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Abstract  Tracking single individuals as they move across disjoint camera views is a 

challenging task since their appearance may vary significantly between views. Major 

changes in appearance are due to different and varying illumination conditions and the 

deformable geometry of people. These effects are hard to estimate and take into account 

in real-life applications. Thus, in this paper we propose an illumination-tolerant 

appearance representation, which is capable of coping with the typical illumination 

changes occurring in surveillance scenarios. The appearance representation is based on 

an online k-means colour clustering algorithm, a data-adaptive intensity transformation 

and the incremental use of frames. A similarity measurement is also introduced to 

compare the appearance representations of any two arbitrary individuals. Post-matching 

integration of the matching decision along the individuals’ tracks is performed in order 

to improve reliability and robustness of matching. Once matching is provided for any 

two views of a single individual, its tracking across disjoint cameras derives 

straightforwardly. Experimental results presented in this paper from a real surveillance 

camera network show the effectiveness of the proposed method.  

Keywords Tracking - Disjoint camera views – Colour histograms - Online k-means 

clustering – Object similarity measurement 



 

I. INTRODUCTION 

People tracking is a fundamental function of any video surveillance system as it 

provides the basis for important surveillance operations, such as behavioural analysis, 

activity recognition and detection of events of interest. The basic problem at the 

foundation of tracking is that of correctly associating single physical individuals with 

their footprint in each frame of a surveillance video. This problem, generally known as 

probabilistic data association (PDA), was clearly identified in the radar and sonar 

literature well before video-based tracking became widespread [1]. In video-based 

tracking, the PDA problem has been approached based on combinations of features such 

as motion, appearance and shape, which have to undergo some coherency model along 

the time [2-9]. If the available camera views of single individuals are significantly 

disjoint in time and/or space, such coherency cannot be easily assessed. This is an 

increasingly important point for real-life video surveillance applications as disjoint 

views are dominant in existing, manned CCTV (Closed-Circuit Television) systems. 

This occurs because human operators do not need to continuously view a person to track 

it. If automated systems proved capable of effectively tracking across disjoint views, re-

use of costly camera infrastructure would be possible and adoption of video surveillance 

solutions could be improved. In this paper we propose a new approach for matching 

single individuals from disjoint camera views in typical video surveillance scenarios. 

Our simplifying assumption is that each person is correctly segmented and tracked 

within a single camera view and its relevant information (object’s mask and pixel values 

in each frame) is stored into the record of a “track”. Our goal is that of finding 

correspondences between such tracks. 

Various papers in the literature have addressed the problem of tracking across multiple, 

possibly disjoint, cameras ([10-15] and others). Amongst them, the main references for 



 

our work are the recent papers from Javed et al. [13, 14]. Their approach proposes an 

algorithm to compensate for the different illumination conditions by estimating intensity 

transfer functions between each camera pair during an initial training phase. Such 

functions are estimated by displaying common targets to the two cameras under a 

significant range of illumination conditions, and modelling correspondences in the 

targets’ colour component histograms. However, the authors’ assumptions in [13, 14] 

that objects are planar, radiance diffuse and illumination uniform throughout the whole 

field of view do not generally hold in real applications. Illumination is actually different 

at each pixel location and has first-order effects on appearance. In [16], Weiss proposed 

an effective method to estimate illumination in each frame of a sequence and extract a 

pure reflectance image of the scene. In [17], Matsushita et al. have extended the method 

to deal with time-varying reflectance images. Such methods work well for static scenes; 

however they cannot accurately estimate the illumination over 3D moving and 

deformable targets such as people. Actually, accurately estimating illumination over 3D 

moving targets would require detailed knowledge of the position and parameters of 

sources of lights, reflections and shadowing and geometry of the target’s surfaces. 

Natural light sources are also time-varying and much hard to predict. We propose an 

approach that does not rely on either training or estimation. It is based on an appearance 

representation and a data-adaptive intensity transformation, which can tolerate the 

illumination variations occurring in typical surveillance scenarios. 

The main steps of our approach are as follows: First, we define an appearance 

representation to be used for each segmented object in a frame. We call this appearance 

representation the Major Colour Spectrum Histogram Representation (MCSHR) since it 

aims to describe the object’s main colours. An online k-means clustering algorithm is 

proposed here to obtain an accurate MCSHR. Later in the paper, we introduce an 

incremental MCSHR (IMCSHR) to be computed over a short window of successive 



 

frames (typically, three to five) to compensate for small, short–term changes in the 

object’s pose. The problem of varying illumination across disjoint views is mitigated by 

using an intensity re-mapping of the object’s R, G, B components occurring prior to the 

computation of its IMCSRH. Given two arbitrary segmented objects from two disjoint 

sequences, a similarity measurement between their IMCSHRs is then proposed to 

compare their appearance for matching. To increase the reliability of the matching 

results, post-matching integration is performed along the whole available tracks. 

Experimental results from real footage under diverse operational conditions have proved 

this an effective solution to the problem of tracking people across disjoint views. 

 The rest of the paper is organized as follows: Section II describes the colour histogram 

representation and the online k-means algorithm. Section III presents the algorithm used 

to reduce the illumination effects on moving objects in the disjoint camera environment. 

Section IV formally describes the similarity measure between two objects and its 

extension to two tracks. Section V presents and discusses the experimental results. 

Conclusions summarise the main results from this work. 

II. APPEARANCE REPRESENTATION 

 

In this section, we introduce our definition of colour distance between any two colour 

pixels based on a normalized geometric distance in the RGB space. Such a colour 

distance is defined as: 
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where C1 and C2 represent the colour vectors for the two RGB pixels. (1) defines a 

“normalized” distance in that the Euclidean distance between the two RGB colours is 

divided by the sum of their magnitudes. This choice is similar to the colour distance 



 

developed by Li et. al. [18], which was shown to be robust to illumination changes and 

noise. 

2.1  The proposed Major Colour Spectrum Histogram Representation 

Given the concept of colour distance, it is possible to cluster the colours of a segmented 

object without losing significant accuracy in representing its appearance. Since we aim 

at real-time application, clustering speed is also a main requirement. Several colour 

clustering methods are available from the literature [11, 19-24]. In particular, in [11], a 

method for clustering colours of moving objects was proposed based on a mixture of 

Gaussians. Each Gaussian component in the mixture is associated with a cluster and the 

number, relative weights, means and covariances of the Gaussian components are 

optimised with an Expectation-Maximisation algorithm. In this work, instead, we chose 

to use a relatively large number of simple spherical clusters which all have the same 

radius under the normalized distance given in (1). This choice aims to reduce the 

number of parameters and proves an accurate representation even in the frequent case of 

data.that do not clearly separate into clusters. The number of the clusters is chosen with 

a simple heuristic and their positions are optimised with a k-means algorithm. Despite 

the large number of clusters, clustering speed is preserved thanks to the smaller number 

of parameters to be estimated. We call the set of these clustered colours the Major 

Colour Spectrum Histogram Representation (MCSHR). In order to efficiently compute 

the MCSHR, we use the algorithm described in the following. 

The first step of our algorithm creates the initial set of clusters on which to later apply 

the k-means algorithm. The object’s pixels are scanned in row-major order. As the first 

pixel appears, its colour is set as the centre of the first cluster. If each following pixel is 

within a threshold under the normalised RGB distance from an existing cluster’s centre, 

the pixel count for that cluster is increased by one; otherwise, a new cluster is created, 



 

centred on that pixel. In the normalised space, this is equivalent to having clusters with a 

common radius and uniformly spaced. In RGB, instead, clusters are denser at lower 

magnitudes. This procedure is similar to that proposed by Li et al. to calculate their 

principal colours [25]. Figure 1 shows a picture of a flower containing several tones of 

yellow and green and the MCSHR outcome of this first step. The original image is 

depicted in (a) and has 115,537 different colours. The MCSHR outcome contains 839 

clusters. In (b), the twenty colours of MCSHR with the highest count are displayed by 

coloured bars with height proportional to the colour’s count. In (c), the ten colours with 

highest count in the MCSHR are displayed by small coloured spheres with size 

proportional to the colour’s count. 
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Fig. 1 Major colour representation of ‘tn_flower’ 

 

(a) Original ‘tn_flower’ image 
 

(b) First 20 MCSHR clusters for 

‘tn_flower’ with colour distance 

threshold of 0.05  

(c) MCSHR outcome after the first step for ‘tn_flower’ with 

color distance threshold of 0.01 – sphere representation 

(d) Back-projection of 297 major colours 

representing 90% of the pixels onto ‘tn_flower’. 



 

The colour representation is further simplified by only storing the most common clusters 

representing 90 percent of the pixels for later use. This reduces the number of clusters 

from 839 to 297 whilst still representing the majority of pixels in the image. Even in this 

case where the image has a rich diversity of colours, MCSHR can still provide an 

adequate representation as demonstrated by the re-projected image in (d) where each 

original colour has been replaced by the corresponding cluster’s colour. 

2.2  The online k-means clustering algorithm 

Because we have used a simple initial cluster creation procedure, a cluster’s centre may 

be significantly displaced with respect to the cluster’s centroid i.e. the average position 

of its member pixels. In our experiments, we found that this may affect the comparisons 

between object representations. Thus, we use a k-means algorithm to refine the clusters’ 

centroids [26]. The k-means algorithm is an expectation-maximisation technique 

iteratively alternating membership calculation and centroid adjustment. Such algorithms 

are notoriously sensitive to the initial choice of parameters as they converge to local 

optima. In our application, however, the heuristic for the initial step allows the k-means 

algorithm to start from reasonable initial values, thus the local optima prove to be 

adequate solutions in general. Our online k-means major colour clustering algorithm 

works as follows: the objects’ pixels are scanned in row-major order. For the current 

pixel, the closest cluster centre is computed and the pixel assigned to it. Then, the centre 

of this cluster is updated as: 
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where i is the current number of pixels in the cluster, R(i), G(i), B(i) are the RGB 

components of the i-th (current) pixel,  Rc(i), Gc(i), Bc(i) are those of the cluster’s centre 

after the i-th pixel has been processed, and w(i) = 1/i the current weighting coefficient. 
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One can see that with the increase in the number of pixels falling into a cluster, the 

weighting coefficient decreases. Changes in the centroid position tend to gradually slow 

down. Since cluster centres are moving, iterations are necessary until all pixel 

assignments and cluster centres stabilise. In our experiments, between 80% and 90% of 

pixels are usually already member of their final cluster after the first iteration. Figure 2 

shows the picture of another flower (an Ore Gold rose) again rich in tones and nuances. 

Figure 3 shows its MCSHR calculated by using the described online k-means clustering 

algorithm. 

 

 

 

 

 

 

 

 

  

Fig. 2 The original Ore Gold rose image (left) and the back-projection based on the 90% most 

common pixel clusters after 7 k-means iterations (right) 

1
0

0.01

0.02

0.03

0.04

0.05

0.06

PCR intial

 
1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PCR2

 
1

0

0.01

0.02

0.03

0.04

0.05

0.06

PCR7

  
     (a) Iter 0, 20 most major colours    (b) Iter 2, 20 most major colours    (c) Iter 7, 20 most major colours   

Fig. 3 MCSHR with the proposed online k-means clustering algorithm 

 

Figures 2 and 3 show that the MCSHR computed using the online k-means clustering 

algorithm is visually accurate. Figure 3 shows that no major improvement was made by 

increasing the number of iterations from two (b) to seven (c), yet the increase in 

computation time is significant, especially for larger images. Figure 4 shows the 

MCSHR from objects automatically segmented from three different frames from a 

single camera. The similarity between the MCSHR for frames 775 and 1297 



 

demonstrates the ability of this representation to capture the dominant colours, which 

also appear similar in the frames. The MCSHR is clearly distinct in frame 997 where a 

different person is observed in the same area. 
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 (a) Person A, frame 775       (b) Person A, frame 1297    (c) Person B, frame 997 

Fig. 4 Images, masks, and MCSHR from three automatically detected people as seen 

from the 5_corridor camera 

III. COMPENSATING FOR VARYING ILLUMINATION 

ACROSS DISJOINT VIEWS 

The greatest challenge for matching moving objects from disjoint camera views is in the 

different and varying illumination, which can cause significant differences in 

appearances. This occurs even under the assumption of either artificial white or natural 

light sources that typically occur within building environments. The geometry of the 

objects are also subject to deformation and self-shadowing. As explained in section one, 

the computation of an exact transformation justifying the changes in appearance can 

prove unfeasible or impractical. For this reason, we propose to use a fixed, data-adaptive 

intensity transformation we call ‘controlled equalisation’. It is based upon a modified 

cumulative colour histogram computed locally to each object. 



 

 

Fig. 5 Compensating for varying illumination across disjoint views: overview 

3.1  The intensity transformation 

Let us call A the set of the N pixels in a generic object. Let us also call B a second set of 

N pixels, perfectly equalized in their R, G, B components. On their union, A ∪ B, the 

histograms of the R, G, B components, pr(i), pg(i), pb(i), i = 0…255, are computed. Then, 

a cumulative histogram transformation (or equalization) is derived from each 

component’s histogram as shown in (3-5). 
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The three resulting intensity transformations are then applied to re-map the R, G, B 

components in the moving object’s pixels. Thus, the “controlled equalisation” can be 

applied to any object to compensate for local illumination without requiring either 

training or other assumed scene knowledge. Figure 4 shows the application of the 
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proposed approach. An example of application is shown in Fig. 5. The object, its mask 

and MCSHR are shown in (a-c). The object and its MCSHR after the intensity 

transformation are shown in (d and e). The original histogram for the R component is 

shown in (f). After the proposed intensity transformation (g), the histogram qualitatively 

retains its original shape (h), but extends over the available spectrum, thus compensating 

for local illumination variations. The effect of the proposed transformation is not to be 

confused with that of full equalization, which would result in a flat histogram. Some 

analogy may instead be seen with histogram stretching algorithms. However, such 

algorithms are very sensitive to the stretching parameters (original starting and ending 

bins and/or position and number of modes) while the proposed transformation does not 

rely on explicit parameters. 
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                         (f)                                                         (g)                                                       (h) 

Fig. 6  Effects of the proposed intensity transformation: (a) original object; (b) its mask 

and (c) major colours; (d) the object after intensity transformation and (e) its major 

colours; Red histograms: (f) before and (h) after the transformation, and the applied 

transformation (g). (h) makes better use of the available spectrum than (f), and 

“normalises” the histogram with respect to local illumination 

3.2  The incremental MCSHR 

After computing the object’s MCSHR for each frame in its track, we integrate each 

MCHSR over the window of the last K frames, with K a small value. The optimum 



 

window size differs for different camera speeds and gait periods, with ideally one step 

or half a gait period. This aims to keep the window short, yet provide maximum 

information about objects appearance under pose variation along the track. For our data 

obtained at approximately six frames per second, this value was three frames. Indeed 

experimental results indicated that very marginal improvements were made with a larger 

window size. We call this augmented representation the incremental MCHSR 

(IMCSHR).  Given the MCSHR of an object, A, at frame q represented as 
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their bin counts, the IMCSHR of the object at the q-th frame can be represented as: 
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The ∑ sign in (8-9) is used here to mean a special “summation”, i.e. the merging 

accumulation of the MCSHR’s of frames ( ) qKq ..,),1( −−  based on the colour 

threshold. K was set to three in all experiments reported in this paper. 

The combination of the IMCSHR representation and the proposed intensity 

transformation proved tolerant to illumination variations of typical surveillance 

scenarios. In the remainder of the paper, the acronym MCSHR is used also to indicate 

this incremental representation for the sake of concise notation. 

 



 

IV. TRACK MATCHING 

After determining the appearance representation, a similarity measurement is needed to 

quantify the overall similarity between any two MCSHRs. For this purpose, we could 

use a standard distribution distance such as the Kullback-Leibler divergence to compute 

the distance between the two MCSHRs and use its reciprocal as the similarity [27]. 

However, we prefer to compute the similarity measurement directly. In this section, we 

present a method based on a most-similar colour searching algorithm. Later, the 

matching is extended along the tracks using a simple post-matching integration 

algorithm. 

4.1   Similarity measurement 

We assume that there exist M major colours in object A which can be represented as: 

},,,,,{)(
21 Mi AAAA CCCCA LL=MCSHR                    (10) 

with their bin frequencies represented as: 
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Object B can be represented similarly over N colours by the MCSHR(B) and p(B) 

vectors. In order to define the similarity between two objects, a subset of MCSHR(B) is 

firstly defined as: 
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We define the similarity of colours 
iAC and 

ij A|BC as: 



 

)}(),(min{),(
][

| j

A

iABA BpApCCSim i

iji
=                  (14) 

where )(][
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A Bp i  is the frequency of 
ij A|BC . The min operator in (14) is used to retain 

the “common part” of  )( iAp  and )(
][

j

A
Bp i  as the similarity between the two colours.   

It is possible to note that their “different part”, or absolute difference,  

)()(
][

j

A

i BpAp i− , is the well-known Kolmogorov distance under equal priors [27]. In 

this sense, the  similarity measurement presented here is analogous to the complement 

of the Kolmogorov distance. The similarity between the whole objects, A and B, in the 

direction from A to B is then given by: 
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The similarity between A and B in the direction from B to A, Sim(B,A), is defined in a 

similar way. Note that Sim(B,A) generally differs from Sim(A,B) as for any given 
ij ABC |  

and 
jk BAC | , ki ≠  . To derive a symmetric similarity measurement we first take their 

minimum and maximum: 

)}A,B(Sim),B,A(Simmin{)B,A(Simmin =                 (16) 
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and eventually combine them into a single final value, Similarity(A,B), defined as 

follows: if Simmin(A,B) is less than a given discrimination threshold, ηdiscrim, the 

similarity of objects A and B is defined as: 

(A,B)Sim(A,B)Similarity min=                     (18) 

The rationale in this case is that Sim(A,B) and Sim(B,A) are either very asymmetric or 

both low and for this reason we decide to bound Similarity(A,B) by their lowest value. 

Instead, if Simmin(A,B) is ≥ ηdiscrim, we define: 
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In this case, we are confident that the two visual objects are possibly a same physical 

one. As a further verification, we choose to check the difference between the maximum 

and minimum similarities in a ratio form. In (21), a large difference between the 

maximum and minimum similarity leads to a lower similarity value. The definition of 

Similarity(A,B) in (20, 21) aims to prevent asymmetric, partial matches between two 

objects and let us set a final similarity threshold for matching assessment more easily. In 

practice, all the measurements above are computed over IMCHSR values. 

4.2  Post-matching integration 

In order to evaluate the matching between the two tracks of objects A and B over a 

sequence of N frames, two basic alternatives are possible: i) either extending the object 

representation to cover whole tracks and performing a single, overall matching 

operation, ii) or repeatedly comparing pairs of IMCSHR from the two tracks and 

integrating the results. We believe that the latter is intrinsically more robust to large 

segmentation errors which may occur occasionally at the frame level. Thus, in our 

approach we compare IMCSRH pairs in frame order before making a binary decision on 

their matching. These decisions are integrated along a minimum number of N frames. 

Two tracks are considered to be matching if the percentage of successfully matched 

IMCSRH pairs is above a threshold. The choice of comparing frame pairs in frame order 

is arbitrary and is aimed at keeping a linear computational complexity, O(N), for the 

algorithm. Linear computational complexity in the number of frames is the minimum 

reasonable complexity for matching over a frame sequence and allows the algorithm to 

meet real-time constraints. It also makes an on-line version of the post-matching 

integration possible: given the surveillance application scenario, the two tracks cannot 

be acquired from a single individual at the same time. 



 

 

The track matching algorithm 

 

Given two tracks, A, B: 

A preparatory loop for the first K-1 frames: 

For each i = 1:K-1 

1. Compensate illumination of frame Ai as per Section III; 

2. Compute MCSHR(Ai) as per Section II; 

3. Repeat steps 1-2 for Bi 

The actual loop along the tracks. K is typically set to 3. N is the common length of the two 

tracks: 

For each i = K:N 

1.  TotalSimilarity = 0;  

2. Compensate illumination of frame Ai; 

3. Compute MCSHR(Ai); 

4. Compute IMCSHR(Ai) as: 

IMCSHR(Ai) = 0; 

For each k = K-1:0 

IMCSHR(Ai) = IMCSHR(Ai) + MCSHR(Ai-k); 

5. Repeat steps 1-3 for Bi ; 

6. Compute the similarity between IMCSHR(Ai) and IMCSHR(Bi) as per Section IV; 

7. If similarity >= .80, S = 1; else S = 0; 

8. TotalSimilarity = TotalSimilarity + S; 

 

The final decision: 

If TotalSimilarity >= .80, objects in tracks A and B are matched; else, unmatched 

  

The MCSHR(Ai) algorithm 

The initial step: 

cluster list = {empty}; 

For each pixel p in Ai 

1.  Find the closest cluster in the cluster list; 

2.  If cluster more distant than threshold, create new cluster;  

  else, increment cluster count; 

The k-means iterations: 

For j = 1:2 

 For each pixel p in Ai 

1.  Find the closest cluster in the cluster list; 

2.  If cluster different than current cluster,  

  increment new cluster count and adjust cluster centre; 

  decrement old cluster count and adjust cluster centre; 

The final step: 

Sort clusters in descending count order and return the first up to 90% of the number of pixels 

 

Algorithm Panel: The track matching and MCSHR algorithms 



 

Assuming one track has already been recorded in the system and the other is forming, 

matching can be stated as soon as N frames from the forming track become available. 

Figure 6 shows a temporal display of this post-matching integration algorithm.  

 
 

Fig. 7 IMCSHR matching and post-matching integration 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we report results from four disjoint video surveillance cameras installed 

in the Faculty of Information Technology main building at the University of 

Technology, Sydney. The cameras are operated daily for surveillance purposes by the 

university’s security services and have not been installed or chosen to ease the 

performance of automated video surveillance tasks. In order to properly evaluate the 

proposed approach, the results presented in sections 5.1, 5.2, and 5.3 were obtained 

from objects that have been tracked and segmented with manual intervention. Results 

presented in section 5.4 are based upon automatically tracked and segmented objects, 

but otherwise utilise the same procedure and parameters. In this way, we are able to 

evaluate performance of the proposed appearance representation against substantial 

illumination variations and the deformable geometry of people.  



 

5.1  Matching of a same moving person in disjoint camera views  

This section reports on manually segmented data from the same person recorded from 

two video surveillance cameras (camera 3a, frames 001-019, and camera 5, frames 300-

318). The two cameras are significantly disjoint in both space and time, as shown in 

Figure 4, and the person’s appearance in the two tracks could not be trivially matched. 

Moreover, illumination varies significantly with the object’s position within each 

camera view. The results given in Table 1 show that the IMCSHR matching and post-

matching integration are capable of coping with such variations in appearance, and the 

person is reliably matched. 

 

Fig. 8 Moving objects from camera 3a, frames 001-009 and camera 5, frames 300-308 

Table 1 Results of IMCSHR Matching - same person 

Test Case Frame No Camera Similarity Matching Results 

001-005 3a 
1 

300-304 5 
0.9817 1 (Yes) 

003-007 3a 
2 

302-006 5 
0.9758 1 (Yes) 

005-009 3a 
3 

304-308 5 
0.9772 1 (Yes) 

007-011 3a 
4 

306-310 5 
0.9856 1 (Yes) 

009-013 3a 
5 

308-312 5 
0.9452 1 (Yes) 

001-019 3a 
Integration 

300-318 5 
 

100%  

(Match) 

Notes: with 90% major colours cut off, colour threshold = 
similarity colour threshold = 0.05, discrimination threshold = 

0.4, IMCSHR matching threshold = 0.8, and final integration 
matching threshold = 80%. 

 



 

5.2  Matching of two different people from disjoint camera views 

This section reports on the manually segmented results from two different people 

recorded from the same camera pair as in the previous example (camera 3a, frames 001-

019, and camera 5, frames 010-022), with some of the frames shown in Fig. 8. Table 2 

reports the IMCSHR matching and post-matching integration results that demonstrate 

the two moving objects are correctly discriminated. The integrated matching rate is only 

40%, which is significantly lower than our 80% threshold. 

 

Fig. 9 Moving objects from camera 3a, frames 001-009, and camera 5, frames 010-018 

 

Table 2 Results of IMCSHR Matching - two different people 

Test Case Frame No Camera Similarity Matching Results 

001-005 3a 
1 

010-014 5 
0.3538 0 (No) 

003-007 3a 
2 

012-016 5 
0.7588 0 (No) 

005-009 3a 
3 

014-018 5 
0.7224 0 (No) 

007-011 3a 
4 

016-020 5 
0.8348 1 (Yes) 

009-013 3a 
5 

018-022 5 
0.8075 1 (Yes) 

001-019 3a 
Integration 

010-022 5 
 

40% 

(No match) 

Note: The parameters used are the same as those given for Table 1. 

5.3  Comprehensive matching test on manually segmented object tracks 

Five sets of additional track matching results from camera views disjoint either in space 

or time, or both are reported in Table 3. These results show that the proposed method is 



 

capable of both correct matching, and discriminating between different individuals. The 

differences in matching rates for same and different individuals are significant and allow 

easy discrimination by thresholding (we use an 80% threshold). 

Table 3 Comprehensive Results of IMCSHR Matching 

Test Case Frame No Camera 
Typical frame 

similarity (IMCSHR) 

Integrated 

matching rates 

282-294 3_0 1  (Same object,  

time disjoint) 001-013 3a 
0.9785 

80% 

(4 out of 5 matched) 

001-013 3a 2  (Same object,  

space disjoint) 300-312 5 0.9817 
100% 

(5 out of 5 matched) 

050-062 4 3  (Different objects,  

time and space disjoint) 010-022 5 0.3696 
20% 

(4 out 5 discriminated) 

282-294 3_0 4  (Same object, time  

and space disjoint) 300-312 5 
0.8410 

100% 

(5 out of 5 matched) 

050-062 4 5  (Different objects,  

space disjoint) 010-022 5 
0.3696 

20% 

(4 out 5 discriminated) 

In test case 1, the same person is viewed under a same camera in the morning and the 

afternoon. In the morning view there is a significant amount of natural light in the right 

part of the scene (with resemblances to a typical outdoor view) while artificial 

illumination is predominant in the left and central parts. In the afternoon the whole view 

is dominated by artificial illumination, with slight changes in chromaticity. Variations in 

the intensity of the R, G, B components for the moving object across and between such 

views are in the order of 25-30% and would not allow trivial colour histogram 

matching. The object is successfully matched using the method we have proposed with 

an integrated matching rate of 80%. The other test cases cover a variety of 

disjointedness in time and space. Cases 2 and 4 show the same object successfully 

matched with an integrated matching rate of 100%. In test cases 3 and 5, different 

objects are successfully discriminated because of an integrated matching rate of 20%. 

 

Fig. 10 Typical frames used for test cases 1-5 



 

5.4  Results using automatically tracked and segmented objects 

The test cases presented in sections 5.1, 5.2, and 5.3 demonstrate that the method works 

reliably with manually selected and segmented objects. This section presents results 

obtained by automatically tracking and segmenting objects from two cameras. The 

cameras are named 5_corridor and 5_lifts and provide views with object movement 

being restricted in different directions, and significant areas of different background 

colour. Cameras were chosen to ensure that lighting conditions and background colour 

of the areas of interest are different throughout the majority of the scene, as shown in 

Figure 11. Within these cameras four people of interest are studied wearing different 

coloured clothing. Their appearance and typical segmentation masks are shown in 

Figure 12. The clothing was selected as they are typical to indoor environments and are 

not intended to be of high contrast to the background for easy segmentation. 

   
Fig. 11 Background views from the two cameras: 5_Corridor left, 5_lifts right 

         

Fig 12 Four people of interest (Persons A, B, C, D from left) and typical automatically 

segmented masks (from frames 775, 1095, 1542, 2044) 

Four main areas of interest are considered in the automated results presented. Case 1 

presents the results of matching the same individual from different tracks obtained 

within the same camera. Case 2 examines matching tracks from the same individual 



 

between different cameras. Case 3 examines the differentiation of the tracks of two 

individuals within the same camera. Case 4 examines the differentiation of the tracks of 

two individuals between different cameras. Results from the matching of the tracks of 

an individual are also presented separately, where one track of that individual has 

regions where the segmentation is cluttered by other individuals in the scene. 

The automatic segmentation of individuals is important as significant amount of 

oversegmentation or undersegmentation can alter the levels of colours represented in the 

IMCSHR. The results presented in this paper are based upon background subtraction, 

where the background model is created using a running Gaussian average [2]. A 2 pixel 

controlled dilation is used the amount of noise, especially in the 5_corridor scene where 

natural illumination is strong. Colour region growing is also used around identified 

foreground pixels. Typical segmentation results are shown in Figure 12, indicating that 

whilst dark colours are segmented well, light colours, and even some degree of facial 

skin are hard to detect. Such segmentation errors are currently typical within areas 

where the background tends to be of lighter colour. 

The results given in Table 4 demonstrate that even though our original assumption of 

correct segmentation is broken, correct matching of individuals remains high, and 

discrimination between two individuals is largely maintained, even without ad-hoc 

tuning of the parameters. Particular cases, such as where Person D’s legs are not 

segmented create false impressions of largely homogenous dark colour. This can then be 

incorrectly matched with Person A, who is actually of a similar, but truly homogenous 

dark colour. This case accounts for the majority of cases where two individuals are 

incorrectly matched both within the same camera, and across cameras. This also 

indicates that occlusions of objects may be likely to lead to incorrect results, and thus 

need to be identified for removal from the IMCSHR process. Cluttered scenes also lead 

to significant segmentation errors with individuals incorrectly joined together and need 



 

to be identified as a source of possible errors. Two cases are shown in in Figure 13 and 

reported in Table 4 as Cases 5 and 6. These cluttered scenes were transient and only 

polluted a small number of the frames within the track (4 frames within each case).  

          

Fig 13 Poor segmentation in cluttered frames a) frame 2140 b) frame 2937 

Table 4 Comprehensive Results of Automated IMCSHR Matching 

Test Case 
Number 

of cases 

Cameras 

Used 

Typical similarity 

(IMCSHR) 

Matched 

Cases 

Unmatched 

Cases 

1  Same Person 

Same Camera 
10 

5_corridor 

or 5_lift 
0.9436 10 0 

2  Same Person 

Disjoint Camera 
13 

5_corridor 

and 5_lift 0.8214 9 4 

3  Different People 

Same Camera 
8 

5_corridor 

or 5_lift 0.3726 0 8 

4  Different People 

Disjoint Camera 
10 

5_corridor 

and 5_lift 
0.3913 4 6 

5 Matching Person A 

in a Cluttered Track 
1 5_corridor 0.9187 1 0 

6  Matching Person B 

in a Cluttered Track 
1 5_corridor 0.9408 1 0 

 

The results based upon automated segmentation show that within the same camera, 

disjoint tracks of an individual tend to be correctly matched. When tracks are compared 

with other tracks in the second camera, the matching rate is diminished. This is probably 

due to a different chromatic response in the two cameras that could be compensated for 

with an initial calibration stage. In addition, segmentation errors in the two cameras are 

different for the lighter colours as the background colours are different. In general, 

objects in 5_lifts camera tended to be undersegmented more significantly than  

5_corridor camera. 

Despite the segmentation errors, correct matching of individuals is achieved in a large 

majority of the studied cases; however, it is obviously impacted by such errors. As 



 

mentioned earlier, Person A and Person D, shown in Figure 12, are sometimes 

incorrectly matched due to significant segmentation errors. Thus, people who are 

wearing colours that are similar in part, for instance the same colour top, are more 

difficult to discriminate between where segmentation errors are large. 

5.5  Discussion  

From the experimental results, we can state that the proposed approach has proven 

effective for the matching of single individuals from disjoint camera views in a real-life 

video surveillance scenario. Its limitations in discrimination capability are inherent to 

the features chosen. Any two people of sufficiently similar appearance will tend to be 

matched as similar under normal conditions. This could certainly be the case, for 

instance, of personnel or school children wearing uniforms. Scenario analysis will have 

to be conducted to assess the level of threat carried by such individuals (such as the 

possibility of security controls on all uniformed personnel allowed to be on the 

premises). Also people who change their clothing will no longer be matched to their 

original disjoint track within the system. A new track will be generated for the duration 

of the session. Extensions to the feature set could be naturally integrated in the method 

proposed in this paper that may help to mitigate these problems. Our current work is 

implementing the following extensions: 

1. Adding an invariant shape feature. The feature currently selected is the moving 

person’s average height over a sequence of frames longer than the estimated gait 

period [28]. 

2. Making the system capable of detecting the main pose related views of a person, 

such as front, back, and side. The colour histogram matching procedure could then 

be parametric in the detected pose. 

3. Making the system capable of detecting obstructed views of a person in order to 

prevent using such views for matching. 



 

4. Evaluating different fusion scenarios, including using the features in a hierarchy. 

This would start from those features that offer the best trade off between 

discrimination and computational costs and proceed in diminishing order so as to 

limit the average computational costs at no significant expense for accuracy. 

VI. CONCLUSIONS 

In this paper, we have proposed a method for tracking people across disjoint camera 

views based on an illumination-tolerant appearance representation. Disjoint views are 

challenging because illumination conditions can be very different between views, 

significantly varying the appearance of objects. Computing an exact transformation to 

compensate for such appearance changes is impractical since appearance of moving 

objects depends on a number of illumination parameters which cannot be fully retrieved 

from videos, even with an initial training stage. The main contributions of this paper are: 

an accurate appearance representation capable of dealing with the small pose changes of 

a moving person, a modified cumulative histogram transformation compensating for the 

varying illumination conditions “called controlled equalisation”, and a matching strategy 

that extends along the whole available track. Results from experiments reported in this 

paper can be summarised as: 

1. The modified cumulative histogram transformation makes the appearance of a 

single object reasonably invariant across disjoint camera views while different 

objects remain easy to discriminate; 

2. The proposed k-means online clustering algorithm has proved an accurate and 

efficient appearance representation to the purpose of matching; 

3. The incremental major colour spectrum histogram representation (IMCSHR) copes 

with the small view changes occurring over a window of successive frames; 



 

4. The IMCSHR can tolerate small levels of segmentation errors, and  recover from 

large segmentation errors in a small percentage of the frames within a track; 

5. Post-matching integration of the frame-level decision along the objects’ tracks for a 

minimum number of frames improves the reliability of overall matching;  

6. The proposed overall matching algorithm has linear computational complexity in 

the number of frames, N, used for matching; 

The proposed matching procedure can provide video surveillance applications with the 

ability of tracking single, moving objects across disjoint camera views which are 

predominant in existing surveillance camera networks. Such an ability is potentially 

useful for several surveillance applications such as tracking of assigned individuals from 

entry to exit of a building in real time (“watch list”), or as a forensic tool to 

automatically back-track movements of people from an assigned point in time and space 

related to an event of interest. 
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