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Abstract We consider the problem of computing accurate
point-to-point correspondences among a set of human bod-
ies in similar posture using a landmark-free approach. The
approach learns the locations of the anthropometric land-
marks present in a database of human models in similar pos-
tures and uses this knowledge to automatically predict the
locations of these anthropometric landmarks on a newly avail-
able scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model
and the newly available scan. This study conducts a large-
scale evaluation to examine the accuracy of the computed
correspondences. Furthermore, we show that the correspon-
dences are accurate enough for the application of motion
transfer.

1 Introduction

We consider the problem of computing accurate point-to-
point correspondences among a set of human shapes in sim-
ilar posture without using landmarks. The shapes of the hu-
man bodies are represented by possibly incomplete triangu-
lar meshes, which can be acquired by 3D sensing devices
such as laser or structured-light body scanners. This prob-
lem arises from building statistical models from a database
of 3D scans. In order to conduct statistical analysis of 3D
shapes, the raw scans have to be parameterized in such a way
that likewise anatomical parts correspond across the mod-
els [13]. This problem is also known as groupwise registra-
tion in medical imaging [12]. A statistical model built from
the dense correspondence allows us to study the shape vari-
ability of a population and has been proven to be a power-
ful tool for mesh deformation [4], human shape reconstruc-
tion [16], and ergonomic design [23]. The correspondence
problem is also essential to object recognition [19].

While many approaches have been proposed to compute
point-to-point correspondences [29], only few of them have
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been applied to statistical model building and shape analy-
sis. Here accurate correspondence is important because it di-
rectly affects the quality of the statistical model. Computing
the correspondence among a set of human shapes is further
complicated by the intrinsic symmetry of the human body
shape and by the shape variation across a population. Hence,
fully-automatic correspondence methods that exploit the in-
trinsic geometry of the shape [18,33] may fail when corre-
sponding humans that differ in shape.

In a typical 3D anthropometry survey, the human sub-
jects are asked to maintain a standard posture like the one
shown in Figure 2. However, in practice slight posture vari-
ations are inevitable. The correspondence problem is further
complicated by the noisy and incomplete nature of the scan
data. Allen et al. [2] proposed an effective method in which
a template mesh is deformed to fit each data model, thus si-
multaneously solving the correspondence problem and fill-
ing the holes smoothly. Anthropometric landmarks placed
on the human bodies prior to scanning are used to guide the
fitting process. Since the anthropometric landmarks are sta-
ble positions on the human body, they provide accurate seed
points for corresponding the rest of the points. This approach
has been extended by various authors [4,17]. However, all of
these extensions require a set of manually placed marker po-
sitions on the body.

Unfortunately, manually placing the landmarks is a te-
dious task and it is impractical to use routinely in large sur-
veys where several thousands of subjects are typically scanned.
Ben Azouz et al. [6] proposed an automatic method to com-
pute the landmarks from the scans. However, the method
has not yet been demonstrated to be effective for computing
dense correspondences. Detailed analysis and evaluation in
terms of the quality of the correspondence have to be pro-
vided.

The purpose of this paper is to provide a fully automatic
solution to the problem of computing point-to-point corre-
spondences among a set of human shapes in similar posture.
To the best of our knowledge, previous methods for analyz-
ing the human body shape use known landmark positions
when computing the correspondences. Furthermore, meth-
ods that compute correspondences for arbitrary shapes in a



2 Stefanie Wuhrer et al.

Predict

land-

marks

Compute

corre-

spon-

dence

Motion

transfer

Fig. 1 Overview of the proposed method.

fully automatic manner [18,33] take advantage of the intrin-
sic geometry of the shapes and may fail for human shapes
due to intrinsic symmetries. We review previous methods in
detail in Section 2.

We integrate an extension of the landmark prediction
method [6] and the template fitting method [2]. The land-
mark prediction starts with learning the characteristics and
locations of the landmarks on a human model in standing
posture using a database of human models. This informa-
tion is used to predict the landmark positions on a human
shape in similar posture. Figure 2 shows a model in stand-
ing posture where the landmark positions are shown in red.
Section 3 summarizes how to predict the landmarks. Spe-
cial care is taken to outline our extensions to the previous
method by Ben Azouz et al., which lead to a more efficient
algorithm. The predicted landmarks are then used for de-
forming a template model to fit the mesh data [31] as out-
lined in Section 4. In our experiments, we use the Civilian
American and European Surface Anthropometry Resource
(CAESAR) database [26].

An area in which the literature is particularly weak is the
evaluation of the quality of the correspondence. Often, only
visual results are given and only small numbers of models

are tested. In Section 5, we conduct a large-scale evalua-
tion of the accuracy of the computed correspondences in the
context of shape analysis. Finally, in Section 6, to further
demonstrate the quality of the correspondence, we apply this
approach to motion transfer. Figure 1 summarizes the pro-
cess.

Fig. 2 Model of the CAESAR database in standing posture with land-
marks shown in red.

2 Related Work

Computing dense point-to-point correspondences between
two possibly deformed surfaces has received considerable
attention in recent years [29]. Although many algorithms
have been developed to solve the correspondence problem,
only few of these algorithms are suitable for statistical model
building and shape analysis.

When considering the application of statistical model build-
ing, we need to solve for the correspondence and for a smooth
transformation between a group of shapes. The reason is that
solving only for correspondence may result in high levels
of noise, which in turn affects the statistical model signifi-
cantly.

Approaches that solve the correspondence problem by
aligning two shapes using a transformation that is approxi-
mately rigid [27,15,1] are not suitable to align a set of hu-
man shapes in similar posture due to non-rigid shape and
slight posture changes. Hence, we focus our attention on ap-
proaches that take non-rigid transformations into account.

Blanz and Vetter [9] use a set of landmarks to compute
the correspondence between pairs of human faces. Allen et
al. [2] use a set of landmarks and a template model to de-
form a template model to human shapes in similar postures.
Amberg et al. [3] improve upon this method by formulat-
ing the underlying optimization problem using an iterative
linear framework that is shown to yield better convergence.
Anguelov et al. [4] extend Allen et al.’s approach to work
for varying postures. The approach computes the correspon-
dences between a large database of humans and uses the re-
sult to build an animated surface model of a moving person.
The database contains one subject in multiple postures and
the remaining subjects in the standing posture of the CAE-
SAR database. Hasler et al. [17] improve the approach by
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using fewer landmark positions and by using a database con-
taining many subjects in multiple postures. While all of these
approaches have been applied to shape analysis applications
and yield animations of high quality, landmark positions are
required. Pauly et al. [24] compute the correspondences and
the transformation between multiple views of a scan for the
application of scan completion using a small set of landmark
positions.

Recently, several landmark-free approaches have been
proposed. Huang et al. [18] proceeds by iteratively alternat-
ing between a correspondence optimization and a deforma-
tion optimization. The approach can be viewed as an ex-
tension of the Iterative Closest Point algorithm (ICP) [8]
that is often used to solve the rigid correspondence problem.
The method is shown to perform well if the two meshes are
initially well aligned. If the alignment is poor, the method
fails. Huang et al. show that the obtained correspondences
yield visually pleasing shape interpolations. The main draw-
back of this method is that it relies heavily on non-intuitive
user-defined parameters. This makes the method hard to use.
Zhang et al. [33] propose a technique that solves the corre-
spondence problem by finding a small set of features and
by choosing the best feature correspondence as the one that
minimizes a deformation energy. To improve the efficiency
of the algorithm, the tree of all matching features is pruned
if the features are too dissimilar. Nonetheless, the algorithm
is not as efficient as the algorithm of Huang et al. [18]. Once
the feature correspondences are computed, the full corre-
spondence is found by deforming the full mesh based on
the feature points. The main drawback of this method is the
computational inefficiency. Results are only demonstrated
for models with less than 4000 vertices. Furthermore, like
the method of Huang et al., the tree pruning relies heavily on
non-intuitive user-defined parameters. Chang and Zwicker
[11] use a reduced deformable model to compute the cor-
respondence and the transformation between two surfaces.
Instead of operating on the surface directly, the approach
needs to convert the surface into a voxel grid. This is com-
putationally expensive. Furthermore, this step introduces the
use of several input parameters. While all of these methods
are landmark-free, they require a set of non-intuitive user-
specified input parameters.

Methods that require neither landmark positions nor a set
of user-specified input parameters have been proposed for
motion capture [10,14]. The methods assume that the same
shape was captured in several gradually changing poses and
use this information to learn a deformation model. In our ap-
plication, this type of input data is not available. Li et al.[21]
propose an approach to register pairs of range images with-
out using any landmark positions or input parameters. While
the method is shown to perform well, the method makes use
of the fact that each surface is a terrain and can be parame-
terized by a projection to a plane. Since our aim is to register
the surface of full human bodies, this method cannot be ap-
plied.

In medical imaging, two methods were proposed recently
[12,32] that solve the correspondence problem using a landmark-

free approach that operated on the unit sphere. First, each
shape is mapped to the unit sphere. Second, the charts on
the unit sphere are aligned to minimize an energy. Davies et
al. [12] align the charts until the description length is mini-
mized while Yeo et al. [32] align the charts to minimize a dif-
feomorphic energy. Both approaches require as input mani-
fold meshes with spherical topology. That is, surfaces with
holes cannot be taken into consideration. Since we aim to
compute correspondences between incomplete laser scans,
these approaches cannot be applied.

We propose a landmark-free approach to compute the
correspondence between a set of human shapes in similar
posture using a template model. We apply the resulting cor-
respondences to statistical model building and to animate the
models using motion transfer.

3 Predicting Landmarks

This section outlines how to automatically predict a set of
anthropometric landmarks on a 3D scan of a human body.

First, we summarize the approach by Ben Azouz et al. [6]
to automatically locate 73 labelled anthropometric landmarks
on 3D scans of human models in standing posture. The ap-
proach is based on statistical learning and proceeds by using
an anthropometric database to learn the characteristics and
the locations of the landmarks using a pairwise Markov net-
work. The learned information is then used to predict the
landmarks on a newly available scanS.

The 73 landmarks are connected by the manually cho-
sen graph structure shown in Figure 3. In this graph, each
landmark is a node and certain pairs of nodes are connected
using a set of edges. The approach uses a database of hu-
man scans in standing posture to learn the location, Spin im-
age [20], and surface curvature of each node and the length
and orientation of each edge. In this step, the node and edge
characteristics are modeled as independent Gaussian distri-
butions and we learn their means and standard deviations
using maximum likelihood estimation. The learned informa-
tion is combined in a pairwise Markov network, where the
learned Gaussian distributions are used as node and edge po-
tentials.

The data set used for training consists of 200 male scans
of the CAESAR database. Note that for each of the models
in the CAESAR database, the locations of the 73 anthropo-
metric landmarks are known. Before the learning step, the
number of triangles of each scan is reduced to 50000.

When a new scanS becomes available, the approach
predicts the 73 landmark positions by performing proba-
bilistic inference on the learned Markov network. Before
the prediction, the number of triangles of each scan is re-
duced to 50000. To perform probabilistic inference, the ap-
proach needs to limit the number of possible candidate lo-
cations, or labels, for each landmark. Letl0, . . . , l72 denote
the landmarks. To limit the number of labels for landmark
li, the approach only considers vertices that are located in-
side the sphere with radius proportional toσi centered atµi,
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whereµi is the learned mean location ofli and whereσi is
the learned covariance ofli. The inference problem is then
solved using loopy belief propagation [25]. The loopy belief
propagation algorithm is iterated at most 20 times.

Fig. 3 Structure of the landmark graph.

Second, we outline our modifications to the approach by
Ben Azouz et al. [6]. Our training phase proceeds in the
same way as the previous approach and the same data is used
for training. We modify the prediction phase of the algorithm
to obtain a faster approach, which allows us to predict land-
marks on a large database. To achieve this, we reduce the
number of labels for landmarkli. This has a large influence
on the running time of the algorithm because the complexity
of the algorithm is quadratic in the number of labels. Note
that when considering as labels all of the vertices that are
located inside the sphere with radius proportional toσi cen-
tered atµi, landmarks in areas of the mesh with high resolu-
tion that have a large variation in the training set have many
associated labels. To avoid this problem, we only consider as
labels forli the 200 vertices of the scan that are closest toµi.
We find these labels using ak-nearest neighbor search in a
kd-tree (we use the approximate nearest neighbor library [5]
in our implementation). Furthermore, we found that iterat-
ing the loopy belief propagation algorithm five times yields
sufficient results. Hence, we iterate the loopy belief propaga-
tion algorithm at most five times. These modifications yield
a significant speed-up over the approach originally proposed
by Ben Azouz et al. at the cost of a decrease in accuracy.

We predict the landmarks on 500 male scans of the CAE-
SAR database that were not used for training. We know the
true anthropometric landmarks for these scans. Hence, we
can measure the accuracy of the predicted landmarks as the
Euclidean distance between the predicted landmarks and the
true landmarks. The accuracy is shown in Table 1. Note that
the average error of most landmarks is less than3cm. The
landmarks we use as reference are subject to uncertainties
since different experts place the landmarks at slightly differ-
ent positions and that for most traditional measurements, the
acceptable error is around1cm [6].

Note that the predictions of landmarks 26 and 27 have a
large average error. The reason is that these landmarks are

located in an area of the lower back that has few surface fea-
tures. Since these areas are not crucial during our subsequent
correspondence step, we ignore these two landmarks in the
following. Landmark 73, located at the crotch, also has a
large average error. This landmark is located in an area of the
body that is often not visible to the scanner. Hence, for many
scans, this surface area is missing. This results in a large er-
ror since the statistical inference method only considers sur-
face vertices as possible locations for the landmark. As this
landmark is crucial in the subsequent correspondence step,
we use it in spite of its large average error.

Figure 4 shows the ground truth landmarks and the pre-
dicted landmarks on two models of the CAESAR database.
The predicted landmarks are shown in green and the ground
truth landmarks are shown in red.

4 Correspondence

This section summarizes how to use the predicted landmarks
to find a surface correspondence. We use the approach by
Xi et al. [31] to compute a surface correspondence using an
alignment procedure based on the predicted landmarks. The
approach aims to align a template modelT to the scanS us-
ing a two-step alignment procedure. The template modelT
and its landmarks are known. In our work,T contains 20000
triangles.

First, the approach computes a radial basis function (RBF)
using the known landmarksL(T ) of T and the predicted
landmarksL(S) on S. Given two sets ofn landmarksL(T )

andL(S) (heren = 71), we aim to compute a set of three
RBFs, one for each coordinate, such thatL

(T )
i = f(L

(S)
i ),

i = 1, . . . , n, whereL(T )
i is thei-th landmark onT andL(S)

i

is the i-th landmark onS. For RBFs, the mapping has the
propertyf(L(S)

i ) =
∑n

j=1 wjΦj(L
(S)
i ), whereΦj are a set

of n basis functions andwj are weights. We use Gaussian
basis functions, which meansΦj(r) = exp(−r2/c2), where
c is a constant (herec = 1.0). The approach deforms all of
T ’s vertices using the RBFs to obtain a rough alignment of
T to S.

Second, the approach deformsT using a non-linear op-
timization method similar to the one used by Allen et al. [2].
The aim of this minimization is to move the vertices ofT
towards their closest neighbor onS while enforcing neigh-
boring vertices to move using similar transformations. We
use the limited-memory Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton approach [22] to solve the optimization prob-
lem.

5 Evaluation

In this section we conduct an evaluation of the accuracy
of the computed correspondences over a large database of
500 scans. We run our single-threaded implementation on
an Intel Duocore 3GHz machine with 8GB of RAM. For
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Landmark Average Standard Landmark Average Standard
(mm) Deviation (mm) Deviation

(mm) (mm)
1 Sellion 12 0.4 38 Rt. Dactylion 19 0.36
2 Rt. Infraorbitale 15 0.12 39 Rt. Ulnar Styloid 15 0.41
3 Lt. Infraorbitale 16 0.3 40 Rt. Metacarpal-Phal. V 16 0.31
4 Supramenton 17 0.18 41 Lt. Acromion 17 0.35
5 Rt. Tragion 17 0.15 42 Lt. Axilla, Ant 23 0.069
6 Rt. Gonion 18 0.1 43 Lt. Radial Styloid 14 0.24
7 Lt. Tragion 17 0.56 44 Lt. Axilla, Post. 18 0.6
8 Lt. Gonion 18 0.3 45 Lt. Olecranon 16 0.33
9 Nuchale 27 0.27 46 Lt. Humeral Lateral Epicn 18 0.27
10 Rt. Clavicale 16 0.32 47 Lt. Humeral Medial Epicn 18 0.41
11 Suprasternale 18 0.21 48 Lt. Radiale 18 0.041
12 Lt. Clavicale 17 0.55 49 Lt. Metacarpal-Phal. II 15 0.3
13 Rt. Thelion/Bustpoint 9.5 0.28 50 Lt. Dactylion 21 0.93
14 Lt. Thelion/Bustpoint 10 0.16 51 Lt. Ulnar Styloid 15 0.11
15 Substernale 21 0.44 52 Lt. Metacarpal-Phal. V 15 0.061
16 Rt. 10th Rib 31 0.95 53 Rt. Knee Crease 14 0.33
17 Rt. ASIS 24 0.19 54 Rt. Femoral Lateral Epicn 18 0.63
18 Lt. 10th Rib 29 0.62 55 Rt. Femoral Medial Epicn 17 0.077
19 Lt. ASIS 23 0.36 56 Rt. Metatarsal-Phal. V 12 0.038
20 Rt. Iliocristale 19 0.096 57 Rt. Lateral Malleolus 13 0.017
21 Rt. Trochanterion 17 0.36 58 Rt. Medial Malleolus 17 0.065
22 Lt. Iliocristale 15 0.29 59 Rt. Sphyrion 14 0.3
23 Lt. Trochanterion 12 0.76 60 Rt. Metatarsal-Phal. I 13 0.056
24 Cervicale 17 0.18 61 Rt. Calcaneous, Post. 13 0.066
25 10th Rib Midspine 23 0.73 62 Rt. Digit II 9.8 0.41
26 Rt. PSIS 38 1.2 63 Lt. Knee Crease 13 0.15
27 Lt. PSIS 36 0.69 64 Lt. Femoral Lateral Epicn 18 0.3
28 Waist, Preferred, Post. 21 0.78 65 Lt. Femoral Medial Epicn 20 0.17
29 Rt. Acromion 16 0.23 66 Lt. Metatarsal-Phal. V 11 0.39
30 Rt. Axilla, Ant 24 0.7 67 Lt. Lateral Malleolus 14 0.28
31 Rt. Radial Styloid 15 0.53 68 Lt. Medial Malleolus 11 0.009
32 Rt. Axilla, Post. 18 1.1 69 Lt. Sphyrion 10 0.18
33 Rt. Olecranon 16 0.19 70 Lt. Metatarsal-Phal. I 11 0.059
34 Rt. Humeral Lateral Epicn 18 0.56 71 Lt. Calcaneous, Post. 12 0.18
35 Rt. Humeral Medial Epicn 18 0.27 72 Lt. Digit II 12 0.34
36 Rt. Radiale 19 0.055 73 Crotch 44 0.071
37 Rt. Metacarpal Phal. II 17 0.33

Table 1 Error of localization computed over 500 test human scans.

one scan, it takes about 148s to predict the landmarks and
about 10s to compute the correspondence. While we know
the ground truth of the landmark positions, no ground truth
is available for the other parts of the surfaces. Hence, we
cannot evaluate the accuracy of the correspondences with
respect to a ground truth correspondence. However, we can
still evaluate the quality of the correspondence by evaluat-
ing the statistical model created from the correspondence.
We use three measures suggested by Styner et al. [28]: com-
pactness, generalization, and specificity.

To compute these measures, we compute a statistical model
of the corresponded data using principal component analysis
(PCA). A compact model has little variance and it requires
few principal components to describe the model. Compact-
ness is defined asC(m) =

∑m

i=1 λi, wherem is the num-
ber of principal components that are kept and whereλi is
the i-th eigenvalue. The compactness error is computed as
σC(m) =

∑m

i=1

√

2/nλi.

A general model has the ability to describe instances that
are not in the training set. We compute a statistical model
with all but one of the corresponded scans of the training
set and fit the model to the excluded scan. Generalization
G(m) measures the accuracy of the description of the ex-
cluded scan. It is computed as the average error over the
complete set of trials. The standard error is computed using
the standard deviationσ of errors of the complete set of trials
asσG(m) = σ/

√

n− 1.

A specific model only generates shapes that are similar
to the ones in the training set. SpecificityS(m) is defined as
the average distance ofSrand to its nearest neighbor in the
training set, whereSrand is a shape computed using the sta-
tistical model from a uniformly distributed random sample
in PCA shape space. The standard error is computed using
the standard deviationσ of the distances asσS(m) = σ/

√

n.

We compute these measures for the correspondences ob-
tained using the ground truth landmarks and for the corre-
spondences obtained using the predicted landmarks. Note
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Fig. 4 Predicted landmarks (green) and ground truth landmarks (red) on two models of the CAESAR database.

that the correspondences obtained using the ground truth
landmarks correspond to the result obtained by Allen et al.’s
algorithm [2]. Since we focus on an automatic method, we
do not compare to any other semi-automatic methods that re-
quire manually placed landmarks [4,3,17]. Furthermore, we
do not compare to any automatic methods based on aligning
intrinsic geometries [18,33] since these methods may lead
to misalignments due to the symmetries in intrinsic geom-
etry of the human body and due to the variations between
different human shapes.

Figure 5 shows the results. In all three graphs, thex-
axis shows the numberm of principal components and the
y-axis shows the values of the error measuresσC(m), σG(m),
andσS(m). For specificity, we consider 100 random samples.
While the PCA space learned using the predicted landmarks
is slightly more compact and more specific than the PCA
space learned using the ground truth landmarks, it is slightly
less general. Overall, both models are similar.

The quality of the correspondences is visualized in Fig-
ure 6. We manually applied a texture to the template model
(left of Figure 6) and transferred the texture using the corre-
spondences obtained with the predicted landmarks. We can
see that the texture map is preserved for models with differ-
ent body shape.

6 Application to Motion Transfer

This section shows that the accuracy of the computed cor-
respondences yields visually pleasing results for the appli-
cation of motion transfer. We fit a skeletonB(T ) to T and
we assign weightsW (T ) to each vertex on the surface ofT
using the approach by Baran and Popovic [7], whereW (T )

contains one weight per bone in the skeleton for each vertex
of T . This allows to animate the template modelT using a
linear blend skinning method. That is, given all the transfor-
mationsTi of thei-th bone ofB(T ), a vertexvj of T is trans-

formed tov∗j =
∑

i W
(T )
j,i Ti(vj), whereW (T )

j,i is the weight

for the i-th bone and thej-th vertex ofT . An animation is
shown in the first row of Figure 7.

To animate a scanS, we first parameterize the scan by
predicting landmarks and deformingT to fit the data inS as
outlined above. We use the known point-to-point correspon-
dences between the parameterized scan andT to compute
an RBF deformation as in Section 4. We deform the skeleton
B(T ) using the RBF to obtain a new skeletonB(S) aligned to
the parameterized scan. To animate the parameterized scan,
we use the linear blend skinning method with the skeleton
B(S) and the weightsW (T ). Some results of this animation
are shown in Figure 7. We can see that the results are visu-
ally pleasing and that no artifacts occur.

7 Conclusions

We proposed an automatic method to compute accurate point-
to-point correspondences between a set of human models in
similar posture. We conducted a large-scale error evaluation
in the context of shape analysis and we used the correspon-
dences to perform motion transfer. It remains a challeng-
ing problem to compute an accurate point-to-point corre-
spondence between human models in varying postures with-
out the use of landmark positions. While some work has
been conducted to predict landmarks on humans in arbitrary
postures [30], the problem of computing accurate point-to-
point correspondences remains open. When trying to solve
this problem using the framework presented here, the de-
scriptors, the landmark graph, and the registration algorithm
would need to be modified in order to be posture-invariant.
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Fig. 7 Motion Transfer. Top row (left to right): template modelT and three animated poses. Remaining rows (left to right): scan S of the
CAESAR database,T deformed toS using ground truth landmarks,T deformed toS using predicted landmarks, and three animated poses
obtained using motion transfer with the result that uses predicted landmarks.


