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Abstract

In this paper we address the problem of establishing a computational model for
visual attention using cooperation between two cameras. More specifically we wish
to maintain a visual event within the field of view of a rotating and zooming camera
through the understanding and modelling of the geometric and kinematic coupling
between a static camera and an active camera. The static camera has a wide field of
view thus allowing panoramic surveillance at low resolution. High-resolution details
may be captured by a second camera, provided that it looks in the right direction.
We derive an algebraic formulation for the coupling between the two cameras and we
specify the practical conditions yielding a unique solution. We describe a method for
separating a foreground event (such as a moving object) from its background while
the camera rotates. A set of outdoor experiments shows the two-camera system in
operation.
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1 Introduction

In this paper we address the problem of establishing a computational model for visual
attention using cooperation between two cameras. Attention mechanisms may generally be
defined as processes that allocate significant computing power to one part or several parts
of an image, where information relevant to the task at hand is likely to be found. Therefore,
attention processes should encapsulate both top-down and bottom-up visual processes such
as (i) the selection of a visual event of interest, (ii) the detection of image features which
characterize the selected event, (iii) mechanisms for maintaining these features in the visual
field of view, as well as (iv) further analysis such as recognition and interpretation. In
particular, we address the problem of maintaining a visual event within the field of view of
a camera and the approach that we take consists of monitoring an active camera through
the understanding and modelling of the coupling between an active camera and a static
camera.

Consider for example the case of a pedestrian or a bicycle rider evolving in an urban
environment. They may be viewed as static objects in a single image. Nevertheless, in
order to take into account the deformable/articulated nature of their shape and motion as
well as their time evolution, it is crucial to observe them in videos and therefore consider
them as dynamic objects.

Traditional visual attention systems use either an active camera, a binocular active
system, or several static cameras. An active camera may rotate, translate, and zoom-in
and -out in order to maintain the object of interest within its field of view and in order
to compensate for changes in the object’s appearance [15], [8], [6], [16]. Binocular devices
use controlled camera movements for gaze holding — the two optical axes intersect and
produce a zero-disparity surface [3|, [2]. Other systems use several static cameras [12].
Static camera configurations have been thoroughly studied from a geometrical point of
view [9].

Both single and multiple camera systems have advantages and disadvantages. A single
camera is simpler to operate and its motion can be easily controlled with motors. However,
it cannot acquire depth information that is useful for scene understanding. Another draw-
back is that it cannot provide low and high resolution simultaneously. Multiple camera
systems have the advantage of being able to acquire potentially richer information provided
that the image registration (or correspondence) problem is solved. Active binocular heads
try to combine the advantages of controlled motions and of multiple camera geometry.

In this paper we propose an innovative solution that combines the advantages of both
static and active cameras and of both low- and high-resolution images. One camera is fixed
and has a wide field of view, thus allowing surveillance of a wide area in terms of both width
and depth of its field of view. Therefore, the image associated with this camera provides
a panoramic view while it cannot capture scene details. These scene details are captured
by another camera which is mounted onto a motor-driven pan and tilt device. Therefore,
this camera is able to gaze in a specific direction with a specified focal length. At the
best of our knowledge the only previous attempt to combine static and active cameras for
visual attention and surveillance is described in [18]. With respect to [18| which describes
a general philosophy and a system architecture, we analyse and characterize in detail the
fine geometric and mechanical coupling between a static and a rotating camera.



In practice, the two-camera video system proceeds as follows. A scene event such
as a moving person is first detected and selected using the first (static) camera. Since
this camera is static and its field of view covers the whole scene, an event will appear in
its associated image sequence as a relatively small object. Well understood and widely
developed methods (optical flow, image differentiation, background subtraction, etc.) may
be used to detect an event occurring in such a region and track it over time. However, the
resolution associated with this image is not sufficient to properly recognize and interpret
the event. The second camera must be controlled in order to dynamically adjust its pan,
tilt, and zoom such that the moving object remains in its field of view and such that the
object projects onto the image plane at constant size and resolution. Ideally one would
like that the camera’s degrees of freedom (pan, tilt, and zoom) compensate for changes
in appearance due to both viewpoint and depth variations. Once the object of interest
has been properly “captured” by the second camera, the latter should be able to track the
object using a visual servoing loop which controls the camera’s rotations and zoom settings
[5].

Such a camera system raises several interesting issues and questions from methodolog-
ical, computational, and practical points of view. The traditional approach for coupling
two or several static cameras based on projective geometry and its associated algebraic
and numerical tools is not sufficient. Since one of the cameras is active, both the ge-
ometrical and the mechanical couplings must be considered. Another crucial issue that
must be addressed is the stereo correspondence problem. With two static cameras the
correspondence problem does not have, in general, a good practical solution because of
the inherent ambiguity associated with image-to-image matching. With an active stereo
system and under the assumption that a specific object must be selected and tracked, the
correspondence problem becomes tractable from a computational point of view. More-
over, stereo correspondence is required only for bootstrapping the attention mechanism.
Finally, cooperation between a low-resolution tracker performed with a static camera and

a high-resolution tracker performed with an active camera must be properly defined and
modelled.

This paper has the following original contributions. contributions: We derive a mathe-
matical expression for the two-camera coupling, where one camera is static and the other
comera rotates, under the form of a set of polynomial equations. We show that, in the gen-
eral case, there may be several solutions for the pan and tilt angles and that these solutions
are parameterized by the a depth parameter (the depth from the static camera to the scene
event). We consider the special case where the pan and tilt rotational axes are mutually
orthogonal. We show that with a practical camera setup there is a unique solution for
the pan and tilt values. We describe a practical solution for achieving gaze control with a
rotating camera and for separating a moving object from its static background. Once an
initial solution is found, gaze-control is reduced to the tracking of an event in the static
image and to the updating of the pan and tilt angle values.

The remainder of this paper is organized as follows.

Section 2 describes and analyses in detail the geometric and kinematic coupling between
a static camera and a rotating camera. The coupling model allows the rotating camera to
gaze onto an event selected in the static camera. We analyse both the general case and a
simplified pan-tilt model. We derive the number of algebraic solutions.



Section 3 describes a method for dynamically separating an event (a moving object)
from its background by estimating the projective mapping associated with a camera under-
going rotational motions. We describe a method for robustly estimating this mapping by
aligning the grey-levels/colors of image pixels which correspond to the background. This
transformation is then used for warping the previous and next frames onto the current
frame and for detecting event pixels, i.e., with an apparent image motion that is different
than the apparent background motion.

Section 4 provides an overview of the practical system that is implemented together with
some implementation details: camera, stereo, and kinematic calibration, as well as depth
estimation with a static-active camera pair. A complete set of experiments is described in
detail as well.

Appendices A, B, and C provide a detailed description of the kinematic model being
used to describe the pan and tilt device, as well as a method for calibrating the fixed
parameters of this zero-reference kinematic model.

2 The coupling between a static and a rotating camera

In this section we consider the geometric and kinematic aspects of the coupling between
fixed and rotating cameras. From a geometric point of view, the two cameras act as a
stereoscopic device which can be described using the epipolar constraint within a projective
geometry framework. From a mechanical point of view, the rotating camera is mounted
on a pan and tilt mechanism which has an associated kinematic structure. In order to
describe the latter we will adopt a zero-reference kinematic model.

In this section we establish the formal link between a static camera and a rotating cam-
era based on the epipolar geometry (which holds at each time instant) and the kinematic
model associated with a pan and tilt mechanism. First we introduce the point reconstruc-
tion equations. Second we consider a pan and tilt kinematic model in its most general
form. Third, we analyse the case of a simplified pan and tilt model, i.e., the pan and tilt
rotation axes are mutually orthogoanal.

2.1 Two-camera geometry

Let us denote by P; and Py the projection matrices associated with the two cameras. A
3-D point M, represented in projective space by a 4-vector M = (X Y Z 1), is related
to its image projections m; and msy by:

)\1m1 = PlM (1)
)\ng = PQM (2)

The non null scalars A\; and )y indicate that the projective equality is defined up
to a scale factor. They may be interpreted as the projective depths along the lines of
sight from the centers of projection through the image points m; and my with projective



coordinates m; and ms. For pinhole cameras, the 3x4 projection matrices have the
following parameterization:

P, = K;[I 0] (3)
P, = Kri[R t] (4)

The 3x3 matrices K; and K have the intrinsic camera parameters as entries (see below
the expression of Ks). The rotation R and the translation ¢ describe the orientation and
position of the second camera with respect to the first camera. Without loss of generality
we will assume that the first camera is calibrated, therefore matrix K; is known. The
second camera is calibrated as well up to its focal length f which may or may not be
known and which is allowed to vary. The expression of K is:

Ef 0w, L0 wl[Ff 00
Ke=| 0 f v.|=|01 v 0 f 0| =K,D,
0 0 1 00 1 00 1

In order to eliminate the known camera parameters from the equations we use the the
substitutions m; = Kyn; and my = Kjyn,. By combining eq. (1) with eq. (3) we obtain
a simple expression for the coordinates of M:

_ A1
v ()
By combining eq. (2) with eq. (4) and by substitution of M we obtain:

)\2n2 = Df ()\1Rn1 + t) (5)

This is the projective epipolar relationship between the camera coordinates n; and ns
(of my; and may), the focal length of the active camera f, and the relative position and
orientation of the active camera with respect to the static camera, ¢ and R. With the
notation ny = (g Y 1)T we farther eliminate \; by dividing the first and second vector
components, ()1, ()2 with the third vector component, ()3:

To = f()\an1+t)1
2 ()\1Rn1+t)3 (6)

- fm

y2 (Aan1+t)3

Without loss of generality we seek a solution which configures the stereo system such
that the scene point M is viewed in the center of the image associated with the active
camera: my = (00 1)". The equations above become:

()\1R’n1 + t)l =0 (7)
()\1R’n1 + t)z =0



Problem formulation. Given a 3-D point M which is observed in the static camera’s
image at my with camera coordinates ny, we want to find the position and orientation of
the active camera such that M projects onto the active camera’s image center.

In order to solve this problem we must parameterize the rotations and translations of
the active camera as a function of (i) the relative position of the active camera with respect
to the static camera and of (ii) the kinematic model associated with the active camera’s pan
and tilt mechanism. Therefore we must establish the link between the epipolar geometry
constraint and the kinematic model constrains. We will adopt the zero-reference kinematic
model for the pan-tilt device. This model allows the user to select a zero-reference or a
docking reference for the kinematic chain. We solve for a general pan-tilt kinematic model
and we develop a close-form solution for a simplified pan-tilt model. The existence of a
unique solution allows to safely apply numerical methods to the general case.

We denote by T the 4x4 homogeneous matrix:
R t
T | 5 1] ®)

We also denote by T the docking or reference position of the active camera. From a
practical point of view and for stereo calibration purposes, this reference position is chosen
such that the two cameras have a common field of view. Let Q describe the rigid and
constrained motion undergone by the active camera from its docking position to a current
position. From Figure 1 one can notice that the following relationship holds:

T = QT, (9)

Insert Figure 1 approximatively here

2.2 General pan-tilt model

Matrices Q and T have the same mathematical structure although the former describes
a kinematically constrained motion while the latter describes a static relationship between
two Cartesian frames. Matrix Q describes the motion undergone by a pan and tilt mecha-
nism. In order to describe such a mechanism we will adopt the well known zero-reference
kinematic model. The latter is described in many textbooks such as [13, 17, 14]|. In its
most general form this motion can be decomposed as follows (see appendix A):

Q = QQ(a7QO)Q1(ﬁ7507a0> (10)

where Q; and Q, are one-dimensional Lie groups each one describing a rotation: a and 3
are the pan and tilt angles parameterizing these motions with «g and 3y being the pan and
tilt values associated with the zero-reference position. Each one of these transformations
can be written as:

Q, = { EJ{Tl tl1 ] = Tyxq +sin(f — 50)621 + (1 = cos(f — 50))62% (11)



Matrix Q1 describes the tangent operator associated with the rigid motion; It is com-
posed of a skew-symmetric matrix R; and a translational velocity vector t; and writes
as:

Q=g b (12)

It is worthwhile to notice that Q' ((8 — 5y)) = Q,(—(8 — 3)) and from equation (11)
we obtain that the tangent operator may be estimated from a single motion:

trace (Q;) = 2 (1 + cos(8 — f)) (13)
and: 1
Qi = 2sin(3 — /o) Q- Q) (14)
By substituting eq. (12) into eq. (11) we obtain:
R1 = ngg —+ sin(ﬂ — 60)]-?{1 -+ (]_ — COS(BA— ﬁo))l‘:{% (15)
tl = sin(ﬁ — ﬁO)il + (1 - COS(ﬂ - ﬁO))Rlil (16)

There is a similar expression for Q,. Equation (9) may be written as:

R = R,RR, (17)
t = R2R1t0+R2t1+t2 (18)

Eq. (7) becomes (the subscripts (); and ()2 denote the first and second vector compo-
nents):

(AlRQRlROnl + RQtho + Rgtl + t2)1 =0 (19)
(MR2R1Rony + RoRito + Roty +13); =0
This a set of of two equations with three unknowns: «, (3, and \;. We recall that
we want to determine the pan and tilt angles such that the event detected at position
my in the first image (with camera coordinates n,) appears at position my (with camera
coordinates (0 0)) in the second image. The unknown )\, is the depth of the observed scene
point with respect to the fixed camera. In order to be able to find a solution for the pan
and tilt angles we must specify this depth. The practical method for estimating the latter
is described in detail in section 4.2. From now on we will assume that A; is known.

In practice it will be more convenient to consider the initial set of three equations, i.e.,
eq. (5). By substituting equations (17), (18) into this equation and with p = A\;Rony + ¢
we obtain:

0
Rip+ti+Ryt,=Ry, | 0 (20)
A2

Vector p denotes the coordinates of the observed 3-D point M in the zero-reference
camera frame — the docking position of the active camera. From the equations above it can
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be observed that Ry, t;, Ro, and ¢, are parameterized by the known tangent operators (see
appendix C) and by the three unknowns — the pan and tilt angles and the depth parameter
Ag. Therefore we obtain three equations in cos(5— ), sin(5— ), cos(a—ayp), sin(a— ),
and A = \y. With the following standard substitutions:

2tan @ 2,
1+ tan? 220) 14142

sin(a — o) =

1—tan® (@20 g2

1+ tan? 020) 142

cos(a — o) =

we obtain three polynomial equations in three unknowns: ¢,, tg, and A. It is possible
to eliminate A\ as an unknown between the second and third equations, at the price of
increasing the degree of the resulting polynomials. In the general case it will be difficult
to analyse the number of admissible solutions of such a set of polynomials [4]. Although
in practice these polynomials will be solved using numerical methods, such as the Newton
method for finding roots of sets of polynomials, it is crucial to be able to state in advance
the exact number of practical solutions.

We denote these sets of solutions by (a¥, 3® \®). They are in the intervals [ag —
7, g + 7], [Bo — 7, Po + 7] and we must have A > 0. So far we considered the most general
case. We analyse in detail a simplified pan-tilt device and we show that in this case there
is a unique solution. We conclude that the general case also admits a unique solution.

2.3 Simplified pan and tilt model

In the case where the pan and tilt axes are mutually orthogonal the kinematic model of
the device is simplified, as described in appendix B. This simpler kinematic model allows
an algebraic analysis of the number of solutions associated with the inverse kinematics
of the pan and tilt camera. Moreover and for the sake of this analysis, one may choose
ag = B = 0. The matrices become:

cos@ 0 sinfB tl]
O
Q= —sinf3 0 cosf3 t} (21)
0 0 0 1|
10 0 7]
| 0 cosa —sina {3
Q=101 gna cosa t2 (22)
0 0 0 1|
It follows that eq. (20) becomes:
cos3 0 sinp3 D1 t 1 0 0 t2 0
0 1 0 pr |+ B |+ 0 cosa sina t2 | = Asina
—sinf8 0 cosf3 P3 t 0 —sina cosa t2 Ao COS v



which yields the following equations in tang =g, tan § = t,, and A = Ay:

(th+ 65 —p1) 5+ 2ps ts+ (6 + 11 +p1)

(ty — 12+ po) 2+ 2(12 — \) to + (t5 + 12+ po)
(L+¢2)((t5 — ps) tﬁ —2p1tg +ps + t3) +

(L) (A= 83) 5 =25 ta — (A = £3))

The first equation has two real solutions for tg. Indeed, its discriminant is: A =
(p3)? + (p1)* — (t} + t3)%. Obviously the coordinates of vector p have larger values than
t1 + t2. We recall that vector p represents the coordinates of the observed point M in the
zero-reference camera frame. Therefore A > 0 and there are two solutions for § in the
interval [—7,7]. Only one of these solutions can be achieved in practice, i.e., when the
observed point lies in front of the camera. To conclude, the first equation always admits
two solutions and only one solution is achievable in practice.

The second equation has two real solutions for ¢, as well. Indeed its discriminant is:
A = (t2—X)? — (p2)? + (5 — t3)*. Recall that X represents the depth from the camera to
the observed point and in practical configurations A >> ¢2 and A >> py. Therefore this
equation admits two solutions as well and with the same reasoning as above we conclude
that only one solution is achievable in practice.

3 Event/background separation

In the previous section we described the geometric and mechanical coupling allowing the
active camera to rotate such that an event detected and tracked with the static camera
may be visualized at a higher resolution. In order to be able to analyse this event in more
detail, one must properly isolate it from the background.

In the past, event background separation has been mainly addressed with static cam-
eras. When a camera moves, the problem is more difficult because one has to distinguish
between camera motion (egomotion) and event motion. Nevertheless, whenever the camera
undergoes a pure rotational motion, i.e., when the center of projection lies onto the axis
of rotation, it is possible to separate egomotion from event motion by assuming that the
background pixels are transformed from one image to another by a 2-D projective mapping,
[10].

The motion of the pan and tilt camera is described by eq. (10). In general, this does
not guarantee that the camera undergoes a pure rotation around its center of projection
because of the mechanical offsets. In practice the latters are small compared to the distance
from the camera to the background and therefore the background may well be viewed as
a plane at infinity, [10].

Let mb ' and m} describe the homogeneous coordinates of an image point at times
t — 1 and t. The subscript 5 indicates that we deal with the active camera. One can apply
equations (3) and (4) to the active camera and assume that the translational part of the
motion is null. We obtain the following well known formula for cameras undergoing pure
rotation:

= KRR TTKS 'mb ! (23)



where Rg’tflRi’tfl models the rotation of the active camera. We denote this mapping by:
Ht,t—l — K2Rgt—1Rt1,t—1K2—1 (24)

and the problem is to estimate the 3x3 matrices H as the camera rotates.

The relationship between m5* and m} above is valid for static scene points. In the past
this was used in combination with an outlier rejection technique in order to segment the
image into two layers: a static layer corresponding to a static background and a dynamic
layer corresponding to moving objects — a foreground. However, such a strategy is generally
based on robust statistical methods applied to a single rotating camera.

With the two-camera configuration being used here, the segmentation algorithm is
greatly simplified. Indeed, moving objects are detected as events in the image associated
with the static camera. The camera coupling allows to predict the main event under
investigation, to place the second camera, and to adjust its settings, such that this event is
centered with respect to the active camera coordinate frame. Therefore, a major advantage
associated with this two-camera configuration is that a robust statistical method is not
required. This is best shown on Figure 2.

Insert Figure 2 approximatively here

The separation between an event and its background is therefore based on (i) aligning
the images based on the static background and (ii) on comparing them, pixel by pixel. The
event detection, performed with the low-resolution static image, bootstraps this process.

From now on we consider the images associated with the active camera and we assume
that these images are segmented into two regions: foreground F and background B. In
order to find the homography which aligns the backgrounds between times ¢ and ¢t — 1, the
following error must be minimized (for the sake of simplicity we drop the subscript 5):

B = min 3 |74 (@(m! ™) = T (R(H mi )| (25)

meBs

The function () denotes the non linear mapping from homogeneous to Euclidean coordi-
nates of m, W (my, ma, ms3) = (my/ms, my/ms)". Various methods were developed in the
past for solving this non-linear minimization problem [11], [21], [1].

Once such a homography is estimated, it optimally aligns the backgrounds. The statis-
tics associated with the actual minimization result (FEy;,) allows one to associate a prob-
ability of background with each pixel. These statistics can be improved if a background
image is incrementally built as is done in [1]. Eventually one may use a decision rule in
order to decide whether a pixel belongs to the background or to the foreground [7]. In
practice such an approach will not perform as well as expected simply because background
and foreground image regions may have similar grey-level or color values.

Therefore, to further refine the foreground area we proceed by pixel-to-pixel comparison
between three images at times t — 2, ¢ — 1, and t. The difference between two pixels
corresponding to two aligned images writes:

DU (w(m! ) = (27 (W (m! ) — T (U(E ) (20)
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There is a similar expression for D'~1*=2(¥(m!~2)) where the mapping m!~' = H'"b"2mt-2

holds for the background. As already mentioned, statistics associated with the minimiza-
tion of eq.(25) allows the estimation of a threshold s such that the following simple decision
rule is used: A pixel m! belongs to the foreground if:

Dt’tfl(\lf(mtfl)) > s and thl’t*Q(‘If(mt’Q)) > s

4 Methodology, implementation, and experiments

High-quality pan-tilt cameras available today can achieve a precision of about 0.05° in pan
and tilt. The precision to be reached in practice, using a calibrated camera setup such as
the one described in this section, is of the order of 0.1°. Consider for example a field of
view with an aperture angle of about 2°. At 100 meters the width of the field of view is
3.5 meters and therefore the precision is of the order of 0.2 meters. This is sufficient to
gaze and zoom onto a football player, onto a bicycle, onto a pedestrian, or onto a car in a
typical traffic scenario. This overall precision — 0.1° — can be achieved only if the system
is properly calibrated.

Another important ingredient of such a two-camera device is the control of the active
camera such that it continuously looks towards the object of interest and maintains its
gaze such that this object appears nearby its image center, even if the object’s appearance
changes, if its depth changes, and/or if the object is partially occluded. This process
requires three steps: off-line calibration, initialization and gaze control.

The two-camera visual attention system, proceeds as follows:
e Off-line calibration: see section 4.1.

e [nitialization:

— A scene object is detected and tracked over time (automatically, semi-automatically,

or manually) using the static camera;

— The active camera rotates such that this scene object falls within its field of
view and the depth of this scene object is estimated, i.e., section 4.2;

— Pan and tilt values are estimated from scratch by solving a set of three polyno-
mials associated with the inverse kinematics of the pan-and-tilt device and the
active camera is rotated accordingly;

e (Gaze control:

— The pan and tilt angle values estimated at time ¢ — 1 are used as initial guesses
to find their values at time ¢. Notice that the depth information is maintained
constant and the consequences of this choice are explained below.

— Images at times t — 1, ¢, and ¢ 4 1 are used to separate the moving object from
the background.

Notice that during the gaze-control stage of the algorithm the depth associated with
the scene object is not updated: Instead, its previously estimated value (during the initial-
ization stage) is used. As a consequence, the object will not appear at the image center of
the active camera as its depth varies over time.

10



4.1 Calibration of the two-camera device

The camera cooperation method described in this paper effectively works in practice only
on the premises that the geometric and kinematic parameters of the two camera device are
properly estimated. This is performed by the following steps:

1. Intrinsic camera calibration. The intrinsic parameters of both cameras, i.e., K; and
K, in egs. (3), (4), are calibrated using a classical camera calibration process as
described in detail in [19].

2. Stereo calibration. When the active camera is in its docking or zero-reference position,
the two cameras may be viewed as a standard stereoscopic pair characterized either
by the rotation and translation between the two camera frames (stereo calibration)
or by the epipolar geometry (weak stereo calibration). The method described in
[20] allows for an accurate stereo calibration by moving a 3-D pattern in front of
the cameras. Eventually, the matrix Ry and the vector ¢, characterizing the camera
setup in its docking position are evaluated.

3. Kinematic calibration. The active camera is mounted onto a pan and tilt device — two
coupled rotational motions. Kinematic calibration consists in estimating the tangent
operators associated with these constrained motions, i.e., Q1 in eq. (11). The pan-
tilt kinematic model is formally described in appendix A. The kinematic calibration
procedure is described in detail in appendix C.

4.2 Depth estimation

The method described in sections 2.2 and 2.3 returns a unique set of values for the pan
and tilt angles provided that an estimation of the depth from the static camera to a scene
object is available, \;. In this section we describe a practical technique for estimating the
depth to a scene object. This involves the following steps:

1. Detect this object in the static image and locate its center, say my;

2. Control the active camera such that it looks in the right direction and therefore the
epipolar line associated with m; is visible in its image, and

3. Search along this epipolar line in order to find the best match of my, say ms, and
estimate the depth to the scene object.

Let us suppose that this object is detected and located in the fixed image and let m;
with camera coordinates m; be the image of its center. The scene object lies somewhere
along the line of sight associated with this image point, i.e., Figure 3.

Insert Figure 3 approximatively here
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Let Amin and Apax be the minimum and maximum expected depth values along this
line of sight such that Ayin < A1 < Anax. We associate two points with these depth values,
M pin and My,.. They project onto the active camera’s image plane at mpy;, and Mpyay.
These image-plane points lie on the epipolar line associated with m;. We seek a position,
an orientation, and a focal length for the active camera such that the epipolar line-segment
between my;, and mpy., is actually visible in the image.

We constrain this epipolar line-segment to be a horizontal image line passing through
the image center, i.e., the coordinates of my;, and mpy., verify: ng, = (C,O,l)T and
Nmax = (—¢,0,1)", where 2¢ corresponds to the image width. The image coordinates of
these points verify eq. (6):

_ ()\mianl“Ft)l _ ()\mianl“Ft)Q
€= f()\mlan1+t)3 0 B f()\mlanl+t)3
—c = f(Amaanl“l‘t)l 0 — (Amaan1+t)2

(Amaanl“l‘t)S (Amaanl -‘rt)g

In order to solve these equations and estimate R, ¢, and f, we recall that the rotation
matrix and the translation vector can be parameterized by the pan and tilt angles «, 3
and by the stereo calibration parameters Ry and ¢y, e.g., eqs (17) and (18). Nevertheless,
this parameterization does not allow proper alignment because the active camera cannot
rotate around its optical axis. For this reason we introduce a third rotation allowing a
virtual rotation of the active camera around its z-axis, Rs(7).

Therefore, there are four equations in four unknowns, f, «, 3, and . A solution can
be found using the Newton’s method for solving a set of polynomials. Notice that for each
point-to-point correspondence and for a given depth value, there is a unique solution in
«a and 3. Hence, one can use the known triplets 11, Mmin, Amin and 721, Moy, Amax to find
initial values for the pan and tilt angles and guarantee that the active camera gazes in the
right direction.

The active camera is controlled to zoom and rotate in order to reach the solution found
above, up to a rotation v around its optical axis. Eventually, standard stereo techniques
are applied in order to find the best match along the epipolar line and to estimate the
depth to the scene object.

4.3 Experiments

A full set of experiments is summarized through Figures 4, 5, 6, 7, 8, and 9. The stereo-
baseline between the static and active cameras is of the order of 1 meter. The cameras
observe an outdoor environment. The frames which are shown correspond to 8 samples
out of a 550-frame image sequence.

In the first example (figures 4, 5, 6) the object of interest is a pedestrian. During the
initialization phase, this object is first detected in the image associated with the static
camera. Given minimum and maximum depth estimates (from the static camera to that
person), the active camera rotates and zooms such that the person falls within its field of
view. Since the camera couple is calibrated, it is possible to predict an epipolar line, to
search for a match along this line, and to estimate the depth from the pedestrian to the
static camera.
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Insert Figure 4 approximatively here
Insert Figure 5 approximatively here
Insert Figure 6 approximatively here

The pan and tilt values allowing to place the person’s center of gravity at the image
center are estimated and the active camera’s mechanism is controlled to actually place
the person in its center. A region of interest is defined around the moving object. Notice
however that the pedestrian is not displayed at the image center. This is because there is
an error in the depth estimate. The pan and tilt values are computed based on a depth
estimation that is different than the true depth value.

It is worthwhile to notice the behaviour of the system in the presence of occlusions
and of missing data. The pedestrian is first occluded by a car, then appears and then
walks outside the field of view of the camera, turns, and comes back. Instead of these
disturbances the gaze of the active camera is correctly controlled. Whenever the object
disappears from the field of view of the static camera, the active camera tracks the moving
object using the event/background separation method outlined above.

In the second example (figures 7, 8, 9) the object of interest is a bicycle rider. Notice
that the object is properly tracked in spite of partial occlusions by surrounding objects. In
order to assess the quality of homography estimation between consecutive images in the
sequence, we removed the foreground pixels and built a “foreground” image sequence, as
shown in Figure 9.

Insert Figure 7 approximatively here
Insert Figure 8 approximatively here
Insert Figure 9 approximatively here

From a more practical point of view, the size of the images is 640x480. The focal length
of the static camera is of 500 pixels. Event/background separation operates on 320x240
images. The whole two-camera system runs at 10 frames per second on a 1.7GHz processor.

5 Conclusion

In this paper we addressed the problem of coupling two cameras in order to achieve visual
attention — controlling a camera to gaze in a selected direction. The first camera is static
and it has a wide field of view. Therefore it is able to capture, at low resolution, such
events as moving objects. The second camera is mounted onto a rotating device with two
degrees of freedom. Moreover it has a narrow field of view — of the order of 2 degrees.
Therefore it is able to provide a high-resolution image of a scene object, provided that the
latter falls within its field of view.

We analyzed in detail the geometric and kinematic coupling between a static camera
and a rotating camera. We derived a solution for this coupling both for a general kinematic
mechanism and for a simpler pan-tilt model. We showed that under the practical setup
that we used, there is a unique solution allowing to rotate the camera such that it gazes
towards an object scene. This solution is parameterized by a depth parameter (the distance
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from the static camera to the object) and we described a practical solution to estimate this
depth.

Once the object of interest lies along the active camera’s optical center a gaze-control
loop is activated in order to estimate the camera’s rotational degrees of freedom. Moreover,
the system is able to use event detection (performed with the static camera) in order to
facilitate event/background segmentation performed with a rotating camera.

The camera cooperation principle developed in this paper could easily be generalized
to several rotating cameras. Therefore, multiple moving objects detected with the static
camera could be handled separately by multiple rotating cameras.

The vast majority of visual surveillance and visual attention systems use a single cam-
era. Cooperation between static and active cameras is an essential step forward allowing
to rapidly analyse an event at low resolution, and to switch to high resolution if further
recognition and interpretation steps are necessary.

A The pan-tilt kinematic model

In this appendix we formally define the rotational mechanism associated with the active
camera. First we consider the most general kinematic model. We adopt the zero-reference
kinematic representation. The angle associated with the “tilt” rotation is denoted by (.
The angle associated with the “pan” rotation is denoted by «. The kinematic chain is
composed of five Euclidean frames and four rigid transformations between these frames,
see Figure 10:

Insert Figure 10 approximatively here

e Frame #5 is attached to a fixture, it is equivalent to the “base” of the device;

e Frame #4 is a moving frame rotating around frame #5; This tilt rotation is denoted
by T which is a 4x4 homogeneous matrix denoting a rigid transformation;

e Frame #3 is rigidly attached to frame #4 through the fixed transformation L;;

e Frame #2 is a moving frame rotating around frame #3; This pan rotation is denoted
by Ts;

e Frame #1, or the camera frame, is rigidly attached to frame #2 through the fixed
transformation Ly

The coordinates of the physical point M (observed by the camera) can be written in
camera coordinates, M, as well as in fixture coordinates, M®. Obviously we have:

MW (a, B) = LyTy(a)Ly Ty (3)M® (27)

The same formula holds for a docking position which is referred to as the zero-reference
and which is characterized by fized values for the two angles:

MY (a, By) = LaTa(ag)Ly T (Fo) M (28)
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Revised paragraph

By eliminating M ©® in between these two equations and by properly adding some dummy
transformations, we obtain:

MW(a,8) = LyTa(a)T5 (ag)Ly ' LoTo(0) Ly T1(3) T (Bo) Ly ' Ty () Ly ' MW (g, o)
IJ2T2(04 — )Ly ! }2T2(040)L1T1(5 — Bo)Ly ' Ta(—ao)Ly " MY (e, Bo)
Q, Q,

This is the zero-reference kinematic model of the active camera, i.e., eq. (10):
MY (a, 8) = Qy(, a0)Qy (8, o, a9) M (ag, o) (29)

The reference frames have been appropriately defined such that (without loss of gen-
erality) the transformations T; and Ty can be written in a canonical form, i.e., rotation
around the local z-axis:

cos —sinf 0 0
sin cosf 0 O
0 0 01

These matrices form a one-dimensional Lie group with T} '(3) = T1(—/3). Therefore, from
the equations above we obtain the following expressions for Q, and Q;:

QQ(OZ, Oé()) = LQTQ(Oé — Oéo)Lgl (31)
Q1 (8, Bo; ) = LT (o)L T1(5 — ﬂO)PflTEI(@O)LQi (32)
U, U/’

Since matrices Q; and T; are related by similarity transformations, it follows that both Q,
and Q, form one-dimensional Lie groups as well. It is well known, [13], that these groups
can be parameterized using their Lie algebra and their angle of rotation, i.e., eq. (11).

B Simple pan-tilt model

In the case of a simplified model it is assumed that the pan and tilt axes are mutually
perpendicular. In this case, matrices L; and Ly (see appendix A and Figure 10) are pure
translational offsets:

L, = (33)

r
SO O OO +—=O

(34)

O, OO O OO
OO OoO R OO O

—
ot



We obtain:

1 0 0 t2
| 0 cos(a—ap) —sin(a—ay) 3
Q=1 sin(a — o) cos(a — ) t3 (35)
| 0 0 0 1
[ cos(B— fo) —sin(B—0) 0 0
sin(8 — cos((3 — 00 _
Ql _ U1 (ﬁo 60) (ﬁo 50) 10 -U-1 1 (36)
i 0 0 01
with:
0 1 0 B+
—sinag 0 cosag [fcosay— l3sinag + I3
U, = : 1 1 2
cosay 0 sinag Iysinog + 5 cosag + 13
0 0 0 1

C Kinematic calibration

Kinematic calibration consists in estimating the Lie algebras associated with the matrices
Q; and Q, formally defined in appendix A. Each one of these matrices form a one-
parameter Lie group such that Q,(51)Q;(052) = Q;(51 + B2). Moreover, once a reference
frame is being chosen, the tangent operator (or the Lie algebra) remains fixed. Therefore,
the kinematic calibration process consists in finding a numerical estimate of Q1 and of Qg,
i.e., eq. (14). For that purpose we consider again eq. (29). Notice that the transformation
from position oy, 31 to position as, By writes:

Qa1—>a2,,81—>,82 = Q2(a2)Ql(ﬁ2 - ﬁl)QQ(al)

Let the pan-tilt device perform two one-parameter motions: a motion from a; to as and
another motion from (; to F5. From the equation above we obtain:

QZ(a2 - al) = Qalﬂaz,ﬁl (37)
Ql(ﬁQ - 61) = QQ(_al)Qal,ﬁlﬂﬁgQZ(al) (38)

In practice the kinematic calibration proceeds as follows:

Step 1: Move the device in the aq, 3; position;

Step 2: Using camera calibration tools, estimate the external camera parameters, i.e., the
position and orientation of the camera frame with respect to a calibration fixture
expressed as a rigid transformation T(ay, 31);

Step 3: Move the device in the as, 31 position;
Step 4: Repeat Step 2 for this position and estimate T (s, 31);

Step 5: Move the device in the aq, 85 position;
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Step 6: Repeat Step 2 for this position and estimate T(ay, 32);
Step 7: Compute Q,, .,, 5, = T (a2, f1)T (o, Br) L
Step 8: Compute Q, from Q. (g — o) using eq. (14);
Step 9: Compute Q,, 5 .5, = T(ou, f2)T(aq, 51) 7
Step 10: Compute Q,(aq), Qy(—ay), and Q;(fB2 — 1), and
Step 11: Compute Q; from Q, (B2 — (1) using eq. (14);
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Fixed \
camera (1)
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Figure 1: The active camera has a docking or a zero-reference position. Both the stereo

(matrix Ty) and kinematic (matrix Q) calibrations are performed with respect to this

reference position.
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Fixed
camera

Active
camera

Figure 2: The coupling between the cameras allows one to associate foreground and back-
ground regions with the active camera’s image. The event, which is predicted in the static
camera at low resolution, must lie in the foreground region associated with the active
camera’s image sequence.
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Figure 3: In order to estimate the depth to the point M, the active camera must see this
point. The degrees of freedom of the active camera — pan, tilt, yaw, and focal length — are
estimated such that the line of sight associated with image point m; is seen in the active
image plane.
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Figure 4: This figures shows 8 frames out of a 550-frame image sequence available with
the static camera. The second frame shows the trajectory of the moving person.

Figure 6: The foreground pixels extracted from the sequence shown above.
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Figure 9: The foreground pixels were removed from the image sequence and replaced by
background using the image-to-image homographies.
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frame #1
y

L 2 (coor dinate change)

frame #2

~ T2 (pan rotation)

frame #5

B = tilt frame #3
T2 (tilt rotation)
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L1 (coordinate change)

Figure 10: This figure shows a general pan-tilt mechanical model which attaches a camera
(frame #1) to a rigid fixture (frame #5). Estimating the pan and tilt angles such that a
given scene point appears at the image center is a non-trivial inverse kinematic problem.
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