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Abstract We propose a novel approach to the real-time
landing site detection and assessment in unconstrained man-
made environments using passive sensors. Because this task
must be performed in a few seconds or less, existing meth-
ods are often limited to simple local intensity and edge vari-
ation cues. By contrast, we show how to efficiently take into
account the potential sites’ global shape, which is a critical
cue in man-made scenes. Our method relies on a new seg-
mentation algorithm and shape regularity measure to look
for polygonal regions in video sequences. In this way, we
enforce both temporal consistency and geometric regular-
ity, resulting in very reliable and consistent detections. We
demonstrate our approach for the detection of landable sites
such as rural fields, building rooftops and runways from color
and infrared monocular sequences significantly outperform-
ing the state-of-the-art.
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1 Introduction

Unmanned aerial vehicles (UAVs) offer many civilian and
military applications, and are now a quickly growing indus-
try [13]. While they are still usually remote controlled, auto-
mated flight is an attractive alternative that would largely
increase their usefulness and reliability. Of particular impor-
tance, is the ability to land automatically, which requires the
efficient and reliable detection of suitable landing sites. This
is actually an old problem as it has been extensively studied
for planetary landing in space, but it has been recently revis-
ited for both fixed-wing and rotorcraft UAVs [13,40,49,50].

Landing site detection is generally a time critical decision
that must be made reliably and quickly, often in a few seconds
or less [16,50]. Active sensors have been widely used for this
purpose [23,26,40,41,47] but have severe drawbacks. They
are expensive, power-hungry, and often heavy. Their range
and resolution are usually limited [41], and special care must
be taken when operating in populated areas.

By contrast, passive sensors such as cameras are inexpen-
sive, low power and lightweight. They can operate from a
range of flight altitudes and are safe for use in populated
urban and rural environments. As a result, many camera-
based approaches [5,13,24,37] have also been explored over
the years. To achieve real-time performance, most of them
rely on simple techniques such as thresholding of local inten-
sity variations or edge density. They completely ignore the
global shape of the potential landing area, which is a vital clue
for human pilots seeking a landable field in an emergency.
As illustrated in Fig. 1, global shape and regularity matter
because it is extremely difficult to assess visually whether a
piece of terrain is sufficiently flat by other means from above.
Human eyes do not provide a long enough baseline for stereo
under these conditions and although textural or shading cues
can be useful in some cases, such as when a heavily rutted
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Fig. 1 Importance of shape cues for landing site detection. The center
image was taken from a glider flying along a mountain ridge. From the
air and based on local appearance, the regions within the yellow and red
black regions both appear to be landable. On the left and right, we used
Google Earth to display nadir views of these two areas and low-altitude

oblique views, which are those a pilot would see upon approaching to
land. While the area on the left is indeed flat and landable, the one on
the right is not and touching down there would result in a crash. Local
appearance is, therefore, insufficient to assess the suitability for landing
and finding regular polygonal structures on the ground is required

field produces strong shadows at particular times of day, they
are generally unreliable. Typically, they only become useful
when very close to the ground and therefore too late to select
another field if the chosen one proves unsuitable. Further-
more, obstacles such as ditches and fences that could cause
an accident cannot easily be seen either. In the event of an
engine failure, light aircraft and helicopter student pilots are
therefore trained to look for regular polygonal areas, such as
cultivated fields or rooftops, large enough given their respec-
tive aircrafts’ landing speeds and under the assumption that
they are more likely to be flat than irregular ones and less
likely to contain hidden obstacles. This is even more impor-
tant for glider pilots who fly without an engine and can expect
to land in unprepared fields, such as those in Fig. 1, several
times during their flying careers due to adverse meteorolog-
ical conditions.

In this paper, we propose a real-time algorithm that emu-
lates this human ability to quickly assess candidate landing
sites when flying over man-made environments whose 3D
geometry cannot be reliably assessed by shape-from-X meth-
ods, for example, in the event of an emergency landing that
precludes a controlled flight path to acquire reliable range
estimates. Polygonality combined with simple texture mea-
sures is then a useful substitute, which has been used in earlier

work to detect prepared landing sites such as runways [18],
but not unprepared ones.

At the heart of our approach are the maximally stable
regions (MSERs) [32], which have proved effective for stable
patch detection, which we use in spatio-temporal image vol-
umes to produce polygonal regions. To this end, we introduce
a Hough-like voting scheme into the algorithm that builds
our spatio-temporal MSERs to guarantee that they have pla-
nar sides. Unlike other algorithms that perform global image
segmentation [7,45], ours is highly efficient and runs at 5
Hz on 320 × 240 images using commodity hardware, in part
because our MSERs are found using an efficient component
tree representation [29].

We will demonstrate that our algorithm can reliably detect
a wide range of potentially landable areas for both fixed-
wing and rotorcraft UAVs, such as rural fields and building
rooftops from both nadir and oblique viewpoints. We also
show that we can detect runways from low-quality infrared
image sequences in which runway markings are not clearly
visible with significantly better performance than traditional
contour-based methods that rely solely on their rectangular-
ity [10,18,25,43,48].

The remainder of this paper is organized as follows:
Related work is first discussed in Sect. 2 and our component
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tree segmentation algorithm is outlined in Sect. 3. The pro-
posed shape regularity measure is presented in Sect. 4 and
an extension to temporal sequences is discussed in Sect. 5.
Experimental results are provided in Sect. 6.

2 Related work

There is a long tradition of detecting landing sites from aerial
images, which dates back to the inception of our field [36].
Initial work focused on the detection of runways for the auto-
mated aerial mapping of airports [25,34,36,46]. Since then
many automated landing approaches have been developed
that considered the detection of both prepared and unpre-
pared landing sites from both active and passive sensors in a
variety of terrains.

Our work is primarily concerned with landing site assess-
ment in man-made environments from images captured by
a monocular camera. We begin our discussion with an
overview of unprepared landing site detection with both
active and passive sensing. Prepared landing site detection is
then outlined with an emphasis on runway detection. Finally,
a discussion on the use of shape for man-made landing site
assessment is provided.

2.1 Unprepared landing sites

Techniques to unprepared landing site detection rely on mea-
surements of surface geometry and appearance to detect
and avoid hazards and find suitable landing sites. Many
methods have been proposed for the assessment of 3D sur-
face geometry from active range sensors [23,27,40,47].
Johnson et al. [27] propose a hazard map estimation frame-
work using estimates of surface slope and roughness from
laser scanner range measurements. Similarly, Howard and
Seraji [23] develop a fuzzy logic approach for the classifica-
tion of terrain into landable and hazardous segments, based
on measurements of slope, approach and roughness obtained
with least-squares plane fitting applied to LIDAR range data.
More recently, Scherer et al. [40] have demonstrated the auto-
mated landing of a full-scale rotorcraft UAV using a laser
scanning sensor.

While a promising technology for landing place assess-
ment, active sensors have a high energy consumption and a
heavy payload. They typically have a restricted operational
range of 1km or less, require additional safety considera-
tions in populated areas, and often involve a costly, time-
consuming acquisition process making them unsuitable for
the applications we target [40,47].

To overcome the limitations of active sensing, many
approaches have been developed for the estimation of 3D sur-
face geometry and landing site assessment from passive cam-
era sensors [16,24,38,49]. Camera sensors are inexpensive,

low power, lightweight devices that can operate from a large
range of flight altitudes and can be safely used in populated
areas, making them an attractive alternative to expensive,
power intensive active sensors, especially for the smaller
UAVs. Still the full acquisition of 3D range estimates from
passive sensors in generic environments and operating con-
ditions remains challenging and computationally costly.

Monocular methods usually utilize sparse structure from
motion in combination with surface interpolation to estimate
3D terrain geometry [21,28,49]. Hoff and Sklair [21] utilize
optical flow-tracked features to obtain range estimates that
are incrementally improved with Kalman filtering. Similarly,
Templeton et al. [49] propose a recursive multi-frame planar
parallax algorithm for dense, real-time 3D surface recovery.
Although efficient, these methods are prone to fail when local
features cannot be tracked reliably, and require a controlled
flight path for reliable range estimation restricting their gen-
eral applicability. Simpler methods based on homography
estimation have been proposed for surface slope estimation
that either assume the presence of a flat ground plane [3] or
rely on the efficient proposal of candidate landing sites [5].
Stereo vision systems have also been investigated [33,50],
however, generally require a large baseline making them less
suitable for smaller platforms.

As an alternative to active- or passive-only sensing solu-
tions to landing place assessments, multi-sensor approaches
have also been investigated that seek to combine the strengths
of each sensing modality [22,37,41]. Pien [37] proposes the
use of passive sensing that exploits simple intensity variation
measures to segment candidate landing regions provided as
input to an active sensor laser range verification stage. Simi-
larly, Serrano et al. [41] advocate for a multi-tiered solution
that combines the strengths of passive and active sensors to
achieve a diverse capability of operational ranges.

Whether a passive-only or combined-sensing solution is
used, the ability to quickly assess candidate landing sites
is a crucial step employed by many approaches in the litera-
ture [5,13,22,24,37]. Monocular texture analysis techniques
have played a predominant role in finding suitable candi-
date landing sites as they typically involve a fairly simple
image processing and are easily amenable to real-time oper-
ation [9,13,16,22,37].

Approaches assume that obstacles are indicated by dom-
inant image boundaries, and look for relatively featureless,
constant-valued candidate landing regions. Garcia et al. [16]
find circular areas exhibiting a low edge density computed
using normalized edge histograms. Similarly, Fitzgerald [13]
detects candidate landing sites as featureless regions absent
of image edges. Howard et al. [22] employ a local inten-
sity variation measure similar to [37] along with a simple
thresholding to find candidate sites. Although efficient, these
methods do not truly model the object image boundaries, and
as seen in our experiments are sensitive to image noise and
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hallucinated local edges, often requiring a careful threshold
selection and choice of edge detection parameters. In this
paper, we propose a global image segmentation algorithm
that can be computed in real time and significantly improves
over the performance of these methods.

2.2 Landing pads and runways

Prepared landing site detection has also received a lot of
attention in the literature in particular for the detection
of landing pads and runways. Research on landing pad
detection has concentrated on the design of landing sig-
natures that can be easily detected and tracked using a
monocular camera [4,20,42,44]. Similarly, techniques to
runway detection exploit runway markings and region geom-
etry [14,17,18,25,43,48,56]. They typically search over
extracted line features to find landing patterns and the run-
way boundary. Huertas et al. [25] utilize a hypothesis and test
formulation based on the detection of “anti-parallel” lines or
apars. Provided with a set of hypothesis regions, pathway
markings are used to detect runways and differentiate them
from other airport and ground transportation roads. Shang
and Shi [43] apply a horizon detection and intensity thresh-
olding step to identify a runway region of interest followed
by Hough line fitting to detect the runway boundary. Sim-
ilarly, Hamza et al. [18] assume a region of interest and a
perspective runway template provided from an external nav-
igation system. Various line-fitting methods are then explored
for runway corner detection including Hough voting and a
RANSAC least-squares estimation.

However, a known region of interest and runway tem-
plate is not always readily available, and horizon detection is
restricted to oblique viewpoints where the horizon is clearly
visible and not obstructed by nearby building or mountain
structures. In addition, due to poor visibility or when seen
from a distance runway markings are not always apparent. A
method that can efficiently detect candidate regions without
the use of such additional cues is therefore needed. More-
over, all these approaches do not generalize to unprepared
landable sites.

2.3 Shape regularity

In man-made environments, many suitable landing sites can
be characterized as featureless, regularly shaped regions.
While region shape has been an important cue for the detec-
tion of runways, shape has been largely unexplored for the
assessment of unprepared landing sites. Although methods
have been proposed that search over rectangular or circu-
lar regions for unprepared landing site assessment [13,16],
these methods do not exploit region shape for the under-
lying segmentation, and instead apply a template search of
known scale and geometry. Unlike previous approaches, we

do not assume the existence of a known region of interest or
template, and shape is used to guide the underlying image
segmentation and detect candidate man-made landing sites.
The use of region shape results in accurate landing site detec-
tion without the need for distinctive landing patterns or other
constraints, however, when available, such additional cues
can be useful in combination with our approach at a later
verification stage.

3 Component tree image segmentation

In this section, we first provide a brief overview of compo-
nent tree segmentation mostly using the formulation of [29].
We then discuss extensions we use for finding obstacle-free
candidate landing sites.

Image segmentation by thresholding is an instance of a
more general class of techniques known as connected filter-
ing. Connected filters are morphological operators that can
be used to simplify the image while preserving its contours,
employed in a variety of applications [29]. Those that com-
mute with thresholding are called flat filters [19]. Flat filters
remove components whose attributes violate a given crite-
ria, and get their name from the constant-valued regions they
detect in an image. Although efficient, they are fairly simple
and can be sensitive to varying imaging conditions and noise,
especially when only considering the connected components
computed at a single predefined threshold, as is typically
done to detect landing sites [13,14,16,22].

The component tree [8,29] is a non-flat filter that consid-
ers the relationship between connected components as they
evolve across an entire threshold range. In this way, it allows
for increased flexibility and modeling capacity overcoming
many of the limitations of simple flat filtering [29]. Further-
more, highly efficient algorithms exist for their implemen-
tation [29,35,51,54] making them well suited for real-time
applications.

3.1 Component trees

Component trees are based on the notion of threshold decom-
position [55]. Let f be a real-valued image defined by the
function f : F �→ R where the support F ⊆ R

2. A recon-
struction of the image f can be defined using image thresh-
olding

f (x) = max{t : x ∈ Xt ( f )}, (1)

where

Xt ( f ) = {x ∈ F : f (x) ≥ t}, (2)

is the threshold set of the real-valued image f obtained at
threshold t .
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Equation (1) decomposes the image into a set of binary
images that define a simplified representation.

Let Ct,n be the nth connected component of threshold set
Xt . Equation (1) can be re-expressed as

f (x) = max

{
t : x ∈

⋃
n

Ct,n

}
. (3)

A connected filter preserves the components of f whose
attributes satisfy a certain criterion T ,

Φ(Xt ( f )) = ∪{Ct,n : Ct,n satisfies criterion T }. (4)

An important feature of connected filters is that they only
remove components, and unlike other morphological opera-
tors they do not alter the component boundaries, a desirable
property for image segmentation.

A component tree T is defined from the components Ct,n

with one node per component denoted as n(Ct,n) or simply n.
Threshold sets have the important property that Xt+1( f ) ⊆
Xt ( f ) which implies that for every component Ct,m there
exists a component Ct+1,n ⊆ Ct,m [29]. Two nodes Ct+1,n

and Ct,m are linked in the tree if Ct+1,n is a descendant
of Ct,m satisfying the above property. The root of the tree
nmin is defined by the component Cmin that is the superset
of all the components in the image found by thresholding
the image by its minimum value. The tree is constructed
by progressively thresholding the image, linking the nodes
between neighboring thresholds, starting at the root.

Component trees can be used to implement either a flat
or non-flat connected filtering. A flat filtering only considers
the nodes Ct,n individually at each level t , whereas a non-
flat filtering enforces criteria defined along branches of the
tree. A key advantage of component trees is that they can
be used to define a selective image filtering that only affects
concentrated regions in the image corresponding to branches
in the tree, leaving the rest of the image unaltered. A selective
filtering is not possible using flat filters and gives component
trees a distinct advantage over them, especially when not all
objects are well segmented using only a single threshold, as is

typically the case. Component trees also generalize previous
hierarchical connected filters in the literature having a close
connection with opening trees [53] and max-trees [39]. For
a more detailed treatment of component trees, we refer the
reader to [29].

An example illustrating the use of flat vs. non-flat filter-
ing is depicted in Fig. 2 where the goal is to segment the two
constant circular regions. Flat filtering considers each thresh-
old set individually and, therefore, has difficulty in obtaining
the desired segmentation, especially when only considering
a single threshold. The boundaries of each region can be
detected using multiple thresholds, however, at the cost of
added clutter. In contrast, a non-flat tree filtering can easily
detect the circular regions since it can exploit the fact that
the connected components of these regions remain relatively
unchanged across threshold sets compared to other regions
in the image.

3.2 Extensions

Image segmentation with component trees is performed by
considering the sequence of node attributes found along a
branch of the tree, otherwise called an attribute signature
[29]. While [29] considers signatures defined with respect to
tree branches associated with leafs of the tree, in this paper we
detect regions in the image by finding attribute extrema along
each branch similar to [32]. This allows for the discovery of
featureless regions characterized by dominant image bound-
aries referred to in [32] as MSERs. Whereas [32] only con-
siders local extrema; however, we compute extrema across
an entire tree branch as this helps avoid spurious detections.

More formally, let g(n) represents an attribute of node n.
Our attribute signature is defined as

n(Ct,n) is

⎧⎪⎨
⎪⎩

active, if g(n(Ct,n))=min{g(n(Ck,m)) :
Ck,m ∈ B(n(Ct,n))}

not active, otherwise.

(5)

(a) (b) (c) (d) (e)

Fig. 2 Selective filtering. a An example intensity image and its asso-
ciated surface. b, c Flat filtering with a single threshold. d Flat filtering
across an entire threshold decomposition. e Non-flat component tree
filtering. Detected regions are indicated in white with a red contour.
Cleanly segmenting the constant circular regions is not possible using a

flat filtering with either a single threshold or threshold decomposition.
In contrast, a non-flat component tree filter can selectively filter these
regions by exploiting the fact that their connected components remain
unchanged across a range of threshold sets
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where B(n) is the tree branch containing node n. A node is
labeled as active if it is to be preserved by the component
tree filter, and is labeled as non-active otherwise. Following
[32], we use an area variation signature and define g(n) using
the area variation between n and its neighboring parent and
child nodes. This notion is extended to temporal sequences
in Sect. 5. The final image segmentation is then obtained
retaining all the active nodes in the tree

ΦT ( f )(x) =
{

1, if φT ( f )(x) ≤ f (x),

0, otherwise,
(6)

obtained with the connected tree filter

φT ( f )(x) = max{t : x ∈ Ct,n and n(Ct,n) is active}. (7)

Many low-level image representations can be used with
our approach including those proposed in the landing site
detection literature [16,22,37]. Compared with other repre-
sentations, we found a combination of intensity and intensity
gradient to work best. Using intensity-only can stably seg-
ment noisy regions; however, it often overlooks salient edge
information. Similarly, an intensity gradient-based segmen-
tation delineates geometric shapes very well, but is more
sensitive to noise (see Fig. 3).

We employ a combined intensity and gradient feature
that can benefit from the strength of each representation,
defined as

C = I − αG, (8)

where I is the intensity image, G the gradient image of I ,
and α is a scale used to weight the gradient image. Under
the proposed feature combination, the image gradient helps
to guide the component tree segmentation, while still bene-
fiting from the stability of constant intensity regions. In our

Fig. 3 Combined feature representation. Component tree segmenta-
tion applied to the (left) intensity image, (middle) gradient image,
and (right) a combined intensity and gradient representation. Detected
regions are displayed using a heat map color coding with red indicating
highly stable regions and blue low stability. The proposed feature com-
bination benefits from the strengths of each representation and has the
ability to exploit image edges while leveraging the stability of constant
intensity regions

experiments, we found this combination to give increased
stability compared to using either feature alone.

4 Shape regularity measure

Man-made landing sites can be distinguished by their char-
acteristic, simple shape, often consisting of elongated linear
structures. In this section, we introduce a notion of shape
regularity and use it to segment polygonal regions from the
image indicative of man-made landing sites. Many algo-
rithms have been proposed for polygon detection in the lit-
erature; however, most of them are restricted to fairly simple
polygonal shapes [1,30]. We provide a generic measure of
shape regularity applicable for the detection of a variety of
polygonal structures.

The regions resulting from component tree segmentation
are further filtered according to their shape. A region’s shape
is considered regular if its contour is well approximated by
N lines. This concept is illustrated in Fig. 4 using two exam-
ple contours, one that is regular and one that is not. With
our approach, lines are efficiently estimated from each con-
tour using an adaptive Hough voting [12] whose resolution
is adapted according to contour size. In particular, the radial
resolution and non-maximum suppression threshold are set
proportional to the minor radius of an approximating ellipse
estimated separately for each region. We found this to give
more reliable linear structure detection compared to a fixed-
resolution Hough space.

A shape regularity score is computed for each region based
on the percentage of contour points that belong to a detected
linear structure,

L(n) =
∑

min {N ,M}
pi , (9)

where pi is the percentage of region contour points voting for
line i , and M is the number of detected lines. The linearity

Fig. 4 Shape regularity. Regularly shaped regions are those exhibiting
a simple polygonal shape. We consider a region to be regularly shaped
if its contour is well approximated by N lines. This is illustrated for two
example regions with N = 4
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score is parameterized by N , defined as the maximum num-
ber of detected lines used to compute the score, and with
the lines sorted in decreasing order by their dominance, pi .
Intuitively, a higher value of N will assign a higher score to
more complex shapes, and can be used to tune the detector
to the desired class of polygonal shapes. For example, in the
case of rectangular runways one would set N = 4.

In order to find dominant polygonal regions, we define the
combined score

s(n) = L(n)Γ (−g(n)) = L(n)

1 + exp
(
−μ−g(n)

σ

) (10)

where L(n) is the linearity score and g(n) is the area variation
score for component tree node n. In Eq. (10), a soft thresh-
olding is applied to the stability score defined by the sigmoid
Γ (x) with threshold μ and bandwidth σ . This reflects the
intuition that the stability score is often only a weak feature,
the combined score giving more emphasis to the underly-
ing linearity measure while down-weighting highly unstable
regions.

The final shape segmentation signature employed by our
approach can be expressed as

n(Ct,n) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

active, if g(n(Ct,n))=min{g(n(Ck,m)) :
Ck,m ∈B(n(Ct,n))} and

s(n(Ct,n))≥T

not active, otherwise.

(11)

with detection threshold T . The shape regularity measure
defines a flat tree filtering and can be efficiently implemented
by restricting its evaluation to the extremal nodes for which
it applies.

5 Temporal consistency

We explore the use of temporal consistency in addition to geo-
metric regularity to increase the reliability of our man-made
landing site detection. A modified component tree segmen-
tation for image sequences is first discussed. A Hough plane
voting scheme is then outlined for assessing the shape regu-
larity of spatio-temporal regions.

Temporal consistency exploits multiple image time
instances to help gauge the presence of a suitable landing
site. It is particularly well suited for segmenting low-quality
images whose image boundaries are noisy and are more
reliably extracted by accumulating evidence across many
frames. We employ a sliding temporal window to detect land-
ing sites from video. Prior to segmentation, a simple homo-
graphic alignment step similar to [3] is first applied to each
windowed image sequences to provide a quick, coarse cam-
era motion correction.

Provided an aligned image sequence component tree seg-
mentation is applied to find dominant regions across both
space and time. These regions are then filtered accordingly
to detect candidate landing places. Component tree filtering
and segmentation on image sequences proceeds much in the
same way it does for a single image.

Let v be a real-valued image sequence defined by the
function v:V �→ R where the support V ⊆ R

3 with the third
dimension being time. Connected components are found
using threshold decomposition on v applying Equation (1).
Whereas for a single image, the components are 2D regions
for image sequences they correspond to 3D volumes.

Dominant components are assessed using a volume vari-
ation signature similar to [11]

gv(nt ) = V(nt+Δ) − V(nt−Δ)

V(nt )
, (12)

where V(nt ) is the volume of the component represented by
node nt and Δ is the threshold difference level. nt+Δ ⊃ nt

is the node at threshold t +Δ of the component immediately
including nt , and nt−Δ ⊂ nt is the component at threshold
t − Δ immediately included by nt .

The shape regularity measure is extended to evaluate
the surfaces of component volumes. Lines used to approx-
imate 2D region contours correspond to spatio-temporal
planes in the image sequence. These planes are efficiently
detected using a Hough voting procedure. We represent a
plane using its normal vector n = (nx , ny, nt ) and a point
Xc = (xc, yc, tc) belonging to the plane. For any point X in
the plane,

(X − Xc) · n = (x − xc)nx + (y − yc)ny + (t − tc)nt

= xnx + yny + tnt − ρ = 0 (13)

where ρ is the distance from the origin to the plane. Using
spherical coordinates,

ρ = x ∗ cos θ ∗ sin φ + y ∗ sin θ ∗ sin φ + t ∗ cosφ (14)

where φ is the angle between the normal vector n and the t
axis, and θ is the angle between the x axis and the projection
of n onto the xy plane.

A plane is therefore defined by three parameters: (ρ, θ, φ),
which form a 3D voting space. Each component surface point
casts a 3D surface of votes in this space. Finally, planes are
detected as the peaks in the resulting accumulator matrix. We
employ an adaptive binning resolution based on component
size, and limit φ to a small range about 90 degrees to prefer
linear structures stable across time. A weighted voting strat-
egy based on the angle between the surface and fitted plane
normals is also employed along with a non-maximum sup-
pression to remove excess votes about each peak. Figure 5
displays an example plane fitting result. In the figure, the
left plot shows the aligned point cloud, and the right plot the
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Fig. 5 Spatio-temporal plane
detection: (left) an aligned
spatio-temporal point cloud and
(right) detected planes whereby
the points belonging to each
plane are highlighted in separate
colors

Fig. 6 Runway detection.
Results for each sequence are
displayed for (top) the
windowed hough baseline and
(bottom) our approach (MP).
Red, orange, green and blue
rectangles denote the top four
detections ranked in that order.
We supply the corresponding
video sequences as
supplementary material. Our
approach significantly
outperforms the baseline
technique
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Fig. 7 Runway recognition performance displayed for each method.
Five settings of our approach are evaluated, they are: S single-frame,
M multi-frame component tree segmentation without shape regular-
ity, SL single-frame segmentation using line detection, ML multi-frame
segmentation with line detection, MP our full approach using plane
detection. The use of area-based cues and spatio-temporal consistency
result in a large improvement over the baseline method across all three

sequences. Temporal consistency is especially important when working
from low-resolution imagery. Runway detection accuracy is also shown
across all sequences. A box plot is provided for each method with the red
bar and edges of each box showing the median, and top 25th and 75th
percentile detection accuracy. Compared with the baseline technique
(WH), our method results in a more accurate detection of the runway

fitting results with the points of each plane highlighted in a
separate color.

6 Experiments

In this section, we demonstrate our approach for the detec-
tion of runways, building rooftops and rural fields from aer-
ial infrared and color video sequences. We first discuss our
experimental setup and employed baselines. We then present
our results on man-made landing site detection that highlight
both the reliability and efficiency of our method.

6.1 Experimental setup

Five settings of our approach are evaluated, they are: (S)
single-frame and (M) multi-frame component tree segmen-

tation without shape regularity, (SL) single-frame segmen-
tation using line detection, (ML) multi-frame segmentation
with line detection, and (MP) our full approach using plane
detection.

As an evaluation metric, we use the percent overlap
between the ground-truth and detected runway:

detection accuracy = area of overlap

total area
(15)

In our experiments, a landing site is considered detected
if the detection accuracy is at least 30 %.

We systematically used a feature combination weighting
of α = 4, a temporal window size of ten frames, and used
stability parameters of μ = 0.1 and σ = 0.2 for the noisy
infrared sequences. The higher quality color videos exhibited
less noise, and we therefore set μ = 0.1 and σ = 0.001. In
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Fig. 8 Performance time. The average computation time is shown across the runway sequences: a average time for each step of our approach as a
function of input frame count and b detection rate as a function of computation time

other words the linearity score was the primary measure for
these sequences.

Sequence alignment was performed using SIFT feature
matching [31] and homography estimation between consec-
utive image frames. Although we do not optimize over the
efficiency of the alignment pre-processing step, many meth-
ods exist for fast feature matching and homography estima-
tion [3,28].

Component tree segmentation as with other segmentation
algorithms can often result in small spurious regions. Mini-
mum and maximum region area limits are therefore used, that
we assume known for both ours and the baseline methods.
This is a reasonable assumption, since in most applications
the landing site area is easily available from the landing size
requirements of the aircraft, as is typically used in practice
[13,16,40]. Similar requirements are used to help constrain
our Hough voting step, whereby the angular weighting is set
according to the expected region size.

Our implementation of MSER component tree segmenta-
tion is based on the vlfeat library [52] and was done in MAT-
LAB using C-code MEX-wrappers. Although efficient, our
code can be further improved for even faster performance.

6.2 Baselines

We consider multiple baseline methods for runway and
unprepared landing site detection.

For the detection of unprepared landing sites, we consider
an intensity variation method that finds candidate regions
based on efficient, simple image thresholding [5,22,37]. This
measure is evaluated using a spatial sliding window com-
puted densely throughout the image. Intensity variation is
defined as

Iσ (c) =
√√√√ 1

(2r + 1)2

∑
x∈W (c,r)

(I (x) − μ(c; r))2 (16)
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Fig. 9 Landable field detection. Results on landable field dataset: (left)
pilot annotations with yellow polygons signifying top four most landable
areas, (middle) landable areas detected by our approach, and (right) our
approach combined with color. We detect a significant number of the
landable areas labeled by the expert annotator, especially those clearly
visible by the camera. Additional detections appear similar to the expert

annotated regions, however, are differentiated by other factors such as
field type and slope that are not taken into account by our approach.
A simple color feature used in combination with our approach helps to
avoid unwanted regions (highlighted in blue), and results in detections
that more closely resemble the pilot’s selections

where W (c, r) ⊂ F defines an r × r window centered at
c and μ(c) is the mean intensity within the window. Flat
filtering is then performed by thresholding this measure at
a pre-specified value. We evaluate this method at different
threshold values, and used r = 5 throughout our experiments
as we found this to give the best results.

We also consider a more sophisticated technique and com-
pare against mean-shift image segmentation [7], using the
EDISON segmentation library [6]. Although our method can-
not be expected to be significantly more accurate than this
approach we show that it performs similarly for finding the
boundaries of featureless, unobstructed regions, while being
far more efficient.

For runway detection, we compare against the method of
[30] that employs a windowed Hough transform for rectangu-
lar region detection, and is representative of the approaches

that look for landable fields as rectangles. We will refer to it
as WH.

6.3 Results

Runways We evaluated our approach using the three infrared
runway sequences. They consist of mid-resolution (640 ×
480) and low-resolution (320 × 240) infrared images,
each sequence being made of roughly 250–500 frames.
As runways are defined by rectangular planar surfaces,
we ran our approach with polygonal complexity parameter
N = 4.

A qualitative comparison with the baseline on the runway
sequences is provided in Fig. 6. The top four recognition
results are shown with red indicating the top region. The base-
line technique results in many false and missed detections.
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Fig. 10 Rooftop detection. Detected rooftops are highlighted in red,
ground-truth rooftop annotations are shown in yellow. Our approach
faithfully detects many of the relatively featureless, regularly shaped

rooftops displayed in these images. False detections largely consist of
other regularly shaped, constant textured regions including polygonal
sidewalks and courtyards

Compared to the baseline, our approach more consistently
and accurately detects the runway region.

Figure 7 displays the top-n recognition results for the
different approaches. The runway is considered detected if
it is found as one of the top n detected regions. Leverag-
ing area-based cues and spatio-temporal consistency results
in a significant improvement over the baseline rectangular
region detection method. The baseline method was run with
knowledge of the ground-truth scale and affine transforma-
tion parameters of the runway that are required as input to
their method. In contrast, our approach has no knowledge of
these parameters and they are estimated automatically as part
of the detection, which means that it starts with a handicap.

The use of area-based cues alone results in a significant
improvement over the baseline with single-frame component
tree segmentation and line detection exhibiting a fairly rea-
sonable performance, detecting the runway as one of the

top ten regions in most images. Temporal consistency can
result in an even further improvement with our approach, as
is especially the case for the low-resolution day sequence
whose top-three recognition rate increased from 85 % to
nearly 100 %.

Figure 7 also displays the detection accuracy of each
method. Once again we gain a significant improvement over
the baseline method with our approach resulting in an aver-
age detection accuracy of 70 % across the different settings
compared to 55 % for the baseline.

Performance time and accuracy with respect to window
size is displayed in Fig. 8. Single-frame performance for
our approach is well under a second for both image reso-
lutions, with a speed of 5 Hz for 320 × 240 and 1.25 Hz
for 640 × 480. While performance time remains reasonable
with larger window sizes for 320 × 240, it is more costly for
the mid-resolution sequences. Unlike at lower resolutions,
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Fig. 11 Segmentation quality. Results are displayed for our compo-
nent tree approach and the simple flat filter intensity variation and color
mean-shift baselines. Both component tree segmentation and flat fil-
tering are evaluated using intensity variation. Threshold-based image

segmentation, although efficient, is highly sensitive to the choice of
threshold. The segmentation quality obtained with our approach is sim-
ilar to that obtained with mean shift, but at a fraction of the computation
time

however, temporal consistency is less important for these
sequences with a similar accuracy across different window
sizes.

Unprepared landing sites We also evaluated our approach
for the detection of landable fields, consisting of flat, planar,
regularly shaped expanses such as agricultural fields and dirt
strips, and building rooftops.

For landable fields, we used a dataset consisting of two
aerial sequences of an aircraft flying above a rural area. They
consist of 854×480 color images each of roughly 85 images
in length. The geometry of these fields is more complex than
the rectangular runways considered.

In order to assess the performance of our algorithm, we
asked a trained glider pilot to label a handful of images from
these sequences with the ten most landable areas in each
image. Gliders are planes without engines. They sometimes
have to land out on unprepared surfaces if they cannot make it
back to an airfield due to adverse conditions. Glider pilots are
therefore trained to recognize suitable landing spots, which
are flat and 300–400 meters long.

Figure 9 displays the detection results of our approach
on the pilot-annotated images. Our approach detects a sig-
nificant number of the landable areas labeled by the expert
annotator. Single-frame performance (SL) is displayed with

multi-frame (MP) performing similarly.1 The top four most
landable areas as deemed by the pilot are colored in yellow,
most of which are detected by our algorithm. Missed detec-
tions mostly consist of distant regions not clearly visible in
the image. Similarly, extraneous detections consist of regions
with similar appearance and geometry to those annotated by
the pilot, and were eliminated by him due to factors not taken
into consideration by our algorithm. For example, the pilot
took into account the type and slope of the landing surface,
preferring grass fields un-occluded by trees to dirt patches.
A simple, efficient color thresholding can be used in com-
bination with our approach to prefer green regions to dirt-
colored and blue ones, and help avoid unwanted areas like
dirt-strips, regularly shaped lakes and sky. These results are
also included in Fig. 9 and are seen to more closely resemble
the pilot’s selections.

For building rooftops, we used aerial images captured
from a Sensefly drone2 flying above the EPFL campus. This
dataset consists of a collection of 164 (1000 × 750) images.
Figure 10 displays the detections obtained with our approach.

1 Results on the full sequences are included as part of supplementary
material for all datasets. MP results for landable fields are also provided.
2 http://www.sensefly.com.
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Fig. 12 Shape regularity: (left) regions found with component tree seg-
mentation and (right) regions scored according to shape regularity with
different N . The color coding indicates each region’s regularity score
s(n). Our approach successfully discriminates regularly and irregularly

shaped regions. While N = 4 favors fairly simple regions, larger val-
ues of N also detects regions of a more complex shape. For reasonably
sized N , our approach performs similarly across the different values, as
is seen for N = 6, 8

Most of the rooftops in these images are detected, our method
favoring unobstructed featureless rooftop regions without
imposing explicit rectilinearity constraints as we did in ear-
lier work [2,15]. Not surprisingly, false detections largely
consist of other regularly shaped constant textured regions,
such as building walls and polygonal sidewalks and court-
yards. Such detections can be easily filtered at a later detec-
tion stage, e.g., ., using image homographies to discriminate
vertical from horizontal surfaces.

Segmentation quality and shape regularity A comparison
of our component tree segmentation approach to simple flat
filtering, both applied to the intensity variation measure, and
mean-shift color image segmentation is provided in Fig. 11.
Average computation time per image is also shown. The seg-
mentation quality obtained with our approach is similar to
mean-shift, however, at a fraction of the computation time.
A simple flat filtering, although efficient, is highly sensitive to
an appropriate choice of threshold, with a different threshold

per dataset giving favorable results. In contrast, our approach
can be seen as integrating across this parameter, and the exact
same setting of our approach works equally across datasets,
while still maintaining a real-time computation time of under
one second.

We also compare the performance of our approach for dif-
ferent shape complexity parameters. Figure 12 displays the
results on the landable field and rooftop datasets for different
values of N . In the figure, the different regions are highlighted
according to the employed detection threshold T applied to
the shape regularity measure. Using a small complexity para-
meter N = 4 favors fairly simple regions, with larger values
of N resulting in regions of increasing complexity. For rea-
sonably sized N , our approach performs similarly across the
different values, as is seen for N = 6, 8. Comparing with
the original component tree segmentation, we see that our
approach is able to successfully discriminate regularly and
irregularly shaped regions to detect man-made landing sites.
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7 Conclusion

We have presented a real-time algorithm for landing site
assessment in unconstrained man-made environments that
exploits region shape, a critical cue in such environments, in
addition to purely local appearance. We rely on a component
tree for real-time image segmentation. It does not depend
on simple but potentially unreliable image thresholding and
yields region boundaries similar to those produced by more
computationally expensive techniques. The component tree
is complemented by a Hough-like voting scheme to select
polygonal regions and extended for multi-frame processing
to improve reliability in low-resolution images.

We evaluated our approach on challenging aerial infrared
and color video sequences. By jointly leveraging area-based
cues and enforcing spatio-temporal consistency and geomet-
ric regularity, we achieved reliable detection and assessment
of runways, arbitrarily shaped landable fields, and rooftops.
We also significantly outperformed our baselines. Our exper-
iments on landable fields involved annotations by an expert
pilot. They demonstrate that we can approach human perfor-
mance and provide insight into the types of visual features
that would be useful for further improvements.

Promising avenues of future work include the integration
of additional features such as 3D geometry and texture, and
the evaluation of our approach within a larger automated
landing system. We are also interested in the application of
our approach to other vision domains including image regis-
tration and matching in man-made environments.
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