
The Power of Natural Properties as Oracles
Russell Impagliazzo
Department of Computer Science, University of California San Diego, La Jolla, CA, USA
russell@cs.ucsd.edu

Valentine Kabanets
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
kabanets@cs.sfu.ca

Ilya Volkovich
Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI, USA
ilyavol@umich.edu

Abstract
We study the power of randomized complexity classes that are given oracle access to a natural
property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit Size
Problem (MCSP). We show that in a number of complexity-theoretic results that use the SAT
oracle, one can use the MCSP oracle instead. For example, we show that ZPEXPMCSP 6⊆ P/poly,
which should be contrasted with the previously known circuit lower bound ZPEXPNP 6⊆ P/poly.
We also show that, assuming the existence of Indistinguishability Obfuscators (IO), SAT and
MCSP are equivalent in the sense that one has a ZPP algorithm if and only the other one
does. We interpret our results as providing some evidence that MCSP may be NP-hard under
randomized polynomial-time reductions.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases natural properties, Minimal Circuit Size Problem (MCSP), circuit lower
bounds, hardness of MCSP, learning algorithms, obfuscation, Indistinguishability Obfuscators
(IO)

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.7

Acknowledgements We thank Eric Allender and Scott Aaronson for answering our questions and
many useful conversations. We also thank the anonymous referees for their useful comments.

1 Introduction

Historically, the problem of minimizing a circuit representing a given Boolean function
(MCSP) was one of the first where the prohibitive computational cost of searching through a
huge space of candidate solutions was noted [30, 44]. This issue would later be formalized
in the theory of NP-completeness. However, the complexity of circuit minimization itself
remains largely mysterious. It is an NP problem, but neither known to be NP-complete nor
in any sub-class of NP thought proper. This mystery remains despite a large body of work
devoted to this problem [28, 2, 4, 3, 5, 24, 38, 23].

For negative hardness results, we do know that MCSP is not NP-hard (even P-hard)
under very restrictive reductions [38]. We also know that MCSP is not NP-hard under certain
“black-box” reductions [23]. For other kinds of restricted reductions, we know that proving
the NP-hardness of MCSP under such reductions would be difficult as such a proof would
also yield new circuit lower bounds [28, 38, 5].

© R. Impagliazzo, V. Kabanets, and I. Volkovich;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:russell@cs.ucsd.edu
mailto:kabanets@cs.sfu.ca
mailto:ilyavol@umich.edu
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 The Power of Natural Properties as Oracles

On the other hand, for positive hardness result, we know that MCSP is SZK-hard
under general randomized (BPP) reductions [3], and NC1-hard under truth-table reductions
computable by non-uniform TC0 circuits [40].

Looking at the negative results about NP-hardness of MCSP, one has to wonder: Are these
results actually about MCSP and its relationship to other problems, or about the weakness
of certain types of reductions? Given the positive results about hardness of MCSP under
more powerful reductions, it seems more likely that the aforementioned negative hardness
results are in fact about the weakness of certain reductions, and that it may be the case that
MCSP is NP-hard under, say, general randomized polynomial-time reductions.

We seem to be very far from being able to prove the NP-hardness of MCSP. If we cannot
prove that MCSP is as hard as SAT, can we find other evidence that MCSP is indeed a hard
problem, or at least that it will be difficult to design an efficient algorithm for it?

One possible kind of evidence that MCSP may be “almost as hard as” SAT would be to
show that many known complexity-theoretic statements that use the SAT oracle will remain
true when the SAT oracle is replaced with the MCSP oracle, i.e., that the power of the MCSP
oracle is often as good as that of SAT. This is the research direction pursued in the present
paper.

1.1 Our results
While, for simplicity, we state our results below for MCSP, in most of our results, MCSP
could be replaced with any other natural property in the sense of Razborov and Rudich [41]
(having largeness and usefulness, but with oracle access replacing constructivity). Roughly,
our results are of three kinds:

circuit lower bounds for randomized complexity classes with MCSP oracle,
relations between Indistinguishability Obfuscation (IO) and MCSP, and
hardness results for relativized versions of MCSP under randomized reductions.

We provide a more detailed description of our results next.

1.1.1 Conditional collapses
Below, the notation SIZE[s] denotes the class of Boolean functions computable by size s
Boolean circuits.

I Theorem 1. Let Γ ∈
{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
. If Γ ⊆ P/poly, then

Γ ⊆ ZPPMCSP.

1.1.1.1 Interpretation

The results of [36], [8], [25] and [15] (building upon [31]) imply collapse theorems for the
classes P#P,PSPACE and EXP,NEXP,EXPNP, respectively. More specifically, they show that
if any of the above classes has polynomial size Boolean circuits, then the corresponding class
collapses to MA, which is known to be contained in ZPPNP [7, 20]. Our Theorem 1 shows
that the power of the MCSP oracle is sufficient for these conditional collapses.

As it is also known that MA ⊆ NPMCSP (see, e.g., [2]), the conditional collapses to NPMCSP

are immediate. Our Theorem 1 strengthens these collapses to the potentially smaller class
ZPPMCSP.

Finally, we also interpret Theorem 1 as follows: A proof that MCSP is not NP-hard (or
even #P-hard) under Turing ZPP-reductions would imply that P#P 6⊆ P/poly.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:3

1.1.2 Circuit lower bounds
Given the collapse theorems above, we get fixed-polynomial and super-polynomial lower
bounds for randomized polynomial and exponential time, respectively. The extra bit of
advice in the case of randomized polynomial time comes to accommodate the need to keep
the promise of bounded error (the same problem arises in [10, 19, 37, 42, 49]). Alternatively,
we can consider the corresponding class of promise problems (i.e., prZPP).

I Theorem 2. We have the following:
1. ZPPMCSP/1 6⊆ SIZE[nk] and prZPPMCSP 6⊆ SIZE[nk], for all k ∈ N.
2. ZPEXPMCSP 6⊆ P/poly.

1.1.2.1 Interpretation

It is known that MA-EXP 6⊆ P/poly [14]. By padding, we get that MA-EXP ⊆ ZPEXPNP

(using MA ⊆ ZPPNP [7, 20]), and hence ZPEXPNP 6⊆ P/poly. Theorem 2 (item 2) shows that
the MCSP oracle can replace the SAT oracle in that latter circuit lower bound.

1.1.2.2 Consequences for natural properties

The above result still holds if we relax the MCSP oracle to a natural property strongly useful
against P/poly (see Theorem 41 for more details). Combining this result with Lemma 25, we
obtain that PAC learning algorithms imply fixed-polynomial lower bounds against BPP/1
and super polynomial lower bounds again BPEXP. These bounds match the results of [49]
and [18, 32], respectively (see Corollary 26 for more details). In this sense, our unconditional
lower bounds generalize the conditional lower bounds of [49] and [18, 32]. Indeed, our result
is obtained by extending the techniques of [18, 32, 49].

The following theorem should be contrasted with a result from [25] saying that the
existence of a P-natural property (even without the largeness condition) that is useful against
P/poly would imply that NEXP 6⊆ P/poly. With the largeness condition, the circuit lower
bound can be shown to hold for the potentially smaller uniform complexity class ZPEXP.
This theorem is an immediate consequence of Theorem 2, item (2).

I Theorem 3. Suppose there is a strongly useful ZPP-natural property. Then ZPEXP 6⊆
P/poly.

I Remark. The conclusion of Theorem 3 still holds if we assume a natural property with
only weakly-exponential usefulness, 2nΩ(1) .

I Corollary 4. If there is a ZPP-natural property that is weakly-exponentially useful against
ACC0 circuits, then ZPEXP 6⊆ ACC0. 1

1.1.3 Obfuscation
We also relate the powers of MCSP and SAT to the existence of indistinguishability obfuscators
(IO) [11]. Roughly speaking, an IO is an efficient randomized procedure that maps circuits to
circuits, preserving the circuit input-output functionality but in an “unintelligible” manner.
Indeed, applying the IO to any two functionally equivalent circuits of the same size yields
two indistinguishable distributions on circuits (see Definition 27 for more details). We show
the following.

1 The result that P-natural properties against sub-exponential size circuits yield ZPEXP lower bounds
was also obtained in independent work by Igor Oliveira and Rahul Santhanam [40].

CCC 2018

7:4 The Power of Natural Properties as Oracles

I Theorem 5. Let A denote the class of randomized polynomial-time algorithms with MCSP
oracle. If there exists an A-indistinguishable obfuscator IO then NP ⊆ ZPPMCSP.

I Corollary 6. Suppose a computational obfuscator IO exists. Then MCSP ∈ ZPP iff
NP = ZPP.

Proof. If NP = ZPP then, clearly, MCSP ∈ ZPP. For the other direction, if MCSP ∈ ZPP
then IO is also an A-indistinguishable obfuscator. Therefore, NP ⊆ ZPPMCSP = ZPPZPP =
ZPP. J

1.1.3.1 Interpretation

Corollary 6 says that, under a cryptographic assumption that computational IO exists, the
computational powers of SAT and MCSP are the same in the sense that a ZPP algorithm for
MCSP is as good as a ZPP algorithm for SAT.

1.1.4 Hardness of relativized versions of MCSP
We consider the relativized version of MCSP relative to an oracle A, denoted MCSPA, which
asks to determine the minimum circuit size for a given Boolean function (given by its truth
table) where the circuit is allowed to use A-oracle gates. It is shown by [2] that every language
in PSPACE is reducible to MCSPPSPACE via ZPP-reductions. We use different techniques to
re-prove this result, as well as obtain a few new results along the same lines. (Below CkP is
the kth level of the counting hierarchy, CH, where C1P = PP, and Ck+1P = PPCkP, for all
k ≥ 1.)

I Theorem 7. 1. PSPACE ⊆ ZPPMCSPPSPACE
[2]

2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1PMCSPPP .

1.1.4.1 Interpretation

All of the inclusions of Theorem 7 become trivial if one replaces the relativized MCSP problem
with the relativized SAT problem (or even just some relativized P-complete problem), since
we have trivially that, e.g., PSPACE ⊆ PPSPACE. Theorem 7 says that the circuit minimization
problem for circuits with A-oracle gates (for certain kinds of oracles) is at least as hard as
the evaluation problem for A, under sufficiently powerful (randomized) reductions.

In [23], Hirahara and Watanabe defined the notion of oracle-independent randomized
reductions and initiated a study of the set of languages that are reducible in randomized
polynomial time to MCSPB for every B. As a part of their study, they showed that⋂
B BPPMCSPB [1] ⊆ AM∩coAM; this implies that NP-hardness of MCSP cannot be established

via oracle-independent reductions unless the polynomial hierarchy collapses. We show circuit
lower bounds for the class

⋂
B BPPMCSPB

.

I Theorem 8. We have that
⋂
B

BPPMCSPB

/1 6⊆ SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆ SIZE(nk),

for all k ∈ N, and that
⋂
B

BPEXPMCSPB

6⊆ P/poly.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:5

1.2 Our techniques
We rely on the result of [16] showing that natural properties useful against a (sufficiently
powerful) circuit class C yield learning algorithms (under the uniform distribution, with
membership queries) for the same circuit class. We note that this result relativizes in the
following sense: if we have a natural property useful against circuits with L oracle gates
(say, MCSPL), for some language L, then we can approximately learn L, with the hypotheses
being circuits with MCSPL oracle gates. If, in addition, this language L is both downward
and random self-reducible, then we can learn L exactly, with the same type of MCSPL oracle
circuits, using the ideas of [27].

This allows us to prove, for example, that P#P ⊆ BPPMCSP#P
, as #P has a complete

problem (the permanent) that is well-known to be both downward and random self-reducible.
We show that ⊕P also has such a complete problem (building upon [45]), getting the inclusion
⊕P ⊆ BPPMCSP⊕P

. To get the stronger result that ⊕P ⊆ ZPPMCSP⊕P
, we use Toda’s Theorem

[43] and hardness-randomness tradeoffs of [26] to get rid of the two-sided error of our BPP
reduction (similarly to the work of [28]).

Our circuit lower bounds are proved using similar ideas. For example, ZPEXPMCSP 6⊆
P/poly is argued as follows. If PSPACE 6⊆ P/poly, we are done (as PSPACE ⊆ EXP).
Assuming PSPACE ⊆ P/poly, we get that PSPACE ⊆ ZPPMCSP, using the fact that PSPACE
contains a complete problem that is both downward and random self-reducible [45], and that
MCSPPSPACE ∈ PSPACE ⊆ P/poly. The circuit lower bound then follows by a translation
argument, as we get that EXPSPACE ⊆ ZPEXPMCSP and EXPSPACE is known to contain
languages of maximal circuit complexity (by a simple diagonalization argument).

As another consequence of the results in [16], we get the following.

I Theorem 9. For any language B, n ∈ N and δ > 0, there exists a MCSPB-oracle circuit
C of size poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is self-correctable then B
has polynomial size MCSPB-oracle circuits.

I Theorem 10. Let B be a language such that PSPACEB has polynomial size B-oracle
circuits. Then B has polynomial-size MCSPB-oracle circuits. 2

For the indistinguishability related results, we combine ideas from [21, 35] with a result
from [2]. Let ⊥s denote a canonical circuit of size s that outputs ′0′ on every input. Let A
denote the class of randomized polynomial-time algorithms with MCSP oracle. Given an
A-indistinguishable obfuscator IO, we consider the function fs(r) = IO(⊥s, r), where r is a
random string. Observe that for any s, the function fs(r) is computable in time polynomial
in |r|. We then apply a result of [2] that allows us to find preimages of such functions with
probability 1/poly(n).

Given a circuit C of size s, we first compute an obfuscation of C, Ĉ = IO(C, r), (for a
random r). Next, we (attempt to) find a preimage r′ of Ĉ. That is, r′ such that IO(⊥s, r′) = Ĉ.
We accept if and only if r′ is indeed a preimage. That is, if and only if IO(⊥s, r′) = Ĉ.

We observe the following:
If C = ⊥s then the algorithm will accept with probability 1/poly(n).

2 In [2], the same outcome was achieved under a stronger assumption that PSPACEB ⊆ PB . We note
our result is not a mere syntactical improvement, as there are numerous languages B for which
PSPACEB ⊆ PB/poly yet PSPACEB 6= PB ; see Appendix C for more details. While we suspect that
the consequent of the theorem holds unconditionally, we note that the precondition statement of the
theorem cannot be improved further since Lemma 19 implies that, for every language B, the class
PSPACEB does not have fixed-polynomial size B-oracle circuits.

CCC 2018

7:6 The Power of Natural Properties as Oracles

If C is satisfiable then by the correctness requirement of IO (Requirement 2) for all r, r′:
IO(C, r) 6= IO(⊥s, r′). Therefore, the algorithm will always reject.
Finally, if C is an unsatisfiable circuit of size s, then by the indistinguishability requirement
(Requirement 3) the algorithm cannot distinguish between the obfuscation of ⊥s and the
obfuscation of C. Hence, the algorithm will accept with probability about 1/poly(n).

Overall, we obtain that SAT ∈ RPMCSP.

1.2.0.1 Remainder of the paper

We give basic definitions and notation in Section 2. In Section 3, we prove our main results
(Theorems 1 - 8) which show new collapse results as well as new circuit lower bounds for
uniform complexity classes with oracle access to (relativized) MCSP. In fact, we prove
somewhat stronger results (Theorems 40 and 41) which apply to the more general type of
oracles: strongly useful natural properties. We prove our IO-related result, Theorem 5, in
Section 3.3. Next, in Section 3.4, we prove our results about reductions to the problem
MCSPB , for various languages B. Specifically, we give such reductions for several complexity
classes (Theorem 7), and also show that every language B can be approximated by “small”
Boolean circuits containing MCSPB oracle gates (Theorem 9). Finally, we show that under
certain conditions, a language B can be computed exactly by “small” Boolean circuits
containing MCSPB oracle gates (rather than just approximated) (Theorem 10). We conclude
with some open questions in Section 4. Some of the proofs (e.g., our proof that ⊕P has
a complete problem that is both downward and random self-reducible) are given in the
appendix.

2 Preliminaries

2.1 Basics
A function negl(n) is negligible if for any k ∈ N there exists nk ∈ N such that for all n > nk,
negl(n) < 1/nk.

For Boolean functions f, g : {0, 1}n → {0, 1}, we define the relative distance ∆(f, g) to
be the fraction of inputs x ∈ {0, 1}n where f(x) 6= g(x). For ε ≥ 0, we say that f is ε-close
to g if ∆(f, g) ≤ ε, otherwise we say that f is ε-far from g.

Let L ⊆ {0, 1}∗ be a language. We denote by L|n the set of the strings of length n in
L. We will associate a language L with a corresponding Boolean function in the natural
way: L(x) = 1 ⇐⇒ x ∈ L. We say that L has circuits of size a(n) and denote it by
L ∈ SIZE(a(n)) if for every n ∈ N the function L|n can be computed by a Boolean circuit of
size O(a(n)). The circuit complexity sL(n) of L at length n is the smallest integer t such
that there is a Boolean circuit of size t that computes L|n. We similarly define sBL (n) to be
the circuit complexity of L with respect to B-oracle circuits and SIZEB(a(n)). We have the
following easy observation.

I Observation 11. Let A,B be two languages. Suppose that A ∈ SIZEB(nk) for some k ∈ N.
Then for every language L: sBL (n) ≤ sAL(n)k+1.

A promise problem is a relaxation of a language, defined as follows.

I Definition 12 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise problem if ΠY ES ∩
ΠNO = ∅. We say that a language L is consistent with Π iff x ∈ ΠY ES =⇒ x ∈ L and
x ∈ ΠNO =⇒ x 6∈ L. The containment of L outside of ΠY ES ·∪ΠNO can be arbitrary. We
say that a set of languages Γ is consistent with a set of promise problems Λ iff for every
Π ∈ Λ there is L ∈ Γ that is consistent with Π.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:7

We refer the reader to [6] for the definitions of standard complexity classes such as P,
ZPP, RP, BPP, NP, MA, PSPACE, etc. We say that a language L ∈ BPP/1 if L can be
decided by a BPP machine with an auxiliary advice bit bn for each input of length n; note
that given the complement advice bit b̄n, the machine is not guaranteed to be a BPP machine
(i.e., may not have bounded away acceptance and rejection probabilities on all inputs of
length n). We define ZPP/1 in a similar fashion.

We define a family of natural problems complete for prBPP relative to any oracle.

I Definition 13 (Circuit Approximation). For a language B, define the following prBPPB-
complete problem: CAB ∆= (CAB

Y ES ,CAB
NO), where

CAB
Y ES =

{
C is a B-oracle circuit

∣∣ ∆(C, 0̄) ≥ 3/4
}
,

and

CAB
NO =

{
C is a B-oracle circuit

∣∣ ∆(C, 0̄) ≤ 1/4
}
.

To prove lower bounds against randomized classes with one bit of advice, we shall rely on
the following definitions (and their extensions) from [42, 49].

I Definition 14 (Padded Languages). Let L be a language. For k ∈ N we define the padded
version of L, denoted L′k, to consist of the strings 1mx satisfying the following: (1) m is
power of 2; (2) 0 < r

∆= |x| ≤ m; (3) x ∈ L; and (4) sL(r) ≤ m2k.

The main property of the padded languages is that, for every L, sufficiently small circuits
for L′k can be used to construct small circuits for L.

I Lemma 15 ([42, 49]). Let k ∈ N. Suppose L′k ∈ SIZE[nk]. Then sL(n) = O(n2k).

The next lemma is implicit in [49]. We provide the proof for completeness.

I Lemma 16. Let R be a strongly useful natural property and let L be a downward self-
reducible and self-correctable language. Then, for all k ∈ N, we have L′k ∈ BPPR/1.

Proof. Let y = 1mx be an input for L′k. Conditions 1 and 2 of Definition 14 can be
checked easily. As y has a unique interpretation, we use the advice bit to determine whether
sL(|x|) ≤ m2k. If the advice bit is 0 (i.e “no”) we reject. Otherwise, we apply Lemma 39
with t = m2k to decide if x ∈ L. J

We also need the following result that shows that a lower bound on ZPP/1 carries over
to prZPP.

I Lemma 17 ([42]). For every circuit function u(n), if ZPP/1 6⊆ SIZE[u(n)], then prZPP 6⊆
SIZE[u(n)].

Finally, we need the following collapse results and a simple circuit lower bound against
PSPACE.

I Lemma 18 ([8, 25, 15]). If Γ ∈
{

EXP,NEXP,EXPNP
}

is in P/poly, then Γ = MA.

I Lemma 19 ([29]). For any language B and k ∈ N, PSPACEB 6⊆ SIZEB [nk]. More generally,
for every function s(n) = O(2n), DSPACEB(poly(s(n))) 6⊆ SIZEB [s(n)].

I Lemma 20 (Folklore). For any oracle A: NP ⊆ BPPA =⇒ NP ⊆ RPA.

CCC 2018

7:8 The Power of Natural Properties as Oracles

2.2 Derandomization from hardness
We recall the celebrated hardness-randomness tradeoff.

I Lemma 21 ([39, 9, 26, 46, 33]). There is a polynomial-time computable oracle predicate
MB(x, y) and a constant ` ∈ N such that the following holds for every language B and s ∈ N.
If tt ∈ {0, 1}2

m

is a string that represents the truth table of an m-variate Boolean function f
which requires B-oracle circuits of size s`, then, for all s-size B-oracle circuits C, MB(C, tt)
is consistent with CAB.

The non-relativized version of this result was used in [28] to show that BPP ⊆ ZPPMCSP.
We use the relativized version to show that under certain assumptions BPPA = ZPPA.

I Lemma 22. Let A,B be any languages such that: (1) A ∈ PB/poly, and (2) MCSPB ∈
ZPPA. Then BPPA = ZPPA.

Proof. By definition, ZPPA ⊆ BPPA. For the second direction, let L ∈ BPPA. Then for each
n there exists an A-oracle circuit C(w, r) of size poly(n) such that x ∈ L ⇐⇒ C(x, ·) ∈ CAA.
We now describe a machine that decides L: “Form = O(logn) pick a truth table tt ∈ {0, 1}2

m

at random. If tt has B-circuits of size less than 2m/4 return “?” (using an oracle to MCSPB).
Otherwise, run MA(C(x, ·), tt) and answer the same (using MA from Lemma 21).”

By counting arguments, a random function requires exponential size circuits w.h.p.
Therefore, the algorithm will output “?” extremely rarely. By Observation 11 tt requires
A-oracle circuits of size 2Ω(m) = nΩ(1). Consequently, the correctness of the algorithm follows
from Lemma 21. As described, the algorithm can be implemented in ZPPA,MCSPB

. By the
preconditions, ZPPA,MCSPB

⊆ ZPPA,ZPPA

= ZPPA due to the self-lowness of ZPP. J

2.3 Natural properties, PAC learning and MCSP
We first define natural properties.

I Definition 23 (Natural Property [41]). Let C be a circuit class and Γ be complexity classes.
We say that a property R is Γ-natural with density δn and useful against C if the following
holds:
1. Constructivity: Given a binary string tt ∈ {0, 1}2

m

, tt ∈ R can be decided in Γ.
2. Largeness: For all n,R contains at least a δn fraction of all 2n binary strings, representing

n-variate Boolean functions.
3. Usefulness: For every Boolean function family {fn}n≥0, where fn is a function on n

variables, such that {tt | tt is a truth table of some fn } ⊆ R for almost all n, we have
that {fn} 6∈ Λ for almost all n.

We say that R is strongly useful if there exists a ∈ N such that R is useful against
SIZE[2an] and has density δn ≥ 2−an.

Considering R as an oracle allows us to “ignore” its complexity. In addition, if R is a
strongly useful property, then, as observed in [16, Lemma 2.7], there exists another strongly
useful property R′ ∈ PR with density δn ≥ 1/2. Therefore, when considering a strongly
useful property as an oracle we can assume w.l.o.g that it has density δn ≥ 1/2.

Observe that MCSP yields a strongly useful natural property. Often, the only requirement
from an MCSP oracle is to “serve” as a strongly useful natural property. Consequently, the
oracle can be relaxed. The following can be shown along the lines of the proof of Lemma 22.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:9

I Lemma 24. Let R be a strongly useful natural property. Then BPP ⊆ ZPPR. If, in
addition, R ∈ P/poly then BPPR = ZPPR.

Recall Valiant’s PAC learning model [48]. We have a (computationally bounded) learner
that is given a set of samples of the form (x̄, f(x̄)) from some fixed function f ∈ C, where x̄
is chosen according to some unknown distribution D. Given ε > 0 and δ > 0, the learner’s
goal is to output, with probability 1− ε a hypothesis f̂ such that f̂ is a 1− δ close to f under
D. We say that a function class C is PAC learnable if there exists a learner which given any
f ∈ C, ε > 0 and δ > 0 in time polynomial in n, 1/ε, 1/δ, |f | outputs a hypothesis as required.
In a more general model, the learner is allowed membership queries (as in the exact learning
model). In this case, we say that C is PAC learnable with membership queries.

In [16] it was shown that natural properties yield efficient learning algorithms. Specifically,
a BPP-natural property that is strongly useful against a circuit class C implies that C is
PAC learnable under the uniform distribution, with membership queries (see Section 37 for
more details). Here we show that the converse holds as well: if C is PAC learnable under the
uniform distribution, with membership queries then there is a BPP-natural property that is
strongly useful against C.

I Lemma 25. Let C be a circuit class. If C is PAC learnable under the uniform distribution,
with membership queries, then there exists a BPP-natural property that is strongly useful
against C.

The proof goes along the lines of Theorem 3 from [49], where it is shown how to turn
an efficient randomized exact learner A for a circuit class C into a P/poly-natural property
strongly useful against C. Combined with Theorem 2, we obtain a somewhat different proof
for the conditional lowers bounds of [49] and [18, 32].

I Corollary 26. For every circuit class C, if C is PAC learnable under the uniform distribution,
with membership queries then:
1. BPP/1 6⊆ C-SIZE[nk] and prBPP 6⊆ C-SIZE[nk], for all k ∈ N [49] .
2. BPEXP 6⊆ C-SIZE[poly] [18, 32].

2.4 Obfuscation
In this section we define the notion of an Indistinguishability Obfuscator.

I Definition 27 (Indistinguishability Obfuscator [11]). Let A be a class of algorithms. We
say that a procedure IO is an A-Indistinguishability Obfuscator for a circuit class C if the
following holds:
1. Correctness: For every circuit C ∈ C and for all inputs x, C(x) = IO(C)(x).
2. Polynomial slowdown: There exists k ∈ N s.t. for every circuit C ∈ C, |IO(C)| ≤ |C|k.
3. Indistinguishability: For all pairs of circuits C1, C2 ∈ C that compute the same function,

if |C1| = |C2| = s then the distributions of IO(C1) and IO(C2) are indistinguishable by
any algorithm A ∈ A. More precisely, there is a negligible function negl(n) such that for
any algorithm A ∈ A:

|Pr[A(IO(C1)) = 1]− Pr[A(IO(C2)) = 1]| ≤ negl(s).

In particular, when A the class of randomized polynomial-time algorithms, we call
such IO a Computational Obfuscator.

CCC 2018

7:10 The Power of Natural Properties as Oracles

2.5 Downward self-reducible and self-correctable languages
IDefinition 28. We say that a language L is downward self-reducible if there is a deterministic
polynomial-time algorithm COMPUTE such that, for all n ≥ 1, COMPUTEL|n−1 = L|n. In
other words, COMPUTE efficiently computes L on inputs of size n given oracle access to a
procedure that computes L on inputs of size n− 1.
We say that a language L is self-correctable3 if there is a probabilistic polynomial-time
algorithm CORRECT such that, for any n ∈ N and a Boolean function f : {0, 1}n → {0, 1}
it holds that if ∆(f, L|n) ≤ 1/n then for all x̄ ∈ {0, 1}n: Pr[CORRECTf (x̄) 6= L|n(x̄)] ≤
1/poly(n).

Several complexity classes have complete problems that are both downward self-reducible
and self-correctable.4

I Lemma 29 ([47, 12, 36, 27]). There exists a downward self-reducible and self-correctable
#P-complete language Lperm.

I Lemma 30 ([45]). There is a downward self-reducible and self-correctable PSPACE-complete
language LPSPACE.

Using similar ideas as in [45], we also show the following; see Appendix A for the proof.

I Lemma 31. There is a downward self-reducible and self-correctable ⊕P-complete language
L⊕P.

To handle a larger family of languages, we generalize the notion of self-correctability.

I Definition 32. A language L is (ε(n), A)-correctable if there are a polynomial r(n) and a
randomized polynomial-time algorithm CORRECT such that, for all n ∈ N and f : {0, 1}r(n) →
{0, 1}, if ∆

(
f,A|r(n)

)
≤ ε(n), then, for all x̄ ∈ {0, 1}n, Pr

[
CORRECTf (x̄) 6= L|n(x̄)

]
≤

1/poly(n).

In other words, there is a randomized polynomial-time algorithm that can decide L|n
given an oracle to a function that approximates a A|r(n). Self-correctability is special case
when ε = 1/n, A = L and r(n) = n. The following is immediate using Adleman’s result [1]:

I Lemma 33. Let L be a (ε(n), A)-correctable language with r(n), and let B be a language.
Suppose C is an r(n)-variate B-oracle circuit of size s such that ∆(C,A|r(n)) ≤ ε(n), for
some n ∈ N. There exists a randomized polynomial-time algorithm that given C as input,
outputs an n-variate B-oracle circuit C ′ of size poly(r(n), s) such that C ′ ≡ L|n, w.h.p.

In particular, this result implies that such C ′ exists for every C.
Klivans and van Melkebeek [33] show that any language L is (ε(n), A)-correctable for

A computable in PSPACE with an oracle to L (by encoding the truth table of L with an
appropriate error-correcting code).

I Theorem 34. For any language L and ε(n) there exist a language A ∈ DSPACEL(n+1/ε(n))
such that L is (ε(n), A)-correctable with r(n) = poly(n, 1/ε(n)).

3 More generally, such languages are referred to as “random self-reducible” languages.
4 It is not hard to see that every downward self-reducible language is computable in PSPACE. On the

other hand, the results of [17] suggest that there cannot be self-correctable languages which are complete
for any level of the polynomial hierarchy, unless the hierarchy collapses.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:11

2.6 Learning downward self-reducible and self-correctable languages
The following lemma essentially shows that the PAC learnability for downward self-reducible
and self-correctable languages implies exact learnability; a similar lemma also appeared in
[40]. See the Appendix (Section B) for the proof.

I Lemma 35. Let B be a language. Suppose Boolean circuits are PAC learnable using
membership and B queries with hypotheses being B-oracle circuits. Suppose L is a downward
self-reducible and self-correctable language. Then there is a randomized algorithm making
oracle queries to B, that, given x and t, computes L(x) with probability at least 1−1/poly(|x|)
in time poly(|x| , t), provided that t ≥ sL(|x|).

3 The proofs

Our proofs will use the following.

I Lemma 36 (Extension of Theorem 5.1 from [16]). Let R be a natural property with density
at least 1/5, that is useful against SIZE[u(n)], for some size function u(n) : N → N. Then
there is a randomized algorithm that makes oracle queries to R such that, given s ∈ N, oracle
access to a function f : {0, 1}n → {0, 1} computable by a Boolean circuit of size s, and δ > 0,
it produces in time poly(n, 1/δ, 2u−1(poly(n,1/δ,s))) an R-oracle circuit C where ∆(C, f) ≤ δ.

I Corollary 37. Let R be a strongly useful natural property. Then Boolean circuits are PAC
learnable under the uniform distribution, using membership and R queries with hypotheses
being R-oracle circuits.

I Theorem 38. Boolean circuits are PAC learnable under the uniform distribution, using
membership and MCSP queries with hypotheses being MCSP-oracle circuits.

Combining Lemma 35 and Corollary 37, we get the following.

I Lemma 39. Let R be a strongly useful natural property and let L be a downward self-
reducible and self-correctable language. Then there is a randomized algorithm that makes
oracle queries to R, that given x and t computes L(x) with probability at least 1− 1/poly(|x|)
in time poly(|x| , t) provided that t ≥ sL(|x|).

3.1 Conditional collapses
Theorem 1 follows as a corollary from the next, somewhat stronger, theorem.

I Theorem 40. Let R be a strongly useful natural property, and furthermore let Γ ∈{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
. Then, if Γ ⊆ P/poly, then Γ ⊆ BPPR. If, in

addition, R ∈ PH then Γ ⊆ ZPPR.

Proof. First, consider the case of Γ such that PSPACE ⊆ Γ. For LPSPACE from Lemma 30,
we have that sLPSPACE

(n) = O(nk) for some k ∈ N. By Lemma 39, given x, we can compute
LPSPACE(x) in randomized polynomial time given oracle to R. Consequently, PSPACE ⊆
BPPR. By Lemma 18, we get Γ = MA. Hence, we have Γ ⊆ MA ⊆ PSPACE ⊆ BPPR. If, in
addition, R ∈ PH then R ∈ Γ ⊆ P/poly. By Lemma 24, BPPR ⊆ ZPPR.

For Γ = ⊕P, we argue as before, using Lemma 31 instead of Lemma 30, to obtain that
⊕P ⊆ BPPR. If, in addition, R ∈ PH, then, by Toda’s Theorem [43], PH ⊆ BPP⊕P, and
hence R ∈ BPP⊕P ⊆ P/poly. The rest of the argument follows as above.

CCC 2018

7:12 The Power of Natural Properties as Oracles

For Γ = P#P, we argue as before using Lemma 29 instead of 30, with the additional
observation that in this case the permanent has small Boolean circuits. The only difference
is that in this case the function has multiple inputs. For more details we refer the reader to
[27]. J

3.2 Circuit lower bounds for MCSP-oracle classes
Theorems 2 and 3 follow from the next theorem.

I Theorem 41. For any strongly useful natural property R we have
1. ZPPR/1 6⊆ SIZE[nk] and prZPPR 6⊆ SIZE[nk] for all k ∈ N, and
2. ZPEXPR 6⊆ P/poly.

Proof. Assume w.l.o.g that R ∈ P/poly (otherwise there is nothing to prove). Consider
L = LPSPACE from Lemma 30. As L ∈ PSPACE ⊆ EXP, by a translation argument there
exists d ≥ 1 such that L ∈ SIZE(2nd). Therefore, sL(n) is well-defined and in particular
sL(n) = O(2nd).

We first prove part (1) of the theorem. We focus on the class ZPPR/1; the claim about
prZPP will follow by Lemma 17. We consider two cases:
Case 1: PSPACE ⊆ P/poly. By Theorem 1 and Lemma 24, PSPACE ⊆ BPPR ⊆ ZPPR.

Hence, by Lemma 19, for all k ∈ N : ZPPR 6⊆ SIZE[nk].
Case 2: PSPACE 6⊆ P/poly. As L is PSPACE-complete, we have that L 6∈ P/poly. Assume

towards contradiction that BPPR/1 ⊆ SIZE[nk], for some k ∈ N. By Lemma 16, L′k ∈
SIZE[nk]. And thus, by Lemma 15, sL(n) = O(n2k). This contradicts the assumption
that L 6∈ P/poly. As in Lemma 24, we obtain that, for all k ∈ N, ZPPR/1 6⊆ SIZE[nk].

Part (2) of the theorem is also shown by considering two cases:
Case 1: PSPACE ⊆ P/poly. As above, PSPACE ⊆ ZPPR. By a translation argument,

EXPSPACE ⊆ ZPEXPR. By Lemma 19, ZPEXPR 6⊆ P/poly.
Case 2: PSPACE 6⊆ P/poly. Since PSPACE ⊆ EXP ⊆ ZPEXPR, the theorem follows. J

3.3 IO related results
We prove more general statements for strongly useful natural properties.

I Theorem 42. Let R be a strongly useful natural property and let A denote the class of
randomized polynomial-time algorithms with R oracle. If there exists an A-indistinguishable
obfuscator IO then NP ⊆ ZPPR.

Before proving the Theorem we require the following result of [2] that allows to find
preimages of polynomial-time computable functions5.

I Lemma 43 ([2]). Let R be a strongly useful natural property. Let fy(x) = f(y, x) be a
function computable uniformly in time polynomial in |x|. There exists a polynomial-time
probabilistic oracle Turing machine M and k ∈ N such that for any n and y:

Pr
|x|=n,t

[
fy
(
MR(y, fy(x), t)

)
= fy(x)

]
≥ 1/nk

where x is chosen uniformly at random and t denotes the randomness of M .

5 The original result in formulated in a slightly different terminology.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:13

We now present the proof of Theorem 42.

Proof. Consider the function fC(r) = IO(C, r), where C is a circuit and r is a random string.
Observe that fC(r) is computable uniformly in time polynomial in |r|. By the Lemma above
there exists a polynomial-time probabilistic oracle Turing machine M and k ∈ N such that
for any circuit C:

Pr
r,t

[
fC
(
MR(C, IO(C, r), t)

)
= fC(r)

]
≥ 1/ |r|k

where r is chosen uniformly at random and t denotes the randomness of M .

We now describe a polynomial-time randomized Turing machine that decides SAT. For
s ∈ N, we denote by ⊥s a canonical unsatisfiable circuit. Note that given s, ⊥s can be
computed uniformly in time polynomial in s. Given a circuit C as input:
1. Let s = |C|.
2. Ĉ = IO(C, r) for r chosen uniformly at random.
3. Run MR(⊥s, Ĉ, t) to obtain r′.
4. Accept if and only if IO(⊥s, r′) = Ĉ.
We observe the following:

If C = ⊥s then the algorithm will accept with probability ≥ 1/ |r|k.
If C ∈ SAT then by the correctness requirement of IO (Requirement 2) for all r, r′:
IO(⊥s, r′) 6= IO(C, r). Therefore, the algorithm will always reject.
Finally, if C ∈ SAT, then by the indistinguishability requirement (Requirement 3),
the oracle machine MR could not distinguish between the obfuscation of ⊥s and the
obfuscation of C. Hence, the algorithm will accept with probability 1/ |r|k − negl(|r|).
By repeating the algorithm, we obtain that SAT ∈ RPR

By Lemma 20, SAT ∈ RPR and hence SAT ∈ ZPPR. J

3.4 Hardness of relativized versions of MCSP
First we observe that, for every oracle B, there is a PMCSPB -natural property for B-oracle
circuits. Combined with Lemma 36, this yields the following theorem along the lines of
Theorem 38.

I Theorem 44. For every oracle B the class of B-oracle circuits is PAC learnable under the
uniform distribution, using membership and MCSPB queries with hypotheses being MCSPB-
oracle circuits.

I Lemma 45. Let A,B be two oracles (languages) such that A ∈ PB/poly. Then:
1. For every n ∈ N and δ > 0, there exists a MCSPB-oracle circuit C of size poly(n, 1/δ)

such that ∆(C,A|n) ≤ δ.
2. If, in addition, A is self-correctable then A ∈ PMCSPB

/poly.
3. If, in addition to the above, A is downward self-reducible, then A ∈ BPPMCSPB

.

Proof.
1. By the assumption, for every n ∈ N the function A|n(x) has a B-oracle circuit of size

poly(n). Therefore, by Theorem 44, given oracle access to A|n, the learning algorithm
produces an MCSPB-oracle circuit C of size poly(n, 1/δ) such that ∆(C,B|n) ≤ δ.

2. Follows from Lemma 33.
3. Follows by combining Theorem 44 with Lemma 35. J

CCC 2018

7:14 The Power of Natural Properties as Oracles

I Remark. In the lemma above, although the learning algorithm actually needs oracle access
to A|n to produce C, in parts 1 and 2 we are only interested in mere existence. In part 3, on
the other hand, we actually benefit from the learning algorithm.

We are now ready to give the proofs of Theorems 7–10. For convenience, we re-state
them below.

I Theorem 46 (Theorem 7 re-stated).
1. PSPACE ⊆ ZPPMCSPPSPACE

[2]
2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1PMCSPPP .

Proof.
1. Consider any PSPACE-complete language B. Let LPSPACE be the language from Lemma

30. By Lemma 45 (3), LPSPACE ∈ BPPMCSPB

, and hence PSPACE ⊆ BPPMCSPB

. Observe
that

MCSPB ∈ NPB ⊆ PSPACEB = PSPACE,

and so MCSPB ∈ PB/poly. By Lemma 22, we conclude that BPPMCSPB

= ZPPMCSPB

.
2. Arguing as above, using Lemma 31 instead of Lemma 30, we obtain ⊕P ⊆ BPPMCSP⊕P

.
By Toda’s Theorem [43], NP⊕P ⊆ BPP⊕P. Therefore, we get

MCSP⊕P ∈ NP⊕P ⊆ BPP⊕P ⊆ P⊕P/poly.

The rest of the argument is the same as above.
3. Similar to the first proof, using Lemma 29 instead of Lemma 30.
4. Since P#P = PPP [43], we get that PP ⊆ P#P ⊆ BPPMCSPPP

.
5. PP ⊆ BPPMCSPPP

. The second part of the claim follows by induction since CkP =
PPCk−1P. J

I Theorem 47 (Theorem 8 re-stated).
⋂
B

BPPMCSPB

/1 6⊆ SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆

SIZE(nk) for all k ∈ N, and
⋂
B

BPEXPMCSPB

6⊆ P/poly.

Proof. As in the proof of Theorem 41, we consider two cases:
Case 1: PSPACE ⊆ P/poly. Let LPSPACE be the language from Lemma 30. Observe that for

every language B, we have LPSPACE ∈ PB/poly. By Lemma 45 (3), PSPACE ⊆ BPPMCSPB

for all B. By Lemma 19, the required circuit lower bound follows.
Case 2: PSPACE 6⊆ P/poly. For each k ∈ N there exists L′k 6∈ SIZE(nk) such that L′k ∈

BPPMCSPB

/1 for all B. J

I Theorem 48 (Theorem 9 re-stated). For any language B, n ∈ N and δ > 0, there exists a
MCSPB-oracle circuit C of size poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is
self-correctable then B has polynomial size MCSPB-oracle circuits.

Proof. The proof follows from Lemma 45 for A = B, since B ∈ PB/poly. J

I Theorem 49 (Theorem 10 re-stated). Let B be a language such that PSPACEB has polyno-
mial size B-oracle circuits. Then B has polynomial-size MCSPB-oracle circuits.

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:15

Proof. Let A ∈ PSPACEB be a language such that B is (1/poly(n), A)-correctable with
r(n) = poly(n), as guaranteed by Theorem 34. By assumption, A ∈ PSPACEB ⊆ PB/poly.
By Lemma 45 (1), for every n ∈ N, there exists an MCSPB-oracle circuit Cn of size poly(n)
such that ∆(Cn, A|r(n)) ≤ 1/poly(n). Lemma 33 completes the proof. J

4 Open questions

The main open question is, of course, to determine the complexity of MCSP. The results in
this paper may be interpreted as giving some hope that hardness of MCSP is possible to prove
under randomized Turing reductions, as we see a growing list of non-trivial computational
tasks that can be solved with the help of the MCSP oracle rather than the SAT oracle.
It would be interesting to see more examples of complexity results proved with the SAT
oracle that remain true when SAT is replaced with MCSP. For example, is it true that
if SAT ∈ P/poly, then SAT circuits can be found by a ZPPMCSP algorithm (strengthening
the ZPPNP result by [13, 34])? Probably a simpler question along these lines is: Does
SAT ∈ P/poly imply that NP ⊆ ZPPMCSP?

Some of our hardness results for the relativized MCSP (Theorem 7) are for ZPP reductions,
while others for BPP reductions. Is it possible to replace the BPP reductions with ZPP
reductions? We have shown it for PSPACE and ⊕P, but not for #P.

Finally, we proved that, under some assumptions, every language L is computable by
a polynomial-size circuit with MCSPL oracle gates (Theorem 10). Is it true without any
assumptions?

References
1 L. M. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 75–83, 1978.
2 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-

neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

3 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Erzsébet
Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations
of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hun-
gary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 25–32. Springer, 2014. doi:10.1007/978-3-662-44465-8_3.

4 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Min-
imizing disjunctive normal form formulas and ac0 circuits given a truth table. SIAM J.
Comput., 38(1):63–84, 2008. doi:10.1137/060664537.

5 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, volume 30 of LIPIcs, pages 21–33. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.21.

6 S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

7 Vikraman Arvind and Johannes Köbler. On pseudorandomness and resource-bounded
measure. Theor. Comput. Sci., 255(1-2):205–221, 2001. doi:10.1016/S0304-3975(99)
00164-4.

8 L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

CCC 2018

http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1007/978-3-662-44465-8_3
http://dx.doi.org/10.1137/060664537
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21
http://dx.doi.org/10.1016/S0304-3975(99)00164-4
http://dx.doi.org/10.1016/S0304-3975(99)00164-4

7:16 The Power of Natural Properties as Oracles

9 L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time sim-
ulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

10 B. Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms. In
RANDOM, pages 194–208, 2002.

11 B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, pages 1–18, 2001.

12 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Christian
Choffrut and Thomas Lengauer, editors, STACS 90, 7th Annual Symposium on Theoretical
Aspects of Computer Science, Rouen, France, February 22-24, 1990, Proceedings, volume
415 of Lecture Notes in Computer Science, pages 37–48. Springer, 1990. doi:10.1007/
3-540-52282-4_30.

13 Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–
433, 1996. doi:10.1006/jcss.1996.0032.

14 H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proceedings of
the 13th Annual IEEE Conference on Computational Complexity (CCC), pages 8–12, 1998.

15 Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and
the exponential hierarchy. In R. K. Shyamasundar, editor, Foundations of Software Tech-
nology and Theoretical Computer Science, 12th Conference, New Delhi, India, December
18-20, 1992, Proceedings, volume 652 of Lecture Notes in Computer Science, pages 116–127.
Springer, 1992. doi:10.1007/3-540-56287-7_99.

16 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Com-
putational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50
of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.CCC.2016.10.

17 J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM J. on
Computing, 22(5):994–1005, 1993.

18 L. Fortnow and A. R. Klivans. Efficient learning algorithms yield circuit lower bounds. J.
Comput. Syst. Sci., 75(1):27–36, 2009.

19 L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 316–324, 2004.

20 O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and more). Studies in
Complexity and Cryptography, pages 40–53, 2011.

21 S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In Theory of Cryptog-
raphy, 4th Theory of Cryptography Conference, TCC, pages 194–213, 2007.

22 Hans Heller. On relativized exponential and probabilistic complexity classes. Information
and Control, 71(3):231–243, 1986. doi:10.1016/S0019-9958(86)80012-2.

23 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29
to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.18.

24 John M. Hitchcock and Aduri Pavan. On the np-completeness of the minimum circuit size
problem. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 236–245. Schloss

http://dx.doi.org/10.1007/3-540-52282-4_30
http://dx.doi.org/10.1007/3-540-52282-4_30
http://dx.doi.org/10.1006/jcss.1996.0032
http://dx.doi.org/10.1007/3-540-56287-7_99
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
http://dx.doi.org/10.1016/S0019-9958(86)80012-2
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.18

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:17

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.
236.

25 R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponential
time vs. probabilistic polynomial time. J. of Computer and System Sciences, 65(4):672–694,
2002.

26 R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing (STOC), pages 220–229, 1997.

27 R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a uni-
form assumption. In Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 734–743, 1998.

28 V. Kabanets and J.-Y. Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

29 Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5.

30 Richard M. Karp. Turing award lecture. In Bill Healy and Judith D. Schlesinger, editors,
Proceedings of the 1985 ACM annual conference on The range of computing: mid-80’s
perspective: mid-80’s perspective, Denver, Colorado, USA, October 14-16, 1985, page 193.
ACM, 1985. doi:10.1145/320435.320497.

31 Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard,
and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on The-
ory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 302–309. ACM,
1980. doi:10.1145/800141.804678.

32 A. Klivans, P. Kothari, and I. Oliveira. Constructing hard functions from learning algo-
rithms. In Proceedings of the 28th Annual IEEE Conference on Computational Complexity
(CCC), pages 86–97, 2013.

33 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–
1526, 2002. doi:10.1137/S0097539700389652.

34 Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small
circuits. SIAM J. Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206.

35 Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 374–383. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.47.

36 C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. JACM, 39(4):859–868, 1992.

37 D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice.
Computational Complexity, 16(2):139–179, 2007.

38 Cody D. Murray and Richard Ryan Williams. On the (non) np-hardness of comput-
ing circuit complexity. In David Zuckerman, editor, 30th Conference on Computa-
tional Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, volume 33
of LIPIcs, pages 365–380. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
doi:10.4230/LIPIcs.CCC.2015.365.

39 N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

40 I. C. Oliveira and R. Santhanam. Conspiracies between learning algorithms, circuit lower
bounds and pseudorandomness. CoRR, abs/1611.01190, 2016. URL: http://arxiv.org/
abs/1611.01190.

CCC 2018

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236
http://dx.doi.org/10.1016/S0019-9958(82)90382-5
http://dx.doi.org/10.1145/320435.320497
http://dx.doi.org/10.1145/800141.804678
http://dx.doi.org/10.1137/S0097539700389652
http://dx.doi.org/10.1137/S0097539795296206
http://dx.doi.org/10.1109/FOCS.2014.47
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://arxiv.org/abs/1611.01190
http://arxiv.org/abs/1611.01190

7:18 The Power of Natural Properties as Oracles

41 A. A. Razborov and S. Rudich. Natural proofs. J. of Computer and System Sciences,
55(1):24–35, 1997.

42 R. Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

43 S. Toda. PP is as hard as the polynomial time hierarchy. SIAM J. on Computing, 20(5):865–
877, 1991.

44 Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984. doi:10.1109/
MAHC.1984.10036.

45 L. Trevisan and S. P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

46 C. Umans. Pseudo-random generators for all hardnesses. J. of Computer and System
Sciences, 67(2):419–440, 2003.

47 L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

48 L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

49 I. Volkovich. On learning, lower bounds and (un)keeping promises. In Proceedings of the
41st ICALP, pages 1027–1038, 2014.

A Self-correctable and downward-reducible ⊕P-complete problem

In this section we prove Lemma 31

I Lemma 50. There is a downward self-reducible and self-correctable ⊕P-complete language
L⊕P.

Proof sketch. The proof is very similar to the one in [45] for the case of PSPACE. We define a
formula Φn(x̄, ȳ) that is universal for n-variate 3-cnf formulas on the variables x̄ = (x1, . . . , xn),
where ȳ = (y1, . . . , y8n3) describes a particular 3-cnf formula φ by specifying, for each possible
clause on 3 variables, whether this clause is present in φ. For example, if c1, . . . , cm, for
m = 8n3, is a sequence of all possible 3-clauses on n variables x1, . . . , xn, we can define Φ as
follows:

Φ(x̄, ȳ) = ∧mi=1((yi ∧ ci) ∨ ¬yi).

We now “arithmetize” the formula Φ, getting a polynomial that agrees with Φ over all
Boolean inputs. We will work over the finite field F2k of characteristic 2, for k = 5 logn.
Arithmetizing all clauses ci’s (by replacing each ci with a degree 3 multilinear polynomial
c′i, in the same 3 variables, that agrees with ci over Boolean all assignments), we get the
following arithmetization Φ′ of Φ:

Φ′(x̄, ȳ) =
m∏
i=1

(yi · c′i + 1 + yi).

For each 0 ≤ i ≤ n, define a polynomial

fn,i(x1, . . . , xi, ȳ) =
∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ′(x̄, ȳ),

where the summation is over our field F2k of characteristic 2. Note that fn,0(ȳ), for a Boolean
ȳ, is exactly ⊕SAT on the 3-cnf instance described by ȳ. So fn,0 is ⊕P-hard to compute.

http://dx.doi.org/10.1109/MAHC.1984.10036
http://dx.doi.org/10.1109/MAHC.1984.10036

R. Impagliazzo, V. Kabanets, and I. Volkovich 7:19

We have that fn,i can be expressed in terms of fn,i+1, for i < n, by the formula:

fn,i(x1, . . . , xi, ȳ) = fn,i+1(x1, . . . , xi, 0) + fn,i+1(x1, . . . , xi, 1).

So fn,i can be computed in polynomial time with oracle access to fn,i+1. It is also clear that
fn,n can be evaluated in polynomial time (directly).

Next, in the same way as in [45], we define a Boolean function family F = {Ft}t≥1 so
that each fn,i is “embedded” into some Fh(n,i), for some function h : N× N→ N. Namely, h
can be chosen so that

h(n, i) > h(n, i+ 1) (and so we have downward-reducibility for fn,i’s), and
the length h(n, i) is large enough to accommodate both an input to fn,i and an index
j ∈ [k].

We then define

Fh(n,i)(x1, . . . , xi, ȳ, j) = fn,i(x1, . . . , xi, ȳ)j ,

i.e., the jth bit of the value of fn,i in the field F2k , whose elements are viewed as k-bit
vectors.

The downward-reducibility of F follows from the properties of fn,i (and the way we
arranged the lengths h(n, i)). The self-correctability of F follows from the fact each fn,i is
a O(n3)-degree polynomial over the field of size 2k ≥ n5 (see [45] for more details). The
⊕P-hardness of F follows from ⊕P-hardness of fn,0’s.

It remains to show that F ∈ ⊕P. Note that every bit j of the value of fn,n(ȳ), for
every input ȳ, is computable in P, and hence also in ⊕P. For any 0 ≤ i < n, the jth bit of
fn,i(x1, . . . , xi, ȳ) can be computed in ⊕P using the following nondeterministic algorithm:

“Nondeterministically guess Boolean values bi+1, . . . , bn. Compute the value

v = Φ′(x1, . . . , xi, bi+1, . . . , bn, ȳ).

Accept if the jth bit of the computed field element v is 1, and reject otherwise.”

The parity of the number of accepting paths of the algorithm above is exactly the sum
modulo 2 of the bits vj , over all Boolean assignments to xi+1, . . . , xn. The latter is exactly
the jth bit of fn,i because addition in the field F2k is the bit-wise XOR of the corresponding
k-bit vectors. J

B Proof of Lemma 35

Let A be a PAC learner for C and let n = |x|. First, we describe an algorithm that produces
B-oracle circuits for L|1, L|2, . . . , L|n w.h.p. We then use the circuit for L|n to decide x.

Begin with a look-up table C̃1 = C1 for L|1.
For i ≥ 2, invoke A with ε = 1/i3 and δ = 1/i to learn a circuit C̃i of size t for L|i.
Answer the queries to B using the provided oracle.
Given a query to L|i, invoke COMPUTE with Ci−1(x) as an oracle.
Set Ci

∆= CORRECTC̃i (convert the algorithm into a circuit using Lemma 33).

We claim that w.h.p it holds for all 1 ≤ i ≤ n that Ci is a B-oracle circuit of size poly(i, t)
computing L|i. The proof is by induction on i. Basis i = 1 is clear. Now assume that
hypothesis holds for i− 1. Observe that since Ci−1(x) is B-oracle circuit, it can be evaluated
in polynomial time given and an oracle to B. Hence, by downward self-reducibility of L

CCC 2018

7:20 The Power of Natural Properties as Oracles

invoking COMPUTE with Ci−1(x) can be used to obtain oracle access to L|i. As t ≥ sL(i),
A will output a circuit C̃i of size poly(i, t). which is 1/i close to L|i. Finally, using Lemma
33 the algorithm will produce a circuit Ci of size poly(i, t) that computes L|i.

The above analysis is correct assuming that no errors have occurred. Note that the total
number of steps is poly(i) while each steps has at most 1/poly(i) probability error. As the
latter polynomial can be made arbitrary small, we obtain that w.h.p. for all i, Ci ≡ L|i.

Finally, all the listed procedures are in time poly(n, t), given oracle access to B.

C Oracles B where PSPACEB ⊆ PB/poly but PSPACEB 6= PB

I Lemma 51. Let B be a language such that EXPB ⊆ PB/poly. Then PSPACEB 6= PB.

Proof. Assume the contrary. By Meyer’s Theorem [31]: EXPB ⊆ ΣB
2 ⊆ PSPACEB. By the

assumption, EXPB ⊆ PSPACEB ⊆ PB which contradicts Time Hierarchy Theorem. J

There are numerous examples of languages satisfying the preconditions of the Lemma;
see, e.g., [22, 14].

	Introduction
	Our results
	Conditional collapses
	Circuit lower bounds
	Obfuscation
	Hardness of relativized versions of MCSP

	Our techniques

	Preliminaries
	Basics
	Derandomization from hardness
	Natural properties, PAC learning and MCSP
	Obfuscation
	Downward self-reducible and self-correctable languages
	Learning downward self-reducible and self-correctable languages

	The proofs
	Conditional collapses
	Circuit lower bounds for MCSP-oracle classes
	IO related results
	Hardness of relativized versions of MCSP

	Open questions
	Self-correctable and downward-reducible parityP-complete problem
	Proof of Lemma 35
	Oracles B where PSPACE but not

