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Abstract We consider the problem of computing accurateeen applied to statistical model building and shape analy-
point-to-point correspondences among a set of human bsi. Here accurate correspondence is important because it di-
ies in similar posture using a landmark-free approach. Thectly affects the quality of the statistical model. Compatin
approach learns the locations of the anthropometric larttie correspondence among a set of human shapes is further
marks present in a database of human models in similar posmplicated by the intrinsic symmetry of the human body
tures and uses this knowledge to automatically predict thleape and by the shape variation across a population. Hence,
locations of these anthropometric landmarks on a newly aviailly-automatic correspondence methods that exploit the in-
able scan. The predicted landmarks are then used to comitesic geometry of the shape [18,33] may fail when corre-
point-to-point correspondences between a template modpbnding humans that differ in shape.
and the newly available scan. This study conducts a large- In a typical 3D anthropometry survey, the human sub-
scale evaluation to examine the accuracy of the compujedts are asked to maintain a standard posture like the one
correspondences. Furthermore, we show that the correspsitewn in Figure 2. However, in practice slight posture vari-
dences are accurate enough for the application of motiations are inevitable. The correspondence problem is further
transfer. complicated by the noisy and incomplete nature of the scan
data. Allen et al. [2] proposed an effective method in which
a template mesh is deformed to fit each data model, thus si-
multaneously solving the correspondence problem and fill-
1 Introduction ing the holes smoothly. Anthropometric landmarks placed
on the human bodies prior to scanning are used to guide the
We consider the problem of computing accurate point-tfitting process. Since the anthropometric landmarks are sta-
point correspondences among a set of human shapes in gitepositions on the human body, they provide accurate seed
ilar posture without using landmarks. The shapes of the hppints for corresponding the rest of the points. This approach
man bodies are represented by possibly incomplete triangyas been extended by various authors [4,17]. However, all of
lar meshes, which can be acquired by 3D sensing devitkese extensions require a set of manually placed marker po-
such as laser or structured-light body scanners. This prafitions on the bodly.
lem arises from building statistical models from a database Unfortunately, manually placing the landmarks is a te-
of 3D scans. In order to conduct statistical analysis of 3flous task and it is impractical to use routinely in large sur-
shapes, the raw scans have to be parameterized in such ayg¥ where several thousands of subjects are typically scanned
that likewise anatomical parts correspond across the m@én Azouz et al. [6] proposed an automatic method to com-
els [13]. This problem is also known as groupwise registrgute the landmarks from the scans. However, the method
tion in medical imaging [12]. A statistical model built fromhas not yet been demonstrated to be effective for computing
the dense correspondence allows us to study the shape \@hse correspondences. Detailed analysis and evaluation in
ability of a population and has been proven to be a powegrms of the quality of the correspondence have to be pro-
ful tool for mesh deformation [4], human shape reconstrugided.
tion [16], and ergonomic design [23]. The correspondence The purpose of this paper is to provide a fully automatic
problem is also essential to object recognition [19]. solution to the problem of computing point-to-point corre-
While many approaches have been proposed to compsi@ndences among a set of human shapes in similar posture.
point-to-point correspondences [29], only few of them hav the best of our knowledge, previous methods for analyz-
ing the human body shape use known landmark positions
National Research Council of Canada, Ottawa, Canada when computing the correspondences. Furthermore, meth-
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are tested. In Section 5, we conduct a large-scale evalua-

g tion of the accuracy of the computed correspondences in the
Predict . context of shape analysis. Finally, in Section 6, to further
land- demonstrate the quality of the correspondence, we apply this
marks approach to motion transfer. Figure 1 summarizes the pro-
o, cess.

Compute
corre-

spon-
dence

Fig. 2 Model of the CAESAR database in standing posture with land-
marks shown in red.

Motion
transfer

2 Related Work

Computing dense point-to-point correspondences between
two possibly deformed surfaces has received considerable
attention in recent years [29]. Although many algorithms
have been developed to solve the correspondence problem,
only few of these algorithms are suitable for statistical model
building and shape analysis.
Fig. 1 Overview of the proposed method. When considering the application of statistical model build
ing, we need to solve for the correspondence and for a smooth
) __transformation between a group of shapes. The reason is that
fully automatic manner [18, 33] take advantage of the intriRg|ying only for correspondence may result in high levels
sic geometry of the shapes and may fail for human shapgsoise, which in turn affects the statistical model signifi-
due to intrinsic symmetries. We review previous methods iyntly.
detail in Section 2. Approaches that solve the correspondence problem by
We integrate an extension of the landmark predictiailigning two shapes using a transformation that is approxi-
method [6] and the template fitting method [2]. The landmately rigid [27,15,1] are not suitable to align a set of hu-
mark prediction starts with learning the characteristics apgan shapes in similar posture due to non-rigid shape and
locations of the landmarks on a human model in standigight posture changes. Hence, we focus our attention on ap-
posture using a database of human models. This infornpRoaches that take non-rigid transformations into account.
tion is used to predict the landmark positions on a human Blanz and Vetter [9] use a set of landmarks to compute
shape in similar posture. Figure 2 shows a model in stanfle correspondence between pairs of human faces. Allen et
ing posture where the landmark positions are shown in ref. [2] use a set of landmarks and a template model to de-
Section 3 summarizes how to predict the landmarks. Sgerm a template model to human shapes in similar postures.
cial care is taken to outline our extensions to the previopgnberg et al. [3] improve upon this method by formulat-
method by Ben Azouz et al., which lead to a more efficieifg the underlying optimization problem using an iterative
algorithm. The predicted landmarks are then used for digrear framework that is shown to yield better convergence.
forming a template model to fit the mesh data [31] as ouknguelov et al. [4] extend Allen et al.’s approach to work
lined in Section 4. In our experiments, we use the Civiliafor varying postures. The approach computes the correspon-
American and European Surface Anthropometry Resouigénces between a large database of humans and uses the re-
(CAESAR) database [26]. sult to build an animated surface model of a moving person.
An area in which the literature is particularly weak is th&he database contains one subject in multiple postures and
evaluation of the quality of the correspondence. Often, ortlye remaining subjects in the standing posture of the CAE-
visual results are given and only small numbers of modes\R database. Hasler et al. [17] improve the approach by
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using fewer landmark positions and by using a database cénee approach that operated on the unit sphere. First, each
taining many subjects in multiple postures. While all of tneshape is mapped to the unit sphere. Second, the charts on
approaches have been applied to shape analysis applicattbeaunit sphere are aligned to minimize an energy. Davies et
and yield animations of high quality, landmark positions amd. [12] align the charts until the description length is mini-
required. Pauly et al. [24] compute the correspondences amided while Yeo et al. [32] align the charts to minimize a dif-
the transformation between multiple views of a scan for tfieomorphic energy. Both approaches require as input mani-
application of scan completion using a small set of landmaitdd meshes with spherical topology. That is, surfaces with
positions. holes cannot be taken into consideration. Since we aim to

Recently, several landmark-free approaches have b&mpute correspondences between incomplete laser scans,
proposed. Huang et al. [18] proceeds by iteratively alterndfiese approaches cannot be applied.
ing between a correspondence optimization and a deforma- We propose a landmark-free approach to compute the
tion optimization. The approach can be viewed as an es@rrespondence between a set of human shapes in similar
tension of the Iterative Closest Point algorithm (ICP) [g)osture using a template model. We apply the resulting cor-
that is often used to solve the rigid correspondence probleigspondences to statistical model building and to animate th
The method is shown to perform well if the two meshes aféodels using motion transfer.
initially well aligned. If the alignment is poor, the method
fails. Huang et al. show that the obtained correspondences
yield visua_llly pleasing shape int(_arpolatiops. The ma_lin qrg\g—predicﬂng Landmarks
back of this method is that it relies heavily on non-intuitive

user-defined parameters. This makes the method hard 10 $gs section outlines how to automatically predict a set of
Zhang et al. [33] propose a technique that solves the corggnnropometric landmarks on a 3D scan of a human body.
spondenqe problem by finding a small set of features and First, we summarize the approach by Ben Azouz et al. [6]
by choosing the best feature correspondence as the one {haf,iomatically locate 73 labelled anthropometric landmarks
minimizes a deformation energy. To improve the efficiency, 3p scans of human models in standing posture. The ap-
of the algorithm, the tree of all matching features is prunegioach is based on statistical learning and proceeds by using
if the features are too dissimilar. Nonetheless, the algorittyRy anthropometric database to learn the characteristics and
is not as efficient as the algorithm of Huang et al. [18]. Ongge |ocations of the landmarks using a pairwise Markov net-

the feature correspondences are computed, the full CORfgsk The learned information is then used to predict the
spondence is found by deforming the full mesh based Qhgmarks on a newly available scén

the feature points. The main drawback of this method is the Tha 73 jJandmarks are connected by the manually cho-

computational inefficiency. Results are only demonstrated, graph structure shown in Figure 3. In this graph, each
for models with less than 4000 vertices. Furthermore, lifgymark is a node and certain pairs of nodes are connected
the method of Huang etal., the tree pruning relies heavily 9Qing 5 set of edges. The approach uses a database of hu-
non-intuitive user-defined parameters. Chang and Zwick@t ,'scans in standing posture to learn the location, Spin im-
[11] use a reduced deformable model to compute the ;%%? [20], and surface curvature of each node and the length

respondence and the transformation between two surfa orientation of each edge. In this step, the node and edge

Instead of operating on the surface directly, the approaghyracteristics are modeled as independent Gaussian distri-
needs to convert the surface into a voxel grid. This is COMtions and we learn their means and standard deviations
putationally expensive. Furthermore, this step introduces figng maximum likelihood estimation. The learned informa-
use of several input parameters. While all of these meth is combined in a pairwise Markov network, where the

are landmark-free, they require a set of non-intuitive Us§k,med Gaussian distributions are used as node and edge po-
specified input parameters. tentials.

Methods that require neither landmark positions nor a set The data set used for training consists of 200 male scans
of user-specified input parameters have been proposeddpthe CAESAR database. Note that for each of the models
motion capture [10, 14]. The methods assume that the sajjéhe CAESAR database, the locations of the 73 anthropo-
shape was captured in several gradually changing poses gfdric landmarks are known. Before the learning step, the
use this information to learn a deformation model. In our agumber of triangles of each scan is reduced to 50000.
plication, this type of input data is not available. Liet[@ll] ~ when a new scar becomes available, the approach
propose an approach to register pairs of range images Witedicts the 73 landmark positions by performing proba-
out using any landmark positions or input parameters. Whilgistic inference on the learned Markov network. Before
the method is shown to perform well, the method makes ug: prediction, the number of triangles of each scan is re-
of the fact that each surface is a terrain and can be paramgced to 50000. To perform probabilistic inference, the ap-
terized by a projection to a plane. Since our aim is to registgoach needs to limit the number of possible candidate lo-
the surface of full human bodies, this method cannot be aRtions, or labels, for each landmark. Lgt. ..l denote
plied. the landmarks. To limit the number of labels for landmark

In medical imaging, two methods were proposed recently the approach only considers vertices that are located in-
[12,32] that solve the correspondence problem using a lansliskatke sphere with radius proportionabtocentered a;,
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wherey; is the learned mean location hfand wheres; is  located in an area of the lower back that has few surface fea-
the learned covariance &f The inference problem is thentures. Since these areas are not crucial during our subsequent
solved using loopy belief propagation [25]. The loopy belieforrespondence step, we ignore these two landmarks in the
propagation algorithm is iterated at most 20 times. following. Landmark 73, located at the crotch, also has a
large average error. This landmark is located in an area of the
body that is often not visible to the scanner. Hence, for many
scans, this surface area is missing. This results in a large er-
ror since the statistical inference method only considers sur-
face vertices as possible locations for the landmark. As this
landmark is crucial in the subsequent correspondence step,
we use it in spite of its large average error.

Figure 4 shows the ground truth landmarks and the pre-
dicted landmarks on two models of the CAESAR database.
The predicted landmarks are shown in green and the ground
truth landmarks are shown in red.

4 Correspondence
Fig. 3 Structure of the landmark graph. ) . i )
This section summarizes how to use the predicted landmarks
to find a surface correspondence. We use the approach by

Second, we outline our modifications to the approach & et al. [31] to compute a surface correspondence using an
Ben Azouz et al. [6]. Our training phase proceeds in ttfaignment procedure based on the predicted landmarks. The
same way as the previous approach and the same data is apgdioach aims to align a template modetb the scart' us-
for training. We modify the prediction phase of the algorithring a two-step alignment procedure. The template m@del
to obtain a faster approach, which allows us to predict lanand its landmarks are known. In our wofk contains 20000
marks on a large database. To achieve this, we reduce tiigngles.
number of labels for landmark. This has a large influence  First, the approach computes a radial basis function (RBF)
on the running time of the algorithm because the complexityging the known landmark&(™) of 7 and the predicted
of the algorithm is quadratic in the number of labels. NotandmarksL(%) on S. Given two sets of: landmarksL(?)
that when considering as labels all of the vertices that agd L®) (heren = 71), we aim to compute a set of three
located inside the sphere with radius proportionatiteen- RBFs, one for each coordinate, such mé@ - f(LZ(.S)),
tered ay;, landmarks in areas of the mesh with high resoly-_ 1,...,m, WhereLET) is thed-th landmark oril” andL§S>
tion that have a large variation in the training set have Mapyha;-th landmark ons. For RBFs, the mapping has the
associated labels. To avoid this problem, we only consider as (S) n (S)
labels forl, the 200 vertices of the scan that are closegto PIOPEMYf(Li™) = 25, w;®;(L; "), whered; are a set
We find these labels usingkanearest neighbor search in &f n basis functions and; are weights. W92U32€ Gaussian
kd-tree (we use the approximate nearest neighbor library [#Sis functions, which meawss (r) = exp(—r=/c?), where
in our implementation). Furthermore, we found that iteraf-'S @ constant (here = 1.0). The approach deforms all of
ing the loopy belief propagation algorithm five times yield¢ S Vertices using the RBFs to obtain a rough alignment of
sufficient results. Hence, we iterate the loopy belief propagz‘;\-tO S . .
tion algorithm at most five times. These modifications yield Second, the approach deforffisusing a non-linear op-
a significant speed-up over the approach originally proposé@ization method similar to the one used by Allen et al. [2].
by Ben Azouz et al. at the cost of a decrease in accuracy. | "€ aim of this minimization is to move the verticesof

We predict the landmarks on 500 male scans of the CAfPWards their closest neighbor éhwhile enforcing neigh-
SAR database that were not used for training. We know tR'NJ vertices to move using similar transformations. We
true anthropometric landmarks for these scans. Hence, Y€ the limited-memory Broyden-Fletcher-Goldfarb-Shanno
can measure the accuracy of the predicted landmarks asqH@si-Newton approach [22] to solve the optimization prob-

Euclidean distance between the predicted landmarks and'f{8-

true landmarks. The accuracy is shown in Table 1. Note that

the average error of most landmarks is less than. The

landmarks we use as reference are subject to uncertainiésvaluation

since different experts place the landmarks at slightly differ-

ent positions and that for most traditional measurements, thethis section we conduct an evaluation of the accuracy

acceptable error is aroundm. [6]. of the computed correspondences over a large database of
Note that the predictions of landmarks 26 and 27 haves80 scans. We run our single-threaded implementation on

large average error. The reason is that these landmarksardntel Duocore 3GHz machine with 8GB of RAM. For
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Landmark Average | Standard || Landmark Average | Standard
(mm) Deviation (mm) Deviation

(mm) (mm)
1 Sellion 12 0.4 38 Rt. Dactylion 19 0.36
2 Rt. Infraorbitale 15 0.12 39 Rt. Ulnar Styloid 15 0.41
3 Lt. Infraorbitale 16 0.3 40 Rt. Metacarpal-Phal. V 16 0.31
4 Supramenton 17 0.18 471 Lt. Acromion 17 0.35
5 Rt. Tragion 17 0.15 42 Lt. Axilla, Ant 23 0.069
6 Rt. Gonion 18 0.1 43 Lt. Radial Styloid 14 0.24
7 Lt. Tragion 17 0.56 44 Lt. Axilla, Post. 18 0.6
8 Lt. Gonion 18 0.3 45 Lt. Olecranon 16 0.33
9 Nuchale 27 0.27 46 Lt. Humeral Lateral Epicf 18 0.27
10 Rt. Clavicale 16 0.32 47 Lt. Humeral Medial Epicn 18 0.41
11 Suprasternale 18 0.21 48 Lt. Radiale 18 0.041
12 Lt. Clavicale 17 0.55 49 Lt. Metacarpal-Phal. Il 15 0.3
13 Rt. Thelion/Bustpoint 9.5 0.28 50 Lt. Dactylion 21 0.93
14 Lt. Thelion/Bustpoint 10 0.16 51 Lt. Ulnar Styloid 15 0.11
15 Substernale 21 0.44 52 Lt. Metacarpal-Phal. V 15 0.061
16 Rt. 10th Rib 31 0.95 53 Rt. Knee Crease 14 0.33
17 Rt. ASIS 24 0.19 54 Rt. Femoral Lateral EpicH 18 0.63
18 Lt. 10th Rib 29 0.62 55 Rt. Femoral Medial Epicn| 17 0.077
19 Lt. ASIS 23 0.36 56 Rt. Metatarsal-Phal. V 12 0.038
20 Rt. lliocristale 19 0.096 57 Rt. Lateral Malleolus 13 0.017
21 Rt. Trochanterion 17 0.36 58 Rt. Medial Malleolus 17 0.065
22 Lt. Mlocristale 15 0.29 59 Rt. Sphyrion 14 0.3
23 Lt. Trochanterion 12 0.76 60 Rt. Metatarsal-Phal. | 13 0.056
24 Cervicale 17 0.18 61 Rt. Calcaneous, Post. 13 0.066
25 10th Rib Midspine 23 0.73 62 Rt. Digit II 9.8 0.41
26 Rt. PSIS 38 12 63 Lt. Knee Crease 13 0.15
27 Lt. PSIS 36 0.69 64 Lt. Femoral Lateral Epicn 18 0.3
28 Waist, Preferred, Post. 21 0.78 65 Lt. Femoral Medial Epicn 20 0.17
29 Rt. Acromion 16 0.23 66 Lt. Metatarsal-Phal. V 11 0.39
30 Rt. Axilla, Ant 24 0.7 67 Lt. Lateral Malleolus 14 0.28
31 Rt. Radial Styloid 15 0.53 68 Lt. Medial Malleolus 11 0.009
32 Rt. Axilla, Post. 18 11 69 Lt. Sphyrion 10 0.18
33 Rt. Olecranon 16 0.19 70 Lt. Metatarsal-Phal. | 11 0.059
34 Rt. Humeral Lateral Epicn 18 0.56 71 Lt. Calcaneous, Post. 12 0.18
35 Rt. Humeral Medial Epicn 18 0.27 72 Lt. Digit Il 12 0.34
36 Rt. Radiale 19 0.055 73 Crotch 44 0.071
37 Rt. Metacarpal Phal. Il 17 0.33

Table 1 Error of localization computed over 500 test human scans.

one scan, it takes about 148s to predict the landmarks andA general model has the ability to describe instances that
about 10s to compute the correspondence. While we knave not in the training set. We compute a statistical model
the ground truth of the landmark positions, no ground truthith all but one of the corresponded scans of the training
is available for the other parts of the surfaces. Hence, wet and fit the model to the excluded scan. Generalization
cannot evaluate the accuracy of the correspondences withn) measures the accuracy of the description of the ex-
respect to a ground truth correspondence. However, we cuded scan. It is computed as the average error over the
still evaluate the quality of the correspondence by evaluabmplete set of trials. The standard error is computed using
ing the statistical model created from the correspondentige standard deviatianof errors of the complete set of trials
We use three measures suggested by Styner et al. [28]: cas () = o/vn — 1.

pactness, generalization, and specificity. A specific model only generates shapes that are similar
to the ones in the training set. Specificiym) is defined as

To compute these measures, we compute a statistical iiaverage distance 6f.,q to its nearest neighbor in the
of the corresponded data using principal component analy$@ning set, where....q is a shape computed using the sta-
(PCA). A compact model has little variance and it requirdistical model from a uniformly distributed random sample
few principal components to describe the model. Compa#i-PCA shape space. The standard error is computed using
ness is defined ﬁ(m) — Z?il i, wherem is the num- the standard deviation of the distances aSS(m) = O'/\/ﬁ
ber of principal components that are kept and wherés We compute these measures for the correspondences ob-
the i-th eigenvalue. The compactness error is computedtated using the ground truth landmarks and for the corre-
OC(m) = 2oieq V2/nAi. spondences obtained using the predicted landmarks. Note
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Fig. 4 Predicted landmarks (green) and ground truth landmarks@n two models of the CAESAR database.

that the correspondences obtained using the ground trighthei-th bone and the-th vertex of . An animation is

landmarks correspond to the result obtained by Allen et alskown in the first row of Figure 7.

algorithm [2]. Since we focus on an automatic method, we To animate a scal, we first parameterize the scan by

do not compare to any other semi-automatic methods thatpeedicting landmarks and deformirtigto fit the data inS as

quire manually placed landmarks [4, 3,17]. Furthermore, veaitlined above. We use the known point-to-point correspon-

do not compare to any automatic methods based on alignoences between the parameterized scan7aba compute

intrinsic geometries [18, 33] since these methods may lead RBF deformation as in Section 4. We deform the skeleton

to misalignments due to the symmetries in intrinsic geonB(™) using the RBF to obtain a new skeletBf®) aligned to

etry of the human body and due to the variations betwethre parameterized scan. To animate the parameterized scan,

different human shapes. we use the linear blend skinning method with the skeleton
Figure 5 shows the results. In all three graphs, the B*®) and the weight$¥' (7). Some results of this animation

axis shows the numben of principal components and theare shown in Figure 7. We can see that the results are visu-

y-axis shows the values of the error measurgg,), o), ally pleasing and that no artifacts occur.

ando s, For specificity, we consider 100 random samples.

While the PCA space learned using the predicted landmarks

is slightly more compact and more specific than the PCAConclusions

space learned using the ground truth landmarks, it is slightly

less general. Overall, both models are similar. We proposed an automatic method to compute accurate point-
The quality of the correspondences is visualized in Figp-point correspondences between a set of human models in

ure 6. We manually applied a texture to the template modiinilar posture. We conducted a large-scale error evaluation

(left of Figure 6) and transferred the texture using the corrigthe context of shape analysis and we used the correspon-

spondences obtained with the predicted landmarks. We elnces to perform motion transfer. It remains a challeng-

see that the texture map is preserved for models with difféng problem to compute an accurate point-to-point corre-

ent body shape. spondence between human models in varying postures with-

out the use of landmark positions. While some work has

been conducted to predict landmarks on humans in arbitrary

— : postures [30], the problem of computing accurate point-to-

6 Application to Motion Transfer point correspondences remains open. When trying to solve

this problem using the framework presented here, the de-

This section shows that the accuracy of the computed cggriptors, the landmark graph, and the registration algorithm

respondences yields visually pleasing results for the appliould need to be modified in order to be posture-invariant.

cation of motion transfer. We fit a skeletd@”) to 7' and

we assign weights/ () to each vertex on the surface Bf

using the approach by Baran and Popovic [7], wHéi¥) References
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Fig. 7 Motion Transfer. Top row (left to right): template modEland three animated poses. Remaining rows (left to righnsg of the
CAESAR databasé, deformed taS using ground truth landmarkg deformed toS using predicted landmarks, and three animated poses
obtained using motion transfer with the result that usesljpted landmarks.



