
VICs: A Modular HCI Framework Using

Spatio-Temporal Dynamics

Guangqi Ye, Jason J. Corso, Darius Burschka, and Gregory D. Hager

Computational Interaction and Robotics Laboratory
The Johns Hopkins University

{grant|jcorso|burschka|hager}@cs.jhu.edu

Abstract. Many vision-based human-computer interaction systems are
based on the tracking of user actions. Examples include gaze-tracking,
head-tracking, finger-tracking, and so forth. In this paper, we present a
framework that employs no user-tracking; instead, all interface compo-
nents continuously observe and react to changes within a local neigh-
borhood. More specifically, components expect a pre-defined sequence of
visual events called visual interface cues (VICs). VICs include color, tex-
ture, motion and geometric elements, arranged to maximize the veridi-
cality of the resulting interface element. A component is executed when
this stream of cues has been satisfied.
We present a general architecture for an interface system operating un-
der the VICs-based HCI paradigm, and then focus specifically on an
appearance-based system in which a Hidden Markov Model (HMM) is
employed to learn the gesture dynamics. Our implementation of the sys-
tem successfully recognizes a button-push with a 96% success rate.

1 Introduction

The promise of computer vision for human-computer interaction (HCI) is great:
vision-based interfaces would allow unencumbered, large-scale spatial motion.
They could make use of hand gestures, movements or other similar input means;
and video itself is passive, (now) cheap, and (soon) nearly universally available.
In the simplest case, tracked hand motion and gesture recognition could replace
the mouse in traditional applications. But, computer vision offers the additional
possibility of defining new forms of interaction that make use of whole body
motion, for example, interaction with a virtual character [19].

A brief survey of the literature (see Section 1.1) reveals that most reported
work on vision-based HCI relies heavily on visual tracking and visual template
recognition algorithms as its core technology. While tracking and recognition are,
in some sense, the most popular direction for developing advanced vision-based
interfaces, one might ask if they are either necessary or sufficient. For exam-
ple, complete, constant tracking of human body motion might be a convenient
abstraction for detecting that a user’s hand has touched a virtual “button,”
but general human motion tracking is well-known to be a complex and difficult
problem [23,9]. What if button contact can instead be detected using simple

motion or color segmentation combined with template matching? On the other
hand, while template matching is a relatively well-understood mechanism for
recognizing static configurations, can it be similarly effective when accounting
for the inherent spatio-temporal dynamics of human motion? What if, as in
most cases, the user is not interacting at all? Is there any reason to perform
potentially expensive image processing to generate negative results? Finally, one
might turn the question around and ask whether it is possible to add structure
to the interaction problem so as to render the vision problem solvable with high
reliability.

The goal of this paper is to present visual interface cues (VICs), a general
and extensible paradigm that addresses many of these issues. In Section 2, we
outline a general approach to the development of modular, spatially cued vision-
based interaction, and describe prior systems that make use of this basic idea.
In Section 3, we turn to the question of modeling local spatio-temporal ges-
ture dynamics using Hidden Markov Models. In Section 4, we present results
using HMM-based event recognition for a simple push-button VICon. Finally,
we describe our current work on extending and applying the VICs paradigm.

1.1 Related Work

The Pfinder system [32] and related applications [19] is a commonly cited exam-
ple of a vision-based interface. Pfinder uses a statistically-based segmentation
technique to detect and track a human user as a set of connected “blobs.” A va-
riety of filtering and estimation algorithms use the information from these blobs
to produce a running state estimate of body configuration and motion [31]. Most
applications make use of body motion estimates to animate a character or allow
a user to interact with virtual objects.

More broadly, from the point of view of vision, there has been a great deal
of interest in tracking of human body motion, faces, facial expression, and ges-
ture, e.g. [2,12,25,5,33,10,3,21,18,8,4], with the general goal of supporting human-
computer interaction.

From the HCI perspective, there have also been a wide class of “demonstra-
tion systems” that make use of vision as their input. The ZombiBoard [20] and
BrightBoard [26] are examples of extensions of classical 2-D “point-and-click”
style user interfaces to desktop/blackboard style interactions. They allow, for ex-
ample, the selection, capture, or manipulation of items viewed by a video camera
on a whiteboard or desktop. Input is usually via special written tokens; vision
processing is based on simple background subtraction or thresholding followed
by binary image processing, much as with Pfinder. More extensive proposals
for mixing virtual and physical documents on the desktop include work on the
Digital Desk [30] and on the “office of the future” [22]. A good example of a
gesture-based interface is GestureVR [25].

2 The VICs Paradigm

2.1 Modeling Interaction

Current interface technology, Windows-Icons-Menus-Pointers (WIMP) [29], is
modeled with a simple state-machine (Figure 1). The dominant interface com-
ponent in these third-generation interfaces is the icon. Typically, these icons have
one pre-defined action associated with them that is triggered upon a mouse click.

0 1 2 4

3

Triggered

Dragging

Motion Click−Begin

Click−End

Motion

Else

Idle SelectedFocus

Icon State
Mouse Activity

Legend

Click−End

Fig. 1. The icon state model for a WIMP interface.

We extend the functionality of a traditional icon by increasing the number of
associated actions that can be triggered by the user in a straightforward manner
that does not require the user to learn complicated interaction semantics. For
standard WIMP interfaces the size of this set is 1: point-and-click. We call a
super-WIMP interface one that includes multi-button input or mouse-gesture
input. One such example is the SKETCH framework [34]. For the super-WIMP
interfaces the size of this set is larger, but still relatively small; it is limited by
the coarse nature of mouse input. Our vision-based extension greatly increases
the set of possible user inputs by employing the increased spatial input dimen-
sionality. To allow for such an extension, the notion of the icon must change:
we define a VICs-based interface component (VICon) to be composed of three
parts. First, it contains a visual processing engine. This engine is the core of
the VICon as it replaces the current point-and-click nature of third-generation
interfaces. Second, it has the ability to display itself to the user, and lastly, it
has some application specific functionality.

As mentioned earlier in Section 1, the VICon does not rely on tracking al-
gorithms to monitor the user and detect actions. Instead, the VICon watches
a region-of-interest (ROI) in the video stream and waits for recognizable user-
input. For instance, if we model a simple push-button, the VICon might watch
for something that resembles a human-finger in its ROI.

The obvious approach to detect user interaction is one of template-matching
in which the VICon is aware of a set of possible gestures and uses image process-
ing techniques to analyze the ROI in every frame of video. However, in practice,
such a method is prone to false-positives by spurious template matches. Also,
a template matching approach, alone, is potentially wasteful because it is more
expensive than other simpler tasks like motion detection and color segmentation
that may easily indicate a negative match.

If one observes the sequence of cues that precede a button-push, for instance,
one notices that there are distinct cues comprising the actual button push: mo-
tion, color-blob, edges. This sequence of cues, ordered from simple to complex,
can be used to facilitate efficient, accurate user-input detection. Define a selec-

tor to be a vision component that computes some measure on a local region of
an image, and returns either nothing, indicating the absence of a cue or fea-
ture, or values describing a detected feature [13]. For example, a motion selector
might return nothing if there is no apparent image motion or a description of
the size and magnitude of a region of detected motion. Thus, at its core, the
visual processing engine of the VICon is a sequence of selectors: we call it a
visual interaction cue parser or just a parser.

0 1
Cue 1

Idle

. . .
N N +1

. . .
N N +1

i

j

i

j

i

j

.
.

.
.

.

Action

Cue Drop−Out

Cue i

Fig. 2. The state model for a VICs-based interface component.

Formally, we define a visual interaction cue parser (Figure 2). It is a compo-
nent with the following structure:

1 A finite set of discrete states s1, s2, ...sn.

2 A distinguished initial state s1.

3 Associated with each state si, a function fi on the incoming input stream
that defines a continuous state variable x.

4 For each state si, a set of transition rules that associates an event ei,j , j =
1 . . .m ≤ n (informally, the output of a selector) with either a state of
higher index, or s1. By convention, the first transition event to fire defines
the transition for that state.

We return to the example of a button push from above. Using a parser, we
create a possible sequence of selectors: (1) a simple motion selector, (2) a coarse

color and motion selector, (3) a selector for color and cessation of motion, and
(4) gesture recognition. It is easy to see that processing under this framework is
efficient because of the selector ordering from simple to complex wherein parsing
halts as soon as one selector in the sequence is not satisfied. More powerful
and sophisticated parsing models are plausible under this paradigm: an example
showing the use of a Hidden Markov Model is presented in Section 3.

The intent of the framework is that a parser will not only accept certain
input, but might return other relevant information: location, duration. The key
factor differentiating the VICs paradigm from traditional interface components is
that there may be multiple exit cases for a given VICon determined by different
streams through the parser each triggering a different event. The lexicon of
possible triggers is an order of magnitude larger than WIMP and super-WIMP
interfaces.

2.2 Interaction Modes

The notion of a VICs-based interface is broad and extensible to varying applica-
tion domains. In this section we enumerate the set of interaction modes in which
a VICon may be used.

1. 2D-2D Projection - Here, one camera is pointed at a workspace, e.g. table-
top. One or many projectors are used to project interface components onto
this surface while the video-stream is processed under the VICs paradigm.
This mode has been proposed in [35]. We feel incorporating VICs-based in-
terface components will increase its effectiveness and broaden the domain of
applications.

2. 2D-2D Mirror - In this mode of interaction, one camera is aimed directly
at the user and the image stream is displayed in the background of the user-
interface for the user. Interface components are then composited into the
video stream and presented to the user. This interface mode could also be
used in a projection style display to allow for a group to collaborate in the
shared space. Figure 4 shows some example applications of this model.

3. 3D-2D Projection - This mode is similar to the first (2D-2D Projection)
except that 2 or more cameras will be aimed at the workspace and the set
of possible selectors is increased to include more robust 3D geometry. In
Figure 3 the prototype 4D-Touchpad system is shown. The 4D-Touchpad is
an experimental platform based on the VICs framework [7].

4. 2.5D Augmented Reality - Both video-see-through and optical-see-through
augmented reality are possible if the user(s) wear stereo head-mounted dis-
plays (HMD) [1]. With stereo cameras mounted atop the HMD, knowledge
of a governing surface can be extracted from the view, e.g. planar surface
[6]. All VICons can then be defined to rest on this governing surface and
interaction is defined with respect to this surface. One possible application
is a piano where each key is a separate VICon.

5. 3D Augmented Reality - In this case, we remove the constraint that
the interface is tied to one governing surface and allow the VICons to be

Fig. 3. (left) The prototype of the 4D-Touchpad using a flatpanel as the projector for
the display. (right) A 3D surgical interaction system under development based on the
VICs framework.

fully 3D. Two example applications areas are (1) motor-function training for
young children and (2) medical applications. Shown in Figure 3 is a stereo
microscope that is being used as a VICs-based surgical environment.

2.3 Prior State of the Art in VICs Technology

In this section we show a small set of example interfaces built under the VICs
paradigm: interaction through a stream of local-based selectors. First, we show
a simple button-based VICon in a calculator setting (Figure 4-left). In this case,
the VICon used a motion-based cue, a color-segmentation cue, and enforced
that the color remain present for a static time-interval. Next, we show multiple
triggers based on user-input (Figure 4-middle). Here, the user can select the ball,
drag it, and release. The parser incorporates a simple-gesture recognition stage;
it’s state-model follows Figure 2. As mentioned earlier, motion and dynamics
can be added to the VICons. Figure 4-right shows a BreakoutTM like program
where the ball is a VICon. During play, the ball (the VICon) travels through
the workspace. The user attempts to prevent the ball from falling through the
bottom of the workspace while deflecting it toward the colored bricks at the top
of the workspace; notice the VICon is not anchored.

The thprevious three VICs-based interface examples employ the 2D-2D mir-
ror mode of operation. Our current focus is the 2.5D augmented reality mode
of operation. To this end, we have developed a set of fast surface recovery tech-
niques [6] allowing us to anchor the interface to a planar surface.

Fig. 4. (left) A VICs-based calculator using a motion-color parser. (middle) Gesture-
based demonstration of multiple interaction triggers for a single VICon. (right) VICs-
based 2D-2D mirror mode interface for a BreakoutTM style game.

2.4 Robustness and Applicability

In this section, we presented a general framework for vision-based interaction
that provides set of efficient techniques to employ video as input to computer
systems without requiring the user to learn complex interaction semantics. We
argue that given a finite set of interaction primitives, the site-centric parsing will
perform well. Under the site-centric model, each interface object is trained on a
prior set of activation patterns through its parser. These selectors are built with
well understood image processing techniques and operate on a small subset of
the image. In Section 4, we provide experimental results that support our claim
of the scheme’s robustness.

While in its current state the topology of the parser and implementation of
the selectors is the task of the developer, we are investigating learning methods
(e.g. neural networks) to make this process automatic. The set of example inter-
faces we present in this paper demonstrate that this is not a hindrance to the
adoption of the VICs framework.

The VICs model can immediately be employed to provide fully-functional
standard user interfaces by mimicking their components (buttons, scrollbars,
etc). However, it is not universally applicable for there may be some interfaces
perfectly suited to user-centric interaction models. For example, eye gaze track-
ing may be the only way to enable interaction during automobile driving.

3 A Stochastic Extension of the Parser

As noted at the outset, one of the central problems in vision-based interaction
is to effectively manage the complexity of the input space. As a first step, VICs
makes use of geometrically localized interaction and state-based activation to
minimize both input complexity and computational complexity. As a next step,
we are abstracting the visual input space using ideas originally developed in the
area of speech processing (Figure 5).

In a speech system, interpretation of the incoming waveform is performed
in two steps. First, an acoustic pre-processor turns the continuous input wave-

 Linguistic

Decoding

Phoneme WordsAcoustic

Processing

Speech

 Gesture

Language

Decoding

Gesteme GesturesVisual

 Processing

Video

Fig. 5. The parallels between a speech processing system and visual “language” pro-
cessing.

form into a relatively small set of discrete “symbols” (phonemes). Subsequently,
temporal sequences of phonemes are processed into words using a learned lan-
guage model. In our proposed vision processor, we also abstract the incoming
high-dimensional image sequence into a lower-dimensional discrete input string,
now representing some aspect of spatial appearance, and likewise train temporal
models on these “gestemes” to recognize complete gestural cues.

In the remainder of this section, we describe the results of an initial prototype
VICs-based interaction system to identify a button-pushing action. We use a
static camera to supervise a virtual button, which is represented by a graphical
icon. The user is expected to move his finger toward the button and stay on the
button for a short period of time to trigger it. The system will decide if the user
has triggered the button. Thus, fast and robust foreground segmentation and
action recognition are two key elements of our system.

3.1 Background Modeling and Image Segmentation Based on Hue

Histograms

Background subtraction, gray-scale background modeling [14], color appearance
modeling [28], color histogram [17] and combining of multiple cues [24] are among
the most widely used methods to model the background and perform foreground
segmentation. We propose to use a hue histogram for its computational efficiency
and relative color invariance. Hue is a good color-invariant model that is rela-
tively invariable to translation and rotation about the viewing axis, and changes
slowly under change of angle of view, scale and occlusion [11].

We assume that the background is known for a given session. We split the
background image into an array of non-overlapping equal-sized sub-images. For
each sub-image, we build a hue histogram to model it. We process the foreground
image in a similar way and perform pairwise histogram matching between back-
ground and foreground image histograms. Here, we employ histogram intersec-
tion [28] as the comparison criterion.

H(F, B) =

∑n

j=1
min(Fj , Bj)

∑n

j=1
Bj

(1)

Here B and F refer to the background and foreground histogram respectively.
If the matching value is below the threshold, which is determined empirically, the
corresponding sub-image is classified as foreground; otherwise, it is background.
Our experiments show that combining a hue color model with histogram inter-
section can achieve relative invariance to illumination changes and obtain good
segmentation results. Figure 6 shows an example.

Fig. 6. An example of background image, unsegmented image and segmentation result.
The leftmost image is the background. The second image shows when the hand has
entered the scene. The final segmentation result is shown in the third image. The last
image demonstrates our feature space definition.

3.2 HMM-based Human Activity Recognition

In our experiment, we employ HMM [15] techniques [16] to train and recognize
the button-pushing action. The basic idea is to define a finite feature space onto
which the image is mapped. Given any captured image sequence, we convert it
to an array of discrete features. A discrete forward HMM is constructed for each
class of actions and trained based on training sequences using the Baum-Welch
algorithm [16]. The probability that each HMM generates the given feature se-
quence is the criterion of recognition.

We propose a computationally efficient and robust feature extraction scheme.
The extracted feature indicates the direction and distance of the finger from the
center of the button. In principle, we split the local activation region of the button
into a 5 by 5 grid. Based on the foreground segmentation result, we can claim
whether a certain cell is covered by the hand by thresholding the percentage of
the foreground pixels in the cell. The direction of the hand with respect to the
button is then decided by comparing the number of cells touched by the hand in
each of the four directions. The distance of the finger with respect to the button
is calculated as the distance between the center of the button and the nearest
cell covered by the hand. Combination of all discretized directions and distances
forms our feature space.

We experiment with two different HMM structures to model the dynamics of
the gestures. There are four different gestures, each of them modeling triggering
the button from a distinct approaching direction: i.e. left, right, up and down.
The first HMM paradigm is the singleton-based composite model. For each fea-
ture state, we define a basic singleton HMM (Figure 7) to represent the dynamics
of the finger movement for this particular spatial configuration. To capture the
temporal dynamics of the whole gesture, we learn a representative sequence for
each of the four classes of actions. Based on this characteristic sequence, we build
the HMM for this class by concatenating, with null transitions, all the basic sin-
gleton HMMs corresponding to each symbol in the sequence. Figure 7 shows
the structure of this singleton-based HMM structure. In essence, this topology
models the gesture as a tour through a series of spatial configurations.

The second model is a three state forward HMM as shown in Figure 7. Each
class shares the same topology, with the parameter set trained separately based
on the sequences belonging to corresponding class. The attractiveness of this
topology is that it intuitively models the temporal dynamics of the gesture, as
opposed to the singleton-based HMMs that try to model each of the symbols in
the observation dictionary. In our experiment, for each of the four classes, we
expect the user to move the finger through the feature space in the following
order: outer layer, inner layer and center of the button. Intuitively, the dynam-
ics is composed of three distinct stages. Ideally, each of the three states of the
forward HMM would model the corresponding stage of the dynamics. The pa-
rameter sets of the trained class HMMs verify our expectation. For example, if
the recognizer observes a sequence in which the hand stays on the button all the
time but does not witness the process showing the hand approaching the button,
it will reject the sequence as a valid trigger action. In general, a dynamic pro-
cess with n stages can be modeled using an n-state forward HMM with similar
topology. For example, in [27], four-state HMMs are used to recognize American
Sign Language.

1 2 HMM
for
S1

HMM
for
S2

...
HMM

for
Sn

1 2 3

Fig. 7. HMM structures used to model gestures. The left figure shows the structure
of a basic singleton HMM. The center figure illustrates the composite HMM topology
that concatenates singleton HMMs. The topology of the simple three-state HMM is
shown in the right figure.

Since it is difficult to capture all possible patterns of non-pushing actions,
we use a threshold on the highest possibility of the classes to perform rejection.
However, the duration of the action and the possibility that each class generates

such a sequence may vary significantly even though the action pattern is still the
same. To overcome this time variation, we perform sequence aligning in training
and recognition. That is, we choose a fixed length to be the standard length (for
example, 20 frames). We perform sampling or interpolation for longer or shorter
sequences to fit our standard.

4 Experimental Results

In our current experiment, we use a color camera with an image size of 640×480
as the imaging sensor on a standard Pentium III 1Ghz PC running Linux OS.

4.1 Background Modeling and Segmentation Result

To test our segmentation scheme, we captured image pairs of the background
and foreground. By comparing the segmentation result and the ground-truth
classification image, which is generated by manually marking the foreground
part of the scene, we are able to evaluate this algorithm. We captured more than
20 pairs of background/foreground images with different background scenes and
carried out the experiment on these images. The test set also includes 6 pairs of
images that undergo illumination changes. As a result, the average correct ratio
based on per pixel basis is 98.16%, with average false positive ratio of 1.55% and
false negative ratio of 0.29%. Figure 6 shows a typical segmentation example.

As shown in Figure ??, we also compare the segmentation result with dif-
ferent sub-window sizes and with different numbers of hue histogram bins. The
result shows that histograms with at least 8 bins perform better than those with
less, while increasing the bins to 16 or more does not bring much performance
enhancement for our experimental set. It can be foreseen that more bins will be
needed to carry out good segmentation for those images in which the appearance
of the foreground is close to that of the background. The result also shows that
the false positive ratio will decrease with the increment of tile size because imag-
ing noise would be compressed when the histogram is constructed over a larger
neighboring area, which in essence is a process of averaging the appearance of
the tile.

4.2 Action Recognition Result

For training and testing of our HMMs, we recorded over 300 action sequences
performed by 6 different people, with 76 of the sequences being used for training.
For the singleton-based model, an offline procedure is carried out to find the
best characteristic sequence for each class and construct the HMM. For both
the singleton-based model and the simple 3-state forward HMM, we carry out
training. Both models achieve correct ratio of 100% on the training set. We also
compare them by recognizing a test set of over 270 sequences. The length of
the test sequences varies significantly, ranging from 30 to over 200. The test set
includes some sequences with illumination changes, which are also segmented

4 6 8 10 12 14 16
93

94

95

96

97

98

99

Sub−image Size

C
or

re
ct

 R
at

io

Segmentation Correct Ratio with Different Tile Size

Bins=4
Bins=8

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

Sub−image Size

F
al

se
 N

eg
at

iv
e

/ F
al

se
 P

os
iti

ve

False Negative/Positive with Different Tile Size

FP(Bins=4)
FP(Bins=8)
FN(Bins=4)
FN(Bins=8)

Fig. 8. Segmentation correct ratio/false positive/false negative with different sub-
image size and number of bins in the histogram.

successfully. To test the rejection scheme, we also include invalid sequences in
the test set, such as those that do not conform to the temporal pattern of the
model gesture and those that do not follow the correct order of expected visual
features of the models. The resulting correct ratio is 96.8% for the singleton-
based HMM model and 96.0% for 3-state simple HMM. This suggests that a
simple 3-state HMM can model the button-pushing gesture almost as good as a
60-state (standard length(=30) × 2) singleton-based composite HMM.

For the singleton-based model, the standard length of the class characteris-
tic sequence will influence the system performance and speed. Along with the
increase of the size of primary sequence, the time needed to carry out the recog-
nition will also grow linearly. However, since a longer sequence contains more
information and thus, has a larger HMM, the total system performance will im-
prove. The following table shows the experimental results with differing standard
lengths.

Table 1. Experiment results with different length of characteristic sequence

L Accuracy of Training Set Accuracy of Test Set

10 100.0% 86.8%

20 100.0% 94.2%

30 100.0% 96.8%

For the simple n-state forward HMM structure, we also carry out experiments
with different number of states in the topology of the HMM. It is not surprising
to find an increase in the number of states from 3 to 4 or 5 doesn’t bring much
accuracy improvement for our simple 3-stage gesture. The result supports our

previous claim that an n-state HMM can model a dynamic process with n stages
well.

5 Conclusion

We have introduced the VICs approach to vision-based interaction. VICs stems
from our experience using locally activated iconic cues to develop simple vision-
driven interfaces. In particular, we have identified two central problems to be
solved: (1) developing reliable foreground-background disambiguation and (2)
incorporating dynamics into gestures. We have shown that, given good solu-
tions to the former problem, the latter can be addressed using standard HMM
techniques.

Our immediate goal for the VICs project is to create 2.5D surface-anchored
interfaces. To this end, we have developed a set of fast surface recovery tech-
niques to place two rectified images in correspondence [6], and we are currently
extending the results reported in this paper to a two-camera system. In the lat-
ter case, the HMM input will be data from both images, and the goal will be to
recognize that the user is pressing a button as if it appears on the underlying
surface.

Currently, we use general HMMs to train and recognize different gestures.
However, other techniques, such as an HMM based on minimum classification
error and duration-HMMs, could help to improve the recognition performance
of the system. We are also interested in expanding our gesture set to allow
richer and more complex interaction, such as triggering a switch, twisting a dial,
dragging an icon, etc.

References

1. R. Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual
Environments, 6:355–385, 1997.

2. S. Basu, I. Essa, and A. Pentland. Motion regularization for model-based head
tracking. In Proc. Int. Conf. Pattern Recognition, 1996.

3. M.J. Black and Y. Yacoob. Tracking and recognizing rigid and non-rigid facial
motions using local parametric models of image motion. Int. J. Computer Vision,
25(1):23–48, 1997.

4. G. Bradski. Computer vision face tracking for use in a perceptual user interface.
Intel Technology Journal, April 1998.

5. C. Bregler and J. Malik. Tracking people with twists and exponential maps. In
Proc. Computer Vision and Pattern Recognition, pages 8–15, 1998.

6. Jason J. Corso, Darius Burschka, and Gregory D. Hager. Direct Plane Tracking
in Stereo Image for Mobile Navigation. In Proceedings of International Conference
on Robotics and Automation, pages 875–880, 2003.

7. Jason J. Corso, Darius Burschka, and Gregory D. Hager. The 4DT: Unencumbered
HCI With VICs. In Proceedings of IEEE Workshop on Computer Vision and
Pattern Recognition for Human Computer Interaction, 2003.

8. Y. Cui and J. Weng. View-based hand segmentation and hand-sequence recognition
with complex backgrounds. In ICPR96, page C8A.4, 1996.

9. D. Gavrila. The visual analysis of human movement: a survey. Computer Vision
and Image Understanding, 73:82–98, 1999.

10. D. Gavrila and L. Davis. Towards 3-d model-based tracking and recognition of
human movement: A multi-view approach. In Proc. Int. Conf. Automatic Face
and Gesture Recognition, 1995.

11. Theo Gevers. Color based object recognition. Pattern Recognition, 32(3):453–464,
1999.

12. L. Goncalves, E. Di Bernardo, E. Ursella, and P. Perona. Monocular tracking of
the human arm in 3-d. In Proc. Int. Conf. Computer Vision, pages 764–770, 1995.

13. G. Hager and K. Toyama. Incremental focus of attention for robust visual tracking.
International Journal of Computer Vision, 35(1):45–63, November 1999.

14. Thanarat Horprasert, David Harwood, and Larry S. Davis. A robust background
substraction and shadow detection. In Proc. ACCV’2000, Taipei, Taiwan, January
2000.

15. K. Ishii J. Yamota, J. Ohya. Recognizing human actions in time-sequential images
using hidden markov model. In IEEE Proc. CVPR 1992, Champaign, IL, pages
379–385, 1992.

16. Frederick Jelinek. In Statistical Methods for Speech Recognition, MIT Press, 1999.
17. Michael J. Jones and James M. Rehg. Statistical color models with application to

skin detection. International Journal of Computer Vision, 46(1):81–96, 2002.
18. R. Kjeldsen and J.R. Kender. Interaction with on-screen objects using visual

gesture recognition. In CVPR97, pages 788–793, 1997.
19. P. Maes, T.J. Darrell, B. Blumberg, and A.P. Pentland. The alive system: Wireless,

full-body interaction with autonomous agents. MultSys, 5(2):105–112, March 1997.
20. T. Moran, E. Saund, W. van Melle, A. Gujar, K. Fishkin, and B. Harrison. Design

and technology for collaborage: Collaborative collages of information on physical
walls. In Proc. ACM Symposium on User Interface Software and Technology, 1999.

21. V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual interpretation of hand gestures
for human-computer interaction: A review. PAMI, 19(7):677–695, July 1997.

22. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of
the future: A unified approach to image-based modeling and spatially immersive
displays. In Proc. SIGGRAPH, 1998.

23. J.M. Rehg and T. Kanade. Visual tracking of high DOF articulated structures: An
application to human hand tracking. In Computer Vision – ECCV ’94, volume B,
pages 35–46, 1994.

24. Christopher Richard Rwen, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pent-
land. Pfinder: Real-time tracking of the human body. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19(7), 19(7):780–784, 1997.

25. J. Segen and S. Kumar. Fast and accurate 3d gesture recognition interface. In
ICPR98, page SA11, 1998.

26. Quentin Stafford-Fraser and Peter Robinson. Brightboard: A video-augmented
environment papers: Virtual and computer-augmented environments. In Proceed-
ings of ACM CHI 96 Conference on Human Factors in Computing Systems, pages
134–141, 1996.

27. T. Starner and A. Pentland. Real-time american sign language recognition from
video using hidden markov models. Technical Report TR-375, M.I.T. Media Lab-
oratory, 1996.

28. M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer
Vision 7(1), pages 11–32, 1991.

29. Andries van Dam. Post-wimp user interfaces. Communications Of The ACM,
40(2):63–67, 1997.

30. Pierre Welner. Interacting with paper on the digital desk. Communications of the
ACM, 36(7):87–96, 1993.

31. C. Wren and A. Pentland. Dynamic modeling of human motion. In Proc. Int.
Conf. Automatic Face and Gesture Recognition, 1998.

32. C.R. Wren, A. Azarbayejani, T.J. Darrell, and A.P. Pentland. Pfinder: Real-time
tracking of the human body. PAMI, 19(7):780–785, July 1997.

33. M. Yamamoto, A. Sato, and S. Kawada. Incremental tracking of human actions
from multiple views. In Proc. Computer Vision and Pattern Recognition, pages
2–7, 1998.

34. Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: an interface
for sketching 3d scenes. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 163–170. ACM Press, 1996.

35. Zhengyou Zhang, Ying Wu, Ying Shan, and Steven Shafer. Visual panel: Virtual
mouse keyboard and 3d controller with an ordinary piece of paper. In Workshop on
Perceptive User Interfaces. ACM Digital Library, November 2001. ISBN 1-58113-
448-7.

