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Abstract

We show that the counting class LWPP [FFK94] remains unchanged even if one allows a
polynomial number of gap values rather than one. On the other hand, we show that it is
impossible to improve this from polynomially many gap values to a superpolynomial number of
gap values by relativizable proof techniques.

The first of these results implies that the Legitimate Deck Problem (from the study of
graph reconstruction) is in LWPP (and thus low for PP, i.e., PPLegitimate Deck = PP) if the
weakened version of the Reconstruction Conjecture holds in which the number of nonisomorphic
preimages is assumed merely to be polynomially bounded. This strengthens the 1992 result of
Köbler, Schöning, and Torán [KST92] that the Legitimate Deck Problem is in LWPP if the
Reconstruction Conjecture holds, and provides strengthened evidence that the Legitimate Deck
Problem is not NP-hard.

We additionally show on the one hand that our main LWPP robustness result also holds
for WPP, and also holds even when one allows both the rejection- and acceptance- gap-value
targets to simultaneously be polynomial-sized lists; yet on the other hand, we show that for the
#P-based analog of LWPP the behavior much differs in that, in some relativized worlds, even
two target values already yield a richer class than one value does. Despite that nonrobustness
result for a #P-based class, we show that the #P-based “exact counting” class C

=
P remains

unchanged even if one allows a polynomial number of target values for the number of accepting
paths of the machine.

∗This work was done in part while on a sabbatical stay at ETH Zürich’s Department of Computer Science,
generously supported by that department.

†This work was done in part while visiting the University of Rochester.

1

http://arxiv.org/abs/1711.01250v3


1 Introduction

Nothing is more natural than wanting to better understand an object by knowing what it can and
cannot do. Whether wondering how fast a (rental?) car can go in reverse or wondering if NPNP

can without loss of generality be assumed to ask at most one question per nondeterministic path
(as it indeed can, as is implicit in the quantifier characterization [SM73, Wra77] of NPNP), we both
in life and as theoreticians want to find how robust things are.

We are often particularly happy when a class proves to be quite robust under definitional
perturbations. Such robustness on one hand suggests that perhaps there is something broadly
natural about the class, and on the other hand such robustness often makes it easier to put the
class to use.

This paper shows that the counting classes LWPP and WPP, defined in 1994 in the seminal
work of Fenner, Fortnow, and Kurtz [FFK94] on gap-based counting classes, are quite robust. Even
though their definitions are in terms of having the gap function (the difference between the number
of accepting and rejecting paths of a machine) hit a single target value, we prove (in Section 3)
that one can allow a list of up to polynomially many target values without altering the descriptive
richness of the class, i.e., without changing the class.

We then apply this to the question of whether the Legitimate Deck Problem is in LWPP.
The Legitimate Deck Problem (a formal definition will be given in Section 4) is the decision

problem of determining whether, given a multiset of (unlabeled) graphs, there exists a graph G
such that that multiset is precisely (give or take isomorphisms) the multiset of one-node-deleted
subgraphs of G (a.k.a. the deck of G) [KH94]. The Reconstruction Conjecture [Kel42, Ula60]—
which in the wake of the resolution of the Four-Color Conjecture was declared by the editorial
board of the Journal of Graph Theory to be the foremost open problem in graph theory [Edi77]—
states that every graph with three or more nodes is uniquely determined (give or take isomorphisms)
by its multiset of one-node-deleted subgraphs. The Legitimate Deck Problem was defined in 1978
by Nash-Williams [NW78], in his paper that framed the algorithmic/complexity issues related to
reconstructing graphs—such as telling whether a given deck is legitimate (i.e., is the deck of some
graph).

Our application of our LWPP robustness result to the question of whether the Legitimate Deck
Problem is in LWPP is the following. The strongest previous evidence of the simplicity of the
Legitimate Deck Problem is the 1992 result of Köbler, Schöning, and Torán [KST92] that the
Legitimate Deck Problem is in LWPP (and thus is PP-low, i.e., PPLegitimate Deck = PP) if the
Reconstruction Conjecture (i.e., that each deck whose elements all have at least two nodes has at
most one preimage, give or take isomorphisms) holds. Using this paper’s main robustness result
as a tool, Section 4 proves that the Legitimate Deck Problem is in LWPP (and thus is PP-low) if
a weakened version of the Reconstruction Conjecture holds, namely, that each deck has at most a
polynomial number of nonisomorphic preimages.

This weakened version is not known to be equivalent to the Reconstruction Conjecture itself.
And so our result for the first time gives a path to proving that the Legitimate Deck Problem
is PP-low that does not require one to, on the way, resolve the foremost open problem in graph
theory [Edi77].

We started this section by noting that it is natural to want to know both flexibilities and
limitations of classes. Our main result is about flexibility: going from one target gap to instead
a polynomial number. But are we leaving money on the table? Could we extend our result to
slightly superpolynomial numbers of target gaps, or even to exponential numbers of target gaps?
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In Section 5 we note that if the robustness of LWPP were to hold up to exponentially many target
gaps, then NP would be in LWPP and so would be PP-low (i.e., PPNP = NP); yet NP is widely
suspected not to be PP-low. We also, by encoding nondeterministic oracle Turing machines by
low-degree multivariate polynomials so as to capture the gap functions of those machines, show an
oracle relative to which robustness fails for all superpolynomial numbers of target gaps; thus, no
extension beyond this paper’s polynomial-number-of-target-gaps robustness result for LWPP can
be proven by a relativizable proof. And for the #P-based analogue of LWPP, in Section 6 we show
that even allowing two target values yields, in some relativized worlds, a richer class than one target
value. For the important #P-based counting class C=P, however, we prove in Section 7 that the
class does not change even if one allows not just one but instead a polynomial number of target
values for the number of accepting paths of the underlying #P function. We also (in the final part
of Section 3) extend our main result to show that the simultaneous expansion to polynomial-sized
lists of both the acceptance and rejection target-gap lists still, for LWPP and WPP, yields the
classes LWPP and WPP.

To summarize: In this paper, we prove that LWPP and WPP are robust enough that they
remain unchanged when their single target gap is allowed to be expanded to a polynomial-sized
list; we apply this new robustness of LWPP to show that the PP-lowness of the Legitimate Deck
Problem follows from a weaker hypothesis than was previously known; we show that our polynomial
robustness of LWPP is optimal with respect to relativizable proofs; and we prove a number of related
results on limitations and extensions.

2 Preliminaries

We first present the definitions of many of the counting classes that we will be speaking of, taking
the definitions from the seminal paper of Fenner, Fortnow, and Kurtz [FFK94].

Definition 2.1 ([FFK94]). 1. For each nondeterministic polynomial-time Turing machine N ,
the function accN : Σ∗ → N is defined such that for every x ∈ Σ∗, accN (x) equals the number
of accepting computation paths of N on input x.

2. For each nondeterministic polynomial-time Turing machine N , the function rejN : Σ∗ → N is
defined such that for every x ∈ Σ∗, rejN (x) equals the number of rejecting computation paths
of N on input x.

3. For each nondeterministic polynomial-time Turing machine N , the function gapN : Σ∗ → Z
is defined such that for every x ∈ Σ∗,

gapN (x) = accN (x)− rejN (x).

Definition 2.2 ([FFK94]).

GapP = {gapN | N is a polynomial-time nondeterministic Turing machine}.

Definition 2.3 ([OH93, FFK94]). SPP is the class of all sets A such that there exists a GapP
function g such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = 1

x /∈ A =⇒ g(x) = 0.

3



The following class, WPP, is potentially larger than SPP. Instead of the “target value” 1 for
the case x ∈ A, we allow a target value f(x), where f may be any polynomial-time computable
function whose image does not contain 0. FP denotes the class of polynomial-time computable
functions.

Definition 2.4 ([FFK94]). WPP is the class of all sets A such that there exists a GapP function
g and a function f ∈ FP that maps from Σ∗ to Z− {0} such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = f(x)

x /∈ A =⇒ g(x) = 0.

The class LWPP is the same as WPP except that the “target function” f may depend on only
the length of the input.

Definition 2.5 ([FFK94]). LWPP is the class of all sets A such that there exists a GapP function
g and a function f ∈ FP that maps from 0∗ to Z− {0} such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = f(0|x|)

x /∈ A =⇒ g(x) = 0.

Here, as usual, for any x ∈ Σ∗, |x| denotes the length of x, and for any n ∈ N, 0n is the string
consisting of exactly n zeroes.

We now generalize the definition of LWPP to the case of having the target of the GapP function
be, for members of the set, not a single value but a collection of values.

One might expect us to formalize this by simply having the polynomial-time computable “what
is the target” function output a list of the nonzero-integer targets. That would work fine and
be equivalent to what we are about to do, as long as we are dealing with lists having at most
a polynomial number of elements. However, to be able to speak of even longer lists—as will be
important in our negative results offsetting our main result—we use an indexing approach, as
follows.

Definition 2.6. Let r be any function mapping from N to N. Then the class r-LWPP is the class
of all sets A such that there exists a GapP function g and a function f ∈ FP that maps to Z− {0}
such that for each x ∈ Σ∗,

x ∈ A =⇒ there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = f(〈0|x|, i〉)

x /∈ A =⇒ g(x) = 0.

The following class, Poly-LWPP, will be central to this paper: Our main result is that this class
in fact equals LWPP. The “+ c” in Definition 2.7 may seem strange at first. But without it we
would have a boundary-case pathology at n = 0, namely, the class could not contain any set that
contains the empty string.1

1The “+ c” in Definition 2.7 also, on its surface, would seem to make a difference at length 1, by allowing lists of
size greater than one; however, one could work around that issue. In contrast, the exclusion of the empty string would
not be avoidable if our class of polynomials were to be a class—such as nc—such that all of its members evaluate to 0
at n = 0. In any case, our use of nc + c avoids any special worries at lengths 0 and 1. And since for every polynomial
p there is a c such that (∀n ∈ N)[p(n) ≤ nc + c], using polynomials just of the form nc + c is in fact not a restriction.
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Definition 2.7.
Poly-LWPP =

⋃

c∈N+

(nc + c)-LWPP.

It is easy to see that 1-LWPP = LWPP, and that, of course, more flexibility as to targets never
removes sets from the class, i.e., speaking loosely for the moment as to notation (and the log case
will not be defined or used again in this paper, but it is clear from context here what we mean by
it; the exponential case will be defined only in Section 5), 1-LWPP ⊆ 2-LWPP ⊆ 3-LWPP ⊆ · · · ⊆
Log -LWPP ⊆ Poly-LWPP ⊆ Exp-LWPP. As mentioned above, in this paper we will prove that the
first five of these “⊆”s are in fact all equalities. We will also prove that the sixth “⊆” cannot be
an equality unless NP is PP-low.

We now show that for every function r, r-LWPP is contained in the co-class of the well-known
counting class C=P.

Definition 2.8 ([Sim75, Wag86]). C=P is the class of all sets A such that there is a nondetermin-
istic polynomial-time Turing machine N and a function f ∈ FP such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ accN (x) = f(x).

More convenient for us is the following characterization of C=P using GapP functions.

Theorem 2.9 ([FFK94]). For each A ⊆ Σ∗, A ∈ C=P if and only if there exists a function
g ∈ GapP such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ g(x) = 0.

We thus certainly have the following, which holds simply by taking the GapP function g required
in Theorem 2.9 to be the same as the function g in Definition 2.6.

Theorem 2.10. For each function r : N → N, r-LWPP ⊆ coC=P.

3 Main Result: LWPP Stays the Same If for Accepted Inputs We

Allow Polynomially Many Gap Values Instead of One

We now state our main result: LWPP altered to allow even a polynomial number of target gap
values is still LWPP (i.e., with just one target gap value).

Theorem 3.1. Poly-LWPP = LWPP.

For the proof, we need the following closure properties shown by Fenner, Fortnow, and
Kurtz [FFK94].2 For function classes F1 and F2, F1 ◦ F2 = {f1 ◦ f2 | f1 ∈ F1 ∧ f2 ∈ F2},
where ◦ denotes composition.

Closure Property 3.2 ([FFK94]). GapP ◦ FP = GapP and FP ⊆ GapP.

2We mention in passing that, regarding Closure Property 3.4, if the polynomial q were allowed to have coefficients
that are uncomputable—or that are extremely expensive to compute prefixes of the values of—real numbers, that
claimed closure property might fail; we here are, as is typical in such settings, tacitly assuming that the polynomials
have rational coefficients.
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Closure Property 3.3 ([FFK94]). If g ∈ GapP then −g ∈ GapP.

Closure Property 3.4 ([FFK94]). If g ∈ GapP and q is a polynomial, then the function

h(x) =
∏

0≤i≤q(|x|)

g(〈x, i〉)

is in GapP.

Closure Property 3.5 ([FFK94]). GapP is closed under addition, subtraction, and multiplication.

Proof of Theorem 3.1. As mentioned previously, it is easy to see that LWPP ⊆ Poly-LWPP.
To show Poly-LWPP ⊆ LWPP, let A be a set in Poly-LWPP defined by g ∈ GapP, f ∈ FP,

and polynomial r(n) = nc + c according to Definitions 2.6 and 2.7.
Let h1 be a function such that for all x ∈ Σ∗ and i ∈ N+,

h1(〈x, i〉) = f(〈0|x|, i〉)− g(x).

We have h1 ∈ GapP since f ∈ FP ⊆ GapP, g ∈ GapP, and GapP is closed under subtrac-
tion [FFK94]. We define h2 such that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

h1(〈x, i〉).

By Closure Property 3.4, h2 ∈ GapP. Note that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

(
f(〈0|x|, i〉) − g(x)

)
.

It follows that for every x ∈ Σ∗,

h2(x) =

{
0 if there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = f(〈0|x|, i〉)
∏

1≤i≤r(|x|) f(〈0
|x|, i〉) if g(x) = 0.

(1)
Now we define the function ĝ such that for all x ∈ Σ∗,

ĝ(x) = h2(x)−
∏

1≤i≤r(|x|)

f(〈0|x|, i〉).

Using the closure properties, it is easy to see that ĝ ∈ GapP.
Note that by Eqn. (1), we have that for all x ∈ Σ∗,

ĝ(x) =

{
−
∏

1≤i≤r(|x|) f(〈0
|x|, i〉) if there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = f(〈0|x|, i〉)

0 if g(x) = 0.

(2)
Let f̂ be a function such that for all ℓ ∈ N,

f̂(0ℓ) = −
∏

1≤i≤r(ℓ)

f(〈0ℓ, i〉).
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It is easy to see that f̂ ∈ FP. Keeping in mind Eqn. (2), it follows from the above that for every
x ∈ Σ∗,

ĝ(x) =

{
f̂(0|x|) if x ∈ A

0 otherwise.

Since ĝ ∈ GapP and f̂ ∈ FP, this implies that A ∈ LWPP.

A theorem analogous to Theorem 3.1 also holds for the corresponding class that allows the
target values to depend on the actual input instead on only the length of the input.

Definition 3.6.
Poly-WPP =

⋃

c∈N+

(nc + c)-WPP.

Theorem 3.7. Poly-WPP = WPP.

The proof is almost exactly the same as the proof of Theorem 3.1, simply taking into account
the fact that for WPP the “gap” function can vary even among inputs of the same length.

We remark that the robustness results stated in Theorems 3.1 and 3.7 do not seem to in any
obvious way follow as corollaries to the closure of LWPP under polynomial-time Turing reduc-
tions [FFK94] or of WPP under polynomial-time truth-table reductions [STT05].

Let us now see whether we can extend Theorems 3.1 and 3.7. Suppose we not only allow the
target-gap set for acceptance to have polynomially many values, but in addition allow the target-
gap set for rejection to have polynomially many values. (In contrast, both LWPP and r-LWPP
allow rejection only when the gap’s value is 0). Is LWPP so robust that even that class is no larger
than LWPP? We will now build on our main result to give the answer “yes” to that question, thus
extending our main result to this more symmetric case for LWPP and for WPP.

To this end, let us define (rA, rR)-LWPP as follows. (One of course can in the clear, analogous
way define a similarly loosened version of WPP, (rA, rR)-WPP.)

Definition 3.8. Let rA and rR be any functions mapping from N to N. Then (rA, rR)-LWPP is
the class of all sets B such that there exists a GapP function g and functions—each mapping to
Z—fA ∈ FP and fR ∈ FP such that both of the following hold:

1. For each j ∈ N, Aj ∩Rj = ∅, where

Aj = {n | (∃i ∈ {1, 2, . . . , rA(j)})[fA(〈0
j , i〉) = n]}

and
Rj = {n | (∃i ∈ {1, 2, . . . , rR(j)})[fR(〈0

j , i〉) = n]}.

2. For each x ∈ Σ∗,

x ∈ B =⇒ g(x) ∈ A|x|

x 6∈ B =⇒ g(x) ∈ R|x|.

It is not hard to see, via shifting gaps with dummy paths, that the class (r, 1)-LWPP equals
r-LWPP. However, what can be shown more generally about the classes (rA, rR)-LWPP? For
example, for which functions r1,A, r1,R, r2,A, and r2,A does it hold that (r1,A, r1,R)-LWPP ⊆
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(r2,A, r2,R)-LWPP? (There are some literature notions that, in different ways, have at least a
somewhat similar flavor to our notion, namely, defining classes by being more flexible regarding
acceptance types. In particular, the counting classes CPS of Cai et al. [CGH+89] and the “C-class”
framework of Bovet, Crescenzi, and Silvestri [BCS92] have such a flavor. But in contrast with
those, our classes here are ones whose definitions are centered on the notion of gaps.) We do not
here undertake that general study, but instead resolve what seems the most compelling question,
namely, we prove that (Poly ,Poly)-LWPP = LWPP.

Definition 3.9. (Poly ,Poly)-LWPP =
⋃

c∈N+ (nc + c, nc + c)-LWPP.

Theorem 3.10. (Poly ,Poly)-LWPP = Poly-LWPP.

The proof of Theorem 3.10 can be found in the appendix. Together with Theorem 3.1, we get
the following corollary.

Corollary 3.11. (Poly ,Poly)-LWPP = LWPP.

An analogous statement can also be shown for the analogously defined class (Poly ,Poly)-WPP:

Theorem 3.12. (Poly ,Poly)-WPP = WPP.

4 Applying the Main Result to Graph Reconstruction

Definition 4.1. Let 〈G1, G2, . . . , Gn〉 be a sequence of graphs and G = (V,E) a graph with V =
{1, 2, . . . , n}. Suppose that there is a permutation π ∈ Sn such that for each k ∈ {1, 2, . . . , n}, the
graph Gπ(k) is isomorphic to the graph (V − {k}, E − {{k, ℓ} : ℓ ∈ V }) obtained by deleting vertex
k from G. Then 〈G1, G2, . . . , Gn〉 is called a deck of G and G is called a preimage of the sequence
〈G1, G2, . . . , Gn〉.

A sequence of graphs 〈G1, G2, . . . , Gn〉 is called a legitimate deck if there exists a graph G that
is a preimage of 〈G1, G2, . . . , Gn〉.

The Reconstruction Conjecture (see, e.g., the surveys [BH77, Man88, Bon91] and the
book [LS03]) says that each legitimate deck consisting of graphs with at least two vertices has
exactly one preimage up to isomorphism. This conjecture is a very prominent conjecture in graph
theory—as mentioned in Section 1 it is perhaps the most important conjecture in that area—and
has been studied for many decades.

Nash-Williams [NW78], Mansfield [Man82], Kratsch and Hemachandra [KH94], and Hemaspaan-
dra et al. [HHRT07] introduced various decision problems related to the Reconstruction Conjecture,
as part of a stream of work studying the algorithmic and complexity issues of reconstruction. We
here are interested mainly in the Legitimate Deck Problem, which is defined as the following decision
problem.

Legitimate Deck (a.k.a. the Legitimate Deck Problem) [Man82]: Given a sequence of
graphs 〈G1, G2, . . . , Gn〉, is 〈G1, G2, . . . , Gn〉 a legitimate deck?

Mansfield [Man82] showed that the Graph Isomorphism Problem, GI (given two graphs G1 and
G2, are they isomorphic?), is polynomial-time many-one reducible to the Legitimate Deck Problem.
However, to this day it remains open whether there is a polynomial-time many-one reduction from
the Legitimate Deck Problem to GI.
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So how hard is the Legitimate Deck Problem? It is easy to see that the Legitimate Deck
Problem is in NP. In the following, we will see that there is some evidence that the Legitimate
Deck Problem is not NP-hard, and we will improve that evidence.

Let us define the following function problem.

Preimage Counting [KH91, KH94]: Given a sequence of graphs 〈G1, G2, . . . , Gn〉, com-
pute the number PCount(〈G1, G2, . . . , Gn〉) of all nonisomorphic preimages for the sequence
〈G1, G2, . . . , Gn〉.

Köbler, Schöning, and Torán [KST92] showed the following theorem.

Theorem 4.2 ([KST92]). There is a function h : 0∗ → N− {0} in FP such that the function that
maps every sequence 〈G1, G2, . . . , Gn〉 to h(0n) times the number of nonisomorphic preimages, i.e.,

〈G1, G2, . . . , Gn〉 7→ h(0n) · PCount(〈G1, G2, . . . , Gn〉)

is in GapP.

Theorem 4.2 has the following corollary.

Corollary 4.3 ([KST92]). If the Reconstruction Conjecture holds, then the Legitimate Deck Prob-
lem is in LWPP.

Since all LWPP sets are PP-low, that immediately gives some evidence that the Legitimate
Deck Problem is not NP-hard.

Corollary 4.4. If the Reconstruction Conjecture holds, then the Legitimate Deck Problem is not
NP-hard (or even NP-Turing-hard) unless NP is PP-low.

Unfortunately, we do not know whether the Reconstruction Conjecture holds. However, perhaps
we can prove the membership of the Legitimate Deck Problem in LWPP under a weaker assumption
than the Reconstruction Conjecture, for instance, what if the number of nonisomorphic preimages
is not always 0 or 1 (as holds under the Reconstruction Conjecture), but rather is merely relatively
small, e.g., some constant or some polynomial in the number of vertices (as must hold for each
graph class having bounded minimum degree)? We will now use the results of the previous section
to prove that this indeed is the case.

Conjecture 4.5 (q-Reconstruction Conjecture). For each legitimate deck there exist at most q(n)
nonisomorphic preimages, where n is the number of graphs in the deck.

For any function r, we now define a complexity class r-L̂WPP. This class may not seem very
natural, but we will see that it is very-well suited to helping us classify the problem Legitimate Deck.
In some sense, it is a tool that we will use in our proof, and then will discard by noting that it in
fact turns out to be a disguised version of r-LWPP.

Definition 4.6. Let r be any function mapping from N to N. Then the class r-L̂WPP is the class
of all sets A such that there exists a GapP function g, and a function f ∈ FP that maps from 0∗

to Z− {0}, such that for each x ∈ Σ∗,

x ∈ A =⇒ there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = i · f(0|x|)

x /∈ A =⇒ g(x) = 0.
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Theorem 4.7. Let q be any nondecreasing function from N to N. Then the following holds.
If the q-Reconstruction Conjecture holds, then the Legitimate Deck Problem is in q-L̂WPP.

Proof. Suppose that the q-Reconstruction Conjecture holds. Let 〈G1, G2, . . . , Gn〉 be an input to
the Legitimate Deck Problem. By our assumption, we have that

〈G1, G2, . . . , Gn〉 ∈ Legitimate Deck =⇒ PCount(〈G1, G2, . . . , Gn〉) ∈ {1, 2, . . . , q(n)}, and

〈G1, G2, . . . , Gn〉 /∈ Legitimate Deck =⇒ PCount(〈G1, G2, . . . , Gn〉) = 0.

Let h ∈ FP be the function discussed in Theorem 4.2. Then the function g defined such that for
every sequence 〈G1, G2, . . . , Gn〉,

g(〈G1, G2, . . . , Gn〉) = h(0n) · PCount(〈G1, G2, . . . , Gn〉)

is in GapP. It follows that

〈G1, G2, . . . , Gn〉 ∈ Legitimate Deck =⇒ g(〈G1, G2, . . . , Gn〉) = h(0n) · i for some

i ∈ {1, 2, . . . , q(n)}, and

〈G1, G2, . . . , Gn〉 /∈ Legitimate Deck =⇒ g(〈G1, G2, . . . , Gn〉) = 0.

This almost directly implies that Legitimate Deck ∈ q-L̂WPP. However, note that to satisfy Defini-
tion 4.6, function h must be a function that depends only on the length of the input 〈G1, G2, . . . , Gn〉.
The problem here is that (depending on how exactly we decide to encode the graphs G1, G2, . . . , Gn

in the input 〈G1, G2, . . . , Gn〉) even the value n (the number of graphs in the deck) may depend on
the actual input 〈G1, G2, . . . , Gn〉 and not only on the length of the input 〈G1, G2, . . . , Gn〉.

Fortunately, there is a way to get around this problem. From the length of the input, we get at
least an upper bound for n since we can certainly assume that

n ≤ |〈G1, G2, . . . , Gn〉|.

Define a function ĥ such that for each m ∈ N, ĥ(0m) is the product of all “h-values” up to length
m. That is, define function ĥ such that for all m ∈ N,

ĥ(0m) =
∏

0≤i≤m

h(0i).

Define function h′ such that for all inputs 〈G1, G2, . . . , Gn〉,

h′(〈G1, G2, . . . , Gn〉) =
∏

0≤i≤|〈G1,G2,...,Gn〉| ∧ i 6=n

h(0i).

Now we can see that for all inputs 〈G1, G2, . . . , Gn〉,

g(〈G1, G2, . . . , Gn〉) · h
′(〈G1, G2, . . . , Gn〉)

=





0
if 〈G1, G2, . . . , Gn〉 /∈
Legitimate Deck

i · ĥ(0|〈G1,G2,...,Gn〉|) for some i ∈ {1, 2, . . . , q(n)}
if 〈G1, G2, . . . , Gn〉 ∈
Legitimate Deck.

(3)
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Note that ĥ, h′ ∈ FP and g ∈ GapP. By Closure Properties 3.2 and 3.5, the function

x 7→ g(x) · h′(x)

is in GapP. Finally, note that since q is nondecreasing and n ≤ |〈G1, G2, . . . , Gn〉|, we have that
q(n) ≤ q(|〈G1, G2, . . . , Gn〉|) in Eqn. (3). Thus by Definition 4.6—with the GapP function g there
being our g(x) · h′(x) and the function f there being our ĥ—we have that Legitimate Deck ∈

q-L̂WPP.

We want to show that if there exists a polynomial q such that the q-Reconstruction Conjecture
holds, then Legitimate Deck is in LWPP. To this end, we need the following inclusion.

Theorem 4.8. For each function r : N → N, r-L̂WPP ⊆ r-LWPP.

Proof. Let A be a set in r-L̂WPP via f1 ∈ FP and g ∈ GapP. Let f2 ∈ FP be the function defined
such that for every n, i ∈ N+, f2(〈0

n, i〉) = i · f1(0
n). Then A is in r-LWPP via f2 ∈ FP and

g ∈ GapP.

Corollary 4.9. If the q-Reconstruction Conjecture holds for some polynomial q, then the Legitimate
Deck Problem is in LWPP.

Proof. Suppose the q-Reconstruction Conjecture holds for nondecreasing polynomial q. (If q is
not nondecreasing but the q-Reconstruction Conjecture holds, then obviously we can replace q
with a nondecreasing polynomial q′ that on each input n is greater than or equal to q(n) and
the q′-Reconstruction Conjecture will hold. So we may w.l.o.g. take it that q is nondecreasing.)

By Theorems 4.7 and 4.8, Legitimate Deck ∈ q-L̂WPP ⊆ q-LWPP and hence Legitimate Deck ∈
Poly-LWPP. With Theorem 3.1, it follows that Legitimate Deck ∈ LWPP.

This gives us our new, more flexible—though still conditional—evidence that the Legitimate
Deck Problem is not NP-hard.

Corollary 4.10. If the q-Reconstruction Conjecture holds for some polynomial q, then the Legiti-
mate Deck Problem is not NP-hard (or even NP-Turing-hard) unless NP is PP-low.

Definition 4.11 ([KH94]). Let H be any class of graphs. Then the Legitimate Deck Problem
restricted to H consists of all sequences of graphs 〈G1, G2, . . . , Gn〉 such that 〈G1, G2, . . . , Gn〉 is a
legitimate deck and for each i ∈ {1, 2, . . . , n}, Gi is in H.

Note that the above definition is so flexible that it allows even the case where the preimage(s)
may not be in H.

Theorem 4.12. Let H be any P-recognizable class of graphs such that decks consisting only of
graphs in H have a number of nonisomorphic preimages that is bounded polynomially in the number
of graphs in the deck. Then the Legitimate Deck Problem restricted to H is in LWPP.

Proof. Let H be any P-recognizable class of graphs and q a nondecreasing polynomial such that
decks consisting only of graphs in H have a number of nonisomorphic preimages that is bounded
by q(n), where n is the number of graphs in the deck.

First, we show that the Legitimate Deck Problem restricted to H is in q-L̂WPP. Let
〈G1, G2, . . . , Gn〉 be an input to the Legitimate Deck Problem. Check if for every i ∈ {1, 2, . . . , n},
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Gi is in H. If this is not the case then reject in the sense of q-L̂WPP, i.e., produce a gap of zero. Oth-
erwise, the deck 〈G1, G2, . . . , Gn〉 has at most q(n) preimages, i.e., PCount(〈G1, G2, . . . , Gn〉 ≤ q(n).
Proceed as in the proof of Theorem 4.7.

Since by Theorems 4.8 and 3.1, q-L̂WPP ⊆ q-LWPP ⊆ LWPP, it follows that the Legitimate
Deck Problem restricted to H is in LWPP.

As usual, for each graph G, δ(G) denotes the degree of a minimum-degree vertex of G.

Theorem 4.13. For each k ∈ N+, let

Hk = {G |G is a graph such that δ(G) ≤ k}.

Then the Legitimate Deck Problem restricted to Hk is in LWPP.

Proof. In the proof of their Theorem 6.1, Kratsch and Hemaspaandra [KH94] showed that for
each class of graphs with bounded minimum degree, the number of nonisomorphic preimages is
polynomially bounded. Now the theorem follows from Theorem 4.12.

It is interesting to note that for each of the Hk classes GIHk
≡p

m GI trivially holds (for example,
via adding to each of the two graphs being tested for isomorphism an isolated node), notwith-
standing the fact that intersection with Hk pulls the Legitimate Deck Problem’s complexity into
LWPP.

In two of this section’s corollaries we used the fact that all LWPP sets are PP-low. We mention
that since all LWPP set are also C=P-low [KST92, FFK94], the altered versions of Corollaries 4.4
and 4.10 in which the conclusion is changed from “unless NP is PP-low” to “unless NP is C=P-low”
both hold, respectively due to Köbler, Schöning, and Torán [KST92] and the present paper.

5 Optimality of the Main Result

It is easy to see that the proof of Theorem 3.1 breaks down if Poly-LWPP is replaced by the
analogous class where the size of the set of allowed gap values can be larger than polynomial
in the input length. This does not necessarily imply that the corresponding theorem does not
hold. However, in this section, we establish that relativizable proof techniques are not sufficient
to improve Theorem 3.1 from Poly-LWPP to r-LWPP for any function r that is not polynomially
bounded. That is, we show that our main result is optimal with respect to what can be proven by
relativizable proof techniques.

But first, let us briefly consider the “more extreme” case of the class Exp-LWPP, where the
number of allowed gap values can be an exponential function.

Definition 5.1.
Exp-LWPP =

⋃

c∈N+

2n
c+c-LWPP.

We show that the whole class NP is contained in in Exp-LWPP. This gives strong evidence
that Exp-LWPP 6⊆ LWPP because LWPP is known to be low for PP [FFK94], but NP is widely
believed not to be low for PP.

Theorem 5.2. coC=P ⊆ Exp-LWPP (and hence—since coC=P ⊇ Exp-LWPP is immediate from
the definitions—coC=P = Exp-LWPP).

12



Since NP ⊆ coC=P and all LWPP sets are PP-low, we obtain the following corollaries.

Corollary 5.3. NP ⊆ Exp-LWPP.

Corollary 5.4. If Exp-LWPP = LWPP then NP ⊆ LWPP and PPNP = PP (and, indeed, coC=P ⊆

LWPP and PPcoC=P = PP).

All of the above, except the PP-lowness claims, analogously hold for Exp-WPP/WPP, since
r-LWPP is a subset of r-WPP. So for example we have the following.

Corollary 5.5. If Exp-WPP = WPP then NP ⊆ WPP (and, indeed, coC=P ⊆ WPP).

Proof of Theorem 5.2. Let A ∈ coC=P. By Theorem 2.9, there exists a function g ∈ GapP such
that for every x ∈ Σ∗,

x ∈ A =⇒ g(x) 6= 0, and

x /∈ A =⇒ g(x) = 0.

Let p be a polynomial such that for each x ∈ Σ∗, −2p(|x|) ≤ g(x) ≤ 2p(|x|). Let f ∈ FP be the
function such that, for every n ∈ N+ and every i ∈ N+,

f(〈0n, i〉) =

{
i/2 if i is even

−(i+ 1)/2 otherwise.

We can now see that according to Definition 2.6, A ∈ 2p(n)+1-LWPP and hence A ∈ Exp-LWPP.

Theorem 5.6. Let r be any function from N to N such that for every c ∈ N, r /∈ O(nc). Then
there exists an oracle O such that r-LWPPO 6⊆ LWPPO.

To prove Theorem 5.6, we will encode nondeterministic oracle Turing machines by low-degree
multivariate polynomials. This technique is apparently folklore and has been used, for example, by
de Graaf and Valiant [dGV02] to construct a relativized world where the quantum complexity class
EQP is not contained in the modularity-based complexity class MODpkP. The general technique
of replacing oracle machines by simpler combinatorial objects such as circuits, decision trees, or
polynomials and then using properties of such combinatorial objects to show the existence of a
desired oracle dates to the seminal work of Furst, Saxe, and Sipser [FSS84], who made the connection
between circuit lower bounds and the relativization of the polynomial hierarchy—a connection that
has led to the resolution of many previously long-open relativized questions, such as the achievement
of an oracle making the polynomial hierarchy infinite [Yao85, H̊as87] and of oracles making the
polynomial hierarchy extend exactly k levels [Ko89].

As indicated above, in Definition 5.7 and Proposition 5.8 below, we will encode nondeterministic
oracle Turing machines by low-degree multivariate polynomials, in order to obtain polynomials that
compute the gap of polynomial-time nondeterministic oracle machines.

Definition 5.7 (Folklore; see also [STT05]). Let N (·)(x) be a nondeterministic polynomial-time or-
acle Turing machine with running time t(.) and input x ∈ Σ∗. Let x1, x2, . . . , xm be an enumeration
of all strings in Σ∗ up to length t(|x|).

A polynomial encoding of N (·)(x) is a multilinear polynomial p ∈ Z[y1, y2, . . . , ym] defined as
follows: Call a computation path ρ valid if ρ is a computation path of ND(x) for some oracle

13



D ⊆ Σ∗. Let xi1 , xi2 , . . . , xiℓ be the distinct queries along a valid computation path ρ. Create a
monomial mono(ρ) that is the product of terms zik , k ∈ {1, 2, . . . , ℓ}, where zik = yik if xik is
answered “yes” and zik = (1− yik) if xik is answered “no” along ρ. Define

p(y1, y2, . . . , ym) =
∑

ρ:ρ is valid

sign(ρ) ·mono(ρ).

Here, sign(ρ) = 1 if ρ is an accepting path and sign(ρ) = −1 if ρ is a rejecting path.

The next proposition states that the multilinear polynomial p has low total degree, and contains
all the necessary information about N (·)(x) to yield the value gapNB (x) for every oracle B ⊆ Σ∗.

Proposition 5.8 (Folklore; see also [STT05]). The polynomial p(y1, y2, . . . , ym) defined in Defini-
tion 5.7 has the following properties:

1. deg(p) ≤ t(|x|), and

2. for each B ⊆ Σ∗, p(χB(x1), χB(x2), . . . , χB(xm)) = gapNB (x).

Lemma 5.9 ([STT05]). Let N, p ∈ N be such that p is a prime and p ≤ N/2. Let s ∈
Z[y1, y2, . . . , yN ] be a multilinear polynomial with total degree deg(s) < p. If for some val ∈ Z,
it holds that

1. s(0, 0, . . . , 0) = 0, and

2. s(y1, y2, . . . , yN ) = val, for every y1, y2, . . . , yN ∈ {0, 1} with p =
∑

1≤i≤N yi,

then p | val.

Lemma 5.10 states a variant of the prime number theorem. We will need it in our oracle
construction to get a lower bound for the number of primes in a given set of natural numbers (see
set S defined below).

Lemma 5.10 ([RS62]). For every n ≥ 17, the number of primes less than or equal to n, π(n),
satisfies

π(n) > n/ lnn.

Proof of Theorem 5.6. First, we need a test language.
For every set B ⊆ Σ∗, define LB as

LB = {0n | ‖B=n‖ > 0},

where B=n denotes B ∩ Σn. If B satisfies the condition that for every length n it holds that
‖B=n‖ ≤ r(n), then LB ∈ r-LWPP. (To see this, note that the function d(0n) = ‖B=n‖ is a #PB

function, where #P is Valiant’s [Val79] class of functions that count the number of accepting paths
of nondeterministic polynomial-time Turing machines. But #P ⊆ GapP [FFK94], and that fact
itself relativizes, so d(0n) ∈ GapPB. Since our test language should reject when d(0n) = 0 and
should accept when 1 ≤ d(0n) ≤ r(n), and by our “if B satisfies” those are the only possibilities,
we have LB ∈ r-LWPPB.)

We will construct an oracle B such that for each n, ‖B=n‖ ≤ r(n) and LB /∈ LWPPB . Let
(Nj ,Mj , pj)j≥1 be an enumeration of all triples such that Nj is a nondeterministic polynomial-time
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oracle Turing machine, Mj is a deterministic polynomial-time oracle Turing machine computing a
function, and pj is a monotonically increasing polynomial such that the running time of both Nj

and Mj is bounded by pj regardless of the oracle. We construct the oracle B in stages. In stage j,
we decide the membership in B of strings of length nj and extend the initial segment Bj−1 of B to
Bj. Initially, we set B0 = ∅.

Stage j, where j ≥ 1: Let nj be large enough that: (a) nj > pj−1(nj−1) (to ensure that
the previous stages are not affected), (b) r(nj) ≥ pj(nj)

4, (c) (2nj − pj(nj))/2 ≥ pj(nj)
4, and

(d) pj(nj)
3−pj(nj) ≥ pj(nj)

2. Such an nj exists because pj is a monotonically increasing polynomial
and for each c ∈ N, r /∈ O(nc). We diagonalize against nondeterministic polynomial-time oracle
Turing machine Nj and deterministic polynomial-time oracle Turing machine Mj . That is, we make
sure that LB is not decided according to the definition of LWPP by GapP function g computed
by Nj together with FP function f computed by Mj (see Definition 2.5). Let val be the value

computed by M
Bj−1

j (0nj ). Because of the condition 0 /∈ range(f) in the definition of LWPP, we
can assume that val 6= 0. (If val = 0 then we can right away go to stage j + 1.)

Let
T = {w ∈ Σnj |M

Bj−1

j (0nj ) queries w}.

Note that ‖T‖ ≤ pj(nj) since the computation time of M
Bj−1

j (0nj ) is bounded by pj(nj). In the
following, we will never add any string from T to the oracle. This ensures that the value val

computed by M
Bj−1

j (0nj ) is never changed when we replace oracle Bj−1 by Bj.
(∗) We choose a set C ⊆ Σnj − T such that

• ‖C‖ ∈ {1, 2, . . . , r(nj)} and gap
N

Bj−1∪C

j

(0nj ) 6= val, or

• ‖C‖ = 0 and gap
N

Bj−1∪C

j

(0nj ) 6= 0.

Let Bj = Bj−1 ∪ C.

End of Stage j.

This construction guarantees that for each n, ‖B=n‖ ≤ r(n) and LB /∈ LWPPB. Thus our proof
is complete if we can show that it is always possible to find a set C satisfying (∗). We state and
prove that as the following claim and its proof.

Claim 5.11. For each j ≥ 1, there exists a set C satisfying (∗).

Proof of Claim 5.11. Suppose that in stage j no set C satisfying (∗) exists. Then for every C ⊆
Σnj − T , the following holds:

‖C‖ ∈ {1, 2, . . . , r(nj)} =⇒ gap
N

Bj−1∪C

j

(0nj ) = val, and (4)

‖C‖ = 0 =⇒ gap
N

Bj−1∪C

j

(0nj ) = 0. (5)

Let s′ ∈ Z[y1, y2, . . . , ym] be the polynomial encoding of N
(·)
j (0nj ) as in Definition 5.7. W.l.o.g. as-

sume that x1, x2, . . . , xN enumerate the strings in Σnj − T , and xN+1, xN+2, . . . , xm enumerate
the remaining strings of length at most pj(nj). By Proposition 5.8, polynomial s′(y1, y2, . . . , ym)
satisfies the following:
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1. For all C ⊆ Σnj − T , it holds that

s′(χC(x1), χC(x2), . . . , χC(xN ), χBj−1
(xN+1), . . . , χBj−1

(xm)) = gap
N

Bj−1∪C

j

(0nj ), and

2. deg(s′) ≤ pj(nj).

Note that the sets Bj−1 and Σnj − T are disjoint. The values χBj−1
(xN+1), . . . , χBj−1

(xm) do not
depend on C. We fix these values and obtain the following polynomial s(y1, y2, . . . , yN ):

s(y1, y2, . . . , yN ) = s′(y1, y2, . . . , yN , χBj−1
(xN+1), . . . , χBj−1

(xm)).

Hence the polynomial s(y1, y2, . . . , yN ) satisfies the following:

1. For all C ⊆ Σnj − T , it holds that

s(χC(x1), χC(x2), . . . , χC(xN )) = gap
N

Bj−1∪C

j

(0nj ), and (6)

2. deg(s) ≤ deg(s′) ≤ pj(nj).

Statements (5) and (4) imply that

• s(0, 0, . . . , 0) = 0, and

• for all z1, z2, . . . , zN ∈ {0, 1} such that
∑

1≤i≤N

zi ∈ {1, 2, . . . , r(nj)}, we have s(z1, z2, . . . , zN ) =

val.

By Lemma 5.9, for every prime k in

S = {deg(s) + 1,deg(s) + 2, . . . ,min(N/2, r(nj))},

it holds that k | val.
To obtain a lower bound for val, we determine a lower bound for the number of primes in

S. First, note that at the beginning of stage j, we have taken nj large enough such that N/2 ≥
(2nj − pj(nj))/2 ≥ pj(nj)

4 and r(nj) ≥ pj(nj)
4, and thus min(N/2, r(nj)) ≥ pj(nj)

4. In light of
Lemma 5.10, we hence obtain

π(min(N/2, r(nj))) ≥
pj(nj)

4

ln(pj(nj)4)
≥ pj(nj)

3.

Further, we obviously have
π(deg(s)) ≤ deg(s) ≤ pj(nj).

Hence the number of primes in S is at least pj(nj)
3 − pj(nj), which is (by the choice of nj at the

beginning of stage j) greater than or equal to pj(nj)
2. Since each prime in S is greater than or

equal to 2 and val 6= 0, we have that the absolute value of val is at least 2pj(nj)
2

. Yet we also
must have that the absolute value of val is less than or equal to 2pj(nj), since the running time of

M
(·)
j (0nj ) is bounded by pj(nj) regardless of the oracle. This is a contradiction.
So for each j ≥ 1, Bj−1 can always be extended in stage j as required. This finishes the proof

of Claim 5.11.
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And since Claim 5.11 was all that remained in our proof of Theorem 5.6, that theorem itself is
now proven.

Is the oracle constructed in the proof of Theorem 5.6 necessarily recursive? It might not be,
since Theorem 5.6 put no complexity or computability restrictions on the function r. However,
aside from that our construction is clearly effective; so if r is a computable function, then the
oracle our construction builds is certainly recursive.

6 LWPP+

Theorem 3.1 of Section 3 established a robustness property of LWPP, namely, that Poly-LWPP =
LWPP. That is, having one target value for acceptance and having a list of target values for
acceptance yield the same class of languages, in the content of LWPP, which, recall, is defined in
terms of the values of GapP functions. That robustness result is itself robust in the sense that it
holds both in the real world and, it is easy to see, in every relativized world.

On the other hand, this equivalence for LWPP, in terms of descriptive richness, between one
target value and a polynomial number of values, may not hold even for quite similar counting-class
situations. In particular, in this section we prove that in some relativized worlds, for the analog
of LWPP defined in terms of #P rather than GapP functions, having even two target values for
acceptance yields a richer class of languages than having one value. So it is not the case that single
targets and lists of targets inherently function identically as to descriptive richness for counting
classes.

The analog of WPP defined using #P functions rather than GapP functions already exists in the
literature, namely it is the class known as F=P that was recently introduced by Cox and Pay [CP18].
Similarly, we here define, and denote as LWPP+, the analog of LWPP except defined using #P
functions rather than GapP functions. Clearly, LWPP+ ⊆ LWPP, and it would be natural to guess
that the containment is strict, although obviously proving that strictness is a much stronger result
than proving P 6= PSPACE and so seems beyond current techniques.

We now define LWPP+ and then we prove as Theorem 6.3 that, unlike LWPP, there are
relativized worlds where size-two target sets yields languages that cannot be obtained via any
size-one target set.

Definition 6.1. LWPP+ is the class of all sets A such that there exists a function g ∈ #P and a
function f ∈ FP that maps from 0∗ to N+ such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = f(0|x|)

x /∈ A =⇒ g(x) = 0.

Definition 6.2. Two-LWPP+ is the class of all sets A such that there exists a function g ∈ #P
and functions f1, f2 ∈ FP that map from 0∗ to N+ such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) ∈ {f1(0
|x|), f2(0

|x|)}

x /∈ A =⇒ g(x) = 0.

Theorem 6.3. There exists an oracle O such that (LWPP+)O ( (Two-LWPP+)O.

We will soon prove this theorem, but we first state and prove a corollary, and will give some
groundwork for the theorem’s proof, and also pointers to some related work.
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Corollary 6.4. There exists an oracle O such that LWPPO 6⊆ (LWPP+)O.

Proof. It follows from the definitions that, for each oracle Q, (Two-LWPP+)Q ⊆ Poly-LWPPQ.
Since, as mentioned above, Theorem 3.1 clearly relativizes, we have that for each oracle Q,
(Two-LWPP+)Q ⊆ LWPPQ. Thus, for the oracle O of Theorem 6.3, LWPPO 6⊆ (LWPP+)O.

Let us give the definition of the complexity class that is now known as UP≤2. This class was
introduced by Beigel [Bei89] (in which the class was denoted U2P).

Definition 6.5. UP≤2 is the class of all sets A such that there exists a function g ∈ #P such that
for all x ∈ Σ∗,

x ∈ A =⇒ g(x) ∈ {1, 2}

x /∈ A =⇒ g(x) = 0.

Just as Valiant’s class UP [Val76] (“unambiguous NP”) is the restriction of NP to allowing at
most one accepting path, Beigel’s UP≤2 is the restriction of NP to allowing at most two accepting
paths. Analogously to the fact that 1-to-1 complexity-theoretic one-way functions exist if and only
if P 6= UP [GS88, Ko85], it holds that 2-to-1 complexity-theoretic one-way functions exist if and
only if P 6= UP≤2 [HZ93].

Note that UP≤2 ⊆ Two-LWPP+. To prove Theorem 6.3, we will prove the stronger result that
there is an oracle relative to which even UP≤2 is not contained in contained in LWPP+.

Theorem 6.6. There exists an oracle O such that UPO
≤2 6⊆ (LWPP+)O.

Proof. First, we need a test language. For every set B ⊆ Σ∗, define LB as

LB = {0n | ‖B=n‖ > 0}.

If B satisfies the condition that for every length n it holds that ‖B=n‖ ≤ 2, then LB ∈ UPB
≤2.

In this proof, we are going to centrally use a slightly unusual notion of what is a computation
path of a nondeterministic polynomial-time oracle Turing machine on a given oracle and a given
input. Our notion of a computation path of such a machine relative to some oracle on some input
will give not just the nondeterministic choices of the path, but will also contain a set of strings
that ideally should capture exactly the set of queries that are asked and answered Yes along the
path, and a set of strings that ideally should capture exactly the set of queries that are asked and
answered No along the path. However, this is made a bit trickier as to formalizing it by the fact
that we’ll be dealing with various hypothetical oracles in our proof, and so sometimes things will
fail to be a computation path of a machine relative to an oracle due to the action of the machine
on the given input under the given oracle not being in harmony with nondeterministic bits or sets
that are specifying the computation path. So our basic notion of a path will not enforce much on
the two sets; rather, only when asserting that the path is in harmony with a machine under some
oracle on a certain input will we require that the “natural” things hold.

Definition 6.7. 1. A computation path is a triple: a binary string, a set of strings, and second
set of strings that is disjoint from the first set of strings.

2. (This is implicit in the above part of the definition, but is here stated explicitly for clarity, as
this will be tacitly but importantly drawn on in our proof.) Two computation paths ρ1 and ρ2
are equal if and only if their first components are identical, and their second components are
identical, and their third components are identical.
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3. A computation path ρ is said to be a computation path of a nondeterministic polynomial-time
oracle Turing machine N with oracle O on input x if ρ consists of a binary string ρchoices, a
set of strings Q+(ρ), and a set of strings Q−(ρ), that satisfy all of the following conditions.

(a) Q+(ρ) ⊆ O and Q−(ρ) ⊆ O.3

(b) When one runs machine N with oracle Q+(ρ) on input x, there is a path r in that
machine’s computation tree such that all the following hold:

i. the sequence of nondeterministic choices in r is precisely ρchoices (i.e., the path makes
precisely |ρchoices| (binary) choices and ρchoices lists those choices in the order they
are made); and

ii. the set of strings queried along path r is precisely Q+(ρ) ∪Q−(ρ).

4. If in the above we after 3(b)i and 3(b)ii add new third condition that states “the path r
accepts,” then that is our definition of computation path ρ being an accepting computation
path of nondeterministic polynomial-time oracle Turing machine N with oracle O on input
x.

Given an oracle O, a computation path ρ may or may not be a computation path of a non-
deterministic Turing machine N relative to O on input x. For example, if what the computation
path specifies is inconsistent with the machine’s actions on that input and oracle, then it would
not be a computation path of that machine with that oracle and that input. As other examples, if
relative to the machine’s action on that oracle and that input the ρchoices of a computation path
has too few or too many bits to be precise yield a complete, actual path (in the traditional sense
of the word, not the more encumbered one we are using here) through the machine’s action, or if
one of the two “Q” sets contains a string that is not queried by the machine when it is run on x
with oracle O making nondeterministic choices ρchoices, then the computation path would not be a
computation path of that machine with that oracle and that input.

Let (Nj ,Mj , pj)j≥1 be an enumeration of all triples such that Nj is a nondeterministic
polynomial-time oracle Turing machine, Mj is a deterministic polynomial-time oracle Turing ma-
chine computing a function, and pj is a monotonically increasing polynomial such that the running
time of both Nj and Mj is bounded by pj regardless of the oracle. We construct the oracle B in
stages. In stage j, we decide the membership in B of strings of length nj and extend the initial
segment Bj−1 of B to Bj. Initially, we set B0 = ∅.

Stage j, where j ≥ 1: Let nj be large enough that: (a) nj > pj−1(nj−1) (to ensure that the
previous stages are not affected), and (b) 2nj − pj(nj) > 6pj(nj) + 1.

We diagonalize against nondeterministic polynomial-time oracle Turing machine Nj and deter-
ministic polynomial-time oracle Turing machine Mj . That is, we make sure that LB is not decided
according to the definition of LWPP+ by #P function g computed by Nj together with FP function

f computed by Mj (see Definition 6.1). Let val be the value computed by M
Bj−1

j (0nj ). Because

of the condition 0 /∈ range(f) in the definition of LWPP+, we can assume that val 6= 0. (If val = 0
then we can right away go to stage j + 1.)

Let
T = {w ∈ Σnj |M

Bj−1

j (0nj ) queries w}.

3Note that this implies that Q+(ρ) and Q−(ρ) are disjoint.
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Note that ‖T‖ ≤ pj(nj) since the computation time of M
Bj−1

j (0nj ) is bounded by pj(nj). In the
following, we will never add any string from T to the oracle. This ensures that the value val

computed by M
Bj−1

j (0nj ) is never changed when we replace oracle Bj−1 by Bj.
(∗∗) We (and we will soon prove that such a set must exist) choose a set C ⊆ Σnj −T such that

• ‖C‖ ∈ {1, 2} and acc
N

Bj−1∪C

j

(0nj ) 6= val, or

• ‖C‖ = 0 and acc
N

Bj−1∪C

j

(0nj ) 6= 0.

Let Bj = Bj−1 ∪ C.

End of Stage j.
This construction guarantees that for each n, ‖B=n‖ ≤ 2 and thus LB /∈ (LWPP+)B . Thus our

proof is complete if we can show that it is always possible to find a set C satisfying (∗∗). We now
state and prove that as Claim 6.8.

Claim 6.8. For each j ≥ 1, there exists a set C satisfying (∗∗).

Proof of Claim 6.8. Suppose that in stage j no set C satisfying (∗∗) exists. Then for every C ⊆
Σnj − T , the following holds:

‖C‖ ∈ {1, 2} =⇒ acc
N

Bj−1∪C

j

(0nj ) = val, and (7)

‖C‖ = 0 =⇒ acc
N

Bj−1∪C

j

(0nj ) = 0.

It follows that (i) N
Bj−1

j (0nj ) has no accepting computation paths, and (ii) for each string α ∈ Σnj−

T , N
Bj−1∪{α}
j (0nj ) has exactly val distinct accepting computation paths ρ1(α), ρ2(α), . . . , ρval(α).

For each α ∈ Σnj − T , let Aα be the set of accepting computation paths of N
Bj−1∪{α}
j (0nj ). Then

for each α ∈ Σnj − T , we have that ‖Aα‖ = val.

Since N
Bj−1

j (0nj ) has no accepting computation paths, we claim that for each α1 and α2,
α1 6= α2, in Σnj − T , it holds that Aα1

∩ Aα2
= ∅. Why? Let α1, α2 ∈ Σnj − T be distinct

and let ρ be any computation path in Aα1
. By definition, ρ is an accepting computation path

of N
Bj−1∪{α1}
j (0nj ). Suppose α1 /∈ Q+(ρ). Note that in light of that supposition we either have

that (a) α1 ∈ Q−(ρ) and α1 is queried by N
Bj−1∪{α1}
j (0nj ), or (b) α1 6∈ Q+(ρ) ∪Q−(ρ) and α1 is

not queried by N
Bj−1∪{α1}
j (0nj ). In each of those two cases, however, it is clear that ρ will be an

accepting computation path of N
Bj−1

j (0nj ), which is a contradiction because by our assumption,

N
Bj−1

j (0nj ) has no accepting computation paths. Hence we have shown that α1 ∈ Q+(ρ). But this

implies that ρ is not a computation path ofN
Bj−1∪{α2}
j (0nj ) (since α1 ∈ Q+(ρ) yet α1 /∈ Bj−1∪{α2}),

and therefore ρ /∈ Aα2
.

Now we define for each α ∈ Σnj − T

conflicting(α) = {β ∈ Σnj − T | there are at least ⌊val/3⌋ + 1 computation paths in Aα

that are not computation paths of N
Bj−1∪{α,β}
j (0nj )}. (8)
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We will show that for each α ∈ Σnj − T ,

‖conflicting(α)‖ ≤ 3pj(nj).

Fix some string α ∈ Σnj − T . To get a contradiction, suppose that ‖conflicting(α)‖ > 3pj(nj).
Let β be some string in conflicting(α). Since adding β to Bj−1 ∪ {α} causes at least ⌊val/3⌋ + 1

computation paths in Aα to disappear from N
Bj−1∪{α,β}
j (0nj ), this means that

‖{ρ ∈ Aα |β ∈ Q−(ρ)}‖ ≥ ⌊val/3⌋+ 1.

Then ∑

β∈conflicting(α)

‖{ρ ∈ Aα |β ∈ Q−(ρ)}‖ > 3pj(nj)(⌊val/3⌋ + 1) ≥ pj(nj) · val,

and thus ∑

β∈Σnj−T

‖{ρ ∈ Aα |β ∈ Q−(ρ)}‖ > pj(nj) · val.

Hence it follows that ∑

ρ∈Aα

‖Q−(ρ)‖ > pj(nj) · val. (9)

On the other hand, because each computation path ρ in Aα is of length at most pj(nj), for each
ρ ∈ Aα,

‖Q−(ρ)‖ ≤ pj(nj).

Since ‖Aα‖ = val, it follows that

∑

ρ∈Aα

‖Q−(ρ)‖ ≤ pj(nj) · val,

which contradicts Eqn. (9). Hence we have shown that for each α ∈ Σnj − T ,

‖conflicting(α)‖ ≤ 3pj(nj). (10)

Because we have chosen nj large enough to ensure that ‖Σnj −T‖ > 6pj(nj)+ 1, Eqn. (10) implies
that there exist distinct γ1, γ2 ∈ Σnj − T such that γ1 /∈ conflicting(γ2) and γ2 /∈ conflicting(γ1).
Now consider

N
Bj−1∪{γ1,γ2}
j (0nj ).

Since γ2 /∈ conflicting(γ1), there are at most ⌊val/3⌋ computation paths in Aγ1 that are not compu-

tation paths of N
Bj−1∪{γ1,γ2}
j (0nj ). Further, because ‖Aγ1‖ = val, it follows that there are at least

val − ⌊val/3⌋ computation paths in Aγ1 that are computation paths of N
Bj−1∪{γ1,γ2}
j (0nj ).

The same reasoning applies when we swap the roles of γ1 and γ2: Since γ1 /∈ conflicting(γ2), there

are at most ⌊val/3⌋ computation paths in Aγ2 that are not computation paths of N
Bj−1∪{γ1,γ2}
j (0nj ).

Further, because ‖Aγ2‖ = val, it follows that there are at least val−⌊val/3⌋ computation paths in

Aγ2 that are computation paths of N
Bj−1∪{γ1,γ2}
j (0nj ).

For the reasons given earlier in the proof, Aγ1 and Aγ2 are disjoint sets. Hence there are at
least 2(val − ⌊val/3⌋) (distinct!) computation paths in Aγ1 ∪ Aγ2 that are computation paths
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of N
Bj−1∪{γ1,γ2}
j (0nj ). Also, all computation paths in Aγ1 and Aγ2 are accepting. Note that for

any two distinct computation paths ρ1, ρ2 ∈ Aγ1 ∪ Aγ1 of N
Bj−1∪{γ1,γ2}
j (0nj ), the corresponding

nondeterministic choices ρ1choices and ρ2choices must be different. It follows that N
Bj−1∪{γ1,γ2}
j (0nj )

has at least 2(val − ⌊val/3⌋) ≥ 2val − 2
3val =

4
3val accepting computation paths. Since val ∈ N+,

this contradicts Eqn. (7) if we set C = {γ1, γ2}. This completes the proof of Claim 6.8.

Since Claim 6.8 was all that remained in our proof of Theorem 6.6, that theorem itself is now
proven.

7 On Multiple-Target C=P

We show that the class C=P (see Definition 2.8) is robust in the sense that even if one changes the
number of target values of acceptance-path cardinality from 1 to a polynomial, the class remains
unchanged.

Definition 7.1. Let r be any function mapping from N to N. Then the class r-C=P is the class
of all sets A such that there exists a nondeterministic polynomial-time Turing machine N and a
function f ∈ FP that maps to Z such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ there exists i ∈ {1, 2, . . . , r(|x|)} such that accN (x) = f(〈x, i〉).

Definition 7.2.
Poly-C=P =

⋃

c∈N+

(nc + c)-C=P.

Theorem 7.3. Poly-C=P = C=P.

Proof. It is easy to see that C=P ⊆ Poly-C=P.
To show Poly-C=P ⊆ C=P, let A be a set in Poly-C=P defined by nondeterministic polynomial-

time Turing machine N , f ∈ FP, and polynomial r(n) = nc+c according to Definitions 7.1 and 7.2.
Let h1 be a function such that for all x ∈ Σ∗ and i ∈ N+,

h1(〈x, i〉) = f(〈x, i〉) − accN (x).

We have h1 ∈ GapP since f ∈ FP ⊆ GapP, accN ∈ #P ⊆ GapP, and GapP is closed under
subtraction [FFK94]. We define h2 such that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

h1(〈x, i〉).

By Closure Property 3.4, h2 ∈ GapP. Note that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

(f(〈x, i〉) − accN (x)) .

From the above equality, for each x ∈ Σ∗ we have that h2(x) = 0 if and only if (∃i ∈
{1, 2, . . . , r(|x|)})[accN (x) = f(〈x, i〉)]. But the Poly-C=P structures defining A specify that for
each x ∈ Σ∗ we have x ∈ A if and only if (∃i ∈ {1, 2, . . . , r(|x|)})[accN (x) = f(〈x, i〉)]. So x ∈ A if
and only if the GapP function h2(x) equals 0, and so by Theorem 2.9 it follows that A ∈ C=P.
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8 Conclusions and Open Questions

In this paper, we proved that LWPP and WPP are robust enough that they remain unchanged
when their single target gap is allowed to be expanded to polynomial-sized lists. We then applied
this new robustness of LWPP to show that the PP-lowness of the Legitimate Deck Problem follows
from a weaker hypothesis than was previously known. In doing so, we provided enhanced evidence
that the Legitimate Deck Problem is not NP-hard or even NP-Turing-hard. We also showed: that
the polynomial-target robustness of LWPP that we have established is optimal (i.e., cannot be
extended to any superpolynomial number of targets) with respect to relativizable proofs; that for
the #P-based analogue of the (GapP-based) class LWPP, in some relativized worlds even two
targets give more languages than one target; that our robustness of LWPP holds even when one
simultaneously expands both the acceptance target-gap set and the rejection target-gap set to be
polynomial-sized lists; that our main results also hold for WPP; and that C=P is polynomial-target
robust.

Regarding the Reconstruction Conjecture, we proved as a consequence of our results that if
there exists a polynomial q such that the q-Reconstruction Conjecture holds, then the Legitimate
Deck Problem is both PP-low and C=P-low. Since NP is widely believed not to be PP-low or
C=P-low, this provides strengthened evidence that the Legitimate Deck Problem is not NP-hard
or even NP-Turing hard (since otherwise even the “Poly”-Reconstruction Conjecture must fail, yet
even the far stronger Reconstruction Conjecture is generally believed to hold).

A natural open problem is whether the Legitimate Deck Problem is Σp
k-low [Sch83] for some k,

i.e., whether for some k it holds that (Σp
k)

Legitimate Deck = Σp
k. Proving that that holds—though we

mention that this has been a known open issue for more than two decades (see [KH94])—would
imply that the Legitimate Deck Problem cannot be NP-complete (even with respect to more flexible
reductions such as Turing reductions and strong nondeterministic reductions [Lon82]) unless the
polynomial hierarchy collapses.
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A Proof of Theorem 3.10

Theorem 3.10. (Poly ,Poly)-LWPP = Poly-LWPP.

Proof. It is easy to see that Poly-LWPP ⊆ (Poly ,Poly)-LWPP.
To show (Poly ,Poly)-LWPP ⊆ Poly-LWPP, let B be a set in (Poly ,Poly)-LWPP defined by

g ∈ GapP, fA, fR ∈ FP, and polynomials rA(n) = nc + c and rR(n) = nc + c according to
Definitions 3.8 and 3.9.

Let h be a function such that for all x ∈ Σ∗ and j ∈ N+,

h(〈x, j〉) = fR(〈0
|x|, j〉) − g(x).

We have h ∈ GapP since fR ∈ FP ⊆ GapP, g ∈ GapP, and as noted earlier GapP is closed under
subtraction [FFK94]. We define ĝ such that for all x ∈ Σ∗,

ĝ(x) =
∏

1≤j≤rR(|x|)

h(〈x, j〉).

By Closure Property 3.4, ĝ ∈ GapP. Note that for all x ∈ Σ∗,

ĝ(x) =
∏

1≤j≤rR(|x|)

(
fR(〈0

|x|, j〉) − g(x)
)
. (11)

Let f̂ be a function such that for all ℓ ∈ N and i ∈ N+,

f̂(〈0ℓ, i〉) =
∏

1≤j≤rR(ℓ)

(
fR(〈0

ℓ, j〉) − fA(〈0
ℓ, i〉)

)
. (12)

It is easy to see that f̂ ∈ FP. It follows from Eqns. (11) and (12) that for every x ∈ Σ∗, the
following are true.

1. If there exists j ∈ {1, 2, . . . , rR(|x|)} such that g(x) = fR(〈0
|x|, j〉) then ĝ(x) = 0.

2. For each i ∈ {1, 2, . . . , rA(|x|)}, it holds that g(x) = fA(〈0
|x|, i〉) implies that ĝ(x) =

f̂(〈0|x|, i〉).

Hence for each x ∈ Σ∗,

x /∈ B =⇒ ĝ(x) = 0,

x ∈ B =⇒ there exists i ∈ {1, 2, . . . , rA(|x|)} such that ĝ(x) = f̂(〈0|x|, i〉).

Note also (see Eqn. (12)) that for all ℓ ∈ N and i ∈ {1, 2, . . . , rA(ℓ)}, it holds that f̂(〈0ℓ, i〉) 6= 0
because for each ℓ ∈ N, the sets Aℓ and Rℓ in Definition 3.8 are disjoint. By Definition 2.7, it thus
follows that B ∈ Poly-LWPP.
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