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Abstract Human Interaction Recognition in uncon-

trolled TV video material is a very challenging prob-

lem because of the huge intra-class variability of the

classes (due to large di�erences in the way actions are

performed, lighting conditions and camera viewpoints,

amongst others) as well as the existing small inter-

class varibility (e.g. the visual di�erence between hug

and kiss is very subtle). Most of previous works have

been focused only on visual information (i.e. image sig-

nal), thus missing an important source of information

present in human interactions: the audio. So far, such

approaches have not shown to be discriminative enough.

This work proposes the use of Audio-Visual Bag of

Words (AVBOW) as a more powerful mechanism to

approach the HIR problem than the traditional Visual

Bag of Words (VBOW). We show in this paper that

the combined use of video and audio information yields

to better classi�cation results than video alone. Our

approach has been validated in the challenging TVHID

dataset showing that the proposed AVBOW provides

statistically signi�cant improvements over the VBOW

employed in the related literature.
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1 Introduction

Given a video clip where there are people interacting

between them, the goal of this work is to automati-

cally assign a single category label � from a set of pre-

de�ned ones � to such human interaction. We address

this problem by considering human interactions as an

audio-visual event, i.e. sequence of image frames plus

sound (see Fig. 1).

In Fig. 2 we can see four scenes of people interacting.

In such scenes, there are two people very close with the

arms holding the other person. Two of such scenes � ex-

tracted from TV Human Interactions Dataset (TVHID)

[20] � have the label kiss and the other ones the label

hug. In spite of the fact that, nowadays, recorded video

clips contain not only image but also sound, the cur-

rent approaches for distinguishing such kind of human

interactions only make use of the video pixels, discard-

ing the rich information encoded in the audio signal.

The previously presented cases can be clearly ambigu-

ous for a computer if we only take into account the

visual information. However, if we focus on the au-

dio signals represented in Fig. 3, we notice that kiss

and hug have di�erent audio patterns. Furthermore,

many human interactions have associated very well de-

�ned audio-visual patterns � words as hi, hello, nice or

meet are very common during a hand-shake � introduc-

ing a very clear discrimination with other interactions.

Therefore, in this paper we introduce a new approach

to deal with the categorization of human interactions

by using audio-visual information.

Our contribution is two-fold: (i) we introduce the

use of the audio signal in the challenging problem of

human interaction categorization; and, (ii) we carry out

a thorough experimental study on TVHID where it is

shown that the combination of visual and audio infor-
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Fig. 1:Proposed pipeline for human interaction categorization in TV shows. Audio and visual information

combined in an uni�ed framework in order to distinguish a human interaction.

mation o�ers better results than only using the visual

one � as done up to this moment.

The rest of the paper is organized as follows. Sec. 1.1

explains some of the more relevant works related to

ours. In Sec. 2 we introduce the audio-visual model used

in our proposal, which is based on the successful Bag

of Words model. The experiments and results are pre-

sented in Sec. 3. The paper is concluded in Sec. 4.

1.1 Related Works

In recent years an increasing number of research papers

have been published in the context of Human Action

Recogniton (HAR) in videos. For example, [30] com-

piled published works within a period of 20 years de-

voted to human actions and activities. In the early years

the proposed approaches were tested on arti�cially gen-

erated datasets [7,25,37], where a single person per-

formed a target action (e.g. walk, jump, hand-wave,...)

in controlled scenarios. Soon, realistic datasets were

compiled from Hollywood movies [11,12,18], where one

or more persons perform a named action in an uncon-

trolled, and usually cluttered, scenario. A particular

case of human actions is human interactions. We can

distiguish between the interactions performed by a per-

son with an object � as smoking a cigarette [12] or play-

ing a musical instrument [6,39] � or between two or

more persons, as hand-shaking or hugging [20,24].

Human Interaction Recognition (HIR) in video se-

quences [17,20,23,24] is a very di�cult problem due

to several reasons: (a) action performance and cam-

era viewpoint � the di�erent velocities and manners of

performing the interaction by the persons in combina-

tion with diverse camera viewpoints; (b) imaging con-

ditions � the ever-present di�culties found when work-

ing with images from real scenarios (i.e. uncontrolled

imaging conditions); (c) non-stationary noise � clut-

tered and di�erent backgrounds, partial occlusions or

diverse person clothing; and, (d) relative volume occu-

pied by the interaction � only a very small region of the

pixels along with a short number of video frames are re-

lated to the event of interest (e.g. the involved hands in

hand-shaking). The latter reason is the one that mostly

di�erentiates realistic human interactions in video with

regard to still images or simulated human actions (e.g.

jumping in Weizmann dataset [7] is very repetitive). In

comparison with the task of object/concept categoriza-

tion on still images, where the area of interest is a large

percentage of the image, the HIR problem is clearly

much more challenging. Also if we compare with the

HAR problem, we see HIR more challenging not only

due to higher complexity but also due to the di�culty

of getting large training databases from real scenes. Up

to our knowledge, the only existing dataset devoted to

human interactions in realistic situations is TV Human

Interactions Dataset (TVHID), introduced by Patron-

Perez et al. [20]. In [20], the problem of HIR on this

dataset is addressed by �rstly detecting and tracking

people and, then, by combining head pose estimators

with visual local context descriptors (i.e. Histogram of

Oriented Gradients (HOG) and Histogram of Optical

Flow (HOF) features).

There are some papers where the problem of seman-

tic video retrieval is addressed by using only audio fea-

tures. For example, Bakker and Lew [1] combine local

and global audio features to classify sound samples from

video into several classes as, for example, speech, music,

automobile or explosion. Tzanetakis and Chen [31] build

audio classi�ers to distinguish between male voice, fe-

male voice, noise,music and silence from videos. Bredin

et al. [2] approach the problem of content-based video
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a b c d

Fig. 2: Kiss or hug? Sometimes visual information on its own is not enough to automatically distinguish between

human interactions. In this �gure, (a) and (c) correspond to hug, whereas (b) and (d) correspond to kiss. (See

Fig.3 for a graphical representation of their associated audio signal.)
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Fig. 3: Audio signals for scenes in Fig.2. Note the representative peaks in the audio signal for the kiss

interaction examples. Such kind of peaks are not present, for example, in a hug interaction.

retrieval by combining multiple audio classi�ers in a

HMM-based framework.

In McCowan et al. [19] it is shown how the use

of audio-visual events can improve the recognition of

group actions in meetings within controlled scenarios.

However, we approach the uncontrolled case in this pa-

per. On the other hand, in recent years concepts (e.g.

news, commercials, sports,...) are assigned to videos by

using the combination of visual, audio and even tex-

tual information [28]. For example, in [21], [8] and [14],

image (e.g. SIFT, HOG, Gist) and audio (e.g. MFCC,

WASF) descriptors are combined by using di�erent ap-

proaches for the task of multimedia event detection.

Amitha et al. [21] propose and evaluate two types of

fusion: (a) training high-level classi�ers on the output

of previously trained feature-speci�c classi�ers, and, (b)

learning a linear combination of low-level classi�ers. In

order to represent multimedia events, Inoue et al. [8]

use Gaussian Mixture Models and Support Vector Ma-

chines (SVM) to combine audio and visual features.

Sidiropoulos et al. [26] introduce the usage of audio

in the problem of video scene segmentation. Recently,

in Jiang et al. [9] a new challenge for multimedia video

classi�cation is proposed. However the focus is not on

human interaction but on event classes. In addition, and

as mentioned above, in our case only a short and small

part of the signal helps to classify the whole video se-

quence. Despite these related works, audio has not been

exploited on HIR yet, what is one of the main novelties

of this paper.

2 Representation model

Inspired in the models used by the document retrieval

community, Sivic and Zisserman [27] proposed an anal-

ogy between the textual words and the visual words (i.e.

image region descriptors) with the idea of representing

an image (i.e. the document) as an orderless collection

of visual words: a Bag of Words (BOW).

In its simplest way, a BOW is equivalent to a his-

togram h with K bins (i.e. as much as words in the dic-

tionary D) where each bin represents how many times

a visual word is present in the target image. In general,

the histogram is L1 normalized.

The operation of assigning a word to a bin his-

togram, implies the process of �nding the word D(j)

that makes minimum the distance between the current

word and all the words included in the dictionary. Eu-

clidean distance is a common choice to carry out the

word assignment.

Although this representation was originally used on

images, it was generalized in the recent years to de-

scribe video sequences [11]. Fig. 4 shows the classical

pipeline used to learn representations of human actions:

(i) compute Spatio-Temporal Interest Points (STIP) on

input video; (ii) compute descriptors from STIP (e.g.

HOG/HOF); (iii) learn a dictionary of visual words

from the set of STIP extracted from the training videos;

(iv) describe the videos by using the STIP descriptors

and the previously learnt dictionary; and, (v) train a

discriminative classi�er (e.g. SVM).



4 M.J. Marín-Jiménez et al.

. . .

. . . . . . . . . . . .

Learn Dictionary

STIP Descriptors

Compute STIPsInput Video

0.11
0.86

0.03

. . .

Describe Video

* * *
*
*
+ +

+
++

Classifier
x

Fig. 4: Classical pipeline for learning with BOW: (i) Compute STIP on input video; (ii) compute descriptors

from STIP; (iii) learn a dictionary of visual words; (iv) describe video by using STIP descriptors and learnt

dictionary; and, (v) train a discriminative classi�er.

For a given video sequence, we build di�erent BOWs

depending on the kind of words used: visual or audio

descriptors.

We use the popularK-means algorithm [15] to build

a dictionary D. The goal of K-means clustering is to

�nd a partition of the descriptor space in K regions.

Each region will be represented by the mean vector of

its components. We have chosen the implementation of

this algorithm included in VLFeat library [33].

The resulting audio-visual video descriptor will be

used as input for a classi�er. In our case, we have cho-

sen a Support Vector Machine (SVM) with χ2 kernel,

which has shown to be very e�ective when working with

histogram-based representations [34].

2.1 Visual features

Spatio-Temporal Interest Points (STIP) were �rstly in-

troduced by [10] and applied to the problem of recogniz-

ing individual human actions (e.g. walk) in video. They

propose a Harris3D operator to detect salient points in

the space-time volume. In addition to the (x, y, t) coor-

dinates, each STIP has associated a spatial and a tem-

poral scale (σs, σt) that delimit the video volume where

the event of interest happens. An e�ective alternative

to Harris3D operator is a simple dense sampling. It con-

sists of extracting video blocks at regular locations and

scales in space and time, usually, with overlapping. In

several problems, this approach has shown state-of-the-

art results [36].

The most popular volume descriptors [11] for STIP

are Histograms of Oriented Gradients [3] (HOG) and

Histograms of Optical Flow [4] (HOF). HOG encodes

local appearance whereas HOF encodes local motion.

In order to compute a HOG descriptor, the image

volume is divided into a a nx × ny × nt dense grid of

cells, where each cell will contain a local histogram over

orientation bins. Then, at each pixel, the image gradi-

ent vector is computed. Each pixel votes into the cor-

responding orientation bin with a vote weighted by the

gradient magnitude. The votes are accumulated over

the pixels of each cell. Afterwards, in order to provide

illumination invariance, a normalization stage is per-

formed over each block (group of cells). The normal-

ized histograms of all of the blocks are concatenated

to build the �nal HOG descriptor. A similar procedure

is used for computing HOF descriptor, but replacing

image gradient (spatial) by optical �ow.

For our experiments, 4 orientation bins will be used

for HOG and 5 for HOF.

2.2 Audio features

In order to use the audio signal in the BOW framework,

�rstly, we split the audio signal into overlapping frames

of t seconds (i.e. t = 0.05). An example over an audio

signal extracted from a kiss example is represented in

Fig. 5. Then, we compute on each audio frame a set of

descriptors.

The simplest descriptor is the raw signal per se (i.e.

the actual values), which will be used in the experimen-

tal section as baseline on audio features.

The use of Mel-frequency cepstral coe�cients (MFCC)

as audio descriptor is a popular choice specially in the

�elds of speech or music recognition [5,13]. It o�ers a
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Fig. 5: Local audio-visual features. (top) Spatio-

Temporal Interest Points (STIP) are used as basis for

visual features. A HOG/HOF descriptor is computed

for each STIP. (bottom) Audio signal is divided into

overlapping frames. In this example, the signal is di-

vided in frames of 0.05 seconds overlapping 0.025 s.

Features are extracted over each audio frame. Then,

each resulting feature vector is assigned to a word of

the corresponding dictionary.

description of the spectral shape of the audio in a given

interval of time. It is computed as follows [13]:

1. compute the Fourier Transform (FT) of the signal;

2. map the powers of the spectrum obtained with FT

onto themel scale (i.e. perceptual scale of pitches [29]);

3. compute the logs of the powers at each of the mel

frequencies;

4. compute the Discrete Cosine Transform of the list

of mel log powers, as if it were a signal.

The amplitudes of the resulting spectrum de�ne the

MFCC.

In addition to MFCC, and for comparison purposes,

we extract the following set of simple features in the

time domain [13]:

� zero-cross: the number of times the signal changes

sign (i.e. crosses X-axis);

� coe�cient of skewness:

µ3/σ
3

, where µ3 is the third-order moment of the data

and σ is its standard deviation;

� excess kurtosis:

µ4/σ
4 − 3

, where µ4 is the fourth-order moment of the data

and σ is its standard deviation;

� �atness: the �atness of the data results from the ra-

tio between the geometric mean and the arithmetic

mean;

� entropy: the relative Shannon's entropy of the data

(i.e. it is divided by the length of the signal).

For each audio frame, the previous features are con-

catenated into a single feature vector which will de-

scribe such audio frame.

2.3 Audio-Visual Bag of Words

The combination of audio and video information has

been previously employed in video categorization [9],

however, its use in the problem of interaction recogni-

tion has not been yet deeply explored. The action recog-

nition problem normally involves a single person, and

people do not usually speak to themselves while per-

forming actions. On the other hand, interaction involves

two or more people, and both visual and audio informa-

tion plays important role to communication. This work

aims at showing that the combination of both sources

of information (see Fig. 1) can yield to better results in

this problem, than their standalone use.

Two main approaches in data fusion can be con-

sidered, early fusion and late fusion. In the �rst ap-

proach, fusion is performed before the classi�cation pro-

cess takes place. Normally, it consists in joining all the

features into a single feature vector. Late fusion, on the

other hand, performs �rst classi�cation of all sources

of information separately, and then, fuses the results.

Most often, another classi�er is trained on the output

of the individual classi�ers. This work tests both ap-

proaches in order to analyze their performance.

3 Experiments and results

This section explains the experiments performed to val-

idate our proposal. Our goal is to demonstrate that au-

dio information can be employed to improve the clas-

si�cation performance in the HIR problem. To do so,

we have �rst tested the performance of video features.

In our work, HOG and HOF features have been tested

both separately and together. Statistical tests have been

run on the results so as to analyze which combina-

tion performs better. Then, we have tested performance



6 M.J. Marín-Jiménez et al.

Fig. 6: TV Human Interactions Dataset: hand-shake, high-�ve, hug and kiss. The di�erent viewpoints

and challenging imaging conditions (lighting, cluttered background, clothing, partial occlusions...) make their

recognition with only visual information a very di�cult problem.

of the audio features previously explained. Finally, we

have tested the combined use of audio and visual fea-

tures. Again, statistical tests have been run to ana-

lyze the impact of the combination. With regard to the

feature combination method, early and late fusion ap-

proaches are evaluated, with special emphasis in early

fusion.

Experimentation has been carried our in the TV Hu-

man Interactions Dataset (TVHID) [20] which consists

of 200 videos from TV shows grouped in 4 categories: 50

hand-shake, 50 high-�ve, 50 hug and 50 kiss. In addition,

a set of 100 negative videos (i.e. none of the other inter-

action categories) is included. Fig. 6 contains examples

of the four interactions included in TVHID. Note the

di�erent imaging conditions (e.g. illumination, scale,

background clutter,...) where the interactions happen.

Each video clip is labelled with a single interaction class

from the possible ones. The dataset provides informa-

tion about the frame intervals where the interaction

happens within each video plus additional information

such as the coordinates of upper-body bounding boxes

and an approximation of the head orientations.

The rest of this section is structured as follows.

Firstly, Sec. 3.1 explains the evaluation protocol and

experimental setup employed. Then, we test the per-

formance of visual (Sec. 3.2) and audio (Sec. 3.3) fea-

tures independently. Finally, Sec. 3.4 shows the results

of combining both sources of information.

3.1 Evaluation protocol and Experimental setup

Our proposal is evaluated in the context of human in-

teraction categorization, i.e., given an input video, it

must be classi�ed into the correct category. Thus, it is a

multiclass problem that has been addressed by training

4 one-vs-all binary classi�ers. SVM with approximated

χ2 kernel [34] are used in all our experiments, but in

the ones of Sec. 3.4.2.

The TVHID data set is divided in two standard

partitions that have been respected to allow a direct

comparison with future and past results. So, training is

�rst performed on one partition and test on the other

one, and then the process is repeated by interchang-

ing the role of the partitions. As measurement of per-

formance Succ, we report the averaged percentage of

correctly categorized test videos on the two trials (i.e.

2-fold cross-validation):

Succ = 100 ·
(
c1
n1

+
c2
n2

)
(1)

where c1 and c2 are the number of correctly categorized

videos in the �rst and second partitions, respectively,

and n1 and n2 are the total number of evaluated videos

during test time on each partition, respectively.

With regard to the image signal, we extract STIP

only from the frame intervals where the interaction hap-

pens, discarding the STIP whose center is outside the

person region. Such region is de�ned by computing the

minimum and maximum x from the upper-body bound-

ing box coordinates of the annotated persons in the

target frame. All the frame height is included in the

person region. Since in this work we are mostly inter-

ested in the contribution of the audio features to HIR

problem, we have adopted this preprocessing stage dur-

ing training in order to minimize the noise that could

be introduced in the evaluation by the visual regions

located outside the person region. On the other hand,

the audio signal (used both for training and testing) is

extracted from the time interval where the interaction

happens, as indicated by the dataset annotations.
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In order to analyze the performance of the di�erent

features, statistical hypothesis tests [22] have been em-

ployed. Comparing exclusively the best results obtained

by two set of features does not provide enough support

to say whether the di�erences are signi�cant.

Statistical hypothesis tests, in general, answer the

question:Assuming that the null hypothesis, H0, is true,

what is the probability of observing a value for the test

statistic that is at least as extreme as the value that

was actually observed? That probability is known as

the p-value and the null hypothesis is to consider that

the features performances are equal. If the test proves

that the null hypothesis is false, then, the di�erences

observed are not due to chance but statistically signi�-

cant. The reduced number of samples employed in our

tests makes it di�cult to determine their distribution.

Therefore, non-parametric tests have been employed,

since they do not require the assumption of normality

or homogeneity of variance. Their main disadvantage

(compared to parametric tests) is that for the same

number of observations, they are less likely to lead to

the rejection of a false null hypothesis. The hypothesis

veri�ed by all tests are H1: the median di�erence can

be considered statistically signi�cant (not by chance);

and H0: otherwise. In all our tests, we have assumed

p = 0.05.

Two di�erent tests have been employed depending

on the type of data, namely, the Mann-Whitney [16]

and Wilcoxon signed-rank [38] test. The former will be

employed for assessing whether two samples of indepen-

dent observations tend to have larger values than the

other. The latter, a paired test, analyzes the impact of

an experiment on a population by measuring features

before and after the experiment. In our case, the paired

test will tell us if adding a feature to another has any

impact on the classi�cation results, e.g. adding audio

to the video features.

3.2 Baseline: visual features

In this �rst experiment, we establish the baseline re-

sults obtained with BOW combined with STIP-based

features (see Sec. 2.1). Di�erent values of dictionary size

K, in the range [100, 2000] are tested (values of K out

of this range did not show any improvement), in addi-

tion to the use of Harris3D interest point detector and

dense sampling. A maximum of 105 randomly selected

descriptors are used as input for the dictionary learning

stage.

We have tested both HOG and HOF descriptors

separately, and joined so as to analyze the impact of

its combination. The HOG descriptor is a vector of

72 dimensions, whereas HOF descriptor has 90 dimen-

sions. Therefore, the combined HOG+HOF descriptor

has 162 dimensions.

Tab. 1 contains a summary of the results of this

experiment. The Succ value for each con�guration is

reported. Keyword dense indicates that STIP have been

extracted by using dense sampling, otherwise, Harris3D

detector has been used.

Table 1: Human interaction categorization on

TVHID by using visual information. Percentage

Succ of correct categorization. The best performance

for each descriptor is marked in bold.

K/ features HOG HOF HOG+HOF

100 39.5 38.5 42.0
500 33.0 45.0 46.0
1000 36.5 43.0 42.5
2000 36.5 40.0 44.0

1000+dense 39.5 43.0 44.5
2000+dense 39.5 39.5 45.5

Table 2 shows the results of the tests carried out

on the database with only visual features. For the com-

parison HOF vs HOG, we have employed the Mann-

Whitney Test [16], while for the tests HOG vs HOG+HOF

and HOF vs HOG+HOF we have employed theWilcoxon

signed-rank test [38].

Table 2: Statistical analysis of the performance

of visual features. Values in brackets (µ, t) represent

the average di�erence between the sets and the valid

hypothesis.

HOF HOG+HOF
HOG (+4.08, H1) (+6.58, H1)
HOF � (+2.50, H0)

Each cell of the table shows the statistical compari-

son between their intersecting features. The values into

the brackets are the average di�erence between the sets;

and the hypothesis veri�ed by the tests (H1 if the me-

dian di�erence can be considered statistically signi�-

cant, andH0 otherwise). The tests have been conducted

considering the column feature as �rst set, and the row

feature as the second set. So, positive values for the av-

erage indicates that the column feature performs bet-

ter than the row feature (e.g. in Tab. 2, HOG+HOF

performs better than HOG). In all our tests, we have

assumed p = 0.05.
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The tests indicate that, using HOG, the mean suc-

cess is 4.08 higher than using HOF, and that the im-

provement observed is not due to chance, but statis-

tically signi�cant, i.e., H0 has only a probability of

p = 0.05 of being true. It can also be observed that

HOG+HOF obtains statistically signi�cant di�erences

when compared to HOG alone. With respect to HOG+HOF

vs HOF, we observe an increase in the success, but we

do not have enough support to indicate that their dif-

ferences are statistically signi�cant given the observa-

tions. From the results obtained, we conclude that the

combination HOG+HOF is the best video feature.

3.3 Evaluation of audio features

In this experiment we evaluate the use of audio fea-

tures. For this experiment we employ the audio fea-

tures introduced in Sec. 2.2: group A1 is composed by

zero-cross, excess kurtosis, coe�cient of skewness, �at-

ness and entropy; A2 corresponds to mel spectrum (i.e.

MFCC before DCT); and, A3 corresponds to MFCC.

The feature vector A1 has 5 dimensions whereas vector

A2 has 40 dimensions and A3 has 13 dimensions. As

baseline feature, we have chosen the raw audio signal.

A maximum of 105 randomly selected descriptors

are used as input for the dictionary learning stage. We

have tested di�erent values of dictionaryK in the range

[25, 500]. Values ofK out of that range did not show any

improvement over the results reported in this paper.

Table 3: Evaluation of audio features on the

TVHID positive classes. Percentage of correct cat-

egorization for the most representative con�gurations.

Ax indicates the group of audio features used in the

experiment. raw refers to the actual audio signal. The

best overall performance is marked in bold.

K/ features raw A1 A2 A3

25 30.0 37.0 37.5 41.0
50 39.0 40.5 38.0 48.5
100 32.0 41.0 41.5 47.0
200 41.0 31.0 41.5 38.0
300 32.0 34.0 39.0 39.5
400 32.5 40.5 40.5 42.0
500 36.0 41.5 38.0 44.0

The results of the experiments are summarized in

Tab. 3, that shows the Succ for each con�guration. Us-

ing the results reported in the previous table, we have

conducted the Mann-Whitney Test tests to compare the

performance of the di�erent audio features (see Tab. 4).

As can be seen, the tests show that A2 and A3 present

statistically signi�cant di�erences with respect to the

raw data. However, with the tests performed, it cannot

be stated that there are signi�cant di�erences between

the A1, A2 and A3 features. Nonetheless, the best av-

erage results are obtained by the A3 set.

Table 4: Statistical analysis of the performance of

audio features. Values in brackets (µ,H) represent

the average di�erence between the sets and the valid

hypothesis.

A1 A2 A3
raw (+2.66, H0) (+4.33, H1) (+7.75, H1)
A1 � (+1.66, H0) (+5.08, H0)
A2 � � (+3.41, H0)

3.4 Feature combination

In this section we evaluate di�erent ways of combin-

ing audio-visual features. In many problems the fea-

ture combination from several modalities improves the

results from the best single modality. Here we conduct

experiments to con�rm this fact in our task at the same

time that identifying the possible causes of the improve-

ment. To do this we run experiments from a baseline

early fusion technique using the simple concatenation of

the audio and video features. Then, we compare the re-

sults with the state of the art technique for modality fu-

sion, Multiple Kernel Learning (MKL) [35,32], and also

with a technique based on a bi-modal codebook [40].

3.4.1 Fusion baseline

In this experiment, we compare the proposed audio-

visual framework with the classical visual approach (see

Sec. 3.2) employing an early fusion. Additionally, we

aim at quanti�ng the impact of adding audio informa-

tion to video in the sequences tested.

To that end, we have performed a thorough analysis

of our proposal by combining the di�erent HOG+HOF

visual features ({K100,K200, . . . ,K2000−dense}) with
all the audio combinations evaluated in Sec. 3.2 (i.e.

{K25,K50,K100, . . . ,K500}) using three di�erent early
fusion approaches.

As baseline fusion method we choose the concate-

nation of the feature vectors. This model is equivalent

to consider a linear combination of kernels with equal

weights. SVM are trained on the concatenated feature

vectors.
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The results of this experiment are summarized in

the rows BLF of Tab. 5. Columns labeled as Kx rep-

resent the HOG+HOF visual features, while rows repre-

sent audio features and a particular early fusion method.

In each row we present the results of the Wilcoxon

paired test that compares the results of the column vi-

sual feature vs audio-visual features.

For instance, the cell (BLF -A1,K100) shows the re-

sults of the Wilcoxon test when the HOG+HOF classi-

�er with 100 features is compared to the all the classi-

�ers that results from adding the audio features {A1−
25, . . . , A1−500} (in total 7 di�erent audio-visual clas-

si�ers). As a consequence, since H1 holds true in this

case, it means that the addition of the audio feature

A1 (in general) obtains better results than video K100

alone.

The three pieces of data (d,H,m) in the cells repre-

sents the following. First, d is the average mean di�er-

ence between the classi�ers, where positive values in-

dicate that audio-visual classi�ers are better than the

visual ones. Second, the H denotes the most likely hy-

pothesis (i.e. H1 indicates that the di�erence is really

signi�cant). Finally, m represents the average on the

performance Succ of the audio-visual classi�ers.

3.4.2 Multiple Kernel Learning

In this experiment we evaluate a Multiple Kernel Learn-

ing (MKL) [32] approach for early feature fusion. Let

((φk(xi), yi), i = 1, · · · , N) be a sample from each one

of the K input feature descriptors φk, where yi repre-

sents the class label. Let f1, . . . , fK be K associated

distance functions, where fk = wT
k φk. Then, the goal

of the linear MKL is to �nd the optimal descriptor's

kernel Kopt =
∑
k dkKk where Kk is the k-th kernel

matrix (i.e. function of fk) and d are the weights. The

estimation is carried out in as an SVM optimization

framework where the primal problem can be formulated

as:

Min
wk,b,d,ξ≥0

1

2

∑
k

wt
kwk

dk
+ C

∑
k

ξk +
λ

2
||d||2p (2)

s.t. yi

(∑
k

wT
k φk(x) + b

)
≥ 1− ξi, i = 1, · · · , N

where || · ||p represents the Euclidean p-norm. Neverthe-

less, this formulation is too simple for some applications

since it is equivalent to concatenate theK descriptors of

each sample. A richer representation is proposed in [32]

using the product of kernels instead of the sum. We

have used both of it in our experiments. A χ2 distance

and a product of exponential kernels of precomputed

distance matrices with SVM classi�ers have been used

as feature distance and generalized kernel respectively.

The results achieved with this early fusion method are

summarized in the rows MKL of Tab. 5.

3.4.3 Bi-modal codewords

In contrast to the MKL approach, where a sophisti-

cated combination method is used to fuse the informa-

tion from each modality, in [40] a new way of fusing au-

dio and video features is proposed creating audio-visual

patterns represented in a bi-modal codebook. In short,

this technique starts creating a bag of words model from

the audio and the video modalities and then a distance

matrix between the codewords of both dictionaries is es-

timated. In order to estimate the subset of codewords

that explains the best the audio and video correlation,

a spectral clustering technique is applied. The new sub-

sets of features given by the clusters are used to de�ne a

bi-modal dictionary used to code the original audio and

video codebooks. The average, max and hybrid criteria

suggested in [40] to make the �nal coding have been

tested.

In our case, the max criterium showed the best re-

sults with a bi-modal dictionary size of 50% of the orig-

inal size. The results are summarized in rows Bimodal

of Tab. 5.

3.4.4 Late fusion

As commented in Sec. 2.3, an alternative to early fusion

(e.g. feature vector concatenation) is late fusion. There-

fore, considering the audio feature A3 as the best one

for audio-visual combination, we have run a set of ex-

periments aiming at analyzing the results of late fusion

for this problem.

For that purpose, we have employed individual clas-

si�ers for video and audio, and then, another SVM has

been trained on the scores returned by the individual

classi�ers. Let schog, s
c
hof and s

c
au be the scores returned

by SVM trained on HOG, HOF and audio features for

category c, respectively. We de�ne a new feature vec-

tor f clf , for a given video, as the concatenation of schog,

schof and scau. A new SVM is trained on the new set of

features f clf .

The results obtained are shown in Tab. 6 follow-

ing the same rationale employed in Tab. 5. As can

be observed, in this case audio-visual late fusion does

not makes a clear improvement from the single modal-

ities(see positive di�erences).

In [41] a new technique is suggested for late fusion

using the internal order of the items from each classi-

�er to estimate a better combined order. We have also
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Table 5: Performance of audio-video combination. Statistical tests showing the improvement of audio-visual

features over visual HOG+HOF. First column (i.e. left) indicates both fusion method and kind of audio feature

that is combined with HOG+HOF. Columns 2nd to 7th indicate the di�erent sizes of the visual vocabularies

tested. Last column contains the mean of the Succ values obtained for the given fusion method. Each cell contains

(d,H,m), where d is the average mean di�erence between the classi�ers (i.e. positive values indicate that audio-

visual features improve over only visual ones), H denotes the most likely hypothesis (i.e. H1 indicates signi�cant

di�erence), and m represents the average on the performance Succ for the audio-visual classi�ers. All the m values

greater than the best value obtained by a single modality (i.e. > 48.5) are marked in bold. See text for discussion.

HOG+HOF
Audio-Visual K100 K500 K1000 K2000 K1000-dense K2000-dense Mean-AV

BLF-raw (+5.36, H1, 47.36) (−1.14, H0, 44.86) (+1.00, H0, 43.50) (−0.07, H0, 43.93) (+0.21, H0, 44.71) (−1.29, H0, 43.71)

46.57
BLF-A1 (+6.14, H1, 48.14) (−1.07, H0, 44.93) (+1.50, H0, 44.00) (+1.29, H0, 45.29) (+2.50, H1, 47.00) (+2.14, H1, 47.14)
BLF-A2 (+7.79, H1,49.79) (+2.07, H1, 48.07) (+0.64, H0, 43.14) (+1.43, H0, 45.43) (+1.07, H0, 45.57) (+3.57, H1,48.57)
BLF-A3 (+7.50, H1,49.50) (+2.64, H0,48.64) (+5.79, H1, 48.29) (+3.71, H1, 47.71) (+4.50, H1,49.00) (+4.50, H1,49.50)

Mean-Succ-BLF 48.67 46.66 44.73 45.59 46.57 47.23

MKL-raw (+3.00, H1, 45.00) (−4.57, H1, 41.43) (+0.86, H1, 43.36) (−0.21, H0, 43.79) (+0.57, H0, 45.07) (−0.64, H0, 44.36)

46.26
MKL-A1 (+5.43, H1, 47.43) (+2.21, H1, 48.21) (+4.93, H1, 47.43) (+2.07, H1, 46.07) (+5.00, H1,49.50) (+2.64, H1, 47.64)
MKL-A2 (+5.36, H1, 47.36) (+0.50, H0, 46.50) (+5.00, H1, 47.50) (+3.43, H1, 47.43) (+6.36, H1,50.86) (+4.71, H1,49.71)
MKL-A3 (+1.79, H0, 43.79) (+0.43, H0, 46.43) (+3.57, H1, 46.07) (+3.00, H1, 47.00) (−1.57, H0, 42.93) (+0.36, H0, 45.36)

Mean-Succ-MKL 45.89 45.64 46.09 46.07 47.09 46.77

Bimodal-raw (+2.86, H1, 44.86) (−3.07, H1, 42.93) (+2.14, H0, 44.64) (−0.29, H0, 43.71) (−1.71, H1, 42.79) (−1.36, H0, 43.64)

45.93
Bimodal-A1 (+2.93, H0, 44.93) (−1.21, H0, 44.79) (+0.36, H0, 42.86) (+1.79, H1, 45.79) (+1.50, H0, 46.00) (+2.00, H0, 47.00)
Bimodal-A2 (+4.64, H1, 46.64) (+0.64, H0, 46.64) (+2.79, H0, 45.29) (+1.21, H0, 45.21) (+3.00, H1, 47.50) (+2.79, H1, 47.79)
Bimodal-A3 (+6.14, H1, 48.14) (+3.07, H1,49.07) (+5.93, H1, 48.43) (+1.50, H0, 45.50) (+5.07, H1,49.57) (+3.57, H0,48.57)

Mean-Succ-Bimodal 46.14 45.86 45.30 45.05 46.46 46.75

Summary (+5.01, H1, 47.01) (+0.12, H0, 46.12) (+2.95, H1, 45.45) (+1.58, H1, 45.58) (+2.25, H1, 46.75) (+1.95, H1, 46.95)

Table 6: Performance of late fusion of audio-visual features using A3 as the audio feature. The table

shows the results of comparing visual with audio-visual features using the late fusion approach. Each cell contains

(d,H,m) (see text for details and discussion).

Audio/HOG+HOF K100 K500 K1000 K2000 K1000-dense K2000-dense
A3 (+2.43, H1, 44.43) (−1.21, H0, 44.79) (−1.50, H0, 41.00) (+0.79, H0, 44.79) (−4.00, H1, 40.50) (−0.93, H0, 44.07)

tested this technique in our data, however it did not

show any improvement on the results from the previ-

ous SVM late classi�ers.

3.5 Discussion

The human interaction categorization (HIR) task has

been studied in this paper as a function of its two main

modalities, audio and video. The experimental results

shown in Tab. 1 and Tab. 3 indicate that decoding of

category information from a single modality is still a

very di�cult task. The single modality best score is

obtained from the audio with a 48.5% of sucess, what

is a low rate. In our understanding, the video signal is

plenty of information but coded in the images in a very

complex way, what added to the high number of degree

of freedom de�ning each interaction, makes very hard

to decode relevant features. The audio signal is simpler

and therefore easier for processing.

The results shown in Tab. 5 indicate that the early

fusion approach is an improving strategy for HIR cate-

gorization. It is observed that many of the audio-visual

combinations improve the best single modality score,

pointing out that the feature combination bene�ts when

adequate features are selected (boldface data in Tab. 5).

The combination K1000-dense and MKL-A2 obtains

the best average results for our task. However, it is re-

markable that the greatest amount of successful audio-

video combinations � that is the combinations with

higher score than the best from the single modalities

(48, 5%) � and the best full average score are associ-

ated to the baseline strategy (see column Mean-AV in

Tab. 5). For the baseline approach, the combination

(BLF -A2,K100) shows the best score with an average

score of 49.79, and, for the bimodal approach, the best

one is the combination K1000-dense with bimodal-A3

with an average score of 49.5. These results show very

small di�erences among the three strategies as on aver-

age as in the highest scores. Nevertheless, the baseline

strategy shows its best score when the shortest code-

word is used to code the video (K100), but the other

two approaches prefer a large codeword with dense sam-
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pling. For the audio, the best features seem to be given

by A2. All these results show the importance of select-

ing features according to the classi�er to use. If we fo-

cus on the row named Summary of Tab. 5, we can see

that all the di�erences are positive, what means that,

in general, the audio-visual features improve on the vi-

sual ones. In addition, we can see in Tab. 8 that the

best Succ value achieved with audio-visual features (i.e.

54.5) is clearly superior to the best one reported with

a single modality (i.e. 48.5 in Tab. 3).

With regard to late fusion, in Tab. 6 it can be ob-

served that this type of late fusion performs worse than

the early fusion approach. The results show that in most

of the cases, the video features alone obtain better re-

sults than the combination (see negative di�erences).

This result could be expected looking at the low classi-

�cation scores obtained from each single modality. This

means very noisy inputs for the late fusion algorithm

making very di�cult to recognize the true audio-visual

patterns.

In order to shed some light on the improvement

provided by the audio features on the four evaluated

interaction categories, we report in Tab. 7 the results

of a statistical study performed on the audio-visual ap-

proach that achieved the best mean results on the study

presented in Tab. 5: MKL-A2 with HOG+HOF-K1000-

dense. We can observe that both high-�ve and kiss cat-

egories clearly bene�ts from audio-visual features (i.e.

positive di�erences supported by H1), and hug as well

but in a moderated manner. In contrast, hand-shake

does not. Watching the actual video clips of the dataset

used in our experiments, we notice that both high-�ve

and kiss have associated a sound pattern (i.e. kind of

brief outburst) very distinctive, at least for humans, un-

like hug has. For the case of hand-shake our impression

is that since it does not have always associated a sound

pattern as clear as the other two commented interac-

tions have, the few greeting words that are sometimes

said during the interaction introduce uncertainty in the

system.

Comparison with the state-of-the-art In addition to Succ,

and for comparison purposes with [20], we compute

the mean Average Precision (mAP) � as in a video re-

trieval setup � as follows: (i) we train the models (one

model per positive class, i.e. 4 models=SVM) with sub-

set A and we classify samples on subset B; (ii) we train

the models (one model per positive class, i.e. 4 mod-

els=SVM) with subset B and we classify samples on

subset A; and, (iii) we put together all the classi�ed

samples from (i) and (ii) in the same bucket, along

with their corresponding scores, in order to compute a

global Precision-Recall curve; and, (iv) the area under

the precision-recall curve (AP) is used as performance

measurement for each class. Note that, since there are 4

positive classes, we compute one AP at a time following

the previously explained procedure. Finally, the average

AP over the 4 classes is reported as mAP. Note that all

the negative videos are included in this evaluation (i.e.

video retrieval task).

Tab. 8 presents a selection of the two best results

achieved in our experiments for the evaluated audio-

visual features (see Tab. 5). The results shown in col-

umn Succ(4) correspond to measurement Succ applied

over the four categories of interactions, as done in the

previous sections. However, column Succ(4+neg) includes

the negative samples of TVHID as an additional �fth

category.

Column mAP(4+neg) in Tab. 8 allows a direct com-

parison with the state-of-the-art on video retrieval on

TVHID. The best con�guration found for our audio-

visual proposal (i.e. 0.4779) is around 13% better than

the one reported by Patron-Perez et al. [20] with their

fully automatic setup (i.e. 0.4244). Although this mAP

is still below the 0.5074 achieved in [20] when manual

tracks of persons are used as input. Note that in our

experiments we only use the location of the persons

during training, to learn a dictionary of clean STIPs.

Recommendations From the results obtained in our ex-

perimental evaluation, our recommendations for fusing

visual and audio information for the task of HIR are: (i)

non-dense HOG+HOF for visual features ; (ii) MFCC

for audio features; (iii) early fusion instead of late fu-

sion; (iv) MKL as fusion scheme due to the equiva-

lence between MKL-linear and BLF. BLF and MKL

show similar mean-AV (see Tab.5) meaning that, in this

problem, the used descriptors have a similar and addi-

tive contribution. In this way, BLF does not require

an additional learning step as MKL does (i.e. kernel

combination weights), therefore, our �rst choice would

be BLF (i.e. simple concatenation of feature vectors).

Nevertheless, the best strategy would be to estimate

the d-parameters using a MKL-linear model; (v) for vi-

sual features, a large dictionary size (i.e. around 1000

words) leads, in general, to better mean performance,

regardless the size of the audio dictionary; (vi) however,

small or medium sized audio dictionaries (i.e. around

100 words) are preferred.

4 Conclusions

In this paper, we have presented a new focus on the

problem of human interaction categorization in TV Videos.

In contrast to other common approaches in the �eld of

human action/interaction recognition, we show in this
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Table 7: Performance of audio-video combination for each class in the test MKL-A2 on K1000-

dense. Statistical tests showing the improvement of audio-visual features over visual ones on each interaction

category: hug (HU), kiss (KI), hand-shake (HS), high-�ve (HF). Each cell contains (d,H,m) (see text for details

and discussion).

HU KI HS HF

(+0.86, H0, 66.86) (+8.86, H1, 40.86) (−7.71, H1, 36.29) (+23.43, H1, 59.43)

Table 8: Summary of the best results on TVHID. Percentage of correct categorization Succ and mAP.

Column Succ(4+neg) and mAP(4+neg) are included for comparison purposes (see [20]). Column Succ(4+neg)

includes the negative samples as an additional �fth category.

Feats/Perf Succ(4) Succ(4+neg) mAP(4+neg)

BLF-HOGHOF-K100+A2-K200 54.5 44.7 0.4779
MKL-HOGHOF-K500+A3-K25 54.5 39.3 0.4536

Patron-Perez et al. [20] N/A 40.4 0.4244

paper (i) that human interaction categorization is a

problem better de�ned by audio-visual information; (ii)

that each single modality (audio or video) contains too

much uncertainty to achieve good categorization scores

by itself; (iii) that the audio, as a single modality, is sim-

ple to process providing, on average, more discrimina-

tive features for HIR than the image-based ones, more-

over, audio by itself also provides higher score than the

average of audio-video combinations; (iv) that the com-

bination of audio and visual features, when successful,

makes a signi�cant improvement on the categorization

score in comparison with the single modalities; (v) that

the size of the coding dictionary for the visual signal

appears a relevant factor for the combination strategy;

and, (vi) that the audio-visual framework o�ers promis-

ing results in comparison with the state-of-the-art on

TVHID, in terms of mean average precision.

In conclusion, the results of this work con�rm that

human interaction categorization is a matter of audio-

visual features combination where the selected features

and the way we combine them are relevant steps in

order to improve the �nal performance.

In addition, we think that the addition of a voice

recognition stage could help signi�cantly for identify-

ing some interactions where people typically speak as

for example hand-shake. This will be a line of future

research.
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