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Abstract The human face provides useful information
during interaction, therefore any system integrating Vi-
sion Based Human Computer Interaction requires fast
and reliable face and facial feature detection. Di�erent
approaches have focused on this ability but only open
source implementations have been extensively used by
researchers. A good example is the Viola-Jones object
detection framework that particularly in the context of
facial processing has been frequently used. The OpenCV
community shares a collection of public domain classi-
�ers for the face detection scenario. However, these clas-
si�ers have been trained in di�erent conditions and with
di�erent data but rarely tested on the same datasets. In
this paper we try to �ll that gap by analyzing the indivi-
dual performance of all those public classi�ers presenting
their pros and cons with the aim of de�ning a baseline
for other approaches. Solid comparisons will also help
researchers to choose a speci�c classi�er for their par-
ticular scenario. The experimental setup also describes
some heuristics to increase the facial feature detection
rate while reducing the face false detection rate.

Keywords face and facial feature detection · haar
wavelets · human computer interaction · face datasets ·
OpenCV

1 Introduction

The human face is a main source of information dur-
ing human interaction. Therefore, an automatic system
designed for interacting with humans in a natural way
based on Vision, i.e. comfortable Human Computer In-
teraction (HCI), requires to accomplish fast and reliable
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face and facial element detection to extract the informa-
tion contained in a face [1,2] in both dynamic and static
environments. In this context, such problems have re-
ceived lots of attention in recent literature. Particularly
the face detection approaches have evidenced a noto-
rious improvement in terms of speed and reliability [3�5].
Among them, the work by Viola and Jones [5], designed
for general object detection, has been quickly spread due
to the availability of an open source implementation [6].
This approach has been extensively used for detecting
di�erent targets in the image, receiving great attention
those related to the human face and its elements. Di-
�erent authors have made their classi�ers (generally not
their training sets) public. However, as far as the authors
of this paper know and not forgetting their preliminary
work [7], except for face detection [8,9] and a reduced
test for eye detection [9], no performance evaluation of
them has been carried out.

In this paper we try to �ll the gap by analyzing not
only face detectors based on the Viola-Jones framework
[5] but also facial feature detectors. Certainly there are
di�erent approaches for such task in the Computer Vi-
sion literature, but this framework o�ers a testbed to
train and compare classi�ers that use di�erent training
data and con�guration setup.

The Viola-Jones based detectors can be labeled as
coarse detectors as they do not provide precise location
of the target. Indeed these detectors provide a target con-
tainer that can evidence some alignment o�set. However,
they can provide detection results even at low resolution
as we will see in the experiments, serving as a �lter or
even a preattentive stage for further and more precise
detectors.

This two stage detection approach has already been
applied in recent works as for example the system des-
cribed in [10] where a coarse detection is applied before
performing the more expensive and precise deformable
template approach. Indeed facial feature detection is not
a new topic, as it has been mainly tackled using model
based approaches since the 90's [11], using range images
[12], active illumination to localize the eyes [13], Gabor
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�lters [14], color and morphological operators for detec-
tion eyes and mouth [15], and deformable templates [16].
The face structure and symmetry was analyzed in [17]
for precise eye location. More recent papers address the
problem applying a hierarchical approach for precise lo-
cation [18].

The utility of facial feature detection was exploited
by face detection systems based on weak cues, such as
color or motion, in order to con�rm that a candidate
blob is really a face [19,20]. Those systems were aimed
to perform fast detection, therefore fast cues were needed
to keep the system working in real time. For that reason
their authors generally observed the darker appearance
of facial elements in relation to their surroundings or
local context particularly for frontal poses [19�22] or the
brightness of the nose tip [23].

Their utility is also evident in terms of head pose es-
timation [22,24] and to align faces for further facial ana-
lysis. Just to give an example, some results suggest that
coarse face element detection and the way that informa-
tion is used for alignment seem to play an important role
for reducing classi�cation error [25].

Adaboost based detectors have been combined with
temporal coherence to perform faster and reliable face
detection in video stream processing [26,27]. For exam-
ple, nose detection has been used for interface design as
pointer [23], or combined with optical �ow to implement
non-contact interfaces for disabled users [28]. Similarly,
mouth detection has been combined with speech recog-
nition [29].

In this paper, we compare di�erent public domain
classi�ers, based on Lienhart's implementation [6], re-
lated to face and facial element detection, in order to
provide a baseline for future developments. Section 2
brie�y introduces the detection approach. Sections 3 and
4 present respectively the experimental setup and the
conclusions extracted.

2 Viola-Jones general object detection
framework

The problem of face detection has experimented a no-
torious improvement in last years [30,31]. Recent ap-
proaches [4,5] have reduced dramatically the processing
latency at high levels of accuracy, without restricting
their behavior to some weak evidences such as skin color
or motion presence. These approaches follow a sliding
window approach, see Figure 1, where the pattern is
searched at di�erent scales of the input image by means
of shifting the region of interest across the whole image
and analyzing each time that area with a classi�er.

Following the sliding window approach, the general
object detector framework described in [5] has achieved
remarkable results while becoming well known thanks
to the implementation [8] integrated in OpenCV (Open
Computer Vision Library) [32]. This framework is based

Fig. 1 The object detection approach shifts the matching
window on the image at di�erent resolutions.

on the idea of a boosted cascade of weak classi�ers, i.e.
each one has a high detection ratio, with a small true
reject ratio. Each classi�er uses a set of Haar-like fea-
tures, acting as a �lter chain. Only those image regions
that manage to pass through all the stages of the de-
tector are considered as containing the target. For each
stage in the cascade, see Figure 2, a separate subclassi-
�er is trained to detect almost all target objects while
rejecting a certain fraction of those non-object patterns
that have been incorrectly accepted by previous stage
classi�ers.

Fig. 2 Typical training procedure for a Viola-Jones' based
classi�er. Each classi�er stage is obtained using positive and
negative samples accepted by the previous stage.

Theoretically for a cascade of K independent classi-
�ers, the resulting detection rate, D, and the false posi-
tive rate, F, of the cascade are given by the combination
of each single stage classi�er rates:

D =
K∏

i=1

di F =
K∏

i=1

fi (1)

Each stage classi�er is selected considering a com-
bination of features which are computed on the inte-
gral image, see Figure 3a. These features are reminis-
cent of Haar wavelets and early features of the human
visual pathway such as center-surround and directional
responses, see Figure 3c. The implementation [6] inte-
grated in the OpenCV [32] extends the original feature
set [5].

With this approach, given a 20 stage detector de-
signed for refusing at each stage 50% of the non-object
patterns (target false positive rate) while falsely elimi-
nating only 0.1% of the object patterns (target detection
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rate), its expected overall detection rate is 0.99920 ≈ 0.98
with a false positive rate of 0.520 ≈ 0.9 ∗ 10−6. This
schema allows a high image processing rate, due to the
fact that background regions of the image are quickly dis-
carded, while spending more time on promising object-
like regions. Thus, the detector designer chooses the de-
sired number of stages, the target false positive rate and
the target detection rate per stage, achieving a trade-o�
between accuracy and speed for the resulting classi�er.

Given an input image, the resulting classi�er will re-
port the presence and location of the object of interest.

Fig. 3 a) The Integral Image stores integrals over subre-
gions of the image. b) The sum of pixel values in A is
(x4, y4) − (x2, y2) − (x3, y3) + (x1, y1) [33] . c) Features
prototypes considered in the implementation integrated in
OpenCV [6,8].

3 Experiments

3.1 Experimental setup

As a �rst step, we have looked for researchers interes-
ted in face and facial feature detection based on the
Viola-Jones framework in the community. The OpenCV
group has been a very useful source in that sense, brin-
ging together di�erent authors who share an interest in
this area. The resulting collection of classi�ers gathered,
thanks to their public availability or the kindness of their
authors, are described in Table 1. Unfortunately the col-
lection is not complete as some already published and re-
ferred classi�ers could not be compared because they are
not completely available [9,43]. Their targets are faces,
separately frontal and pro�le faces, the upper body or
also called head and shoulders, and the facial features:
eyes, nose and mouth. Reference information is included
for each one when it is available. The table contains also
detailed information related to the minimal size of the
pattern to be detected, and to the processing time in
seconds needed to analyze the whole test set using a
Windows XP box with an Intel Duo T5200 processor.
The label assigned to each classi�er will be used in the
performance study presented below.

Once the classi�ers are available, our second step was
to select a wide collection of facial images to study their

performance. For that purpose two datasets of facial ima-
ges have been selected:

� The CMU database [4]. This dataset contains a col-
lection of heterogeneous images, characteristic that
from our point of view provides a better understand-
ing of the classi�er performance. As explained in [4],
the dataset is divided into four di�erent subsets test,
new-test, low-res and rotated combining the test sets
of Sung and Poggio [46] and Rowley, Baluja and Kana-
de [47]. The dataset and the annotation data corre-
ponding to 721 faces can be obtained at [48].

� The Yale Face database [49]. Contains higher resolu-
tion images of 165 frontal faces in di�erent illumina-
tion conditions.

These datasets have been selected because of the di-
�erent nature of the images contained in them. While
the CMU dataset was conceived for face detection ex-
periments, the Yale dataset presents frontal images of
individuals at higher resolution. Features that, as seen
below, make life easier to any face or facial feature de-
tector. On the other side, the CMU dataset �ts better
real-life situations in concordance with the new trend
that is being promoted lately among automatic face pro-
cessing researchers [50].

3.2 Face detection

The detection performance of those classi�ers designed
to detect frontal and pro�le faces, and the head and
shoulders pattern is compared in this Section. Thus ob-
serving Table 1, the frontal face classi�ers being tested
were provided thanks to R. Leinhart [8] (included in the
OpenCV release), the pro�le face detector by D. Bradley
[36], the set of face detectors described in [35], and the
head and shoulders detector presented in [38].

Before performing the experiments, both datasets ha-
ve been veri�ed to check that the eyes were correctly an-
notated on all presented faces. Once they are available,
the criterium to determine if a target (face or head in
this case) was correctly detected is that the detection
container overlaps all the facial elements and its width
and height must not be greater than four times the dis-
tance between the annotated eyes.

For each classi�er, its receiver operating characteris-
tic (ROC) curve was computed applying the original re-
lease of each classi�er, and some variants obtained re-
ducing for each one its number of stages. Theoretically
this action must increase both detection, D, and false
detection, F, rates.

For the frontal face problem, observing the Area Un-
der the Curve (AUC) of the resulting ROC curves for
both datasets, see Figures 4 and 5, it is evidenced that
three classi�ers perform better than the others for both
datasets. Zooming the results of the CMU dataset, two of
them are slightly better than the third one. These classi-
�ers are FA1 (named haarcascade_frontalface_alt in
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Table 1 Public domain classi�ers available.

Target Reference Availability Size Stages Proc. time Proc. time Label
CMU Yale

Frontal faces [34,8] [32] 24× 24 25 66.6 6.3 FD
Frontal faces [34,8] [32] 20× 20 21 70.8 8.9 FA1
Frontal faces [34,8] [32] 20× 20 46 60.4 10.1 FAT
Frontal faces [34,8] [32] 20× 20 20 63.6 9.0 FA2
Frontal faces [35] Personal com. 30× 30 19 19.6 2.1 FW

Quarter turn faces [35] Personal com. 30× 30 20 18.2 1.9 FWQ
Half turn faces [35] Personal com. 25× 30 20 21.9 2.1 FWH
Pro�le faces [36] [37] 20× 20 26 81.7 14.5 PR

Head and shoulders [38] [32] 22× 18 30 125.5 11.7 HS1
Head and shoulders [38] [37] 22× 20 19 194.8 19.6 HS2

Left eye [26] [37] 18× 12 20 62 10.7 LE
Right eye [26] [37] 18× 12 20 65.8 10.1 RE
Left eye [39] [32] 20× 20 20 109.6 8.7 LES
Right eye [39] [32] 20× 20 20 112.8 8.6 RES

Eye [40] [40] 25× 15 5 20.6 4.7 EM
Eye [41] [41] 10× 6 20 41 4.4 EU
Eye [42] [37] 24× 12 104 40.1 6.6 ETS
Eye [43] Personal com. 28× 14 16 41.8 4.3 EQT
Eye [35] Personal com. 24× 21 20 26.6 3.8 EWF
Eye [44] [32] 20× 20 24 44.7 5.2 ESH

Eye with glasses [44] [32] 20× 20 30 56.4 8.0 ESHG
Quarter turn eye [35] Personal com. 24× 23 20 27.9 3.7 EWQ
Half turn eye [35] Personal com. 22× 24 20 32.8 4.9 EWH
Eye pair [26] [37] 45× 11 19 24.3 2.8 EP
Eye pair [26] [37] 22× 5 17 31.8 3.4 EPS
Eye pair [45] [37] 35× 16 19 29.2 3.5 EPB
Nose [26] [37] 18× 15 20 47.8 13.6 N
Nose [35] Personal com. 24× 21 20 9.6 1.9 NWF

Quarter turn nose [35] Personal com. 24× 22 20 12.6 2.3 NWQ
Half turn nose [35] Personal com. 24× 24 20 12.2 2.7 NWH

Mouth [26] [37] 25× 15 20 42.8 13.8 M
Mouth [29] [32] 32× 18 18 12.1 2.5 Mouth
Mouth [35] Personal com. 24× 16 19 14.1 3.1 MWF

Quarter turn mouth [35] Personal com. 24× 15 20 13.6 3.3 MWQ
Half turn mouth [35] Personal com. 24× 17 20 17.7 4.6 MWH

the OpenCV distribution [32]) and FA2 (corresponding
to haarcascade_frontalface_alt2 in the OpenCV dis-
tribution [32]), closely followed by FD (the default classi-
�er haarcascade_frontalface_default in OpenCV re-
lease). Among all the classi�ers FW is the fastest, around
three times, but its curve suggests a lower detection rate.
The computational cost is similar for the best classi�ers
as suggested by Table 1. For those reasons FA2 was se-
lected as our preferred classi�er and will be used in the
experiments described in Section 3.4.

The comparison of the performance achieved for each
dataset suggests a much better detection rate for the
Yale dataset. This was an expected conclusion because
the CMU dataset is less restricted in terms of head pose
and resolution, i.e. it is closer to real-life conditions.

The CMU dataset selected has the additional cha-
racteristic of containing four subsets with images o�er-
ing di�erent conditions and therefore levels of di�culty.
Observing Table 2 it is evidenced the lower performance
achieved for the rotated subset. A fact that was expected
as the Viola-Jones' framework is not able to accept more

than slight variations in rotation with respect to the pos-
itive samples used.

These results have been improved in the literature
by training additional detectors that can cope with some
con�gurations of rotated faces. The performance of non
frontal face detectors is presented in Figure 6. Observing
the �gure, the best detector for both datasets is PR. Re-
porting in any case lower, as expected for frontal face
imagery, and less homogeneous performance than those
exhibited by the frontal face detectors. Table 3 presents
the results achieved for the two leading detectors consid-
ering the di�erent subsets of the CMU database. Remem-
ber that the rotated subset contains in plane rotations
that are less suitable for any pro�le detector, i.e. out of
plane rotated faces.

Table 2 Frontal face detection for each subset of the CMU
dataset

Subset Detection performance
newtest 89.07%
test 86.98%

rotated 19.28%
test-low 83.56%
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(a)

(b)

Fig. 4 (a) Face detection results obtained with the CMU
database, (b) zoomed in results.

Table 3 Pro�le detection performance for each subset of the
CMU dataset using the best two classi�ers, i.e. PR and FWQ

Subset PR FWQ
newtest 44.80% 44.26%
test 26.77% 33.72%

rotated 5.38% 0.11%
test-low 19.86% 19.11%

We have also paid attention to the head and shoul-
ders detector, included in OpenCV 1.0 release [32], by
H. Kruppa et al. [38], labelled as HS1. Figure 7 presents
the results achieved considering both datasets, eviden-
cing a rather low performance. For that reason a more
recently trained classi�er, HS2, following the same ap-
proach but with a larger training dataset has also been
included in the experiments. It is notoriously better, a
fact that made us suspect the presence of a bug in the
classi�er included in the OpenCV release. It must be no-
ticed that this classi�er requires the presence of the local

(a)

(b)

Fig. 5 (a) Face detection results obtained with the Yale
database, (b) zoomed in results.

context to detect, circumstance that does not occur for
di�erent images contained in the CMU dataset and for
almost all the images contained in the Yale dataset.

3.3 Facial element detection

After the face detection experiments, a similar evaluation
was performed with the di�erent facial feature detectors.
Their results are presented separately to emphasize that
they belong to patterns of smaller size than a face or
head, basically due to the fact that they are contained
within a face. Five di�erent targets are considered in this
section: the left eye, the right eye, both eyes together, the
nose and the mouth.

A facial feature is considered correctly detected if the
distance to the annotated location is less than 1/4 of
the actual distance between the annotated eyes. This



6 Modesto Castrillón et al.

(a)

(b)

Fig. 6 (a) Pro�le detection results obtained with the (a)
CMU database, (b) Yale database.

criterion was used to estimate the eye detection success
originally in [51].

The results achieved for the left and right eyes, taken
separately, are presented respectively in Figures 8 and
9. The behavior among the di�erent classi�ers is pretty
similar for both eyes, but the performance is quite di-
�erent for each dataset, i.e. the Yale dataset is clearly
better suited for any classi�er. Observe again the large
di�erence in detection rate among both datasets. For the
CMU dataset the detection rate is only for one classi�er
greater than 20% while greater than 90% for the Yale
dataset. For all the classi�ers, we have not considered
the detection of the opposite eye as a false detection. It
must be remarked that some classi�ers presented in Ta-
ble 1 are not specialized for a speci�c eye, therefore they
were trained without paying attention to that aspect.

For the CMU dataset, the hardest attending to the
results presented, a pair of classi�ers clearly detects more
while keeping a reduced rate of false detection, i.e. sho-

(a)

(b)

Fig. 7 (a) Head and shoulders detection results obtained
with the (a) CMU database, (b) Yale database.

wing the lowest AUC of the resulting ROC curve. Those
classi�ers were LE for the left eye and RE for the right
one (remember to refer to Table 1 to identify each clas-
si�er label). In both cases these classi�ers are followed
by LES, RES and ESH, all of them recently included in
the OpenCV release. The latter classi�er requires around
2/3 of the time consumed by those performing best, be-
ing also the second in processing cost.

For the Yale dataset the general behavior is clearly
improved thanks to the restricted scenario of this dataset:
the faces are basically frontal, bigger and avoid any rota-
tion. As before, classi�ers LE and RE are in the leading
group in terms of AUC but they also perform slower
than any other. The reader must observe that LES got
a slightly better rate, while RES got a slightly worse,
reducing both the processing cost for this scenario. All
these classi�ers detect more than 90% of the eyes pre-
sented in the images once the face has been detected.
For this dataset, the third classi�er in terms of AUC is
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(a)

(b)

Fig. 8 (a) Left eye detection results obtained with the (a)
CMU database, (b) Yale database.

EWF, which is additionaly one of the fastest.
LE and RE classi�ers have a drawback in terms of

processing needs, almost twice slower in relation to EWF,
however its e�ect would be reduced if the search is per-
formed, for example within the previously detected face.

Reminding the reader the availability of four di�e-
rent subsets in the CMU dataset, Table 4 shows the di-
�erent performance among the subsets for the best left
eye detector, LE. If these rates are compared with those
presented in Table 2, even when the pattern to track is
smaller than the face where it is contained, the detec-
tion rate is better for the rotated subset. This is possible
thanks to the apparent less sensitivity of the detector to
slight in plane rotations. However, this feature detector
is much more sensitive to the resolution providing a very
low detection rate for the test-low dataset. This behavior
was also observed in the other facial feature detectors.

Testing those classi�ers designed to �nd both eyes si-
multaneously, i.e. the eye pair, the results achieved are

(a)

(b)

Fig. 9 (a) Right eye detection results obtained with the (a)
CMU database, (b) Yale database.

Table 4 Left eye detection, using LE classi�er, for each sub-
set of the CMU dataset

Subset Detection performance
newtest 36.06%
test 27.21%

rotated 25.11%
test-low 9.58%

presented in Figure 10. The best performance for the
CMU dataset is given by EPB, but by EP for the Yale
dataset. In both cases the processing cost was quite si-
milar for all of them. The performance achieved suggests
that the detection of the eye pair is more restrictive and
sensitive to slight face rotation, similarly to face detec-
tion. Observe the tendency to present worse performance
compared to the best single eye detectors.

Nose detection results are presented in Figure 11. Ob-
serve again the better performance for the Yale dataset,
reaching the best classi�er reaching an AUC close to 1.
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(a)

(b)

Fig. 10 (a) Eye pair detection results obtained with the (a)
CMU database, (b) Yale database.

The clear winner for both datasets is N, however the
processing time is four times higher.

Mouth detectors have been also compared, and their
performance evaluation is presented in Figure 12. The
detector labelled as M is the best one in terms of the
AUC for both datasets, but the processing cost is around
four times the others. It can also be observed that its false
detection rate is increased compared to the best nose
detector. The larger appearance variability of a mouth
could explain this fact.

In summary, according to the experiments carried out
in this work, the best facial element detectors available
in the public domain in terms of AUC are: RE, LE, EPB,
N and M. Facial feature detectors evidenced a lower de-
tection rate when processing the CMU images, i.e. less
restricted faces.

This fact is justi�ed by the less controlled conditions
of the images contained in that dataset, circumstance
that leaded to try to detect quite low resolution facial

(a)

(b)

Fig. 11 (a) Nose detection results obtained with the (a)
CMU database, (b) Yale database.

feature patterns. However, their detection rate is higher
when processing the Yale dataset. Even the best face
detector was not able to locate the always evident face.
Certainly face feature detection could cope with di�cult
faces for face detectors, with the advantage of the need
of geometric coherence. The only drawback is that the
processing time will be larger.

3.4 Combined detection

The previous sections suggested that facial feature de-
tection behaves worse than face detection in low resolu-
tion images. A likely reason for that e�ect, already men-
tioned, is related to the di�erence in terms of dimensions
among them. A face will always be bigger than the facial
elements contained in it, and therefore, easier to detect
with classi�er specialized in targets of similar sizes.
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(a)

(b)

Fig. 12 (a) Mouth detection results obtained with the (a)
CMU database, (b) Yale database.

Applying the collection of classi�ers to the whole
image will increase notoriously the processing time re-
quired per frame. When real time is required, that is a
drawback. For that reason in this section we will apply
facial feature detection only in those areas were a face
has been detected, in order to analyze if their perfor-
mance can be improved, and additionally, to observe if
the no detection of facial elements can be used as a �lter
to remove some false face detections.

To detect faces we used the FA2 classi�er, see Table
1, but using only 18 stages. This classi�er suggested in
Section 3.2 the best relation between processing speed
and detection ratio. Once the face has been detected,
each facial element was searched using three di�erent
strategies:

1. Searching the facial elements within the container of
the detected face (C1).

2. Once the face container is given, searching each facial
element only in the Region of Interest (ROI) expected

Fig. 13 Rough ROIs used to bound the search area for the
facial feature detectors corresponding to the left and right
eyes (in the image), the nose and the mouth in approaches
C2 and C3.

for a frontal face. Figure 13 illustrates the ROIs used
(C2).

3. Scaling up the face container before searching each
face feature within its expected ROI, and bounding
the acceptable target size according to the width of
the face container (up to 1/6 is accepted). (C3).

The intention of approach C2 is to reduce processing
cost and false detection, however the use of too restrictive
ROIs can lead to a detection rate decrease. The third
approach C3 will try to overcome the problem due to
the lower resolution of the inner facial features, by scaling
up the ROI to increase the pattern size before searching
them.

For approaches C2 and C3, each feature is searched
always in a subwindow coherent with the feature location
for a frontal face. Their specialization could a�ect to re-
duce the false positive detection. The di�erent ROIs, see
Figure 13, considering that sx and sy are the face con-
tainer dimensions (respectively width and height) used
in the experiments are:

1. Left eye: Left upper corner of the ROI are (0, 0) and
the dimensions of the ROI (sx ∗ 0.6, sy ∗ 0.6).

2. Right eye: Left upper corner of the ROI are (sx ∗
0.4, 0) and the dimensions of the ROI (sx ∗ 0.6, sy ∗
0.6).

3. Eye pair: Left upper corner of the ROI are (0, 0) and
the dimensions of the ROI (sx, sy ∗ 0.6).

4. Nose: Left upper corner of the ROI are (sx ∗ 0.2, sy ∗
0.25) and the dimensions of the ROI (sx∗0.6, sy∗0.6).

5. Mouth: Left upper corner of the ROI are (sx∗0.1, sy∗
0.4) and the dimensions of the ROI (sx∗0.8, sy∗0.6).

The results achieved for each facial feature detector
processing both datasets using the three di�erent ap-
proaches, are summarized in Table 5. The error shown is
related to the actual distance of the eyes in the image.
The average error reported is rarely higher than 6%. As a
general behavior it is observed the importance of scaling
up the image before performing the search for the CMU
dataset to increase the number of correct detections, be-
ing almost useless for the Yale dataset. Therefore scaling
up the ROI might only make sense for a particular range
of face dimensions because for bigger faces it does not
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Table 5 Average distance errors obtained for the di�erent facial feature detectors applying search strategies C1, C2 and
C3. A location error of 1 means that it is equal to the actual distance between the eyes. Only successful detections are
considered to calculate the error.

CMU database Yale database
Target Label C1 C2 C3 C1 C2 C3
Left eye LE 0.0259 0.025 0.0527 0.0436 0.0441 0.0414
Right eye RE 0.0295 0.0286 0.063 0.0379 0.0383 0.0370
Left Eye EM 0.0365 0.0365 0.0781 0.0964 0.0962 0.0933
Right Eye EM 0.0441 0.0475 0.0868 0.0996 0.1012 0.1119
Left Eye EU - - 0.0102 0.06 0.06 0.0555
Right Eye EU - 0.0076 0.0099 0.0475 0.547 0.0497
Left Eye ETS 0.0378 0.0267 0.0543 0.0552 0.0459 0.0471
Right Eye ETS 0.0389 0.0274 0.0663 0.0499 0.0429 0.0397
Left Eye EQT 0.0183 0.0082 0.0223 0.0412 0.0376 0.0475
Left eye EWF 0.0523 0.0522 0.0836 0.0835 0.0837 0.1003
Right eye EWF 0.0443 0.039 0.0741 0.0761 0.0794 0.0942
Left Eye ESH 0.0328 0.0265 0.0628 0.0665 0.0674 0.0691
Right Eye ESH 0.0398 0.0265 0.0715 0.0518 0.0498 0.0509
Left Eye ESHG 0.0162 0.0151 0.0360 0.0518 0.0512 0.0444
Right Eye ESHG 0.0194 0.0172 0.0337 0.0433 0.0399 0.0379
Left Eye LES 0.0479 0.0453 0.0926 0.0921 0.0907 0.0987
Right Eye RES 0.0524 0.0496 0.0892 0.0993 0.0994 0.0995

Quarter turn left eye EWQ 0.0496 0.0474 0.0754 0.0784 0.0795 0.0966
Quarter turn right eye EWQ 0.0483 0.0474 0.0747 0.0757 0.0755 0.0898

Half turn left eye EWH 0.0521 0.0525 0.0802 0.0856 0.0871 0.1052
Half turn right eye EWH 0.0472 0.0474 0.0796 0.0821 0.0866 0.0979

Eye pair EP 0.0486 0.0486 0.0902 0.1058 0.1058 0.1116
Eye pair EPS 0.0465 0.0465 0.0827 0.1232 0.1232 0.1261
Eye pair EPB 0.0863 0.07863 0.123 0.1224 0.1301 0.1219
Nose N 0.0724 0.0709 0.0936 0.0410 0.0365 0.0404
Nose NWF - 0.0136 0.0529 0.0872 0.0826 0.1075

Quarter turn nose NWQ 0.0235 0.0124 0.0719 0.1017 0.0067 0.1112
Half turn nose NWH - 0.0496 0.0452 0.1722 0.1581 0.1602

Mouth M 0.0526 0.0535 0.0761 0.0511 0.0556 0.0519
Mouth Mouth 0.0064 0.0096 0.0126 0.0661 0.04 0.0446
Mouth MWF 0.0247 0.0236 0.0375 0.0516 0.0516 0.0528

Quarter turn mouth MWQ 0.02 0.0135 0.0309 0.0477 0.0422 0.0483
Half turn mouth MWH 0.0338 0.0192 0.0467 0.0715 0.0677 0.0747

bring any bene�t and will only increase the computa-
tional cost.

The relation between true and false detections is pre-
sented in Figures 14, 15 and 16, but only for the subset
containing the best detectors of each facial feature, using
labels from Table 1, to improve the plot legibility.

The Figure 14 presents the results for the �rst ap-
proach (C1). As we reduced the search area to the face
detected, both positive detection and false detection rates
are lower than those presented previously in Section 3.3.
Observing the results for the CMU dataset, the left eye
detector seems to be the best one in term of positive de-
tections. For the Yale dataset, the nose detector is almost
perfect.

Making use of not very narrow ROIs, see Figure 13,
for each facial feature instead of searching in the whole
face, the second approach (C2), reduces considerably the
number of false detections, as shown in the Figure 15
without increasing signi�cantly the loss of true detec-
tions.

The third approach considered (C3), scales up the
ROI before applying the detection, while restricting the
possible size of the target found. This heuristic increases
signi�cantly the facial feature detection rate for the CMU

dataset, more than twice, but also the false detection rate
slightly, as suggested by comparing Figures 15 and 16.

Observing the results achieved, a soft heuristic can be
used to remove some false detections. Big enough face
detections, larger than 40 pixels in width, that report
no facial feature detection are not accepted as face de-
tections. Applying this �lter to the CMU dataset the
detection rate was almost not a�ected, while achieving
an improvement in false detection reduction. To give an
example, the initial number of false face detections was
47, but applying this approach was reduced to 35.

Some false facial detections reported also false face
element detection. That situation happened for four ima-
ges of the CMU dataset. Two of them are presented in
Figure 17. For example in our-cards, see Figure 17a,
no annotated face is present, but the face detector �nds
at least two (only the one with inner features detected
is depicted). It does not seem to be a false detection.
Similarly happens with rot5, only the human faces are
annotated, but Peggy is there, see Figure 17b. Other
two detections are present with soccer and Germany
images. The detections are incorrect only because the
container is a little bit bigger than it should. Indeed the
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(a)

(b)

Fig. 14 Facial element detection performance for C1 (a)
CMU database, (b) Yale database.

facial features detected could be used to �t the container
better.

4 Conclusions

This paper studied the possibilities of current public do-
main classi�ers, based on the Viola-Jones' general object
detection framework [5], for face and facial feature de-
tection. The available detectors based on this framework
have been extensively analyzed with two public datasets
of di�erent nature. Among the frontal face detectors we
have observed a similar performance for two of them
FA1 and FA2 both included in the OpenCV release, and
slightly worse for pro�le and head and shoulders detec-
tors.

A similar experiment has been done with facial fea-
ture detectors. When processing the whole image, the
best facial element detectors available in the public do-

(a)

(b)

Fig. 15 Facial element detection performance for C2 (a)
CMU database, (b) Yale database.

main in terms of AUC are: RE, LE, EPB, N and M.
Facial feature detectors evidenced a lower detection rate
when processing the CMU images, i.e. less controlled fa-
cial images. Additionally we investigated the possibilities
of combining face and facial feature detectors. Under this
approach, facial feature detectors are applied only within
regions containing a face, reducing the computational
cost. The integration of a ROI for each facial feature
and the scaling up of the image for a speci�c range of
face dimensions, provide much better detectors in term
of AUC.

An aspect that has not been covered in this work
is the possibility of using multiple detectors to improve
con�dence, but certainly some of the detectors included
in this study are right now not very �exible to be applied
in a wide range of image resolutions closer to real life
images.

The results presented here can be used by developers
to trade o� computational cost, detection rate, false de-
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(a)

(b)

Fig. 16 Facial element detection performance for C3 (a)
CMU database, (b) Yale database.

tection rate and precision, in order to build face and
feature detection systems for any speci�c application.
Additionally these results can serve as a valid baseline
to compare with future or already computed classi�ers
achieved by any reader.
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