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Abstract - Object segmentation in medical images is

an actively investigated research area. Segmentation

techniques are a valuable tool in medical diagnostics

for cancer tumors and cysts, for planning surgery op-

erations and other medical treatment. In this paper a

Monte Carlo algorithm for extracting lesion contours

in ultrasound medical images is proposed. An efficient

multiple model particle filter for progressive contour

growing (tracking) from a starting point is developed,

accounting for convex, non-circular forms of delineated

contour areas. The driving idea of the proposed particle

filter consists in the incorporation of different image in-

tensity inside and outside the contour into the filter like-

lihood function. The filter employs image intensity gra-

dients as measurements and requires information about

four manually selected points: a seed point, a starting

point, arbitrarily selected on the contour, and two ad-

ditional points, bounding the measurement formation

area around the contour. The filter performance is stud-

ied by segmenting contours from a number of real and

simulated ultrasound medical images. Accurate contour

segmentation is achieved with the proposed approach in

ultrasound images with a high level of speckle noise.
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1 Introduction

Automated or semi-automated contour extraction is one

of the most challenging image processing tasks, pertain-

ing to a great variety of applications. In particular, a

segmentation method that could accurately delineate

the lesion contours in medical images is of significant

importance for diagnostics, image-guided interventions

and therapy. Due to the relatively low quality of clinical
images, the task of contour segmentation is rather com-

plex. This motivates the considerable interest in seg-

mentation of medical images (please see [28, 41] and

references therein).

There is a great deal of approaches for medical im-

age segmentation such as active contour models [8, 16,

25,26], expectation-maximisation [38], principal compo-

nent analysis [9, 32], networks and learning combined,

texture and morphologic information in various inter-

pretations [12,17,22], level sets [10], and Bayesian tech-

niques [14, 15, 23, 24]. In general, the methods can be

classified in two groups of optimisation techniques: 1)

off-line techniques - quite accurate, but computation-

ally demanding, and 2) on-line fast algorithms, less pre-

cise, but implementable nearly in real time.

Every method has its relevant place in the variety of

technologies developed for medical imaging: radiogra-

phy [38], computer tomography (CT) [12,40], magnetic

resonance (MR) [9, 14, 16, 22, 23, 36], breast thermogra-

phy, photoacoustic imaging and ultrasonography. Ultra-

sonography has a special place amongst medical imag-
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ing techniques. While it may provide less anatomical

detail than techniques such as CT or MR, it has sev-

eral advantages which make it suitable for numerous ap-

plications: imaging the fetus, abdominal organs, heart,

breast, muscles, tendons, arteries and veins. It is very

safe to use and does not appear to cause any adverse ef-

fects. Ultrasound imaging is relatively inexpensive and

quick to perform. Doppler capabilities allow the blood

flow in arteries and veins to be assessed.

The aim of this work is to develop an approach for fast

US image segmentation, possessing high estimation ac-

curacy achievable at reasonable computational cost. A

powerful approach, avoiding many drawbacks of the op-

timisation procedures, consists in consecutively growing

(tracking) of a contour from a starting point accord-

ing to a certain criterion of efficiency. Our choice of

the Bayesian methodology is motivated by its power to

solve problems with uncertainties, high level of noises

and ability to account for the prior information, as

shown in numerous applications surveyed in [28] and

[37]. At the same time as pointed out in [28] the high-

quality segmentation method needs to make use of all

task-specific constraints or priors.

A number of successful contour determination algorithms

are published in the specialised literature, implement-

ing tracking techniques with a different level of com-

plexity. For example, a Kalman filter with an adaptive

measurement association gate is proposed in [34], being

a part of a multi-stage procedure for prostate border es-

timation. The Kalman filter is also applied to detecting

bone edges in [40]. The concept of multiple hypothe-

sis tracking (MHT) is particularly useful for simulta-

neous tracking of multiple potential contours, avoiding

the loss of the true one at the places of uncertainty.

Tracking methods are adopted also in [1] for the pur-

poses of heart chambers and breast cyst segmentation.

The recursive contour growing (motion) is governed by

a finite set of switching dynamical models and thus

its behavior can be probabilistically predicted. Candi-

date edge points, obtained around the predicted con-

tour, represent both a measurement of the true con-

tour position and some false returns. The concept of

combining multiple trajectory models in order to es-

timate the state of manoeuvring object in clutter has

its rational solution in the face of combining the inter-

acting multiple model (IMM) estimator and a proba-

bilistic data association filter (PDAF) [6]. The authors

of [1, 2] demonstrate the accuracy of their IMM-PDAF

implementation by segmenting convex, non-circular le-

sion forms over a number of prostate, carotid artery,

jugular vein ultrasound images. The IMM-PDAF re-

sults show that the multiple hypothesis approach jointly

applied with multiple switching motion models yields

correct and convergent contour tracking in the compli-

cated medical imaging environment.

In contrast with the MHT and IMM-PDA estimators,

which belong to the class of analytical approximations

to the optimal Bayesian solution, the sampling (Monte

Carlo) approximations offer more accurate representa-

tion of multi-modal distributions, inherent to medical

images. Particle filters (PFs) afford maintaining multi-

ple hypotheses in a very compatible and simple manner.

Also, constraints on curvature and features of the appli-

cation can be incorporated into the tracking framework

in an easy and natural way.

A robust particle filtering algorithm for contour follow-

ing is developed in [30]. The potential of this algorithm

(called JetStream) is demonstrated in the context of

the interactive cut-out in photoediting applications.

JetStream is a general tool for designing contour track-

ing algorithms in different application areas. The de-

signer has the freedom to choose appropriate task ori-

ented ingredients: dynamics and measurement models,

likelihoods or likelihood ratios and constraints. Based

on the JetStream ideas, an algorithm for rotoscoping

is proposed in [31]. The authors suggest an oriented

particle spray to deal with sharp contour angles. They

design a directional probability density function that is

better able to control the evolution of the contour.

This paper develops a new segmentation algorithm for

ultrasonic images and at the same time extends some

of the capabilities of JetStream for efficient and reliable

US segmentation. The new elements of the proposed al-

gorithm, compared with JetStream, include: 1) a mul-

tiple model structure that captures the prior dynamics,

and governs the growing process of the predicted con-

tour; 2) a combined likelihood is proposed involving

the intensity gradients along x, y axes and the radii,

projected from the seed point towards the contour; 3)

incorporation of constraints accounting for the contour

convexity.

A high quality segmentation algorithm should provide

fully automated contour extraction, without an opera-

tor’s intervention. There exist a number of techniques

for image partitioning, localising the areas and points of

interests [11,28,34]. Some of them combine conventional

intensity-based thresholding with fuzzy logic and elab-

orated decision making rules under uncertainty. How-

ever, the quality of automatic segmentation highly de-

pends on the homogeneity of the background and fore-

ground intensity distributions. Also, the feasibility of

the algorithms is often limited to a certain class of clin-

ical applications. In contrast with these algorithms we

propose a semi-automated approach, motivated by the
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necessity of real-time applications to a broad range of

contour segmentation problems. The positions of four

manually selected points are required: a seed point, a

starting point and two additional points, bounding the

measurement formation area around the contour. In

some medical applications, where additional informa-

tion is available, the proposed approach can make use

of two points only and hence to reduce in this way the

operator intervention, similarly to [1, 2].

In order to reduce the effect of speckle noises and to im-

prove the image contrast, median filtering, smoothing

and other pre-filtering techniques are an inherent part

of many segmentation approaches for ultrasound med-

ical images [28]. For example, the authors of [10] sug-

gest stepped anisotropic diffusion filtering, stick method

and automatic thresholding, based on the threshold-

determination algorithm of Otsu [29]. In our approach,

a non-linear Gaussian filter, performing edge preserving

diffusion is applied [3, 5].

The paper is organised as follows. Section 2 formulates

the problem of contour following as a task of tracking

and outlines its approximate solution by particle fil-

tering. The proposed multiple model particle filter is

presented in Section 3. The stages of the algorithm:

preprocessing, filtering and smoothing, are briefly out-

lined in Section 4. Section 5 validates the performance

of the algorithm over real and simulated medical ultra-

sound images characterised with high level of speckle

noise. Comments and conclusions are finally given in

Section 6.

2 Contour Following as a Task of Tracking

Denote by y the observed image, which is a source of all

measurements, available to the contour estimator. Con-

sider a state vector x, containing points xk in the image

plane. Any ordered sequence x0:n ≡ (x0, . . . ,xk, . . . ,xn)

defines uniquely the contour being tracked [30]. Given

a prior dynamics p(xk+1|x0:k), modeling the expected

evolution of the contour, the aim is to enlarge the se-

quence x0:k, using the measurement data y.

This can be achieved by recursively calculating the pos-

terior state probability density function (pdf)

pk+1(x0:k+1|y) ∝ p(y|xk+1)p(xk+1|xk)pk(x0:k|y), (1)

k = 0, 1, . . . , n − 1,

where p(y|xk+1) corresponds to the data model. Often

y(xk) is the gradient norm |∇I(xk)| of image intensity.

The starting point x0 can be chosen manually or auto-

matically.

Then the contour extraction problem, expressed as a

minimisation of the function

ℑn(x0:n,y) ≡ −log pn(x0:n|y), (2)

can be solved by finding the maximum a posteriori

(MAP) estimate (or the expectation) of the posterior

state pdf [7, 35].

The recursion (1) cannot be computed analytically.

Within the sequential Monte Carlo framework, the pos-

terior density function pk(x0:k|y) is approximated by a

finite set
{

x
(j)
0:k

}
, j = 1, . . . , N of N sample paths (par-

ticles). The generation of samples from pk+1(x0:k+1|y)

is performed in two steps of prediction and update,

thoroughly described in the specialised literature [13].

At the prediction step, each path x
(j)
0:k is grown of one

step x̃
(j)
0:k+1 by sampling from the proposal density func-

tion p(xk+1|x
(j)
k ). At the step of update, each sample

path is associated with a weight, proportional to the

likelihood of the measurements

w
(j)
k+1 ∝ w

(j)
k p(y(x̃

(j)
k+1)). (3)

The resulting set of weighted paths (contours){
x̃

(j)
0:k+1, w̃

(j)
k+1

}
, j = 1, . . . , N with normalised weights

w̃
(j)
k+1 = w

(j)
k+1/

∑N

j=1 w
(j)
k+1, provides an approximation

to the distribution pk+1(x0:k+1|y).

When an estimate of the effective sample size Neff =

1/
∑N

j=1

(
w̃

(j)
k

)2

falls below a threshold Nthresh, resam-

pling is realised to avoid possible degeneracy of the se-

quential importance sampling [13]. In the resampling

step N paths
{

x
(j)
0:k+1, w

(j)
k+1

}
, j = 1, . . . , N are drawn

with replacement from the previous weighted set, where

w
(j)
k+1 = 1/N .

Based on the discrete approximation of the posterior

state pdf pk+1(x0:k+1|y), an estimate of the “best” path

(contour) at step k + 1 can be obtained. The mean

E(x0:k+1|y) ≈
N∑

j=1

w̃
(j)
k+1x̃

(j)
0:k+1 (4)

represents a Monte Carlo approximation of the poste-

rior pdf expectation. This technique provides sample-

based approximations of posterior distributions with al-

most no restriction on the ingredients of the models.

3 A Multiple Model Particle Filter for Contour

Extraction

The models of prior dynamics and measurement data

should provide growing of a contour, avoiding slowing

down and interruption of the process [30]. This is closely
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Fig. 1 An ultrasound image with a center of the contour x
s.

The object to be segmented is bounded by an ellipse.

related with the selection of a variable that is analogous

to the time variable, since the notion of time is associ-

ated with the successive contour growing. It is natural

to assume a fixed time analog: for an arc-length or for

an angle and the choice of a step is application depen-
dent. The measurement data are usually characterised

by grey level distributions and/ or intensity gradients

(and higher derivatives). The formation of the measure-

ment space is constrained by the probabilistic gating

procedure, applied in tracking techniques [1, 6]. In the

present paper, the gate space is imposed on the image

plane by hard constraints. The details of filter design

are given below.

3.1 Prior Dynamics

We consider the typical case of lesions with a convex

form, where all contour points can be seen from a seed

point inside the lesion cavity [1]. If n equispaced radii

are projected from the seed point towards the contour,

then an appropriate variable, analogous to the time step

is the angle between the adjacent radii △β = 2π/n.

Since the delineated area can have an arbitrary (non-

circular) shape, a multiple model (hybrid) dynamics

is adopted, describing the contour evolution from an-

gle βk to angle βk+1 = βk + △β, k = 0, . . . , n. Let

xs = (xs, ys)′ be the location of the seed point in the

Cartesian coordinate frame, centered at the left and low

corner xc
0 = (xc

0, yc
0)

′ of the image (as shown on Fig. 1).

Let d = (d, β)′ be the location of an arbitrary image

point in the relative polar coordinate system, centered

at the seed point.

The following discrete-angle jump Markov model

dk+1 = Fdk + Guk+1(mk+1) + Bwk+1(mk+1), (5)
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Fig. 2 The distance increments for different modes.

can describe the contour where dk = (dk, βk)′ is the

base (continuous) state vector, representing contour point

coordinates along the radius, determined by βk, F is the

state transition matrix and uk is a known control input.

The process noise wk(mk) is a white Gaussian sequence

with known variance: wk ∼ N (0, σ2
d(mk)). The modal

(discrete) state mk ∈ S , {1, 2, . . . , s}, characterising

different contour behaviour modes, is evolving accord-

ing to a Markov chain with known initial and transition

probabilities

πij , Pr {mk+1 = j | mk = i} , (i, j ∈ S).

The control input uk(mk) = (△dk(mk), △β)′ is com-

posed of the distance increment △dk(mk) and sampling

angle △β. In the present implementation the set of

modes S contains three models (s = 3). The first mode

(m = 1) corresponds to zero increment (△dk = 0). It

models the “move” regime along the circle. The non-

zero increments (△dk > 0 for m = 2) and (△dk < 0 for

m = 3) are constants corresponding to distance increase
or decrease, respectively (Fig. 2). The process noise wk

models perturbations in the distance increment. The

matrices F , G and B have a simple form

F = G =

(
1 0

0 1

)
, and B =

(
1 0

)′
.

In this model, the state vector xk = (xk, yk, dk, βk)′

contains both the Cartesian coordinates of a contour

point with respect to the left-down image corner and

the polar coordinates with respect to the internal seed

point.

3.2 Constraints

Taking into account the proposed convex form of the

contour, the area of measurement formation is bounded
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by an inner circle and an outer ellipse (as shown on

Fig. 1). Two points, xmin and xmax, selected manually,

determine the gating area. The distances dmin and dmax

of the points in the polar coordinate system correspond

respectively to the circle radius Rc and the major semi-

axis of the ellipse Remax. The variable γ = Remax −Rc

is used as a design parameter. It can be viewed as a

kind of aspect ratio. The minor semi-axis of the ellipse

is calculated according to the relationship: Remin =

Rc + 2/3Remax.

Suppose that a cloud of N particles
{

x̃
(j)
k+1

}
, j = 1, . . . , N

is predicted at the angle βk+1 according to the state

evolution equation (5). At this stage, constraints are

imposed on particles falling outside the boundaries, and

these particles are forced to accept the coordinates of

the boundaries. Then, the likelihood is computed for

each particle point, situated inside and on the bound-

aries.

3.3 Likelihood

The likelihood p(y|xk) in the relationship (1) has dif-

ferent forms, depending on the authors’ considerations

and application particularities. In most cases, the gra-

dient norm |∇I(xk)| of image intensity I is a principal

likelihood component. We explore three likelihood al-

ternatives.

Likelihood I. Denote by pon ≡ pon(y(xk)|x0:n) the like-

lihood of the pixel xk, if it belongs to the contour x0:n.

Denote also by poff ≡ poff (y(xk)) the likelihood of

the same pixel, if it does not belong to the contour.

According to [30] the likelihood ratio

ℓ = pon/poff , ℓ ∝ p(y(xk))

is a measure, extracting useful information from the im-

age data. Following the methodology, suggested in [30],

we have explored the gradient norm distribution both

off contours (poff ) and on contours (pon) over a series

of images. The empirical distribution of the gradient

norm off contours (on the whole image data) confirmed

the results, obtained in [30]. The gradient norm distri-

bution can be approximated by an exponential distri-

bution with parameter λ, which is the average gradient

norm (as shown on Fig. 3 (a)). However, the empirical

distribution pon of the joint gradient norm and gradi-

ent direction on the contour, obtained and implemented

in [30], do not provide enough information for accurate

contour extraction in ultrasound images.

We adopt an approach of combining the gradient

norm and an edge detection algorithm, proposed in [1].

The aim is to incorporate simultaneously the gradient

 

 

Fig. 3 (a) Normalised histogram of gradient norm on the whole
image and the fitted exponential pdf; (b) Normalised intensity
histograms for the parts inside and outside the contour, respec-
tively, and the fitted Gamma pdfs

information along x, y axes, and along the radii, pro-

jected from the seed point toward the contour, in order

to improve the edge detection sensitivity.

Note that N predicted particles
{

x̃
(j)
k+1

}
, j = 1, . . . , N

are located along the radius, determined by the angle

βk+1 in the relative polar coordinate system. Let Nc

equally spaced candidate edge points ri = (di, βk+1)
′,

i = 1, . . . , Nc are selected on the segment, limited by

the imposed constraints. The edge magnitude of each

point ri is calculated according to the next filtering

algorithm, similarly to [1]

Fedge(di, βk+1) =
1

3
(1 − I(di, βk+1))

2× (6)

I(di + 2δr, βk+1) + I(di + δr, βk+1) + I(di, βk+1)−

I(di − δr, βk+1) − I(di − 2δr, βk+1) − I(di − 3δr, βk+1),

where δr is a radial increment (a design parameter)

and I(ri) is the local grey-level normalised image in-

tensity. The edge point with a maximum magnitude

rm = max {Fedge(ri), i = 1, . . . , Nc} takes part in com-

putation of the likelihood ratio. We propose the follow-
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Fig. 4 (a) Detected edges with maximum magnitudes, (b) points
with maximum gradient norms within the gating area

ing expressions for pon and poff

pon(x̃
(j)
k+1) ∝

∣∣∣∇I(x̃
(j)
k+1)

∣∣∣
2

exp

{
−

(d̃
(j)
k+1 − dm)2

2σ2
e

}
(7)

poff (x̃
(j)
k+1) ∝ exp −

∣∣∣∇I(x̃
(j)
k+1)

∣∣∣
λ

, (8)

where x̃
(j)
k+1 = (x̃

(j)
k+1, ỹ

(j)
k+1, d̃

(j)
k+1, β̃

(j)
k+1)

′, j = 1, . . . , N ,

rm = (dm, βk+1)
′ and σ2

e is a design parameter. In

the results, presented below, this parameter takes value

of σ2
e = 2. The operation of the edge detector (6) is

demonstrated in Fig. 4(a), where the detected edge

points are coloured in red. The points with a maximum

gradient norm along n equispaced radii within the gate

are displayed in yellow (Fig. 4(b)). The likelihood ratio

ℓ(x̃
(j)
k+1) = pon(x̃

(j)
k+1)/poff (x̃

(j)
k+1), (9)

is used for updating of the particle weights (3).

Likelihood II. In many cases, the grey-levels inside and

outside the segmented object have well-marked distinct

charachteristics. This valuable information can be in-

corporated into the segmentation process by an alter-

native way for the likelihood computation. Denote by

pin ≡ pin(y(xk)) the likelihood of the pixel xk, if it

is inside the segmented area. Denote also by pout ≡
pout(y(xk)) the likelihood of the same pixel, if it is out-

side the segmented region. The likelihood multiplier

℘ = pin ∗ pout, ℘ ∝
1

poff

, ℘ ∗ pon ∝ p(y(xk))

is a measure, extracting also useful information from

the image data. Different grey-level distribution models

have been used in the literature for ultrasound image

segmentation, including Gaussian, Gamma, Beta, ex-

ponential, Rayleigh and mixture of Gaussian distribu-

tions [8,28,36]. Gamma distributions are a good choice

due to their flexibility: a wide range of empirical distri-

butions can be covered by fitting the data to the pdf

with different shape and scale parameters (as shown on

Fig. 3(b) ).

Likelihood III.

In the cases of images with a non-homogeneous inten-

sity distributions, it is difficult to obtain a suitable poff

or pout distribution models. Then only pon can be used

as a measure, proportional to the likelihood function.

We have explored the following modified likelihood pm
on

pm
on(x̃

(j)
k+1) ∝ G(x̃

(j)
k+1)

2exp

{
−

(d̃
(j)
k+1 − dm)2

2σ2
e

}
,

where the gradient in x axis, respectively in y axis, for

pixel xk is calculated with the operator [39]

Gx(xk) =I(xk − 2, yk) + 2I(xk − 1, yk)

− 2I(xk + 1, yk) − I(xk + 2, yk) (10)

Gy(xk) =I(xk, yk − 2) + 2I(xk, yk − 1)

− 2I(xk, yk + 1) − I(xk, yk + 2) (11)

G(xk) =
√

Gx(xk)2 + Gy(xk)2. (12)

One of these proposed likelihood functions can be used

for computing the particle weights w̃
(j)
k+1, j = 1, . . . , N

(relationship (3)). The updated weights take part in the

calculation of the current contour estimate

(x̂0:k+1|y) ≈
N∑

j=1

w̃
(j)
k+1x̃

(j)
0:k+1.

4 Algorithm Outline

The proposed segmentation algorithm is implemented

in three steps of preprocessing, filtering and smoothing.
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Fig. 5 Estimated and smoothed heart (a) and pancreas (b) con-
tours, N = 1000

Preprocessing. A fundamental requirement of the noise

filtering method is to preserve the important informa-

tion for object boundaries [10]. A non-linear Gaussian

filter, performing edge preserving diffusion has been

adopted from [3, 5]. The processed ultrasound images

have been smoothed by a filter chain with three stages

and initial parameters σx = 1.0 and σz = 0.25.

Particle Filtering. A multiple model particle filter (MM

PF) is realised having the particularity that each par-

ticle is a contour. With the recursive implementation

k = 0, 1, . . . , n the number of points in each contour

x
(j)
0:k, j = 1, . . . , N increases consecutively, and hence

increasing in this way the execution time. It is impor-

tant to keep a minimum sample size N , achieving the

minimum execution time. However, this leads to some

roughness of the contour.

Smoothing. The MATLAB Curve Fitting Toolbox is

used to smooth the contour curve. The estimated and

smoothed (by standard moving average built-in pro-

cedure) heart and pancreas contours are presented in

Fig.(5).

5 Segmentation Results

According to [28], “there is a general lack of standard-

ization of performance measures”. This makes difficult

the quantitative validation of image segmentation al-

gorithms. Since “there are also no standard databases

on which deferent groups can compare methods”, the

quality of our segmentation algorithm is tested over a

variety of simulated and real images, obtained by the

Internet image database: for ultrasound tumor and le-

sion images (http : //smiswi.sasktelwebhosting.com).

Design parameters. The selected sampling angle is △β =

1 [deg], corresponding to n = 360 equally spaced radii.

A MM PF with three models s = 3 is designed for

estimating the contour state vector. Each model has

different radial incitement, (Fig. 2): △d = 0 for m = 1,

△d = γ/4 , (m = 2) and △d = −γ/4 for m = 3,

where γ = Remax − Rc is the aspect ratio. The stan-

dard deviation of the process noise wk ∼ N (0, σ2
d(mk)),

modeling the perturbations in the distance increment

is chosen equal to σd = γ/16, the same for all models.

The filter is initialised with the exact coordinates of the

starting point x0, as shown on Fig. 1. The initial mode

probability vector of the Markov chain, governing the

model switchings is as follows: P0 = (0.8, 0.1, 0.1). The

transition probability matrix π has respectively the fol-

lowing diagonal πii = 0.8 and off-diagonal πij = 0.1

elements, i, j = 1, 2, 3. The threshold for resampling is

Nthresh = N/10.

Segmentation results over simulated images. The ultra-

sound simulation package “Field II” [18] provides an ex-

cellent tool for testing newly developed ultrasound sig-

nal processing and segmentation algorithms. By means

of “Field II”, images with complex contours are gen-

erated in [19], Fig. 6(a). The image after being pre-

processed with the non-linear Gaussian filter is given

in Fig. 6(b). The operation of the proposed MM filter

is demonstrated in Fig. 6(c). The filter is implemented

with the Likelihood II, the radial increment is δr = 5

and the number of particles is N = 800. The results

obtained with N = 500 and Likelihood I are similar.

The “Field II” package had been shown also efficiency in

[20,27] for simulating the output of the transducer, re-

ceiving signals from preliminary defined lesions (phan-

toms). Lesions with different shapes - circular, elliptical

and Cassinian oval are designed to obtain echogenicity

map of the phantoms. Next, the authors of [20, 27] de-

veloped and applied a combination of two noise reduc-

tion techniques, multi-angle spatial compound imaging

(MACI) and coded excitation of the transducer, to im-

prove the image quality. The image, generated by using



8

compounding and coded excitation with signal-to-noise

ratio SNR = 1 [dB] additive noise is shown in Fig.

7. The segmentation results, obtained by our MM PF

with different sample sizes are given in the same Figure.

The experiments show, that the number of particles de-

pends mainly on the size of the gating area. The nearly

circular form affords maintaining a smaller gate in com-

parison with the ellipse and Cassinian oval. Therefore,

the same estimation quality is achieved with a smaller

sample size.

An additional denoising wavelet based technique with

soft thresholding as described in [21] leads to an addi-

tional improvement of the image quality, as shown on

Figs. 8 (a) and (b). It can be seen from Fig. 8 (b) that

the contours delineated by using Likelihood II are the

best in this case of discernable intensities inside and

outside the delineated areas.

Segmentation results over real images. The segmenta-

tion of a breast cyst, ovarianus, thyroid and pancreas

are shown in Figs. 9 and 10. It can be seen from these

figures, that the MM particle filtering algorithm pro-

duces convergent contours with a good estimation ac-

curacy. Based on extensive experiments with the filter,

we have made conclusions about the influence of the

prior dynamics and measurement formation on the es-

timation process.

Number of initial starting points for contour segmen-

tation. The number of initial starting points can be

reduced to three or respectively to two, by using ad-

ditional information from the image. In [4] a statistical

procedure is proposed for automatic localisation of the

starting point x0, based on the image gradient intensity.

The number of the initial points can be further reduced

to two if the foreground is significantly different than

the background. For instance, breast lesion images have

such well distinguishable and homogeneous regions. A

piecewise estimate xmin is automatically determined

in [4], based on the empirical intensity distribution in-

side and outside the lesion.

The suggested model of contour dynamics takes into ac-

count the convexity of the segmented regions. The ex-

periments with more complex (higher order) dynamic

models did not improve the estimation accuracy. How-

ever, the convexity assumption limits the application

area: if the convexity is not fulfilled, deformations are

possible, as it is obvious from Fig. (10 (c)), the right

side of the upper contour.

Measurement model. The correct interpretation of the

image data, namely the measurement formation pro-

cess, has a great importance for the segmentation qual-
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Fig. 6 Simulated image before (a) and after (b) preprocessing;
(c) the estimated contour with N = 800 particles and δr = 5

ity in this Bayesian context. Our experiments show,

that the edge detection algorithm, proposed in [1, 2],

is an excellent procedure, providing accurate results

in almost all studied real and simulated images [19].

In [2], the smoothing capabilities of the PDA proce-

dure (by calculating one weighted measurement from

Nc edges with maximum magnitudes) provide a smooth

contour estimate. The PDA incorporation into the MM

PF framework is straightforward [6]. However, it is ac-
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Fig. 8 (a) Segmentation results by using Likelihood III ; (b)
Comparison of the likelihoods.

companied with an increased computational time. In

our implementation, the particle weight is proportional

to its distance to the edge point with a maximum mag-

nitude. The contour estimate is very sensitive to the

abrupt contour changes, but at the cost of certain con-

tour roughness, which is alleviated by the postprocess-
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Fig. 9 Segmentation of a breast cyst

ing step of smoothing.

Sensitivity analysis. The proper choice of the seed point

within the lesion area is a prerequisite to accurate seg-

mentation results. We have explored the sensitivity of

the segmentation algorithm to the seed point location.

The displacements from the exact seed point location in

the range of ±6 pixels do not affect the segmentation
results. The multiple model structure of the tracking

particle filter contributes to a great extend to this flex-

ibility.

Execution time. The computational complexity is an-

other important issue that we investigated. In the frame-

work of the MATLAB environment, the processing time

of a contour with n = 365 contour points and sample

size N = 500 is approximately tex = 5 [min] on a

conventional PC (AMD Athlon(tm) 64 Processor 1.81

GHz). The execution time for N = 800 and N = 1000

is approximately tex = 8 [min] and tex = 10 [min]. The

contour quality is almost the same for N = 500, 800

and N = 1000. If the other design parameters are prop-

erly selected, the sample of N = 500 particles provides

sufficient estimation accuracy. By using C++ program-

ming tools the computational time can be additionally

reduced.

6 Conclusions

A multiple-model particle filtering algorithm for seg-

menting contours in ultrasound medical images is pro-

posed in this paper. Some of the advantages of the

simulation-based Monte Carlo techniques are shown:

multiple hypotheses governed contour dynamics and

measurement gating based on constraints. The main

novelty of this paper is in the proposed likelihoods that
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Fig. 10 Segmentation of (a) ovarianus, (b) thyroid (c) pancreas
and (d) lesion images

integrate the features of the grey-level distributions in-

side and outside the segmented areas with intensity gra-

dient information.

The algorithm can be applied to different types of im-

ages, including from medical applications. The restric-

tion is related with the convexity of the segmented ob-

jects. In the general case, four manually selected points

are necessary for its proper operation. However, if it is

applied to a concrete clinical task, the number of nec-

essary points could be reduced.

The algorithm performance is studied by segmenting

contours from a number of real and simulated images,

obtained by Field II [18], the ultrasound simulation pro-

gram and additionally processed by several types of

imaging techniques [20, 21, 27]. Very good estimation

accuracy is achieved at the cost of acceptable compu-

tational complexity and convergence rate.

The Monte Carlo methods have a potential for clas-

sifying different types of lesions with high diagnostic

confidence. Our further work will be focused on the im-

portant task of fully automated breast tumors segmen-

tation with the possibility of distinguishing between be-

nign and malignant tumors.
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