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Abstract An innovative background modeling technique 
that is able to accurately segment foreground regions in RGB-
D imagery (RGB plus depth) has been presented in this paper. 
The technique is based on a Bayesian framework that effi­
ciently fuses different sources of information to segment the 
foreground. In particular, the final segmentation is obtained 
by considering a prediction of the foreground regions, car­
ried out by a novel Bayesian Network with a depth-based 
dynamic model, and, by considering two independent depth 
and color-based mixture of Gaussians background models. 
The efficient Bayesian combination of all these data reduces 
the noise and uncertainties introduced by the color and depth 
features and the corresponding models. As a result, more 
compact segmentations, and refined foreground object sil­
houettes are obtained. Experimental results with different 
databases suggest that the proposed technique outperforms 
existing state-of-the-art algorithms. 

Keywords Background modeling • Foreground predic­
tion • Mixture of Gaussian • RGB-D cameras • 
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1 Introduction 

Background modeling is one of the main tasks of video 
processing and analysis that aims at identifying a robust 
model of the static environment (the background), and conse­
quently to detect the moving objects (the foreground) present 
in the scene. It is a very important task in many video-based 
applications such as: enhanced video conference systems, 
surveillance, advanced sport games monitoring, etc. In gen­
eral, background modeling is used to process the data pro­
vided by static cameras in both indoor and outdoor scenarios, 
where the background model is iteratively built, and then any 
data deviation of this model is considered as a part of the 
foreground. 

Different background modeling techniques (also called 
background subtraction or background/foreground segmen­
tation) have been presented in literature as reported in the 
recent surveys presented in [7,12], which try to solve the 
different problems and challenges that strongly affect their 
performance. In particular, as presented in [ 12] the main chal­
lenges for background modeling algorithms are: stopping 
foreground objects, multimodal background, and bootstrap­
ping (or initialization). Color camouflage is another chal­
lenge that occurs when the color features of the model are 
similar to the ones of the moving object, which usually cause 
fragmented foreground objects. Another important aspect 
that affects the performance of background subtraction algo­
rithms is the illumination change (gradual or sudden): a mod­
ification of the static background could generate false fore­
ground detections. Shadow cast by foreground objects in the 



scene can also affect negatively the identification of the fore­
ground regions. Finally, the problem of moved background 
objects occurs when background objects are moved from 
their original position, thus generating a new empty space 
that can be erroneously identified as foreground. 

Recently, low-cost RGB-D cameras, such as Microsoft 
Kinect, have generated great interest in the world of computer 
vision since they guarantee real-time registered depth and 
color information. These devices have been rapidly employed 
in several computer vision applications such as sign recogni­
tion for human computer interfaces [27], home care activity 
monitoring [26], people re-identification in video surveil­
lance [3], and people detection [28]. In these applications, 
especially in human-computer interfaces, the depth data rel­
ative to the moving objects (users) is segmented from the sta­
tic scene, and then processed and analyzed. For this reason, 
efficient background modeling algorithms that use depth and 
color data are required to improve and broaden the possible 
applications for this kind of devices. 

Depth information generated by RGB-D cameras is very 
efficient for background subtraction algorithms since it does 
not suffer the typical color imagery problems, as demon­
strated in the recent review [17]. In particular, the effects 
of illumination changes, shadows, and color camouflage can 
be dramatically reduced with the use of depth data. On the 
contrary, depth data presents several problems that have to 
be carefully considered in the design of depth-based back­
ground modeling algorithms. Specifically, object silhouettes 
are heavily affected by the high level of noise at object bound­
aries, as shown in [10,11]. Depth measurements may be not 
available for all the pixels due to occlusions, multiple reflec­
tions, very distant points, or particular reflective surfaces, 
such as windows or television screens (see [11]). Moreover, 
as demonstrated in [20], a quadratic relationship between 
the noise variance and the measured depth exists. Finally, it 
should be considered that RGB-D cameras based on struc­
tured light scanner (i.e., Microsoft Kinect) are not suitable 
for outdoor environments, due to the range limitation and 
errors introduced by interferences with the sunlight. 

As previously mentioned, several background modeling 
algorithms have been proposed in literature to address these 
challenging issues [12]. However, there is still a lack of 
research on methods that employ both color and depth data 
provided by RGB-D devices. This situation is exhibited in 
the recent review articles [7,12] in which very few works use 
depth data. 

The algorithm presented in [ 15] combines color and depth 
data acquired by a stereo devices. The mixture of Gaussians 
(MoG) algorithm [29] is employed to model the background 
by a combination of four-dimensional Gaussian distributions 
per pixel. One component is the depth, and the other three 
ones are the color features (YUV space). In this study, depth 
and color features are considered independent. The origi­

nal MoG algorithm is adapted so that if a reliable distribu­
tion match is found in the depth component; the color-based 
matching criterion is relaxed, resulting in the reduction of 
color camouflage errors. On the contrary, if the stereo match­
ing algorithm is not reliable, the color-based matching crite­
rion is set to be harder to reduce shadows or local illumination 
changes. 

The MoG algorithm has been also used in [31], where 
depth and infrared data are combined for moving object 
detection. In this work, two independent background models 
are estimated, and the corresponding foreground regions are 
identified when the classification of these two models agree. 
Therefore, the errors due to one model failure could affect 
negatively the final classification. 

A similar approach has been proposed in [23], where the 
color and depth data acquired by a Time-of-Flight (ToF) cam­
era are combined for video segmentation. The Vibe algorithm 
[4] is employed to combine the two independent models and 
to obtain the foreground masks, which are combined with 
logical operations, and processed with morphological Alters. 

Depth-based background subtraction has been also used 
in the 3DTV content generation system presented in [14]. 
A depth-based model of the background scene is obtained 
through the MoG algorithm, and the detected foreground 
objects are removed from the applied pre-processing steps 
to improve the accuracy of background depth data. More­
over, foreground regions could be projected in virtual envi­
ronments. 

Few works have been developed for stereo-based or ToF 
technologies, and they do not consider the noise characteris­
tics of the depth data provided by RGB-D cameras. Examples 
based on new RGB-D devices, such as [30] and [26], rely only 
on the depth data without considering a possible color and 
depth data integration. 

A more efficient integration of depth and color has been 
proposed in the recent work presented in [9], where per-pixel 
statistical classifiers (based on depth and color data) are fused 
with a weighted average combiner. A mixture of Gaussian 
distribution is used to model the background pixels, and a 
uniform distribution is used for the foreground model. 

In this paper, we present an innovative background mod­
eling strategy that is able to obtain an accurate segmenta­
tion of foreground regions from data provided by RGB-D 
cameras in challenging indoor environment. In particular, 
the proposed approach allows to efficiently tackle strong 
illumination variations, interference due to the existence of 
multiple active RGB-D cameras, depth data noise and non 
measured depth data due to reflections and out-of-range prob­
lems of the RGB-D cameras, and situations of sudden people 
crowds. The proposed strategy is based on a Bayesian frame­
work that efficiently fuses different sources of information 
to segment the foreground; the generation and the combina­
tion of these sources of information are precisely the main 



contributions of the paper. The first source of information 
considered in the combination is a prediction of the fore­
ground between consecutive images that relies on a novel 
adaptive block-based foreground modeling, which employs 
a depth dynamic model to robustly predict the temporal evo­
lution of deformable foreground regions. Two depth-based 
and color-based independent per-pixel background models 
are also included in the combination. Each model is built 
starting from the MoG background modeling algorithm. The 
advantage of this approach is that the current contribution of 
the depth and color features and their corresponding mod­
els for the final foreground segmentation are solved by the 
Bayesian framework. In addition, the combination of the 
per-pixel background models and the region-based predicted 
foreground guarantees more compact and accurate segmen­
tations. It is worth noting that the use of the foreground pre­
diction is a very innovative point of the proposed work, since 
the state-of-the-art RGB-D based algorithms rely only on the 
background model. The proposed method has been tested in 
indoor environments due to the limitations of the RGB-D 
imagery in outdoor environments, as illustrated at the begin­
ning of this section. 

The rest of the paper is structured as follows: In Sect. 2, the 
proposed background modeling strategy is presented. Results 
are shown in Sect. 3. And lastly, the conclusions are drawn 
in Sect. 4. 

2 Proposed Bayesian background modeling approach 

The block diagram of the proposed background modeling 
approach is presented in Fig. 1. As it can be noticed, it is 
composed of three main blocks: the background modeling 
block (BgMOD), the foreground prediction block (FgPRED) 
and the Bayesian combiner block (Combiner). BgMOD is in 
charge of updating continuously the two independent models 
(based respectively on the depth data D and color features 
C), through the MoG algorithm. The second block, FgPRED, 
analyzes the previous foreground segmentation (Fgt-\ in 
Fig. 1) given by Combiner, and the current (Dt) and past 
( A - i ) depth data to predict the position of the foreground 
regions (probabilities p/g in Fig. 1). Finally, the Combiner 
block fuses the information provided by the other modules 
in a Bayesian framework to obtain an accurate final fore­
ground detection. The likelihood probabilities (Lc and LD) 
provided by the BgMOD block are combined with the fore­
ground prediction pfg estimated by FgPRED to calculate 
a per pixel posterior probability based on the two differ­
ent features. This statistical information is finally combined 
with a weighted average that takes into account the color 
and depth-edges and the presence of non measured pixels. 
More details about these blocks are given in the following 
sections. 
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Fig. 1 Block Diagram of the proposed background modeling 
approach. Dt is the depth and Ct is the color data, past depth data 
D (_i and past foreground detection Fgt-\. p/g represents foreground 
prediction probabilities, and Lc and Lp are the color-based and depth-
based likelihood probabilities estimated by BgMOD 

2.1 Depth and color background modeling: BgMOD 

The main idea of the BgMOD block presented above is to 
consider the depth and color data as independent features, 
and consequently to use them to build two independent back­
ground models. These models are obtained by applying the 
MoG background modeling algorithm on depth data D and 
color data C. From now on, we will refer to the classifiers 
built on these models as MoGc and MOGD- The MoG algo­
rithm is a very popular per-pixel background modeling tech­
nique (see the comprehensive review presented in [8] for 
more details), which allows to cope with multi-modal back­
grounds, and to adapt the model to gradual changes. Each 
pixel is modeled as a mixture of Gaussian distribution and 
their parameters are learned, and iteratively updated through 
an online version of the Expectation Maximization algo­
rithm. 

In the MoG model, the probability to find a pixel at posi­
tion s at time t of intensity x is defined as a mixture of Gaus-
sians: 

K 

P (xs,t\a>bg,a>fg) = ^ Ü ; , Í • Af (xsj,/M,t, £ ; , i ) (1) 

i = l 

where K is the number of Gaussians used in the model, v^t is 
the weight associated to the ¿th Gaussian J\f at the time t with 
mean \xi¿ and covariance matrix X!^. It is worth noting that 
the statistics of both models, background and foreground, are 
described with the same mixture, which is indicated in Eq. 
1 by inserting the two classes symbols, cobg (for the back­
ground) and cofg (for the foreground), in the left term of the 
equation. 

As far as the distribution dimensionality is concerned, the 
depth-based distributions have a single dimension and the 
color ones have three components. As widely proposed in 
the literature (see the reviews [7,8]), the color components 
are considered independent, and therefore X is a diagonal 
matrix containing the variances of the three color compo­
nents. This assumption allows to reduce the complexity of 



the MoG algorithm. Regarding the weight v^t, it measures 
the accuracy with which the corresponding Gaussian models 
the corresponding pixel. 

In the first step of the MoG algorithm it is checked if the 
pixel belongs to the background model or to the foreground 
distribution. The background model is formed by those dis­
tributions of the mixture that are characterized by a high 
ratio (r) between the weight and the variance. In the case of 
a univariate distribution r, the ratio for the ¿th Gaussian is 
estimated as r¿ = u¿ /er¿. A high value for r¿ means that the 
corresponding distribution is characterized by a low variabil­
ity (a low value oía) and a high weight vi. The distributions 
are ordered by considering the factor r and the background is 
composed by the first B distributions that exceed the thresh­
old T: 

fl = argffijnl ¿ t ^ > T I (2) 

T indicates the minimum portion of data that should be 
accounted for by the background. For small values of T, 
a background modeled by few distributions is obtained (at 
least a unimodal Gaussian distribution). If T is high, a multi­
modal background model is obtained, that can include more 
than one distribution in it. The Mahalanobis distance is used 
to check if the pixel belongs to one of the distributions: 

V (xs,t+i - l¿i,t) £,"/ (xs,t+i - i¿i,t) < A., (3) 

where A. is usually set to 2.5 (see for example [8]). If Eq. 
3 is satisfied for one of the background distributions, the 
pixel will be classified as a background pixel, otherwise it is 
classified as a foreground pixel. 

As mentioned in the introduction, the depth measurement 
variation follows a quadratic relationship with the depth. 
Therefore, depth measurements corresponding to regions 
located far from the camera are characterized by a higher 
value of a than those regions situated closer. This fact could 
introduce a bias in the estimation of the ranking parameter 
r. For this reason, we normalize its value with anoise, as pre­
sented in [11], that is selected according to the quadratic law 
between distance and noise dispersion presented in [20]. 

The parameters of the background distributions are 
updated as proposed in [29]. In particular, in the case of a 
single dimension feature space (i.e. depth): 

Vi,t+i = U¿,Í(1 -a) + a (4) 

p = a-Af(xSJ, /M,t,cn,t) (5) 

/«•;,i+i = /"•;,?(! ~ P) + P*s,t+i (6) 

o^+i = oft{\ - p) + p (xStt+i - iM,t+i) (7) 

where a is the learning rate, which influences the speed of 
background modifications due to new objects in the scene 
or gradual changes (i.e. changes of the illumination condi­

tions). It indicates the impact that the last samples have on the 
updated distributions' parameters. On the other hand, for the 
unmatched Gaussians all the parameters remain unchanged 
except their weight: 

Vi,t+i = "i,i(l -a). (8) 

In the case that Eq. 3 has not been satisfied by all the dis­
tributions, the one with the lowest ratio r is substituted by a 
new one with low weight, high variance, and a mean equal to 
the current value. It is worth noting that in each iteration the 
weights are normalized such that their sum is equal to one. 

Instead of using a fixed value for a, as described in the 
original version of the MoG algorithm [29], we use a variable 
learning rate as proposed in [19]. Its value is set to l/Nframe, 
where Nframe is the number of processed frames, until a 
preset minimum value of a is reached. In this way, the first 
frames have a high impact on the parameters evolution, thus 
avoiding the incorporation of moving objects present in the 
beginning of the sequence to the background. 

Moreover, we apply a control at frame level in order to 
re-initialize the MoGc module in case of sudden change of 
luminosity. As proposed in [32], we check the fraction of pix­
els that have been classified as belonging to the foreground. 
If this fraction is greater than a threshold (i.e. «0.6) an illu­
mination change is detected and the MoGc module has to 
be re-initialized. It is worth noting, that low cost RGB-D 
cameras do not allow to control acquisition settings such as 
aperture time, shutter time, white balance, etc. Due to the 
automatic modification of these parameters, the color data 
is affected by sudden changes of the illumination condition 
(also in very controlled environment) that affect large portion 
of the image. 

The MoG algorithm guarantees a reliable online estima­
tion of both background and foreground distributions. By 
considering the estimated distribution parameters, it is possi­
ble to compute the likelihood probability that a pixel belongs 
to these two models. The estimated likelihood factors for 
both classes (cofg and cobg) and for both features (D and C) 
are then combined to improve the quality of the foreground 
detection. 

2.2 Prediction of foreground regions: FgPRED 

A probability map pfg containing the prediction of the fore­
ground regions at the current time step is estimated using 
Fgt-i (the foreground segmentation of the previous time 
step), a dynamic model of the foreground, and another model 
related to the depth-based appearance of the foreground. The 
proposed background subtraction strategy uses this proba­
bility map as prior knowledge to improve the probabilistic 
modeling of the foreground. 

The foreground segmentation Fgt_i is divided into 
squared sub-regions of fixed size. The center coordinates of 



to it. The prior probability is mathematically expressed by 
the following multi-variate Normal distribution 

Fig. 2 Division of Fgt-\ into sub-regions. Each point represents the 
center of a square region 

the square sub-regions are randomly sampled from the set 
of pixels belonging to Fgt-\. The number of sub-regions is 
proportional to the area of the segmented foreground, so that 
the whole set of square sub-regions completely cover with a 
certain overlapping the foreground. This division allows to 
predict more accurately the foreground regions, especially 
for those foreground regions that contain deformable objects. 
Figure 2 shows the center of the square sub-regions obtained 
after the sampling-based division. 

The position of each foreground sub-region is predicted 
on Dt (the current depth image) using the following Bayesian 
Network model described. A foreground sub-region is para­
meterized by the variables {«, v, d), where u and v are the 
coordinates of the sub-region center, and d is the shift in depth 
of the sub-region. This variable, representing the shift in 
depth, is required since the relative depth of a sub-region can 
vary between consecutive time steps because of its motion. 
System observations, represented by the variable h, arebased 
on an appearance model that uses a depth histogram to char­
acterize a sub-region. Given h, the posterior pdf on {u, v, d} 
is proportional to 

p(u, v, d\h) oc p(h\u, v, d)p(u, v, d), (9) 

where p(u, v, d) is the prior probability on {u, v, d] in the 
current time step, and p(h\x, y, d) is the likelihood that a 
candidate sub-region forms part of the foreground using the 
information of the depth histogram. 

The prior probability p{u,v,d) follows a zero-order 
model that encodes the idea that the temporal evolution of the 
position of a sub-region should be smooth and bounded. This 
assumption is fulfilled for the target application of pedestrian 
segmentation and the used camera settings. For other specific 
camera settings that do not verify the previous assumption, 
it is recommended to utilize a higher frame rate, or place the 
depth camera in such a way that pedestrians are not so close 

p(u, v, d) = Af(u, v, d; pu, pv, pd, 'Eu,v,d)- (10) 

The means are {p„ = u', pv = v', pa = 0}, where u! and 
v' are the center coordinates of the initial squared sub-region 
resulting from the foreground subdivision. Note that p¿ = 0 
because d is a shift measure, i.e. a relative quantity of the 
depth, not an absolute quantity. The covariance matrix *Eu,v,d 
is defined by its diagonal [erM

2, er2, er2] since the involved 
variables are considered independent. 

The likelihood term p(h\u, v, d), is based on the similar­
ity between the depth histogram of the candidate sub-region 
in the current time step and the evolution of the depth his­
togram of the initial foreground sub-region in the previous 
time step. The depth histogram of a foreground sub-region 
evolves in time since its relative depth changes due to its 
motion, either because it is approaching the camera sensor, 
or because it is moving away from it. The depth evolution 
between consecutive time steps, given by d, is used to esti­
mate h' that is a prediction of the depth histogram for the 
current time step. This predicted histogram is obtained using 
a linear interpolation process based on the assumption that 
the sub-region locally experiences the same shift in depth d. 
The similarity between the predicted depth histogram and the 
corresponding one to the candidate sub-region is computed 
using the Bhattacharyya distance 

bd = y/l- bc, (11) 

where bc is the Bhattacharyya coefficient given by 

&á = Xvft(iMO. (12) 

The likelihood is finally computed as 

p(h\x,y,d) = N(bd;0,al), (13) 

where the variance er¿ expresses the expected uncertainty of 
the observation model. 

The posterior pdf p(u, v, d\h) cannot be directly com­
puted because of the lack of an analytical expression due 
to the non-linearities and multi-modalities of the dynamic 
and observation models [2]. For this reason, an approximate 
inference method called Metropolis-Hastings algorithm [6] 
is used to obtain a discrete approximation of the posterior 
pdf as 

p(u, v, d\h) = ^ 5 ( M - ul, v - vl, d - dl), (14) 

where {ul, vl,d1} are the samples from the posterior pdf. 
The Metropolis-Hasting algorithm generates these samples 
by means of a Markov chain that tries to simulate the target 
pdf. For this purpose, the following proposal distribution is 
used to draw the samples 



[ul, vl, d1} ~ q(u, v, d) = J\f(u, v, d; u', v', 0, Y¿'u v d), 

(15) 

where S^ v d is a diagonal matrix defined by the vector 
\o^, er,f, a¿2]. Notice that this proposal distribution is simi­
lar to the aforementioned prior distribution, but the values of 
their covariance matrices are very different because of their 
distinct purposes. 

Once that the posterior pdf of each foreground sub-region 
has been approximated by a set of samples, a unique set of 
samples is created by means of the union of all the samples, 
which represents a discrete approximation of posterior pdf 
of the whole foreground regions 

Pfgiu, v, d\h) = I ) pj(u, v, d\h), (16) 

where j is an index used to enumerate the posterior pdf of 
each foreground sub-region. Figure 3 shows the sampled-

Fig. 3 Sampled-based approximation of Pfg(u, v, d\h) marginalized 
over the variable d 

based approximation of p/g(u, v, d\h) marginalized over the 
variable d. Note the high concentration of samples on the 
foreground region, in this case a person. 

Lastly, a Gaussian-based kernel smoothing technique [5] 
is applied to p/g(u, v,d\h) to obtain a dense probability 
map that contains the prediction of the foreground regions 
at the current time step. Figure 4 shows the resulting prob­
ability map of foreground regions after the smoothing of 
Pfgiu, v, d\h). 

2.3 Bayesian combiner 

The problem of background modeling and foreground extrac­
tion can be viewed as a two-class problem in which for each 
pixel the label of the foreground class (&>/#) or of the back­
ground one (cobg) has to be assigned. As previously men­
tioned, we propose to build two different background models 
based on the depth and color features. The final classification 
(pixel belonging to foreground or background) is improved 
by an efficient combination of the two weak classifiers (based 
on the background models) responses and the probabilities 
provided by the FgPRED block that analyzes and predicts 
the evolution of the foreground regions. 

In many complex pattern recognition tasks, the combi­
nation of different classifiers has been employed with very 
positive results. In particular, it has been demonstrated that 
complex problems can be efficiently tackled by combining 
more simple classifiers that work on a local level instead of 
training and building a unique sophisticated classifier that 
processes all the features. This research area has been exten­
sively treated in the literature; for a complete review see [22] 
and [13, Ch.9]. 

The per-pixel classifiers MOGD and MoGc estimate the 
likelihood (respectively Lp and Lc in Fig. 1) that a pixel 
belongs to the class cofg or cobg. This information can be 
combined with the data provided by FgPRED in order to esti­
mate the posterior probability that the measured data belongs 
of one of the two classes. In particular, we can calculate 
the class prior probabilities such that P{cofg) = p/g and 
P{cúbg) = 1 - Pfg and consequently obtain, for each clas­
sifier, through the Bayes theorem, the posterior probability. 

For each classifier, it is possible to calculate the vector 
d = [dbg, dfg] that contains the estimated posterior proba­
bilities for the two classes. Considering the pixel s at position 
(x, y), and the corresponding measured data x, = [D, C], 
the decision profile DP [22] for xs is: 

DP(xs) 
dc,bg dcjg 

dD,bg dDJg 
(17) 

Fig. 4 Probability map of foreground regions after the smoothing of 
Pfgiu, v, d\h) 

where each row represents the vector d mentioned above, and 
each column represents the overall support M(xs) of both 
classifiers to one of the classes. By analyzing DP(xs), it is 
possible to extract the overall support for all the classes of the 



problem at hand, and consequently assign the class-label to xs 

corresponding to the class with the greatest value of Mj (xs). 
In our case we select a class conscious combiner to fuse 
the data contained in DP matrix. These combiners are not 
trainable, and therefore it is not possible to estimate Mj (xs) 
by using arithmetic operations; hence, their computational 
and memory requirements are generally low. 

Typical choices of the combination are average, median, 
maximum, etc. (see [22, Ch.5] for more details), and they 
have been employed in many pattern recognition problems 
and also in computer vision. In particular, in the area of back­
ground modeling, an average combiner has been used in [21 ], 
where 13 classifiers are trained on 13 different visual cues. 
Simple combination functions (i.e. average) assign to all the 
features the same support to the final classification. In our 
case, we use a weighted average in order to extract differ­
ent information from the different feature sets and to adapt 
efficiently the contribution of each classifier to the final clas­
sification. Mj(xs) is estimated as: 

Mj (xs) = WC • dCJ + WD • dDJ (18) 

The weights are chosen as a function of the input x, to 
increase the support of the most reliable classifier. In the 
following paragraph a brief description on weights selection 
is presented. 

First of all, for all those pixels for which the depth mea­
surements is not available (called nmd from now on), the 
depth-based classifier weight (WD) is set to 0, and the color-
based classifier weight (Wc) is set to 1. In fact, when depth 
data is not available in the current frame or in the background 
model, only the color feature is considered for the final pixel 
classification. 

For the pixels that do not belong to the nmd set, we assign 
the weights as a function of the depth-image edges as pro­
posed by [9]. This is due to the fact that depth data guarantee 
generally compact detection of moving object regions except 
that for the very noisy depth values at object boundaries. To 
reduce this effect, we increase the influence of the color based 
classifiers in these regions. 

For all those pixels that have valid depth data, we assign 
the weights as a function of the depth-image edges following 
the strategy proposed in [9]. In this way, it is possible to limit 
the effect of noisy depth values at object boundaries by using 
the color information in these zones. On the contrary, the 
depth information is more reliable in the regions far from 
depth-edges, since it guarantees compact foreground and it 
is resilient to shadows and illumination changes. 

For depth and color data, the edge-closeness probability 
Pe is estimated for each pixel; it is calculated as a function 
of the distance between the pixel and the closest edge (pre­
viously detected with a conventional edge detector). This 
distance is weighted with a Gaussian function with stan­
dard deviation o edge- With the depth-edge-closeness prob­

ability (PQ) and the color edge-closeness probability (Pc) 
we estimate the global edge-closeness probability such that 
Pe

G = Pe
c • P

e
D. The obtained Pe

G has a high value in those 
regions in which depth-based edges corresponds to color 
based edges. As mentioned in the introduction, depth-based 
edges are characterized by the presence of noise, hence color 
features are in general more reliable in these regions. For 
this reason, a higher weight has to be assigned to MOGQ 

in order to increase the final detection accuracy. It should 
be noticed that the product between the two edge-closeness 
probability functions limits the impact of MoGc where there 
is not an edge in the color domain. The weights are assigned 
as WC (xs) = Pe

G(xs) and WD (xs) = 1 - Wc (xs). The 
weights values are bounded to a minimum and a maximum 
value (Wmin and Wmax) to ensure the contribution of both 
classifiers in the final classification. These values have been 
set in our implementation respectively to 0.1 and 0.9. 

Finally, we propose a temporal consistency score t c for the 
depth-based background model region affected by the pres­
ence of nmd pixels. Let us consider an area corresponding 
to a high reflective region (i.e. a TV screen) in which several 
nmd pixels are present and, hence, there is no depth-based 
model available. If a foreground object temporally moves in 
front of this area, the depth-based model could be initialized 
with these depth values, that obviously do not correspond to 
the real depth of the tv screen in the background. Clearly, 
any other foreground object moving in front of the screen 
with similar depth values will be wrongly classified as back­
ground by the MOGD- In order to reduce the effects of this 
problem to the final classification, we multiply the element 
dDfig of the decision profile by the factor tc calculated as 

where #Hit represents a counter that is incremented when 
a valid depth measurement is obtained, and is decremented 
when a nmd pixel is registered. Let us consider the parameter 
Hitmax as the value for the counter #Hit for which the tc 
value is equal to one (depth-based background model is com­
pletely reliable). The parameter #Hit indicates how many 
consecutive valid depth measurements are required to con­
sider the depth-based model completely reliable (tc = 1). 
Once this parameter is selected, the value of the parame­
ter j3 can be easily selected. Thanks to the temporal consis­
tency score, it is possible to give a different weight to the 
background model relative to those regions that are strongly 
affected by the presence of nmd pixels. 

3 Results 

In this section, we present the results obtained with the pro­
posed strategy and other state-of-the-art background model-



ing techniques based on depth and color features. For this 
purpose, we have used three different databases of indoor 
sequences. The first one [28] is a public database that is 
composed of three different indoor sequences acquired by an 
array of three RGB-D sensors (Kinect devices) in auniversity 
building hall. These sequences are particularly challenging 
because of the presence of crowded situations, the strong 
variations in illumination, and the clutter introduced by the 
interference between multiple RGB-D devices. The last prob­
lem arises because Kinect is an active sensor that emits 
infrared structured light, which can be wrongly sensed by 
other devices in the array. This problem strongly affects the 
sequences contained in this database, since the three Kinect 
devices are set in such a way that their fields of view overlap. 
Another source of problems is the lack of depth information 
in large areas of the acquired images due to reflections or 
objects that are positioned out of range of the sensor. For 
each sequence of this database, we have generated a hand-
labeled ground truth containing 80 frames, which span over 
400 frames of the sequence. The other database is the one 
proposed in [9] that includes scenes with a single person 
moving. The scenes contained in this database are less com­
plex than the ones in [28]. For this reason, we included only 
one sequence (called genSeq) of this dataset in our tests. The 
last database [1] is composed by four sequences acquired by 
two Kinect cameras, which are placed on the ceiling looking 
forward with a significant pitch angle. These aspects differ­
entiate these sequences from the others where the cameras 
are positioned parallel to the floor at a height between 1 and 
1.5 meters. Color, depth, and ground truth information are 
available for each sequence, which usually contains over 40 
different people. In our experiments we use two sequences 
of this dataset. 

As objective measures to test the algorithm, we have used 
six well-known performance indexes: false positive rate (FP), 
false negative rate (FN), total error (TE), similarity measure 
S, and overall rankings RM and RC. FP is calculated as the 
fraction of the background pixels that are marked as fore­
ground. FN is computed as the fraction of foreground pixels 
that are marked as background. TE is the total number of 
misclassifled pixels, normalized with respect to the image 
size. The metric S is defined as [24] 

AC\B 
S(A, B) = (20) 

AUB 

where A is the detected region and B is the ground truth 
region. This non-linear measure is a combination of FP and 
FN indexes. Values close to 1 indicate that A and B regions 
are very similar, and values close to 0 just the opposite. The 
last metrics, RM and RC, rank the overall accuracy of the 
tested methods [16]. Defining rank¿ (m, sq) as the rank of the 
¿th method for the performance metric m in the sequence sq, 

the average ranking of the method / in the sequence sq is 
expressed as 

1 ^r-RM¿ = — 2 ^ rank¿ (m, sq) (21) 
Nm m 

where Nm is the number of metrics used. The overall ranking 
RC; for the /th method is then computed taking into account 
all the sequences 

RC¡ = — £ R M ¡ , (22) 
Nscl sq 

where Nsq is the number of sequences. This rank indicates 
the global performance of one method with respect to the 
others. 

The proposed algorithm (called MoG-PRE for future ref­
erence) has been compared with Ave different algorithms of 
the state of the art: MOGBÍH [31], which computes abinary 
combination of foreground masks obtained by two indepen­
dent modules using MoG; VibeBin [23], which is based on a 
binary combination of foreground masks obtained by means 
of the ViBe algorithm [4]; PBAS [18], which first models the 
background using the recent history of pixel values, and then 
computes the foreground using a decision threshold calcu­
lated dynamically for each pixel; SOBS [25], which adopts a 
neural-network based approach to detect foreground objects 
without making any assumption about the pixel distribution; 
and CLw [9], which uses a probabilistic classifier to fuse a 
set of foreground masks, which are computed by a mixture 
of Gaussian approach that uses color and depth information. 
Regarding the PBAS and SOBS algorithms, we have to 
state that they have been extended to use RGB-D imagery, 
since originally they only employed color imagery. Finally, 
we have also used three additional baseline algorithms for the 
comparison: MOGRGB-D [15], which is based on an RGB-D 
mixture of Gaussian model; and MOGD and MoGc, which 
are the mixture of Gaussian modules employed in our system 
to build the color and depth-based model. 

An example of the genSeq sequence presented in [9] is 
shown in Fig. 5. As it can be noticed, the depth data are 
affected by different perturbations: nmd (pixels marked in 
red), noisy object boundaries, and spatial noise affecting 

(a) (b) 

Fig. 5 genSeq sequence: color (a) and depth data (b) 
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(a) (b) (c) (d) (e) 

Fig. 6 Foreground detection mask for genSeq sequence: a ground 
truth.b MoGc, c MoGD, d MoG-PRE, e MoGRGB.D 

homogeneous depth regions. The corresponding foreground 
masks are reported in Fig. 6. The foreground silhouette 
obtained with the proposed strategy (Fig. 6d) is very com­
pact and with well-defined boundaries. Moreover, the false 
detections due to the depth noise are severely reduced. It is 
worth noting that the results obtained with the single classi­
fiers do not show the same accuracy. The MoGc (Fig. 6b) is 
affected by the color camouflage problem, thus rendering a 
fragmented foreground mask with several holes. On the con­
trary, the foreground mask obtained with MOGD (Fig. 6c) is 
more compact, although the detected object boundaries are 
affected by the depth noise. This example shows clearly how 
the proposed strategy allows to efficiently combine depth 
and color information, making use also of the foreground 
prediction strategy. The results obtained by MOGRGB-D are 
reported in (Fig. 6e). In this case, the obtained foreground 
mask boundaries are not well-defined, leading to more false 
detections. 

The quantitative results using the previously introduced 
metrics are reported in Table 1. The proposed strategy 
achieves the best ranking score RM. It also guarantees the 
lowest level of TE and the highest value for S. Moreover, it 
improves both FP and FN metrics with regard to the values 
independently obtained by MoGc and MoGo, which are 
used in our system. As far as the other state-of-the-art algo­
rithms is concerned, only CL w has comparable results with 
our approach, although slightly inferior. On the other hand, 

Table 1 Detection accuracy obtained by analyzing the genSeq 
sequence 

MoG-PRE 

MoGc 

MoGD 

MoGBin 

MOGRGB-D 

ViBebin 

C Lw 

SOB 

PBAS 

TE 

0.90 

2.13 

1.61 

2.03 

1.93 

12.39 

1.13 

1.91 

1.93 

FN 

1.26 

8.41 

3.70 

17.01 

0.63 

0.65 

2.26 

1.34 

2.10 

FP 

0.85 

1.35 

1.35 

0.16 

2.09 

13.85 

0.99 

1.98 

1.91 

S 

0.87 

0.74 

0.81 

0.74 

0.79 

0.44 

0.85 

0.80 

0.80 

RM 

1.75 

6.75 

4.50 

6.25 

5.25 

7.25 

3.25 

4.75 

5.25 

(a) (b) 

Fig. 7 Lobbyl sequence: color (a) and depth data (b) 

the simple binary combination of the foreground masks com­
puted by MoGsin and ViBeBin does not guarantee accurate 
results, leading to unbalanced levels of FN and FP. In fact, 
the final decision is completely compromised when one of 
the classifier fails. 

In Fig. 7, depth and color data of the first sequence 
(Lobbyl)ofthe database presented in [28] are shown. As pre­
viously mentioned, the sequences in this database show large 
image areas for which the depth data is not available, due to 
reflective surfaces and out of range objects. The obtained 
foreground masks are reported in Fig. 8. The proposed strat­
egy MoG-PRE (Fig. 8d) improves the detections obtained 
by the two weak classifiers independently. In particular, the 
MoGc (Fig. 8b) is affected by cast shadows on the floor 
and local changes of illumination (i.e. lighting advertising 
panel behind the man). On the contrary, the foreground mask 
obtained by MOGD (Fig. 8c) is more compact, but it does 
not accurately segment distant moving objects (peoples on 
the stairs), and closer moving-object parts (for example the 
man's leg). As it can be noticed, the proposed strategy reduces 
the effect of the above mentioned problems. Also, the silhou­
ettes obtained by MOGRGB-D are very compact, although 
the foreground detection is affected by a higher level of false 
positives. 

Fig. 8 Foreground detection mask for Lobbyl sequence: a ground 
truth.b MoGc, c MoGD, d MoG-PRE, e MOGRGB-D 



Table 2 Detection accuracy obtained by analyzing the Lobby 1 
sequence 

MoG-PRE 

MoGc 

MoGD 

MoGBin 

MOGRGB-D 

ViBebin 

C Lw 

SOB 

PBAS 

TE 

5.65 

11.43 

5.42 

12.00 

25.26 

14.99 

7.72 

8.75 

10.21 

FN 

19.43 

55.91 

31.41 

66.73 

10.61 

45.87 

15.45 

44.82 

54.34 

FP 

3.67 

5.04 

1.69 

4.13 

27.36 

10.55 

6.61 

3.57 

3.87 

S 

0.48 

0.28 

0.41 

0.18 

0.26 

0.23 

0.45 

0.33 

0.28 

RM 

2.25 

6.50 

2.25 

7.50 

6.50 

7.50 

3.50 

3.75 

5.25 

(a) (b) 

Fig. 9 Lobby2 sequence: color (a) and depth data (b) 

The performance metrics for the Lobby 1 sequence are 
reported in Table 2. In this case, the proposed algorithm 
MoG-PRE shares the best ranking score RM with the 
MOGD method, but MoG-PRE guarantees an efficient 
combination of the color and depth data, leading to a bet­
ter tradeoff performance with respect to the two independent 
classifiers. In fact, it reduces dramatically the value of FN, 
and at the same time guarantees a low value for FP. Moreover, 
it leads to the highest value of S. The CLw method offers 
also comparable results to MoG-PRE, but slightly worse. 
Finally, the other state-of-the-art techniques do not provide 
comparable performance to the proposed approach. 

Figure 9 shows the depth and color data of the second 
sequence (Lobby2) of the database proposed in [28]. An 
example of the obtained foreground masks is reported in 
Fig. 10. In this case, due to the particular lighting conditions 
and the presence of a very large region with nmd pixels, the 
two weak classifiers (see Fig. 10b and c) present fragmented 
foreground masks. However, as it can be noticed in Fig.lOd, 
the proposed strategy allows to dramatically improve the 
final foreground detection. This example shows the positive 
influence of two important aspects of the proposed strategy: 

(a) (b) (c) (d) (e) 

Fig. 10 Foreground detection mask for Lobby2 sequence: a ground 
truth, b MoGc, c MoGD, d MoG-PRE, e MOGRGB-D 

Table 3 Detection accuracy obtained by analyzing the Lobby2 
sequence 

MoG-PRE 

MoGc 

MoGD 

MoGBin 

MOGRGB-D 

ViBebin 

C Lw 

SOBS 

PBAS 

TE 

7.41 

11.38 

7.51 

8.01 

8.22 

7.54 

5.21 

6.00 

9.13 

FN 

29.10 

57.30 

60.00 

67.89 

17.86 

56.75 

24.32 

31.01 

57.43 

FP 

4.60 

5.44 

0.71 

0.26 

6.97 

1.17 

2.74 

2.76 

2.88 

S 

0.48 

0.30 

0.30 

0.27 

0.47 

0.38 

0.54 

0.51 

0.34 

RM 

4.00 

7.75 

5.25 

6.25 

5.25 

4.50 

2.00 

3.25 

6.75 

the FgPRED module and the weight selection strategy pro­
posed in Eq. 19. In fact, both of them allow to increment 
the overall support M for the class cofg. Comparable results 
are obtained with MOGRGB-D, where a compact foreground 
maskis obtained, although the object boundaries are not well-
defined (i.e. man's head), and a higher level of false positives 
is obtained. 

The comparison of all the methods is reported in Table 3. 
The proposed approach achieves the third best ranking score 
RM, after CLw una SOBS, and it is very close to the second 
one. Similar results are obtained for the S and TE metrics. 
This fact can be explained by the lower level of false positives 
of the CLw and SOBS methods for this specific sequence. 

An example of the last sequence (Lobby3) of the data­
base proposed in [28] is shown in Fig. 11. The foreground 
mask obtained by the proposed method is reported in Fig. 
12d, which has higher accuracy than that of the two indepen­
dent classifiers (Fig. 12b, c), leading to more compact and 
defined objects silhouette. On the other hand, the method 
MOGRGB-D is strongly affected by illumination changes. 

The results obtained with the different algorithms are pre­
sented in Table 4. The proposed method shares the second 
best ranking score RM with CLw method. The first rank­
ing score is achieved by MoGo, which is slightly better in 



(a) (b) 

Fig. 13 Caml sequence: color (a) and depth data (b) 

(a) (b) 

Fig. 11 Lobby3 sequence: color (a) and depth data (b) 

Fig. 12 Foreground detection mask for Lobby3 sequencer ground 
truth, b MoGc, c MoGD, d MoG-PRE, e MOGRGB-D 

Fig. 14 Foreground detection masks for Caml sequence: a ground 
truth, b MoGc, c MoGD, d MoG-PRE, e CLW, f SOBS, g PBAS 

Table 5 Detection accuracy obtained by analyzing the Cam 1 sequence 

Table 4 Detei 

sequence 

MoG-PRE 

MoGc 

MoGD 

MoGBi„ 

MoGRGB-D 

ViBebin 

C L]y 

SOBS 

PBAS 

;tion accuracy obtained 

TE 

5.42 

9.19 

3.65 

11.50 

48.04 

25.24 

7.06 

13.42 

8.44 

FN 

21.59 

54.74 

31.70 

58.24 

9.21 

41.31 

18.06 

46.10 

66.46 

by analyzing the 

FP 

3.95 

5.06 

1.11 

7.27 

51.56 

23.79 

6.06 

10.46 

3.18 

S 

0.33 

0.21 

0.34 

0.13 

0.13 

0.12 

0.36 

0.19 

0.17 

Lobby3 

RM 

2.75 

5.00 

2.00 

7.00 

6.50 

7.50 

2.75 

6.25 

5.25 

MoG PRE 

MoGc 

MoGD 

MoGBin 

MOGRGB-D 

ViBebin 

C L]y 

SOB 

PBAS 

TE 

6 25 

10.42 

7.30 

8.36 

32.91 

13.76 

6.50 

10.49 

14.74 

FN 

13 44 

46.14 

17.37 

55.16 

0.89 

48.59 

9.50 

25.59 

43.53 

FP 

5 33 

5.57 

5.98 

1.97 

37.36 

8.97 

5.98 

8.42 

10.78 

S 

061 

0.40 

0.55 

0.39 

0.33 

0.30 

0.60 

0.47 

0.34 

RM 

1 75 

5.00 

3.50 

5.00 

6.75 

7.75 

2.75 

5.25 

7.25 

terms of TE and S. This is mainly due to the particular chal­
lenging illumination conditions of this sequence. In fact, the 
sequence presents frequent changes of illumination due to the 
automatic white balance adjustment of the camera. This fac­
tor affects negatively the pixel classification stage (increasing 
the number of FP) in the large regions without depth infor­
mation. The proposed algorithm also reduces the number of 
FN with respect to the two independent classifiers, while at 
the same time keeping a low value of FP. 

Figure 13 shows a pair of color and depth images from 
the Caml sequence belonging to the dataset proposed by 
[1]. Similarly to the other sequences, there are large areas 
for which the depth data is not available due to the pres­

ence of reflective surfaces and out of range objects. Figurel4 
shows a detail of the foreground masks obtained with MoGc, 
MoGD, MOG-PRE, CLV, SOBS, and PBAS, along 
with the ground truth. The proposed algorithm, MoG-PRE, 
achieves the best results, obtaining a compact segmentation 
with few false positives. The algorithm CLW also achieves a 
compact segmentation but with significantly more false pos­
itives. 

The comparison of all the approaches using Caml and 
Cam2 sequences of the dataset proposed by [1] are shown 
in Tables 5, 6, respectively. The proposed approach achieves 
the best ranking score RM for both sequences. It also outper­
forms the other methods by considering TE and S metrics, 
proving that it guarantees the best tradeoff between the false 
positives and false negatives scores. 



Table 6 Detection accuracy obtained by analyzing the Cam2 sequence 

MoG-PRE 

MoGc 

MoGD 

MoGBi„ 

MoGRGB-D 

ViBebin 

C Lw 

SOB 

PBAS 

TE 

6.87 

11.30 

7.97 

9.30 

23.35 

13.55 

6.95 

13.04 

13.96 

FN 

8.90 

42.27 

12.01 

48.58 

1.28 

38.99 

6.11 

41.27 

45.18 

FP 

6.55 

6.11 

7.35 

2.75 

26.84 

9.27 

6.99 

8.31 

8.73 

S 

0.63 

0.42 

0.59 

0.44 

0.42 

0.39 

0.62 

0.40 

0.36 

RM 

2.00 

4.75 

3.75 

4.50 

6.25 

7.00 

2.50 

6.25 

8.00 

Table 7 Algorithm ranking across all sequences and datasets 

MoG-PRE 

MoGc 

MoGD 

MoGBin 

MOGRGB-D 

ViBebin 

C Lw 

SOB 

PBAS 

RC 

2.42 

5.96 

3.54 

6.08 

6.08 

6.92 

2.79 

4.92 

6.29 

Finally, Table 7 reports the overall ranking of all the algo­
rithms using all the sequences of all the datasets. The pro­
posed method, MoG-PRE, has the best ranking score, prov­
ing that it has the best average performance for all the differ­
ent situations. 

4 Conclusions 

A background modeling strategy that combines depth and 
color data provided by RGB-D cameras in indoor environ­
ments is presente in this paper. The most important contribu­
tions of this work are the generation and the efficient combi­
nation of different sources of information through a Bayesian 
framework: the foreground prediction and two background 
models. The prediction of the foreground between consecu­
tive images is computed. It relies on a novel adaptive block-
based foreground modeling, which employs a depth-based 
dynamic model to robustly predict the temporal evolution 
of deformable foreground regions. Depth-based and color-
based independent per-pixel background models, based on 
the MoG algorithm, are also included in the combination. 
The advantage of the proposed approach is that the actual 
contribution of the depth and color features and their cor­
responding models for the final foreground segmentation is 

adapted by the Bayesian framework. Additionally, the combi­
nation of the foreground prediction and the per-pixel models 
allows to include also the spatial information and the local 
depth characteristics of the foreground regions, thus guar­
anteeing more compact and accurate detections. The results 
have demonstrated that the proposed approach outperforms 
state of the art background modeling strategies based on 
RGB-D imagery. Indeed, it efficiently tackles strong illu­
mination variations, interference of multiple active RGB-D 
cameras, non-measured depth data, depth camera noise, and 
situations of sudden people crowds. 
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