
This is a repository copy of Structural similarity-based object tracking in multimodality 
surveillance videos.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82282/

Version: Submitted Version

Article:

Loza, A., Mihaylova, L., Bull, D. et al. (1 more author) (2009) Structural similarity-based 
object tracking in multimodality surveillance videos. Machine Vision and Applications, 20 
(2). 71 - 83. ISSN 0932-8092 

https://doi.org/10.1007/s00138-007-0107-x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Machine Vision and Applications manuscript No.
(will be inserted by the editor)

Artur Łoza · Lyudmila Mihaylova · David Bull · Nishan Canagarajah

Structural Similarity-Based Object Tracking in Multimodality
Surveillance Videos

Received: date / Accepted: date

Abstract This paper addresses the problem of object track-
ing in video sequences for surveillance applications by using
a recently proposed structural similarity-based image dis-
tance measure. Multimodality surveillance videos pose spe-
cific challenges to tracking algorithms, due to, for example,
low or variable light conditions and the presence of spurious
or camouflaged objects. These factors often cause undesired
luminance and contrast variations in videos produced by in-
frared sensors (due to varying thermal conditions) and vis-
ible sensors (e.g. the object entering shadowy areas). Com-
monly used colour and edge histogram-based trackers often
fail in such conditions. In contrast, the structural similarity
measure reflects the distance between two video frames by
jointly comparing their luminance, contrast and spatial char-
acteristics and is sensitive to relative rather than absolute
changes in the video frame. In this work, we show that the
performance of a particle filter tracker is improved signif-
icantly when the structural similarity-based distance is ap-
plied instead of the conventional Bhattacharyya histogram-
based distance. Extensive evaluation of the proposed algo-
rithm is presented together with comparisons with colour,
edge and mean-shift trackers using real-world surveillance
video sequences from multimodal (infrared and visible) ca-
meras.
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1 Introduction

Recently there has been an increasing interest in target track-
ing in video sequences that is of particular importance to
military and civilian surveillance applications [10,11,9,27,
20,12]. Various methods for object tracking in video sequen-
ces were proposed in the literature. Bayesian methods are
the most often used where the problem reduces to the re-
construction of the probability density function of the object
states given the measurements and the prior knowledge. Dif-
ferent image features such as colour, motion, edges, shape
and texture can be used to track the moving object [27,24].
This problem presents many challenges, including how to
model the moving object, the choice of measurement model
and the function characterising the similarity between two
images or video frames. One specific issue with object track-
ing in video sequences (compared to, for example, tracking
with radar data) is that no measurement model exists in ex-
plicit form.

Multiple feature-based tracking provides more informa-
tion about the object and hence increases the robustness of
the algorithms to occlusions and clutter. An optimisation ap-
proach for different features selection is proposed in [33]
which is embedded in a layered hierarchical vision-based
tracking algorithm. When the target is lost, the layers coop-
erate to perform a rapid search for the target and continue
tracking. Features can be implemented concurrently in the
democratic integration approach [34] and contribute simul-
taneously to the overall result. Some other methods rely on
applying tensor theories to visual surveillance, e.g. for gait
recognition [31,32].

The performance of the tracking algorithm, however, also
depends on the measure characterising the similarity between
the two subsequent video frames. Frequently used functions
include the Bhattacharyya distance [1,6] and the non-metric
Kullback-Leibler measure.

In this paper we propose a particle filter (PF) based on a
structural similarity measure for object tracking in video se-
quences. The PF framework has been proven to be a scalable
and powerful approach, able to cope with non-linearities and
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uncertainty present in video sequences (see, for example,
[27,25,3,4]). In this work, we combine these strengths of the
particle filtering with the properties of the structural similar-
ity measure. The similarity measure proposed in [37] cap-
tures the spatial characteristics of an image and has been
shown to be robust to illumination and contrast changes.
The way this measure is formulated reflects the fact that
the Human Visual System (HVS) is highly adapted to ex-
tract structural information from the visual scene [38]. It has
been originally used for the purposes of quality assessment
of distorted and fused images [37,28,18]. In this paper, we
show how this measure can be applied to the video track-
ing problem. It replaces histograms used for calculation of
the measurement likelihood function within a particle filter.
We demonstrate that it is a good and efficient alternative to
histogram-based tracking. This work extends the early re-
sults reported in [19] with more detailed investigation in-
cluding the consideration of tracking in multimodality and
fused videos. The performance of the proposed method is
compared with results obtained with a PF using the Bhat-
tacharyya distance (some of which have been reported in
[21]) and mean-shift tracker [5], both applied to multimodal-
ity and fused videos.

The remaining part of the paper is organised as follows.
Section 2 presents the structural similarity-based distance
for tracking. Section 3 presents a PF with the proposed sim-
ilarity measure, describes the likelihood and motion model
of the object of interest. Section 4 contains results over real-
world video sequences. Finally, Section 5 summarises the
results and discusses open issues for future research.

2 Distance measure

2.1 Structural similarity measure

The proposed method uses a similarity measure computed
directly in the image spatial domain. This approach differs
significantly from other particle filtering algorithms, that com-
pare image distributions represented by their sample his-
tograms [25,27,30].

Although many simple image similarity measures exist
(for example, mean square error, mean absolute error or peak
signal-to-noise ratio), most of these have failed so far to cap-
ture the perceptual similarity of images/video frames under
the conditions of varied luminance, contrast, compression or
noise [37]. Recently, based on the premise that the HVS is
highly tuned to extracting structural information, a new im-
age metric has been developed, called the Structural SIMi-
larity (SSIM) index [37]. The SSIM index, between two im-
ages, a and b is defined as follows:

S(a,b) =

(
2µaµb

µ2
a + µ2

b

)(
2σaσb

σ2
a +σ2

b

)(
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)
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L

∑
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(a j −µa)(b j −µb) (4)

corresponds to the sample covariance. The estimators are
defined identically for images a and b, each having L pix-
els. The image statistics are computed in the way proposed
in [37], i.e. locally, within a 11 × 11 normalised circular-
symmetric Gaussian window.

2.2 Selected properties of the SSIM

The three components of (1), l, c and s, measure the lumi-
nance, contrast and structural similarity of the two images,
respectively. Such a combination of image properties can be
seen as a fusion of three independent image cues. The rel-
ative independence assumption is based on a claim that a
moderate luminance and/or contrast variation does not af-
fect structures of the image objects [38].

In the context of the multimodal data used in our inves-
tigation, an important feature of the SSIM index is (approx-
imate) invariance to certain image distortions. It has been
shown [37,38], that the normalised luminance measurement,
l, is sensitive to the relative rather than absolute luminance
change, thus following the masking feature of the HVS.

Similarly, the contrast comparison function, c, is less
sensitive to contrast changes occurring in images with high
base contrast. Finally, the structure comparison, s, is per-
formed on contrast-normalised signal with mean luminance
extracted, making it immune to other (non-structural) distor-
tions.

These particular invariance properties of the SSIM index
make it suitable for the use with multimodal and surveillance
video sequences. The similarity measure is less sensitive to
the type of global luminance and contrast changes produced
by infrared sensors (results of varied thermal conditions or
exposure of the object) and visible sensors (for example, the
object entering dark or shadowy areas or operating in vari-
able lighting conditions). Moreover, the structure compari-
son is expected to be more reliable in scenarios when spuri-
ous objects appear in the scene or when there is not enough
discriminative colour information available. The latter may
be the result of the tracked object being set against back-
ground of similar colour or when background-like camou-
flage is deliberately being used.
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It should be noted that some desirable properties of the
structural similarity measure, resulting from the use of the
covariance, make the proposed method likely to fail when
the target undergoes significant structure changes, for ex-
ample due to the rotation or change of the viewing angle.
In Section 4.5 some of the issues involved in SSIM-based
tracking under such conditions are discussed and possible
solutions are suggested.

2.3 Image dissimilarity

Below, we present a method of evaluating the likelihood
function L (see Section 3.3), based on the structural sim-
ilarity between two greyscale images. We begin by noting
that the measure defined in (1) is symmetric, i.e.

S(a,b) = S(b,a) (5)

and has a unique upper bound

S(a,b) ≤ 1, S(a,b) = 1 iff a = b. (6)

A natural way of converting such a similarity S(a,b) into
dissimilarity D(a,b) is to take D(a,b) = 1−S(a,b). An al-
ternative way [39],

D(a,b) =
1

|S(a,b)|
−1 (7)

is preferred, however, as it maps an interval [-1, 1] into [0,
∞] (0 when the images are identical) and as a result is more
sensitive to very dissimilar vectors. It can be easily shown
that the measure (7) satisfies non-negativity, reflexivity and
symmetry conditions. Although sufficient for our purposes,
this dissimilarity measure is not a metric, as it does not sat-
isfy the triangle condition.

3 A particle filter for object tracking

3.1 Particle filtering

Particle filtering [2,8,13,14,29,27] is a method relying on
sample-based reconstruction of probability density functions.
The aim of sequential particle filtering is to evaluate the
posterior probability density function (pdf) p(xk|Zk) of the
state vector xk ∈ R

nx , with dimension nx, given a set Zk =
{z1, . . . ,zk} of sensor measurements up to time k. The Monte
Carlo approach relies on a sample-based construction to rep-
resent the state pdf. Multiple particles (samples) of the state

are generated, each one associated with a weight W
(ℓ)
k , ℓ =

1,2, . . . ,N, which characterises the quality of a specific par-
ticle ℓ.

An estimate of the variable of interest is obtained by the
weighted sum of particles. Two major stages can be distin-
guished in the particle filtering method: prediction and up-

date. During prediction, each particle is modified according
to the state model of the region of interest in the video frame,

including the addition of white noise in order to simulate the
effect of the random walk.

Assuming that the posterior pdf at time k−1 (the initial
pdf) is available, the prior pdf of the state at time k is ob-
tained in prediction stage via Chapman-Kolmogorov equa-
tion:

p(xk|Zk−1) =
∫

Rnx

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (8)

Once a measurement zk is available, p(xk|Zk) is recursively
obtained in the update step

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (9)

where p(zk|Zk−1) is a normalising constant. Thus, the recur-
sive update of p(xk|Zk) is proportional to

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1). (10)

The posterior density p(xk|Zk) is approximated as

p(xk|Zk) ≈
N

∑
ℓ=1

Ŵ
(ℓ)
k δ (xk −x

(ℓ)
k ) (11)

based on the likelihood L (zk|x
(ℓ)
k ) (18) of the measurement

and particle weights. Here, δ (.) is the Kronecker delta func-
tion. The details of PF implementation, particle weights and
likelihood calculation are given in Table 1 and Section 3.3.

An inherent problem with particle filters is degeneracy
(the case when only one particle has a significant weight). A
resampling procedure helps to avoid this by eliminating par-
ticles with small weights and replicating the particles with
larger weights. Various approaches for resampling have been
proposed (see [8], for example). In this work, the residual re-
sampling method [17,35] was used.

3.2 Motion model

The initial (reference) region surrounding the object of in-
terest, denoted as tref, is chosen manually. In our case this
is a rectangular region, and we are tracking its centre (see
Section 3.4 for more detailed description of the target region
model).

The motion of the moving object is modelled by the ran-
dom walk model,

xk = Fxk−1 +vk−1, (16)

with a state vector xk = (xk,yk,sk)
T comprising the pixel co-

ordinates of the centre of the region surrounding the object
and the region scale sk. F is the transition matrix (F = I in
the random walk model) and vk is the process noise assumed
to be white, Gaussian, with a covariance matrix

Q = diag(σ2
x ,σ2

y ,σ2
s ). (17)
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Table 1 The particle filter algorithm

Initialisation

1. Generate samples {x
(ℓ)
0 }, ℓ = 1,2, . . . ,N, from the initial distribu-

tion p(x0). Initialise weights W
(ℓ)
0 = 1/N

For k = 1,2, . . . ,

Prediction Step

2. For ℓ = 1,2, . . . ,N, sample x
(ℓ)
k ∼ p(xk|x

(ℓ)
k−1) from the motion

model for the object region.

Measurement Update: evaluate the importance weights

3. The cue is used as a ‘measurement’. Compute the weights

W
(ℓ)
k ∝ W

(ℓ)
k−1L (zk|x

(ℓ)
k ). (12)

based on the likelihood L (zk|x
(ℓ)
k ) (18) of the cue.

4. Normalise the weights,

Ŵ
(ℓ)
k = W

(ℓ)
k /

N

∑
ℓ=1

W
(ℓ)
k . (13)

Output

5. The posterior mean state estimate xk is computed using the collec-
tion of samples (particles)

x̂k =
N

∑
ℓ=1

Ŵ
(ℓ)
k x̂

(ℓ)
k . (14)

Selection step (resampling)

6. Estimate the effective number of particles Neff [17]

Neff =
1

∑
N
ℓ=1(Ŵ

(ℓ)
k )2

. (15)

If Neff ≤ Nthr (Nthr is a given threshold) then perform resampling:

multiply/suppress samples x
(ℓ)
k with high/low importance weights

Ŵ
(ℓ)
k , in order to introduce variety and obtain N new random sam-

ples. Set W
(ℓ)
k = Ŵ

(ℓ)
k = 1/N.

The estimation of the scale permits adjustment of the region
size of the moving objects, e.g., when it goes away from the
camera, when it gets closer to it, or when the camera zoom
varies.

3.3 Likelihood model

The normalised distance between the two regions tref (refer-
ence region) and tk (current region), for particle ℓ is substi-
tuted into the likelihood function, modelled as an exponen-
tial:

L (zk|x
(ℓ)
k ) ∝ exp

(
−D2(tref, tk)/D2

min

)
, (18)

where Dmin = min
x
{D(tref, tk)}. This smooth likelihood func-

tion, although chosen empirically by the authors of [27],
has been in widespread use for a variety of cues ever since.
The structural properties of the region are extracted through
SSIM (1) and are used directly to calculate the distance D

in (18) as shown in (7). The likelihood function is then used
to evaluate the importance weights of the particle filter, to
update the particles and to obtain the overall estimate of the
centre of the current region tk, as shown in (12)–(14), Ta-
ble 1.

3.4 Target model

The tracked objects are defined as image regions within a
rectangle specified by the state vector. The reference image
regions associated with the object of interest are shown in
Figure 1. In the particle filtering framework as specified in
Table 1, a rectangle corresponding to each particle, centred
at location (x,y) and resized according to the scale parameter
of the state, is computed. The extracted region is then com-
pared to the target region using the distance measure (7).

4 Performance evaluation

4.1 Video sequences

The performance of our method is demonstrated over six
multimodal video sequences, in which we aim to track a
pre-selected moving person. The sequence cross (5 sec du-
ration), taken from our multimodal database [15], contains
three people walking rapidly in front of a stationary camera.
The main difficulties posed by this sequence are: the colour
similarity between the tracked object and the background or
other passing people, and a temporal near-complete occlu-
sion of the tracked person by a passer-by.

The sequence man (40 sec long), has been obtained from
[26]. It is a long recording showing a person walking along
a car park. Apart from object’s similarity to the nearby cars,
and the shadowed areas, the video contains numerous insta-
bilities. These result from a shaking camera (changes in the
camera pan and tilt), fast zoom-ins and zoom-outs, and a al-
tered view angle towards the end of the sequence.

The sequence doorway ir (10 sec), taken from [15], con-
tains an infrared recording of two people walking towards a
stationary camera. The two persons look quite similar and
the tracked object is often partially occluded by nearby ob-
jects.

The three multimodal sequences bushes [15], contain si-
multaneous registered infrared (ir), visual (vi) and complex
wavelet transform fused (cwt, see [16] for details) recordings
of two camouflaged people walking in front of a stationary
camera (10 sec). The tracked individual looks very similar
to the background. The video contains changes in the illu-
mination (the object entering shadowy areas) together with
nonstationary surroundings (bushes moved by strong wind).
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 cross
 man

 doorway_ir

 bushes_ir  bushes_vi  bushes_cwt

Fig. 1 Reference frames from the test videos

4.2 Trackers used in the comparison

In order to assess the performance of our proposed tracking
algorithm, we compare it with a PF tracker based on inde-
pendent and combined colour and edge cues [4] (referred
to as ‘colour’, ‘edges’ and ‘colour&edges’ in the text). Un-
like in the structural similarity-based ‘structure’ tracker, the
distance between the reference and the current frame in (18)
is calculated by the Bhattacharyya distance, as first proposed
in [24,6]. In the PF based on combined cues, ‘colour&edges’,
the likelihood is calculated as a product of the likelihoods
of the separate ‘colour’ and ‘edges’ cues. No motion-based
trackers have been used in the comparison, as preliminary
experiments have shown that the multiple moving objects,
moving background and low light videos pose a great chal-
lenge to such a tracker.

The covariance matrix Q of the motion model (17) is
chosen as follows: diag(2.52,102,0.012) for cross video se-
quence, diag(2.52,2.52,0.052) for man, diag(22,2.52,0.022)
for doorway ir, and diag(52, 52,0.0052) for all three bushes

sequences. A relatively low number (N = 100) of particles
has been used for all videos.

An additional benchmark technique, the mean-shift trac-
ker, based on a different principle than the particle filter-
ing, has been used in the comparison. The mean-shift al-
gorithm is a non-parametric technique relying on finding the
modes of the underlying target–current frame pdf in the fea-
ture space (colour space in this case). It is an adaptive gradi-
ent ascent method, whose estimation resolution is controlled

by a kernel. The video trackers based on a recursive mean-
shift have been very popular mostly due to their simplicity of
implementation and usage (only kernel and iteration limit re-
quired from the user) and minimal computational complex-
ity. The implementation used here is based on [5,6] and em-
ploys Epanechnikov kernel and maximum of 20 iterations.
Additionally, in order to preliminarily ascertain the potential
of using SSIM with this technique, a combined structural
similarity–mean-shift version of the procedure has been de-
veloped. The mean-shift tracker has been modified by re-
placing the Bhattacharyya distance with the SSIM measure
when determining the scale of the target state.

4.3 Error plots

The Root Mean Squared Error (RMSE) in the state space
has been used to evaluate the performance of the developed
technique. The RMSE can be formulated as follows

RMSE(k) =

√
1

M

M

∑
m=1

(xk − x̂k,m)2 +(yk − ŷk,m)2 (19)

where (x̂k,m, ŷk,m) stand for the upper-left corner coordinates
of the tracking box determined by the central position and
scale, corresponding to the state estimated by the PF in the

frame k, in m
th independent Monte Carlo realisation (M = 50

in our simulations). The ground truth states (xk,yk) corre-
spond to the true positions of the object and have been gen-
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Fig. 2 RMSE plots for the tested trackers. The video frames marked by the vertical lines are shown in Figures 3–6
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Fig. 3 Example video frames with average output of the tracker (solid line rectangle), a single trial output (dashed line rectangle and particles)
superimposed, sequence cross

erated by manually creating the tracking box surrounding
the object in the test videos.

The error estimates (19) are shown in Figure 2. It can
clearly be seen that the proposed method never looses the
object and outperforms the other methods in nearly all in-
stances. The colour-based PF tracker is the most prone to fail
or give imprecise estimates of the object’s state. Combining
edge and colour cues is usually beneficial, however in some
cases (videos man and cross) the errors of the colour-based
tracker propagate through the performance of the tracker,
making it less precise than the tracker based on edges alone.
Another observation is that the ‘structure’ tracker has been
least affected by the modality of bushes and the fusion pro-
cess, which demonstrates the robustness of the proposed me-
thod to luminance and contrast alterations.

Bottom of Figure 2 shows the performance of the mean-
shift tracker as compared with the proposed method. For

brevity, only error plots of two videos are shown, for which
the mean-shift tracker achieved the best performance. In two
videos, man and cross, it has failed to track the object through-
out the sequence. Since the mean shift algorithm is a mem-
oryless colour-based tracker, its poor performance in these
two sequences is due to the object’s fast motion and its sim-
ilarity to the surrounding background. In other sequences,
it was found that the mean-shift tracker is less precise than
the PF tracker with the proposed structural similarity mea-
sure, and performs comparably either to ‘colour&edges’ or
‘edges’ tracker. However, as the plots in Figure 2 illustrate,
the mean-shift tracker occasionally matched the performance
of the similarity measure tracker, half-way through the door-

way ir and bushes sequences.

The use of the combined structural similarity–mean-shift
algorithm resulted in improved tracking performance in most
of the videos, compared with the aforementioned perfor-
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Fig. 4 Example video frames with average output of the tracker (solid line rectangle), a single trial output (dashed line rectangle and particles)
superimposed, sequence man

mance of the conventional mean-shift tracker. The combined
tracker has not been able to track the object in cross se-
quence. It has succeeded, however, in tracking the object ac-
curately during the most of doorway ir and man sequence
(not shown here). Moreover, the tracking accuracy in all
three bushes videos improved significantly (see Figure 2).
This crude combination of the two techniques therefore gave
promising results and the further extension of the SSIM mea-
sure to producing the density function in the mean-shift al-
gorithm will be a subject of the future research.

4.4 Example frames

A closer investigation of the selected output frames illus-
trates the performance of the different methods. Figures 3–6
show the object tracking boxes constructed from the mean

locations and scales estimated during the tests. Addition-
ally, the particles and object location obtained from one of
the Monte Carlo trials are shown. Since very similar perfor-
mance has been obtained for all three bushes videos, only
the fused sequence, containing complementary information
from both input modalities, is shown. The visual difference
between contents of the input bushes videos (colour infor-
mation, a person hidden in shaded area) can be seen by com-
paring the reference frames in Figure 1.

In the sequence cross, Figure 3, the ‘colour’ and ‘edges’
trackers are attracted by the road sign, which eventually leads
to the loss of the object. Then, the first non-occluding passer-
by causes the ‘colour&edges’ cue tracker to loose the object
(frame 65). The ‘structure’ tracker is not distracted even by
the temporary occlusion (frame 76).

The shaking camera in the sequence man (Figure 4, frame
162), has less effect on the ‘structure’ tracker than on the re-
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Fig. 5 Example video frames with average output of the tracker (solid line rectangle), a single trial output (dashed line rectangle and particles)
superimposed, sequence doorway ir

maining trackers, which appear to choose the wrong scale
of the tracking box. Moreover, the remaining trackers do not
perform well in case of similar dark objects appearing close-
by (shadows, tyres, frame 478, where the ‘colour’ tracker
permanently looses object) and rapid zoom-in (frame 711)
and zoom-out of the camera (frame 790). Our method, how-
ever, seems to cope well with both situations. It should be

noted, however, that ‘colour&edges’ (and ‘edges’) trackers
show a good ability of recovering from some of the failings.

Although all the methods tested were able to track the
person in the sequence doorway ir, Figure 5, the proposed
method is the most precise with respect both to position and
correct scaling of the tracking box.
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Fig. 6 Example video frames with average output of the tracker (solid line rectangle), a single trial output (dashed line rectangle and particles)
superimposed, sequence bushes cwt

Similarly, in the multimodal sequence bushes, Figure 6,
the proposed ‘structure’ tracker is the most precise and the
‘colour’ tracker the least precise (see also Figure 2). The use
of the fused video, although resulting in slightly deteriorated
performance of the ‘edges’ tracker, can still be motivated
by the fact that it retains complementary information useful
both for the tracker and a human operator [21,7]: contextual
information from the visible sequence and a hidden object

location from the infrared sequence.

A single-trial output shown in Figures 3–6 exemplifies
the spread of the spatial distribution of the particles. Typi-
cally, in the ‘structure’ tracker, particles are the most con-
centrated. Similar features can be observed in the output
of the ‘colour&edges’ tracker. The particle distribution of
the remaining PF trackers is much more spread, often at-
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Fig. 7 Example video frames with a tracker output (tracking rectangle and particles) superimposed, sequence S1-T1-C containing a rotating
object

tracted by spurious objects (see Figures 3 and 4, in particu-
lar). It should also be noted that, the actual performance of
the tracker varies between realisations, often giving different
results compared with the output averaged over all Monte
Carlo trials. Also in this respect the proposed method has
been observed to be the most consistent, i.e., its results had
the lowest variation.

4.5 Possible extensions

In real-life video sequences of long-duration, the properties
of the target are likely to change significantly. Variation of
the target may be for example due to the change of lighting
or viewing angle, motion, or non-rigid transformation of the
target.

It can be demonstrated that the proposed structural simi-
larity-based tracking method has low sensitivity to image
distortions resulting from lighting changes (see Section 2.2).
However, it is generally acknowledged that, as a result of the
covariance being computed in the spatial domain, the struc-
tural similarity-based tracker is more sensitive to structural
distortions as compared to histogram-based trackers. The
use of the sliding window applied when estimating the lo-
cal moments decreases the sensitivity of the SSIM measure
to a small displacement of the target (e.g. a person waving
hands while walking in cross sequence). It is expected that
a trade-off between the local and global sensitivity to such
distortions can be achieved by varying the window size. This
however may not be sufficient for some sequences. In gen-
eral, in order to be able to track the target over an extended
period of time, the tracker should be able to adapt to target
alterations, e.g., by updating the target model and/or by be-
ing invariant to target’s transformations [36]. The adaptive
solutions, while beyond the scope of this communication,

may include target representation update [24] (this method
raises issues as to when and what extent to update). An-
other approach is to treat model representation as a part of
the state [22], updated at each step. Such an extended state
space would, however, increase the complexity of the algo-
rithm significantly.

Below, a type of target distortion, for which the state
space can be easily extended, is considered: rotation of the
target in the plane approximately perpendicular to the cam-
era’s line-of-sight. A simple solution to the tracking of the
rotating objects is to include an orientation of the target in
the state space, by taking x = (xk,yk,sk,αk)

T , where αk is
the orientation angle. The complexity of the algorithm is in-
creased slightly due to the need to generate the rotated ver-
sions of the reference object (which can, possibly, be pre-
computed). For some video sequences it may also be nec-
essary to increase the number of particles, in order to suf-
ficiently sample the state space. The results of tracking a
rotating trolley in a sequence from PETS 2006 Benchmark
Data [23], with the use of 150 particles are shown in Fig-
ure 7. The figure shows examples of frames from two best-
performing trackers, ‘colour&edges’ and ‘structure’. Apart
from the rotation scaling of the object, additional difficulty
in tracking arose because the object was partially transparent
and thus often took on the appearance of the non-stationary
background. However, also in this case ‘structure’ tracker
appears to follow the location, scale and rotation of the ob-
ject more closely than other trackers.

5 Conclusions

A new tracking scheme based on structural similarity has
been developed and has been shown to perform reliably un-
der difficult conditions (as often occurs in surveillance vi-
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deos), when tested with real-world video sequences. Robust
performance has been demonstrated in both low and variable
light conditions, and in the presence of spurious or camou-
flaged objects. In addition, the algorithm copes well with
the artefacts that may be introduced by a human operator,
such as rapid changes in camera view angle and zoom. This
is achieved with relatively low computational complexity,
which makes our algorithm potentially applicable to real-
time surveillance problems.

Colour cue itself cannot provide stable tracking under
changing illumination and when regions with similar colour
are present in the scene. Likewise, the combined colour and
edge cue, although generally performing well, cannot pro-
vide a reliable and precise tracking performance under am-
biguous situations, especially with a moving camera (with
changes in the pan, tilt and zoom). In contrast, the proposed
PF based on the structural similarity measure exhibits the
most stable and reliable performance. This is due to the fact
that this measure captures the spatial similarity between the
regions of interest, independently of the colour. It measures
only relative changes in contrast and luminance, and thus
is more robust to the changes in the environment. The im-
plemented tracking algorithm uses a changeable size of the
tracking window, which makes it suitable for many real-
world applications (where the camera–object distance varies
significantly).

Future work on the proposed PF tracking approach will
be focussed on further improvement of its performance by
realising the potential of giving adaptive weights to the three
components of the similarity measure in (7). The structural
similarity measure-based tracker may not be robust to sig-
nificant alteration of the tracked object. Thus, the recovery
and/or template update techniques will also be investigated
in the future to improve reliability of the proposed tracker.
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27. Pérez, P., Vermaak, J., Blake, A.: Data fusion for tracking with
particles. Proceedings of the IEEE 92(3), 495–513 (2004)

28. Piella, G., Heijmans, H.: A new quality metric for image fusion.
In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 Inter-
national Conference on, vol. 3, pp. III–173–6 vol.2 (2003)

29. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman
Filter: Particle Filters for Tracking Applications. Artech House
(2004)

30. Shen, C., van den Hengel, A., Dick, A.: Probabilistic multiple cue
integration for particle filter based tracking. In: Proc. of the VIIth
Digital Image Computing : Techniques and Applications. C. Sun,
H. Talbot, S. Ourselin, T. Adriansen, Eds. (2003)

31. Tao, D., Li, X., Wu, X., Maybank, S.: Human carrying status in
visual surveillance. In: IEEE Int. Conf. on Computer Vision and
Pattern Recognition, vol. 2, pp. 670–677 (2006)

32. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discrim-
inant analysis and Gabor features for gait recognition. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 29(10),
1700–1715 (2007)

33. Toyama, K., Hager, G.: Incremental focus of attention for robust
vision-based tracking. Intl. J. of Computer Vision 35(1), 45–63
(1999)

34. Triesch, J.: Self-organized integration of adaptive visual cues for
face tracking. In: In: Sensor Fusion: Architectures, Algorithms,
and Applications IV, Belur V. Dasarathy, Editor, Proceedings of
SPIE Vol. 4051, pp. 397–406 (2000)

35. Wan, E., van der Merwe, R.: The Unscented Kalman filter. In:
S. Haykin (ed.) Kalman Filtering and Neural Networks, chap. 7,
pp. 221–280. Wiley Publishing (2001)

36. Wang, X., Xiao, B., Ma, J.F., Bi, X.L.: Scaling and rotation invari-
ant analysis approach to object recognition based on radon and
fourier-mellin transforms. Pattern Recognition 40(12), 3503–3508
(2007)

37. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality as-
sessment: from error visibility to structural similarity. IEEE Trans.
on Image Processing 13(4), 600–612 (2004)

38. Wang, Z., Bovik, A.C., Simoncelli, E.P.: Structural approaches to
image quality assessment. In: A. Bovik (ed.) Handbook of Im-
age and Video Processing, 2nd Edition, chap. 8.3. Academic Press
(2005)

39. Webb, A.: Statistical Pattern Recognition. John Wiley & Sons
(2003)


