n]

there is an efficient O(logn)-cost nondeterministic protocol, call it Πi, to check whether the
i-th row of M = gn(x, y) contains a 1-entry, and moreover, this protocol is unambiguous
in that it has at most one accepting computation on any input. (In complexity lingo, FS

admits an efficient ∀·UP protocol.) It is a well-known theorem of Yannakakis [40, Lemma 1]
that any such unambiguous Πi can be made deterministic with at most a quadratic blow-up
in cost; let Πdet

i be that O(log2 n)-bit deterministic protocol. But now ¬FS (negation of FS)
is computed by the following O(log2 n)-bit nondeterministic protocol: on input (x, y) guess a
row index i ∈ [

√
n] and run Πdet

i accepting iff Πdet
i (x, y) = 0. (That is, FS admits an efficient

∀·P = coNP protocol.) We proved NPcc(¬FS) ≤ O(log2 n); in particular,

DLcc(FS) ≤ O(PNPcc(FS)) ≤ O(NPcc(¬FS)) ≤ O(log2 n).

Hence we can apply (as a black box) the product method (Theorem 10) to find a monochro-
matic rectangle R ⊆ S with log(1/µS(R)) ≤ O(log2 n) and hence log(1/µ(R)) ≤ O(log2 n).
This completes the proof of Theorem 3.

5 Conclusion

Let PM(F) denote the best lower bound on DLcc(F) that can be derived by the product
method (Theorem 10). For any communication complexity measure C(F), we use the
convention that C by itself refers to the class of (families of) functions F : {0, 1}n×{0, 1}n →
{0, 1} with C(F) ≤ polylog(n). Then our application (Theorem 3) shows that the inclusion
PNPcc ⊆ PM is strict: there is an F ∈ PMr PNPcc. Here are some open questions.
1. Is there an F ∈ PMrUPPcc? This would be a stronger result since PNPcc ⊆ UPPcc. Note

that our ∀·US-complete function does not witness this, since it is in PPcc. One way to
see this is to note that it is the intersection of a coNPcc function (does each row have at
most one 1?) and a PPcc function (is the number of 1’s at least the number of rows?),
and use the closure of PP under intersection [4].

CCC 2017

12:14 Query-to-Communication Lifting for PNP

2. Is there any reasonable upper bound for PM? For example, does PM ⊆ PSPACEcc hold?
3. Does BPPcc ⊆ PM or even BPPcc ⊆ PNPcc hold for total functions? The separation

BPPcc 6⊆ PM was shown for partial functions implicitly in [25].
4. Is there a lossless PNPdt-to-PNPcc lifting theorem (Conjecture 7)?
5. Can the quadratic upper bounds in Facts 4 and 5 be shown tight for more general

parameters (beyond constant DLdt(f) and logarithmic DLcc(F) as in subsection 1.4)?

Acknowledgments. We thank Paul Balister, Shalev Ben-David, Béla Bollobás, Robin
Kothari, Nirman Kumar, Santosh Kumar, Govind Ramnarayan, Madhu Sudan, Li-Yang Tan,
and Justin Thaler for discussions and correspondence.

References
1 Scott Aaronson, Greg Kuperberg, and Christopher Granade. Complexity zoo. Online, 2017.

URL: https://complexityzoo.uwaterloo.ca.
2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-

plexity theory. In Proceedings of the 27th Symposium on Foundations of Computer Science
(FOCS), pages 337–347. IEEE, 1986. doi:10.1109/SFCS.1986.15.

3 Richard Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational complexity,
4(4):339–349, 1994. doi:10.1007/BF01263422.

4 Richard Beigel, Nick Reingold, and Daniel Spielman. PP is closed under intersection.
Journal of Computer and System Sciences, 50(2):191–202, 1995. doi:10.1006/jcss.1995.
1017.

5 Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Information and
Control, 55(1–3):80–88, 1982. doi:10.1016/S0019-9958(82)90439-9.

6 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

7 Harry Buhrman, Nikolai Vereshchagin, and Ronald de Wolf. On computation and com-
munication with small bias. In Proceedings of the 22nd Conference on Computational
Complexity (CCC), pages 24–32. IEEE, 2007. doi:10.1109/CCC.2007.18.

8 Mark Bun and Justin Thaler. Approximate degree and the complexity of depth three
circuits. Technical Report TR16-121, Electronic Colloquium on Computational Complexity
(ECCC), 2016. URL: https://eccc.weizmann.ac.il/report/2016/121/.

9 Siu On Chan, James Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. Journal of the ACM, 63(4):34:1–34:22, 2016.
doi:10.1145/2811255.

10 Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In Proceedings of
the 57th Symposium on Foundations of Computer Science (FOCS), pages 295–304. IEEE,
2016. doi:10.1109/FOCS.2016.40.

11 Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th
Symposium on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE, 2015.
doi:10.1109/FOCS.2015.69.

12 Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-
Communication Lifting for PNP . Electronic Colloquium on Computational Complexity
(ECCC), 24:24, 2017. URL: https://eccc.weizmann.ac.il/report/2017/024.

13 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.
doi:10.1137/15M103145X.

https://complexityzoo.uwaterloo.ca
http://dx.doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1007/BF01263422
http://dx.doi.org/10.1006/jcss.1995.1017
http://dx.doi.org/10.1006/jcss.1995.1017
http://dx.doi.org/10.1016/S0019-9958(82)90439-9
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1109/CCC.2007.18
https://eccc.weizmann.ac.il/report/2016/121/
http://dx.doi.org/10.1145/2811255
http://dx.doi.org/10.1109/FOCS.2016.40
http://dx.doi.org/10.1109/FOCS.2015.69
https://eccc.weizmann.ac.il/report/2017/024
http://dx.doi.org/10.1137/15M103145X

M. Göös, P. Kamath, T. Pitassi, and T. Watson 12:15

14 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-
tion number. In Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

15 Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. In Proceedings of the 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), volume 55 of LIPIcs, pages 86:1–86:15. Schloss Dag-
stuhl, 2016. doi:10.4230/LIPIcs.ICALP.2016.86.

16 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Computational Complexity, 5(2):99–112, 1995. doi:10.1007/BF01268140.

17 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR
functions. In Proceedings of the 57th Symposium on Foundations of Computer Science
(FOCS), pages 282–288. IEEE, 2016. doi:10.1109/FOCS.2016.38.

18 Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized
clocks. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages
259–269. IEEE, 2010. doi:10.1109/CCC.2010.32.

19 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Al-
gorithms and Combinatorics. Springer, 2012.

20 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and commu-
nication complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, 1995. doi:
10.1137/S0895480192238482.

21 Ker-I Ko. Separating and collapsing results on the relativized probabilistic polynomial-time
hierarchy. Journal of the ACM, 37(2):415–438, 1990. doi:10.1145/77600.77623.

22 Pravesh Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proceedings of
the 49th Symposium on Theory of Computing (STOC). ACM, 2017. To appear.

23 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

24 James Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semi-
definite programming relaxations. In Proceedings of the 47th Symposium on Theory of
Computing (STOC), pages 567–576. ACM, 2015. doi:10.1145/2746539.2746599.

25 Periklis Papakonstantinou, Dominik Scheder, and Hao Song. Overlays and limited memory
communication. In Proceedings of the 29th Conference on Computational Complexity
(CCC), pages 298–308. IEEE, 2014. doi:10.1109/CCC.2014.37.

26 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal
of Computer and System Sciences, 33(1):106–123, 1986. doi:10.1016/0022-0000(86)
90046-2.

27 Anup Rao and Amir Yehudayoff. Communication Complexity. In preparation, 2017.
28 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, 1999. doi:10.1007/s004930050062.
29 Alexander Razborov and Alexander Sherstov. The sign-rank of AC0. SIAM Journal on

Computing, 39(5):1833–1855, 2010. doi:10.1137/080744037.
30 Ronald Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987. doi:10.

1007/BF00058680.
31 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen Cook. Exponential lower

bounds for monotone span programs. In Proceedings of the 57th Symposium on Foundations
of Computer Science (FOCS), pages 406–415. IEEE, 2016. doi:10.1109/FOCS.2016.51.

32 Miklos Santha. Relativized Arthur–Merlin versus Merlin–Arthur games. Information and
Computation, 80(1):44–49, 1989. doi:10.1016/0890-5401(89)90022-9.

33 Rocco Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and weight-
degree tradeoffs for polynomial threshold functions. In Proceedings of the 25th Conference

CCC 2017

http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.1007/BF01268140
http://dx.doi.org/10.1109/FOCS.2016.38
http://dx.doi.org/10.1109/CCC.2010.32
http://dx.doi.org/10.1137/S0895480192238482
http://dx.doi.org/10.1137/S0895480192238482
http://dx.doi.org/10.1145/77600.77623
http://dx.doi.org/10.1145/2746539.2746599
http://dx.doi.org/10.1109/CCC.2014.37
http://dx.doi.org/10.1016/0022-0000(86)90046-2
http://dx.doi.org/10.1016/0022-0000(86)90046-2
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1137/080744037
http://dx.doi.org/10.1007/BF00058680
http://dx.doi.org/10.1007/BF00058680
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1016/0890-5401(89)90022-9

12:16 Query-to-Communication Lifting for PNP

on Learning Theory (COLT), pages 14.1–14.19. JMLR, 2012. URL: http://www.jmlr.org/
proceedings/papers/v23/servedio12/servedio12.pdf.

34 Alexander Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969–
2000, 2011. doi:10.1137/080733644.

35 Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed func-
tions. Quantum Information and Computation, 9(5–6):444–460, 2009.

36 Justin Thaler. Lower bounds for the approximate degree of block-composed functions.
In Proceedings of the 43rd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 55 of LIPIcs, pages 17:1–17:15. Schloss Dagstuhl, 2016.
doi:10.4230/LIPIcs.ICALP.2016.17.

37 Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Sci-
ence, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

38 Nikolai Vereshchagin. Relativizability in complexity theory. In Provability, Complexity,
Grammars, volume 192 of AMS Translations, Series 2, pages 87–172. American Mathem-
atical Society, 1999.

39 Ryan Williams. Brute force search and oracle-based computation. Technical report, Cornell
University, 2001. URL: https://web.stanford.edu/~rrwill/bfsearch-rev.ps.

40 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/
0022-0000(91)90024-Y.

http://www.jmlr.org/proceedings/papers/v23/servedio12/servedio12.pdf
http://www.jmlr.org/proceedings/papers/v23/servedio12/servedio12.pdf
http://dx.doi.org/10.1137/080733644
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.17
http://dx.doi.org/10.1561/0400000010
https://web.stanford.edu/~rrwill/bfsearch-rev.ps
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1016/0022-0000(91)90024-Y

	Introduction
	Main result
	Application
	Decision lists (DLs)
	Separation between PtoPN and DL

	Preliminaries: Decision List Lower Bound Techniques
	Proof of the Lifting Theorem
	Overview
	Tools
	Finding R
	Full Support Lemma

	Application
	Lower bound
	Upper bound

	Conclusion

