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Abstract Soccer analysis and reconstruction is one of the most interesting challenges for 

wide-area video surveillance applications. Techniques and system implementation for 

tracking the ball and players with multiple stationary cameras are discussed. With video 

data captured from a football stadium, the real-world, real-time positions of the ball and 

players can be generated. The whole system contains a two-stage workflow, i.e. single 

view and multi-view processing. The first stage includes categorizing of players and 

filtering of the ball after change detection against an adaptive background and image-

plane tracking. Occlusion reasoning and tracking-back is applied for robust ball filtering. 

In the multi-view stage, multiple observations from overlapped single views are fused to 

refine players’ positions and to estimate 3-D ball positions using geometric constraints. 

Experimental results on real data from long sequences are demonstrated. 

Keywords: video surveillance, multiple cameras, tracking, 3-D vision, video signal 

processing  
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1. Introduction 

Sports analysis, in particular soccer game reconstruction, is one of the most interesting 

and challenging applications in wide-area video surveillance with multiple cameras. By 

accurately tracking players and the ball, a number of important applications have been 

derived for automatic comprehension of soccer events, such as annotation of video 

content, summarization, team strategy analysis, verification of referee decisions and 2-D 

or 3-D reconstruction and visualization [1-4].  

Despite frequently occlusion in clutters, players may be successfully detected and 

tracked on the basis of color and shape from monocular cameras, especially from TV 

broadcasting streams [1-6, 9-11]. However, similar methods cannot be extended to ball 

detection and tracking for several reasons [17]. Firstly, the ball is too small, exhibits 

irregular shape, variable size and unstable color when moving fast. Secondly, the ball is 

frequently occluded by players or flying out of filed-of-views of all the cameras. Finally, 

the ball is mostly traveling above the ground, which necessitates 3D tracking for accurate 

positioning. Consequently, using multiple stationary cameras is a good alternative 

approach in such a context, as it increases the overall field-of-view and enables 3-D 

positioning of the ball for more challenging applications. Besides, it provides video data 

of better resolution and can successfully reduce the effects of dynamic occlusion and 

improve the accuracy and robustness of estimation. Related work from either monocular 

or multiple sequences is reviewed below. 

1.1 Tracking from monocular sequence 

In monocular sequence of TV streams, the ball is mostly of good resolution in the image 

centre. However, due to complex camera movements and partial views of the field, it is 

hard to obtain accurate camera parameters for on-field ball positioning. In Gong et al [1], 

white color and circular shape are employed to detect the ball in image sequences. In 

Yow et al [2], the ball is detected by template matching in each of the reference frames 

and then tracked between these frames. In Seo et al [6], template matching and Kalman 
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filter are used to track the ball after manual initialization. In Yu et al [8], candidate balls 

are first identified by size range, color and shape, and further verified using motion 

information obtained from a Kalman filter. Since color and shape varies considerably in 

soccer games, these methods seem unlikely to provide robust solutions. 

As for tracking of players, several research projects have been reported in this field. 

In [6] and [9], a monocular TV sequence is used for generating panoramic views and 

players’ trajectories. Using the concept of a closed-world, Intille and Bobick [10] track 

players in the broadcast TV sequences of American football games. Needham and Boyle 

[11], also adopt a monocular static camera to track players of an indoor 5-a-side soccer 

game with the CONDENSATION algorithm.  

1.2 Tracking from multiple sequences 

Generally, there are two steps to estimate and track 3D balls from multiple cameras. 

Firstly, the ball is detected and tracked in single views independently. Then, 2D ball 

positions from multiple camera views are integrated to attain 3D positions using known 

motion models [4-6].  Bebie, and Bieri [4], model 3D trajectory segments by Hermite 

spline curves. However, about one-fifth of the ball positions need to be set manually 

before estimation. In Matsumoto et al [5], 2D ball is detected by template matching and 

tracked by epipolar line constraints between multiple cameras. In Ohno et al [9], 3D ball 

trajectory is modeled by considering air friction and gravity but depends on an unsolved 

initial 3D velocity. In Kim et al [18] and Reid and North [19], reference players and 

shadows are utilized in the estimation of 3D ball positions. These are unlikely to be 

robust as the shadow positions depend more on light positions than camera projections.  

On tracking players, multi-view data is used in several different ways. In Cai and 

Aggarwal [12] and Khan et al [13], each target is tracked in the best-view camera and it is 

passed to the neighboring camera when leaving the field-of-view of the current camera. 

Assuming all the targets being in the same plane (e.g. the ground plane), Stein [14] and 

Black et al. [15] compute the homography transformation between the coordinates of two 

overlapping images captured with uncalibrated and calibrated cameras, respectively. 
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1.3 Main contributions 

In this paper, we present the algorithms and system implementation for estimating 

positions of soccer players and the ball from multiple stationary cameras. The novel 

components include a method for using partial observations to split grouped targets, 

tracking-back for robust filtering the ball, and fusion of multi-sensor data to improve 

target visibility and tracking accuracy as well as a geometric approach for 3-D ball 

positioning. Using observations from either multiple or a single camera(s), 3-D positions 

of the ball can be estimated in our trajectory model. With video data inputted from static 

cameras of overlapping fields-of-view at a football stadium, the system can generate 

estimates of the real-world, real-time (allowing several seconds of latency) positions of 

the ball and players during a match and this will benefit many potential applications.  

2. Architecture and foreground detection 

2.1 System architecture 

Our system contains a two-tier architecture in which single-view and multi-view 

processing are implemented, respectively. For single-view processing, features are 

extracted in the sequences from each individual camera to describe 2-D ground plane 

positions of players and their category as well as likelihood and ground plane positions of 

ball candidates. These features are then integrated in the second tier for both 3-D ball 

positioning and accurate locating of players to update a single model of the state of the 

game. Finally, this game-state is passed through a phase of marking-up for generating the 

XML output used by third party applications to deliver results to their respective 

audiences [16]. 

In our system, totally eight cameras are positioned at suitable locations around the 

stadium, and their positions are governed by the layout of the chosen stadium and the 

requirement to achieve an optimal view of the football pitch: good resolution of each 

area, in particular the goal-mouths. Through a network of optical fibre, the output of each 

camera is connected to a feature server (single-view processing module). All the eight 
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feature servers are put on a rack, and an IP/Ethernet network is used to connect their 

output to a multi-view tracker to provide output of game states (see Figure 1).  

 

 

Figure 1. Architecture of our system with plotted filed-of-views from the eight cameras. 

To synchronize the whole stage, both single-view and multi-view processing is 

associated with a time-stamp for the feature data. The multi-view Tracker is responsible 

for synchronization of single-view Feature Servers (first stage) in a request-response 

mechanism. Each iteration (or frame) of the process comprises a single (broadcast) 

request issued by the multi-view Tracker at a given time, and then the Feature Servers 

respond by taking the latest frame in the video stream, processing it and transmitting the 

resultant Features back to the Tracker. Synchronization of the feature sets is implied as 

the multi-view Tracker will record the time-stamp at which the request was made.  

2.2 Foreground detection  

Image subtraction of an adaptive background from incoming frames is utilized for 

moving object detection in the field of view (FOV) of each individual camera. 

During a short bootstrap stage, a per-pixel Gaussian mixture model [20] is used to 

estimate an initial background, in which each background candidate corresponds 

to a Gaussian distribution and will be favoured if supported by incoming data. The 

probability of observing a pixel value I at time k is modelled by a mixture of 

Gaussians: 
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where )(i

kμ  is the mean of the i-th distribution, )(i

k  is the square root of the 

covariance matrix trace, and )(i

k  is the weight reflecting the prior probability that 

the i-th distribution accounts for the data.  
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Instead of using the Expectation Maximization (EM) algorithm to maximize 

the likelihood of the observed data, an on-line K-means approximation is 

implemented to accelarate the estimation and cope with the non-stationary pixel 

processes. For a new pixel observation, a matched distribution is updated with increasing 

weight as follows: 
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where   is the updating rate satisfying  1,0 . For unmatched distributions, the 

parameters remain the same but the weights decrease. The initial background image is 

selected as the distribution with the greatest weight at each pixel. 

Then, this initial background image is continuously updated using a faster running 

average algorithm for efficiency: 

kkHkHkkLkLk FF ])1([])1([ 11   μIμIμ    (3) 

where 10  HL  , and kF  is the foreground binary mask. This method avoids 

locking any detection error by slowly updating the background image even in foreground 

regions. 

Given the input image kI , we can decide the foreground binary mask kF  by 

comparing |||| 1 kk μI  against a threshold. From the foreground masks, we can obtain a 

series of foreground regions representing candidate objects after a connected component 

analysis and thresholding by size. Each foreground region is represented by its centroid, 

bounding box and area.  

2.3 Tracking in image plane  

An image-plane Kalman tracker is used to filter noisy measurements and split merged 

objects, in which the state Ix  and measurement Iz  are given by: 
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where ),( 00 cr  is the centroid, ),( 00 cr   is the velocity, ),( 11 cr  and ),( 22 cr  are the top-left and 

bottom-right corners of the bounding box, respectively ( 21 rr   and 21 cc  ); ),( 11 cr   and 

),( 22 cr   are the relative positions of ),( 11 cr  and ),( 22 cr  to ),( 00 cr . 

The state transition and measurement equations in the Kalman filter are: 
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where Iw  and Iv  are the image plane process noise and measurement noise, and IA  and 

IH  are the state transition matrix and measurement matrix, respectively. Given T  as the 

time interval between two successive frames (for image formation), 2I  and 2O  represent 

22  identity and zero metrics; we have IA  and IH  defined as 
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Using the Tsai’s algorithm for camera calibration [21], the measurements are 

transformed into world co-ordinates. Until Section 4, all objects are assumed to lie on the 

ground plane, which is usually true for players, but the ball could be anywhere on the line 

between that ground plane point and the camera position. For each tracked object, a group 

of measurement vectors are defined, including the object’s width, height and area 

measured in meters (and square meters), and calculated by assuming it is touching the 

ground plane. In addition, a ground plane velocity ),( yx vv  is estimated from the 

projection of the image-plane velocity (which is obtained from the image plane tracking 

process) onto the ground plane.  

3. Filtering players and the ball 

3.1 Filtering and categorizing of players 

Since players are larger than the ball, normally they appear with bigger bounding boxes. 

However, within each bounding box there are perhaps several players due to occlusion. In 



8 

this Section, separating each group of players, in particular groups of two, are discussed 

by assuming that each target has a slowly varying height and width [22].  

Once some bounding edge of a target is decided to be observable, its opposite, 

unobservable bounding edge can be roughly estimated. The decisions about which targets 

are grouped and which bounding edges are observable, are based on the relative positions 

of the foreground region and the predictions of individual targets. If the predicted 

centroids of multiple targets are within the bounding box of the same foreground region, 

then these targets are considered to be in group. Each bounding edge of a target, which is 

outer-most in its group, is treated as ‘observed’, and associated with the corresponding 

edges of the foreground region bounding box. The centroids of each player, and the 

remaining bounding edges of the individual players are not observed at this time step. For 

these variables, the corresponding elements in the covariance matrices are increased so 

that they contribute little to the estimation process. Therefore, the estimate depends more 

on the observable variables. Because the estimate is updated using partial measurements 

whenever available, it is more robust and accurate than using prediction only. An 

example of single-view tracking with two grouped players is shown in Figure 2. 

 

 

Figure 2. Player detection (top) and tracking (bottom) from a single camera. 

After tracking of the players, an estimate of the category (color of uniform) is added to 

each measurement using a histogram-intersection method [23]. The result for each object 
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is a seven-element vector )(ki

jc , indicating the likelihood that the object is a player in one 

of the five categories of uniform (two teams, two goalkeepers, and referees), the ball 

or a false alarm, where i , j  and k  are the indexes of the camera, the object and the 

frame, respectively. 

 

3.2 Filtering of the ball 

In our ball filtering process, velocity and longevity features, along with size and color, are 

employed to discriminate the ball from other objects. Each segmented object oi is 

assigned a likelihood of being the ball by an operator ]1,0[)( ioD  using the object’s 

absolute velocity 
iv  and longevity 

in  (in tracked frames) as below: 
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where 
maxv  is the maximum absolute velocity of all the objects (including the ball and 

non-ball objects), and 
0T  is a constant. The bias D1(oi) is defined as 0.5 if the size (width, 

height and area)  and color of the candidate target are all within certain predefined ranges 

for a ball. Otherwise, the bias is set as 0. In fact, this bias constrains to extract a nearly 

circular ball candidate of its size and color within valid ranges and appearance. Figure 

3(a) represents trajectories of both players (in light grey) and filtered ball candidates in 

1100 frames, in which blue trajectories are those of ball likelihoods between 0.5 and 0.65, 

whilst black ones are those with likelihoods higher than 0.65. Moreover, in some frames 

we may find several black and/or blue trajectories. This happens due to occlusion or false 

alarms and will be resolved below. 

To resolve the uncertainties within the filtered ball trajectories, occlusion reasoning is 

applied on the basis of tracking states obtained from Kalman filters. Assume a candidate 

ball 
iB  is merged with a non-ball object

jP , thus 
iB  can be moving or possessed. It may be 

defined as moving if a new ball candidate can be detected near 
jP  within 0n  frames since 

it was merged. Otherwise, it should be defined as possessed by 
jP . Therefore, a buffer is 
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introduced to store the tracking states of 
jP  before finally determining the real ball 

trajectory. If we find it is still merged at frame # )( nn  , where 0nn  , then tracking-

back is employed to reclassify the state between frame #n and frame # )( nn   as 

possessed. 

 

 
(a) Trajectories of players (in light grey) and filtered ball candidates (in black or blue). 

 

(b) Filtered ball trajectory after occlusion-reasoning and tracking-back. 

Figure 3. Examples of thirty-two seconds of tracking data, in which time t moves from left to 

right, and the horizontal image co-ordinates of the object centroids, c0, are plotted up the y-axis 

(the vertical image co-ordinate is omitted from this diagram). 

 

Furthermore, tracking-back also contains temporal hysteresis-based thresholding [24] 

of the ball likelihood along the trajectory. Here, we have three thresholds, 321 ,, hhh , where 

321 hhh  . Candidates with a likelihood above 1h are unequivocally designated a ‘ball’ 

label; and candidates with a likelihood below 3h  are unequivocally classified as ‘non-

ball’ (i.e. false alarms). Candidate objects with likelihood l  satisfying 21 hlh   are 

relabeled as a ‘ball’ if the object as been labeled as a ball in a neighboring frame (along 

the tracking history). Similarly, objects with likelihood l  satisfying 32 hlh   are labeled 

as ‘not ball’ if the object has that label in a neighboring frame (along the tracking 

history). The result of this temporal hysteresis tracking-back procedure is a considerable 
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improvement in the robustness of detection and continuity of trajectories as shown in 

Figure 3(b). At the same time, false alarms are dramatically reduced. 

4. Multi-view processing  

4.1 Multi-view tracking of players 

For tracking of players in the world coordinate, we assume that they touch the ground 

plane. Each player has multiple measurements, each projected from an individual image-

plane to the ground-plane, which include the ground plane positions T

wwj yx ],[z , 

position covariance matrices 
jR  and category measurements 

jc  ( ]7,1[j ). An 

association matrix )(i  is used to represent the association of the set of target players with 

the measurements from the i-th camera. Each element )(i

jt  is 1 for association between 

the t-th target and j-th measurement or 0 otherwise. The association matrix is decided 

according to the nearest Mahalanobis distance between the measurement and the target 

prediction. The individual camera measurements assigned to the t-th target in (8) are 

weighted by measurement uncertainties and integrated into an overall measurement, 

where tr() represents the trace of a matrix.  
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The fused measurements are then incorporated into a Kalman filter to estimate the t-th 

player’s  state T

wwww yxyx ],,,[ x , state covariance P  and category estimate e  iteratively. 

The ground-plane process evolution and measurement equations are: 
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where ww  and wv  are the ground-plane process noise and measurement noise, 

respectively. The state transition and measurement matrices are: 
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Each target with measurement from at least one camera is then updated using the 

integrated measurement: 
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where 10  . After fusion of multiple views, the ground plane accuracy has been 

improved, as shown in Figure 6, when compared with the measurement covariance. 

If no measurement is available for an existing target, then the state estimate is 

updated using its prior estimate. In this case, the state covariance increases linearly with 

time. Once a target has no measurement over a certain number of frames, the state 

covariance reflecting uncertainty will be larger than a tolerance. The tracking of this 

target will be automatically terminated and this target will be re-tracked as a new one 

when the measurement flow is resumed. 

Moreover, if there are more than 25 target players in the model (ten outfield players 

and one goalkeeper per team plus one referee and two sidemen), then the most likely 25 

tracks are selected as the estimated positions of the players. This likelihood is decided by 

its longevity, category estimate and duration of occlusion with other players. A sub-

optimal search method gives reasonable results (see Figure 7). 

4.2 Estimating 3-D ball positions 

During a soccer game, the ball is moving regularly from one place to another. We assume 

that a ball’s trajectory will form a curve in a virtual plane. In a special case, the curve will 

become a line when the ball is rolling on the ground. In each vertical plane  , the ball 
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will generate a single trajectory curve. Then, the complete ball trajectory is modeled as a 

sequence of adjacent planar curve segments.  

Assume the ball is observed from N cameras ( 2N ), then we have N 3D lines from 

each the projected ground-plane ball position to its corresponding 3D camera position. If 

2N , the 3D ball position T),,( zyxB  is defined as the middle point of the shortest 

possible line, a common perpendicular, between these two lines. Otherwise, the least 

square analysis is utilized to estimate B as a point which minimizes the overall distance 

to all the N 3D lines [15].  

If we have two estimated 3-D ball positions, r  and s , a vertical plane   can be 

uniquely decided as follows. Firstly, locate points 'r  and 's  on the ground plane   with 

'rr  and 'ss , then we have a line '' sr  on . Finally,   is determined as a plane 

through '' sr  and perpendicular to  .  

        
Figure 4. Estimate 3-D ball position B  with known vertical plane  , projected single view 

ball position A  and camera position C ,   is the ground plane. 

 

With the assistance of this virtual vertical plane  , 3D ball position B  on   can 

even be recovered from only single camera observation. Let A  be a projected single-view 

ball position from known camera position C , and the points B  and 'C  are the projected 

positions of B  and C   on ground plane   (see Figure 4). Firstly, we can find B  defined 

as the intersection of CA  and  . Then, calculate B  using the fact that triangles 

CAC  and BAB   are similar, and the prior is known completely. Let us define 

),,( pppp zyxX   as the world coordinates of any point p , then we have: 
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Furthermore, a parabola curve of the ball trajectory can also be determined with only 

two-known 3-D ball positions, p  and q , by using the gravity acceleration g . Let 

),,( ppp zyx  and ),,( qqq zyx  denote the 3-D co-ordinates of  p  and q , and 
pt  and 

qt  are 

the corresponding time moments, respectively. Then, the corresponding trajectory is 

given by 
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5. Results 

In our system, the soccer videos are captured by eight stationary cameras positioned 

around a football stadium, and all the cameras are manually calibrated before tracking. To 

evaluate the tracking accuracy of the ball, a group of ground truth (GT) positions of the 

ball are manually derived from about every 25th frame in the image sequences. For the 

frames between two GT frames, an estimated GT position is obtained by using linear 

interpolation. The distance between the estimated positions and ground truth positions are 

obtained. 

A histogram is used to show the distance between the automatic estimate and the 

manually recorded ground truth of the ball (see Figure 5), which represents the 

probability of estimate being within given distance of the ground truth. In eight test 

sequences of more than 5000 frames each, we have 3D ball positions estimated in about 

3700 frames. Regarding the ball is out of play in about 1100 frames, over 85% in-play 

balls can be recovered in our system, with over 90% of them lie within 3m of the ground 
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truth. The maximum discrepancy between the ground planes of each calibrated camera is 

of the same order of magnitude, which puts this result in context.  

 

0 1 2 3 4 5 6

accuracy (metres)

 
Figure 5: Tracking accuracy of the ball compared with manual ground truth. 

 

As for tracking players, Figure 6 uses an example to show how tracking accuracy has 

been improved by fusion of multi-view data. According to the camera arrangements in 

Figure (1), each player within the overlapping fields-of-view of multiple cameras is often 

at different distances to those cameras. Usually a larger distance means a higher 

uncertainty in corresponding ground-plane measurement, and this uncertainty is properly 

represented by the measurement covariance indicated by the size of the ellipses. By 

weighting the inverse of measurement covariance, the fused measurement and thereafter 

the estimate for each player are automatically biased to the most accurate measurement 

from the closest camera. As a result, improved accuracy is obtained by fusion with 

smaller covariance than that from any individual camera as shown in Figure 6(c).  

  

 

Figure 6. Improved ground-plane accuracy compared by the covariance in ellipses: The left two 

images are from single cameras with dark line denoting extent of field of view; the right one 

represents the fused measurements from all eight cameras (black). 
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Furthermore, the performance on tracking players is also measured using the number 

of tracked target before a final selection step. Two sequences of 5000 frames are used for 

this evaluation and the mean  and standard deviation   of target number are found as 

(26.63, 1.55) and (26.12, 1.56), respectively. It is not surprising that the mean of target 

number is slightly larger than the expected 25, as the algorithm encourages those targets 

with missing measurement to be maintained for some time. It is also noted that the 

relative tracking error rates (  /65.1 ) are low enough (within 10%) in 90% of the 

tested frames. The remaining 10% of the tested frames with larger tracking errors 

corresponds to some over-crowded situations, where players are tightly packed in pairs, 

e.g. during a corner kick, or where camera calibration errors and measurement errors are 

comparable to the small distances between players.  

 

 

Figure 7: Multiview and single-view tracking at one frame. The surrounding images (from top-left 

to top-right) correspond to cameras C4, C3, C8, C2, C1, C7, C6 and C5. 

 

A comprehensive example of the tracked ball and selected players is 

illustrated in Figure 7 along with the single-view detection and tracking results at 

the same frame. In the virtual pitch, the game is visualized using the projected 

positions on the ground plane. The projected 3-D ball trajectory is represented in 

magenta with associated 2-D trajectories shown in grey. At the same time, the ball 
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filtered from the corresponding cameras can be also found in the single view 

images from both camera C3 and C2. Besides, there are 26 players in the pitch 

among which we can easily recognize the two goal-keepers, one referee and two 

sidemen. Except one player running along the outer border on right-side of the 

pitch (which can be clearly located in the single view image from camera C6), ten 

players of each team can be also clearly identified.  

6. Conclusions 

Techniques and system implementation of an application on tracking of soccer players 

and the ball with multiple cameras have been presented. The ball is effectively filtered by 

using velocity and longevity as well as occlusion-reasoning and tracking back. With 

partial observations, players are accurately tracked in single view processing. Through 

fusion of multi-view data, 3-D ball positions are estimated using simple geometric 

constraints, and each player is biased to the most accurate measurement of more accuracy 

and robustness than those from any individual camera.  
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