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Abstract The extrinsic calibration refers to determin-

ing the relative pose of cameras. Most of the approaches

for cameras with non-overlapping fields of view (FOV)

are based on mirror reflection, object tracking or rigid-

ity constraint of stereo systems whereas cameras with

overlapping FOV can be calibrated using structure from

motion solutions. We propose an extrinsic calibration

method within structure from motion framework for

cameras with overlapping FOV and its extension to

cameras with partially non-overlapping FOV. Recently,

omnidirectional vision has become a popular topic in

computer vision as an omnidirectional camera can cover

large FOV in one image. Combining the good resolu-

tion of perspective cameras and the wide observation

angle of omnidirectional cameras has been an attrac-

tive trend in multi-camera system. For this reason, we
present an approach which is applicable to heteroge-

neous types of vision sensors. Moreover, this method

utilizes images of lines as these features possess sev-

eral advantageous characteristics over point features,
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especially in urban environment. The calibration con-

sists of a linear estimation of orientation and position

of cameras and optionally bundle adjustment to refine

the extrinsic parameters.

Keywords Extrinsic calibration · Heterogeneous

cameras · Lines

1 Introduction

The extrinsic calibration of cameras having common

FOV can be solved by structure from motion (SFM)

techniques which have been widely studied in the last

decades. Camera poses can be recovered concurrently

with the 3D structure by factorization approaches [52,

50,54,21,44,33,34,35]. The measurement matrix derived

from point or line images can be factorized into a matrix

of camera transformations and a matrix of 3D shape.

Besides factorization, there exist algebraic solutions (8-

point algorithms [29,18]) or minimal solutions (5-point

algorithms [56,45,41]) to solve for transformation be-

tween two views and tensor-based approaches [19,55,13]

to solve for transformations among three views. These

solutions are frequently used as initialization for bun-

dle adjustment [57,5]. L∞ optimization methods have

been lately proposed to solve several problems in geo-

metric vision. [49,23] presented L∞ approaches based

on second order cone programming (SOCP) to recover

camera translations and 3D points assuming known ro-

tations. Martinec and Pajdla [36] estimated rotations

by least squares and translations by SOCP. A similar

technique for quasi-convex optimization was developed

in [25]. Note that in some previous works such as [58,

19,39,1,47], a common framework based on both point

and line features was developed to solve for the camera
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pose and scene structure. These approaches were devel-

oped and evaluated using perspective images but their

performance was not verified on images suffering strong

distortion captured by catadioptric or fish-eye cameras.

Recently, omnidirectional cameras have been widely

utilized as they possess wider FOV than conventional

cameras. Such devices can be built up from (i) an ar-

rangement of several cameras looking forward to differ-

ent directions, (ii) rotary cameras or (iii) cameras with

wide-angle lenses such as fish-eye or with mirrors of par-

ticular curvatures (catadioptric cameras). Barreto and

Daniilidis [4] estimated the projection matrices and ra-

dial distortion parameters of multiple wide FOV cam-

eras using a factorization approach without non-linear

minimization. Micusik and Pajdla [38] solved for the in-

trinsic parameters and relative pose of wide FOV cam-

eras from point correspondences in a polynomial eigen-

value problem incorporated with Random Sample Con-

sensus (RANSAC) [12]. Lhuillier [27] presented a sim-

ilar approach to [38] in that the camera geometry was

first estimated by a central model and then upgraded

by a non central model. The camera transformation can

also be solved by decoupling orientation and transla-

tion, i.e. the rotation was computed using vanishing

points of parallel lines [2,7] and then the translation

was estimated from point correspondences and known

rotation [26,7]. Lim et al. [28] utilized the correspon-

dences of antipodal points to estimate the orientation

and translation of wide FOV cameras. Other methods

were based on epipolar constraint [24,51,9] or optical

flow estimation [40,16,48]. The above-mentioned ap-

proaches are based on point features which are sensitive

and hard to be located in omnidirectional images due

to inconstant resolution and/or lens distortion.

There exist a limited number of solutions to the ex-

trinsic calibration of a heterogeneous camera system.

Chen et al. [10] calibrated a vision system consisting

of an omnidirectional camera and several perspective

cameras. First, the catadioptric camera was calibrated

in two steps, i.e. the aspect ratio was defined from an

image of the calibration pattern captured by the cam-

era without mirror and then the focal length was es-

timated by the vanishing points in an image taken by

the camera with mirror. Then some spatial points de-

termined in the coordinate system of the catadioptric

camera were used to calibrate the perspective cameras

using the 3D-2D point correspondences. This technique

requires information of 3D points. Again, it is possible

to solve for extrinsic parameters among heterogeneous

cameras by SFM techniques. [46,6] presented a solution

to computation of camera transformation, triangula-

tion, and bundle adjustment using point-projection ray

model. These solutions to heterogeneous cameras are

based on point features, which cannot be well detected

and matched by the same technique for heterogeneous

images. That is the reason why in [46] correspondences

were provided manually. Also with point-projection ray

model, [14] proposed an SFM approach through multi-

view tensors from line correspondences.

In this paper, we propose an extrinsic calibration ap-

proach for a heterogeneous camera system with overlap-

ping FOV and show that it can be extended to cameras

with partially non-overlapping FOV. This technique is

based on images of straight lines in 3D scene. The prin-

cipal contributions of this paper are: firstly, we present

a complete line-based SFM solution in the spherical

space. From the existing line extraction and line-based

rotation estimation to our proposed line-based transla-

tion computation and bundle adjustment, all of these

steps are formulated for spherical images. This unified

space allows a similar representation of heterogeneous

cameras in spite of their different characteristics and

hence similar manner of image processing. Secondly,

we propose to use line features which are more stable

than point features in the detection and matching, espe-

cially among images with important distortion. More-

over, we show that point feature can be integrated in

the translation estimation to improve its accuracy. Fi-

nally, multi-camera system is frequently used in urban

environment, therefore the line-based extrinsic calibra-

tion becomes practical as lines are omnipresent in urban

scenes. Even if they are absent in the scene, a pattern

containing lines can always be employed to provide fea-

tures for the extrinsic calibration.

The organization of the paper is as follows: section 2

will present our linear approach of extrinsic calibration

based on line correspondences. This method is com-

prised of rotation estimation from vanishing points of

parallel lines in 3D scene and translation estimation

from line correspondences. Later in the same section,

we will describe the reconstruction of 3D lines and the

bundle adjustment to refine the extrinsic parameters

of cameras and the 3D structure. In section 3, we will

show some validation results using simulation and real

image sequences in different scenarios. The paper will

end with some conclusions.

2 Extrinsic calibration of heterogeneous

cameras

The problem of extrinsic calibration consists in esti-

mating the rotation and translation of cameras. This

section will start by the spherical model to unify het-

erogeneous cameras. Next, we will present a method

of line detection and matching. Then, we will develop a
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linear approach to compute the extrinsic parameters us-

ing uniquely line images and composing of two phases,

i.e. estimating rotations using vanishing points of par-

allel lines and translations from known rotations and

line correspondences among at least three images. Fi-

nally, we will propose a non-linear optimization of these

parameters by bundle adjustment technique.

The following notation is used in this paper

– Matrices and vectors are denoted in bold.

– Constants, variables and unknown quantities are de-

noted in italic.

– Numerals, operators and functions are denoted in

Roman/upright.

– T denotes the transposition of a vector or a matrix.

– [a]× denotes the skew symmetric matrix of vector

a.

– Index of cameras is subscript, e.g. Ci denotes the

ith camera.

– Index of line features is superscript, e.g. Lk denotes

the kth line.

2.1 Spherical mapping of line features

Perspective images and most common catadioptric im-

ages (captured by cameras coupled with paraboloidal,

hyperboloidal and ellipsoidal mirrors) can be mapped

on a unitary sphere [15]. In case of fish-eye cameras, it is

reasonable to approximate the small locus of projection

centers by a single projection center if the calibration

accuracy fulfills the requirements of applications [60], so

it is also possible to map a fish-eye image on a sphere.

Consequently we utilize the spherical projection model

to unify these heterogeneous cameras. This model was

first proposed by Geyer and Daniilidis [15] and Bar-

reto and Araujo [3] for central catadioptric cameras.

Later, Ying and Hu [60] justified that this model could

approximate the projection of fish-eye cameras. Basing

on this model and considering the distortion, Mei and

Rives [37] developed a calibration toolbox for central

imaging systems including fish-eye lenses.

According to this model, the projection of a world

point to the image plane of a central camera is illus-

trated in figure 1 and composed of the following steps

1. The world point X is projected in XS on the unitary

sphere centered in CS

(XS)CS = (xS , yS , zS) =
X

||X|| (1)

2. The spherical point XS is expressed in the reference

frame located at the second projection center Cξ.

The position of Cξ depends on the mirror parameter

ξ (given in table 1)

(XS)Cξ = (xS , yS , zS + ξ) (2)

3. XS is projected to the normalized plane in the undis-

torted point mu

mu = (
xS

zS + ξ
,

yS
zS + ξ

, 1) (3)

4. The distorted point md is computed from mu by

considering two main sources of distortion: first, the

imperfect radial curvature of the lens generating ra-

dial distortion, and second, the misalignment be-

tween the camera optical axis and the mirror axis

causing both radial and tangential distortions [59]

md = mu + D(mu) (4)

D(mu) = mu +

xu(k1ρ

2
u + k2ρ

4
u) + 2p1xuyu + p2(ρ2u + 2x2u)

yu(k1ρ
2
u + k2ρ

4
u) + 2p2xuyu + p1(ρ2u + 2y2u)

0


 (5)

where ρu =
√
x2u + y2u, (k1, k2) the radial distortion

parameters and (p1, p2) the tangential distortion pa-

rameters.

5. md is projected to the image plane by the camera

intrinsic matrix K providing the pixel point p

p = Kmd =



fuη fuηs u0
0 fvη v0
0 0 1


md (6)

K is also called the generalized projection matrix as

the combination of a camera and a mirror or a fish-

eye lens is considered as a single imaging device with

the projection center at CS . K is defined by (fu, fv)

the focal lengths, η the mirror parameter (given in

table 1), s the skew and (u0, v0) the principal point.

On the other hand, the inverse projection model

permits the calculation of the spherical point XS given

the pixel point p and the central camera parameters

1. The distorted point md is computed from the image

point p

md = K−1p =



fuη fuηs u0
0 fvη v0
0 0 1



−1

p (7)
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Fig. 1 Unified projection model

2. The undistorted point mu on the normalized plane

is estimated using the following inverse distortion

model




mu = md −Dn

Dn = D(md −Dn−1)

D1 = D(md)

(8)

where D is defined in equation (5) and n is the num-

ber of iterations of the recursive estimation model.

3. mu is back-projected in XS on the sphere





xS =
ξ+
√

1+(1−ξ2)(x2
u+y

2
u)

x2
u+y

2
u+1 xu

yS =
ξ+
√

1+(1−ξ2)(x2
u+y

2
u)

x2
u+y

2
u+1 yu

zS =
ξ+
√

1+(1−ξ2)(x2
u+y

2
u)

x2
u+y

2
u+1 − ξ

(9)

In order to estimate the camera extrinsic parameters

from line correspondences, we first map line features

from planar images on the sphere. Under the spheri-

cal mapping, each line feature on the sphere locates on

a great circle which is the intersection of the sphere

and a plane passing through the center and the corre-

sponding 3D line. Obviously, line features have different

geometric representations in heterogeneous planar im-

ages (linear in perspective, non-linear in catadioptric

or fish-eye), but similar geometric nature on the sphere

(great circle), simplifying the processing of lines among

multiple heterogeneous views.

x

z
y

x

z
y

Camera

Convex mirror/Lens

Fig. 3. Axis conven-
tion
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Fig. 4. Unified image formation

1) world points in the mirror frame are projected onto
the unit sphere, (X )Fm

−→ (X s)Fm
= X

‖X‖ =

(Xs, Ys, Zs)
2) the points are then changed to a new reference frame

centered in Cp = (0, 0, ξ), (X s)Fm
−→(X s)Fp

=
(Xs, Ys, Zs + ξ)

3) we then project the point onto the normalised plane,
m = ( Xs

Zs+ξ , Ys

Zs+ξ , 1) = !(X s)
4) the final projection involves a generalised camera

projection matrix K (with [f1, f2]
" the focal length,

(u0, v0) the principal point and α the skew)

p = Km =




f1η f1ηα u0

0 f2η v0

0 0 1


m = k(m) (1)

A generalised camera projection matrix indicates we are
no longer considering the sensor as a separate camera and
mirror but as a global device. This is particularly important
for calibration because it shows that f and η cannot be
estimated independently. We will note γi = fiη.

We will call lifting the calculation of the X s correspond-
ing to a given point m (or p according to the context) :

!−1(m) =




ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 y
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 − ξ


 (2)

TABLE I

UNIFIED MODEL PARAMETERS

ξ η
Parabola 1 −2p

Hyperbola d√
d2+4p2

−2p√
d2+4p2

Ellipse d√
d2+4p2

2p√
d2+4p2

Planar 0 -1
d : distance between focal points

4p : latus rectum

TABLE II

MIRROR EQUATIONS

Parabola
p

x2 + y2 + z2 = z + 2p

Hyperbola
(z+ d

2
)2

a2 − x2

b2
− y2

b2
= 1

Ellipse
(z+ d

2
)2

a2 + x2

b2
+ y2

b2
= 1

Plane z = − d
2

With ’−’ for a hyperbola and ’+’ for an ellipse :

a = 1/2(
p

d2 + 4p2 ± 2p) b =

q
p(

p
d2 + 4p2 ± 2p)

a) Validity for fish-eye lenses: In [13], the authors show
that the unified projection model can approximate fisheye
projections. A point imaged by perspective projection can
be written:

mu = (x, y, 1) = (
X

Z
,
Y

Z
, 1)

with ξ = 1, the same point imaged by the unified projection
model gives:

md = (
X

Z + ‖X‖ ,
Y

Z + ‖X‖ , 1)

By algebraic manipulation, we obtain the following relation:

ρu =
2ρd

1 − ρ2
d

, with ρ =
√

m2
x + m2

y

which is the division model, known to approximate a large
range of fisheye lenses [2].

b) Validity for spherical mirrors: A spherical sensor
does not have a single viewpoint. However the results
obtained by approximating it by a single projection center
give satisfying results [7].

III. PROJECTION MODEL

Compared to the theoretical model, an extra distortion
function is added that models the misalignment between the
mirror and camera but also the telecentric distortion (ie. the
deviation of the telecentric lens’s projection function from
the ideal, orthographic projection model) for the parabolic
case. The different transformations that intervene and the
associated unknowns (Fig. 2) are:

1) rotation and translation from the grid reference frame
to the mirror reference frame (extrinsic parameters),

2) reflexion on the mirror and projection of the points on
the normalised plane (mirror parameter ξ),

3) application of the distortion induced by the lens(es)
(distortion parameters),

4) projection in the image with the generalised camera
projection matrix (camera intrinsic parameters).

Had we considered the system as a separate mirror and
camera, the distortion would have been applied before the
collineation induced by η. The effect is however the same as
it consists only in a change of variable.Table 1 Mirror parameters (retrieved from [37])

2.2 Line detection and matching

We have recently developed an approach of line match-

ing across images captured by heterogeneous cameras

[31]. Line correspondences are searched by an affine in-

variant measure of similarity computed from point cor-

respondences on the sphere. This method can be sum-

marized in three stages

2.2.1 Detection and matching of spherical points

The detection of scale-invariant-feature-transform (SIFT)

points on the sphere was proposed in [11] to preserve

the spherical affine transformation and process the vi-

sual information without introducing any deformation.

It consists of the following steps

1. Map the original image on the sphere with (θ, ϕ)

parameterization.

2. Compute the spherical scale-space representation of

the spherical image and then the spherical difference-

of-Gaussians (DoGs).

3. Extract the local extrema from the DoGs. Each ex-

tremum is detected by comparing a point to its 26

neighbors in 3x3 spherical grids at the current and

adjacent scales.

4. Calculate the spherical descriptor of each extracted

keypoint. This descriptor is created from orientation

histograms of the region around the keypoint.

Once the keypoints and their descriptors are obtained,

we can find the matched points between two images

using the method proposed by Lowe in [30].

2.2.2 Line extraction

The extraction of lines in images captured by a cata-

dioptric camera was presented in [7]. The extraction

process both planar and spherical images as follows

1. Extract edges in the original image using Canny

edge detector.
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Fig. 2 Two lines with point correspondences in their neigh-
borhood in spherical space

2. Link edge points into chains with a threshold of min-

imal chain length.

3. Split chain which does not correspond to a unique

line into sub-chains as each chain after the second

step may contain the projection of different 3D lines.

4. Merge sub-chains which belong to the same line as

sub-chains after the third step may be segments of

a single line.

This algorithm was then extended to other wide-

angle cameras such as fish-eye and Ladybug cameras.

2.2.3 Line matching through point correspondences

Once point correspondences and line features are avail-

able in two images, we can search line correspondences

using the matching approach proposed in [31]. In this

method, the similarity between two lines l1 and l2 is

computed from point correspondences pi and qi in their

neighborhood as illustrated in figure 2.

2.3 Linear estimation of orientation and translation

2.3.1 Camera orientation from vanishing points

The detected lines are projected on the sphere as great

circles. Great circles corresponding to parallel lines in

3D space intersect theoretically at two antipodal points,

namely vanishing points. As lines in our images are

mostly horizontal or vertical in 3D scene, we obtain

two bundles of great circles on the sphere, from which

we extract two types of vanishing points, i.e. horizontal

and vertical by the convergence of each bundle as illus-

trated in figure 3. Next, vanishing points between two

images are matched based on their horizontal or verti-

cal direction. As the coordinates of a vanishing point

on the sphere also define the direction of the corre-

sponding set of parallel lines in 3D space, the camera

orientation can be estimated from at least two orthog-

onal vanishing points. In other words, vanishing points

Fig. 3 Fish-eye images mapped to spherical images. Vanish-
ing points of horizontal and vertical lines are colored red and
blue respectively.

in two spherical images are related by the rotation be-

tween two camera frames. As a consequence, the rota-

tion R between two cameras a and b can be computed

from their matched vanishing points Vi
a and Vi

b ∈ S2

(i = 1...n where n ≥ 2) using a closed-form solution

similar to that used in [22].

[V1
b ...V

n
b ] = R[V1

a...V
n
a ] (10)

2.3.2 Camera translation from line images

The multiple-view geometry of lines in planar images

has been well studied [20,32]. In this section, we de-

velop the multiple-view geometry of lines on the sphere

in a similar manner to [53] and derive a linear algo-

rithm which permits the estimation of translations from

known rotations and line correspondences.

Consider m spherical cameras centered at Ci ∈ IR3

(i = 1...m with m ≥ 3) as illustrated in figure 4. A line

in 3D space L ∈ IR3 is projected to spherical images

as great circles li ∈ S2 and corresponding unit normals

ni ∈ S2. Each normal ni originates at Ci and is per-

pendicular to the 3D plane passing through L and Ci

. L can be expressed vectorially by L = X + µd where

X,d ∈ IR3 and µ ∈ IR. All these coordinates are inho-

mogeneous.

Let the coordinate system origin be at the first cam-

era center C1 and [Ri|ti] represent the rotation and

translation between Ci and the origin (hence [R1|t1] =

[I|0]). As the line L lies on the planes passing through
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Fig. 4 Line projection in spherical cameras. The 3D line L
is projected to spherical images as great circles with corre-
sponding unit normals ni.

great circles li and perpendicular to normals ni, we ob-

tain the next relation in which L is expressed in {C1}
and ni in {Ci}

nT
i (RiL + ti) = 0 (11)

Consider a triplet of cameras consisting of the first

one and two others a and b. We denote such triplet by

(1,a,b) where 2 ≤ a, b ≤ m and a 6= b. The trilinear

relation among three views 1, a and b can be built up

from equation (11) with i = 1, a, b and rewritten as

follows

AL̂ = 0 (12)

where

A =




nT
1 0

nT
aRa nT

ata
nT
bRb nT

b tb


 and L̂ = (LT, 1)T

The right null space of A must be one-dimensional

subspace, i.e. a line in 3D space, A is of rank 2. This

results in a linear dependence among three rows r1,r2
and r3 of A which can be written as r1 = αr2 + βr3.

Noting that the upper right element of A is r14 = 0, we

can select the coefficients α = γtTb nb and β = −γtTana
for some scalar γ. This can be applied to the first three

columns of A to obtain the following relation

nT
1 = αnT

aRa + βnT
bRb (13)

n1 = αRT
ana + βRT

b nb (14)

n1 = γtTb nbR
T
ana − γtTanaR

T
b nb (15)

[n1]×RT
anan

T
b tb − [n1]×RT

b nbn
T
ata = 0 (16)

Equation (16) relates the line normal correspon-

dences in a triplet of views (1, a, b) to each other through

the transformations [Ra|ta] and [Rb|tb] among those

views. It allows the linear estimation of translations ta,b
from rotations Ra,b and normal correspondences n1,a,b.

Due to the dependence among rows of equation (16),

the minimum number of lines to estimate ta,b is three.

With one line correspondence across m cameras,

there are (m − 1)(m − 2)/2 triplets of views (1, a, b)

or trilinear relations in equation (16) and so on for ad-

ditional line correspondences . These trilinear relations

can be concatenated in a single system that permits the

linear estimation of all translations t2...m from all rota-

tions R2...m and normal correspondences n1...m using

the Singular Value Decomposition (SVD).

2.4 Line reconstruction

With the aim of refining the estimated camera poses,

we reconstruct the 3D features which are, together with

the extrinsic parameters of cameras, an initial estimate

of the bundle adjustment. Using the spherical mapping

of line features, the reconstruction of 3D lines by inter-

secting 3D planes passing through great circles, i.e. line

correspondences on the sphere, is more straightforward

than by using line correspondences in planar images,

especially for catadioptric and fish-eye images.

Fig. 5 Line reconstruction by the intersection of the 3D
planes perpendicular to line normals ni on the spheres

Each line in 3D space is reconstructed by the in-

tersection of the 3D planes perpendicular to line nor-

mals on spherical images . From the camera transfor-

mations [Ri|ti] and the line normal correspondences ni
(i = 1...m), each 3D line can be estimated as follows

NL̂ = 0 (17)

where
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N =




nT
1 0

nT
2R2 nT

2 t2
...

...

nT
mRm nT

mtm


 and L̂ = (LT, 1)T

The SVD of matrix N = UDVT can be used to define

the line intersection of 3D planes. First, two columns

of V corresponding to two largest singular values de-

fine the normals to two planes subtended by this line;

therefore, the line direction can be computed by the

cross product of these normals. Then, the singular vec-

tor corresponding to the smallest singular value defines

a point on the line.

2.5 Bundle adjustment

Bundle adjustment is an optimization technique which

is usually used to refine simultaneously the parameters

of cameras and 3D structure by minimizing the repro-

jection error of 3D features [17,8,13,57,42,61]. One of

the most effective non-linear least squares techniques

for bundle adjustment is Levenberg-Marquardt algo-

rithm [43].

Bundles of projection rays are defined through the

parameters of cameras and 3D lines as follows

– Each of m cameras is parametrized by a 7-vector

ci=(r0, r1, r2, r3, tx, ty, tz)i (i = 1...m) where (r0, r1,

r2, r3) is the quaternion representation of the rota-

tion and (tx, ty, tz) is the conventional translation.

– Each of nL 3D lines is represented by a 6-vector

Lk=(e1x, e
1
y, e

1
z, e

2
x, e

2
y, e

2
z)
k (k = 1...nL) established

by two different points e1k and e2k on that line.

The parameter vector in the optimization embodies
all parameters describing m cameras and nL lines

W = (c1 . . . cm,L
1 . . .LnL) (18)

Bundle adjustment minimizes the following repro-

jection error with respect to all parameters of cameras

and 3D lines. This error represents the orthogonality

between the unit normal of the image line mapped on

the sphere n̂ki and the spherical projection of two end-

points of the 3D line (figure 6).

arg min
ci,Lk

m∑

i=1

nL∑

k=1[(
n̂ki ·

Rie
1k + ti

||Rie1k + ti||

)2

+

(
n̂ki ·

Rie
2k + ti

||Rie2k + ti||

)2
]
(19)

The minimization is solved by Levenberg-Marquardt

algorithm. The initial guess W0 is provided by the cam-

era transformation estimation and 3D reconstruction

stages.

1e

2e

L

n̂ki

Fig. 6 Reprojection error on the sphere. The image line and
its unit normal n̂ki on the sphere are in red color. The 3D
line L and the spherical projection of its two end-points (e1,
e2) are in blue color. The reprojection error is defined by the
orthogonality between n̂ki and (e1, e2) mapped on the sphere.

If all cameras have overlapping FOV, i.e. all lines are

visible in every image, each row of the Jacobian matrix

is calculated for each line in each camera as follows

∂dL
∂W

= [
∂dL
∂c1

. . .
∂dL
∂cm

,
∂dL

∂L1 . . .
∂dL
∂LnL

] (20)

Denoting Υ = ∂dL
∂c and Ω = ∂dL

∂L , the Jacobian is

given by

J =




Υ 1
1 0 . . . 0 Ω1

1 0 . . . 0

0 Υ 1
2 . . . 0 Ω1

2 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . Υ 1
m Ω1

m 0 . . . 0
...

...
...

...
...

...
...

...

ΥnL1 0 . . . 0 0 0 . . . ΩnL1
0 ΥnL2 . . . 0 0 0 . . . ΩnL2
...

...
. . .

...
...

...
. . .

...

0 0 . . . ΥnLm 0 0 . . . ΩnLm




(21)

Cameras with partially non-overlapping FOV can be

divided into different nodes of cameras with overlapping

FOV. The vector of parameters becomes

W = ( c1 . . . cm,L
1
node1 . . .L

nL1

node1,

L1
node2 . . .L

nL2

node2, ...,L
1
nodeN . . .L

nLN
nodeN ) (22)

Each row of the Jacobian matrix is then computed

for each line visible in each camera of each node.
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3 Experimental results

3.1 Simulated data

As the rotation estimation from vanishing points of par-

allel lines has been evaluated in the state of the art,

we examined only the result of our line-based transla-

tion estimation. This simulation also compares the pre-

cision of our line-based translation estimation to that

of 2-point algorithm [7], which had been proved to out-

perform the well known 5-point algorithm [41] in both

precision and computing time. Moreover, we examined

the performance of translation computation using both

points and lines, which is a linear integration of our

line-based algorithm and the 2-point algorithm as fol-

lows





[n1]×RT
anan

T
b tb − [n1]×RT

b nbn
T
ata = 0

(Rap1 × pa)Tta = 0

(Rbp1 × pb)
Ttb = 0

(23)

where pi are point correspondences in camera Ci.

First, we created 100 3D points and 100 3D lines

randomly distributed in a sphere with 5-meter radius.

Four cameras with an average baseline of 0.5 meter ob-

served these features at a distance of 10 meters. The

feature correspondences were supposed to be known.

The translations among these cameras were recovered

using 2-point, line-based and point-and-line-based ap-

proaches. Points in 2-point algorithm and line normals

in our method are on unitary spheres, thus may be spec-

ified by elevation and azimuth angles. Gaussian noise of

zero mean and standard deviation varying from 0 to 0.1

degree was added to two angles of every point and ev-

ery normal. The same rotations with estimation error

from 0 to 0.1 degree in all roll, pitch and yaw angles

were used for all of the methods in comparison. Figure

7 illustrates the average angular error after 1000 runs.

This result shows that the line-based algorithm is not

only simpler than the point-based one (as the line-based

algorithm requires uniquely lines for both rotation and

translation calculations while the other requires lines

for rotation and points for translation) but also more

robust to noise. In addition, translation recovery from

both points and lines performed better than the others

using only one type of primitive as this combination

included more data in the linear estimation system.

3.2 Real data

In this section, we present the results obtained from

several image sequences in both indoor and outdoor

scenes. As presented in section 2.2, we could proceed
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Fig. 7 Translation estimation error by 2-point [7] (red),
lined-based (green) and point-and-line-based (blue) algo-
rithms

an automatic line matching to obtain correspondences

for the estimation of camera transformation. However,

in the following experiments, as the calibration is offline

and line correspondences are not compulsorily numer-

ous, they are provided manually.

3.2.1 Extrinsic calibration of a fish-eye camera

From an image sequence of a calibration pattern cap-

tured by a fish-eye camera as illustrated in figure 8, the

camera rotations and translations were recovered lin-

early using line correspondences. The aim of using the
calibration pattern is to compare the extrinsic parame-

ters estimated by our algorithm to those obtained from

the omnidirectional calibration toolbox [37]. The differ-

ence between our approach and the toolbox is given in

table 2. The difference between two rotations was de-

fined by the difference of their angles in degrees and

the difference of their axes in degrees. The difference

between two translations was defined by the percent-

age difference of their magnitudes (i.e. the difference

between two magnitudes divided by the average of two

magnitudes) and the difference of their directions in

degrees. It can be seen that the result of line-based ex-

trinsic calibration is close to that of the calibration tool-

box. The 3D reconstruction of the calibration pattern

and the camera poses are illustrated in figure 9.
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Fig. 8 Sample images of a checkerboard captured by a fish-
eye camera with line correspondences

Ri Angle Axis ti Magnitude Direction
R2 0.05 0.45 t2 2.30 1.47
R3 0.03 0.24 t3 0.84 1.82
R4 0.11 0.48 t4 6.15 0.98
R5 0.08 0.50 t5 1.10 2.66
R6 0.02 0.37 t6 2.12 1.34

Table 2 Comparison of extrinsic parameters obtained from
our line-based approach and the calibration toolbox [37] with
the checkerboard sequence in figure 8. Two rotations are com-
pared by the difference of angles in degrees and axes in de-
grees. Two translations are compared by the difference of
magnitudes in percents and directions in degrees.

3.2.2 Extrinsic calibration of heterogeneous cameras

A system of six cameras, i.e. three perspective and three

fish-eye, observed the same scene as illustrated in figure

10. The extrinsic parameters among these cameras were

recovered from 13 line correspondences and refined by

bundle adjustment, which converged after 3 iterations.

A snapshot of the reconstruction is illustrated in figure

11.

In order to evaluate the up-to-scale scene recon-

struction, we verified the dimension of the reconstructed

doors (table 3). Four doors with extracted borders in

figure 10 from left to right were denoted Door 1 to 4 re-

spectively. Using the height-to-width ratio of each door

obtained from the reconstruction and its real width, we

deduced and compared its estimated height to its real

Fig. 9 Camera poses and 3D reconstruction of the checker-
board shown in figure 8

height. The result before and after bundle adjustment

are denoted “LIN” and “LIN+BA” respectively. The fi-

nal error is less than 0.5% for Door 2 to 4. However, the

error for Door 1 is important due to the distortion in

the fish-eye images, especially as Door 1 is close to the

border of the image. The reason is that stronger distor-

tion results in less accuracy in the back-projection of

the image features from the image plan to the sphere

and hence the rotation/translation estimation and 3D

reconstruction are less precise. The reprojection of 3D

lines in the first fish-eye image is shown in figure 12. It

can be noticed that the reprojection error was reduced

by bundle adjustment.

Door 1 Door 2
LIN (cm) - error (%) 231 - 13.79 207 - 1.97
LIN+BA (cm) - error (%) 228 - 12.31 204 - 0.49
Real height (cm) 203 203

Door 3 Door 4
LIN (cm) - error (%) 205 - 0.98 208 - 2.46
LIN+BA (cm) - error (%) 204 - 0.49 203 - 0.00
Real height (cm) 203 203

Table 3 Reconstruction result of the door sequence shown
in figure 10 by line-based approach

As mentioned in the simulation section, it is possi-

ble to integrate point correspondences in the line-based

translation estimation. Hence, this section presents an
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Fig. 10 Perspective and fish-eye images with line correspon-
dences

evaluation of different approaches of extrinsic parame-

ter estimation: 5-point [41], line-based and point-and-

line-based algorithms. These techniques were used to

recover the transformation among three cameras, i.e.

two fish-eye and one perspective from point and line

correspondences (figure 13).

Similarly to the previous experiment, we verified the

height of four reconstructed doors (table 4). The line-

based approach provided better result than 5-point al-

gorithm and there was no important difference between

the estimation using only lines and the estimation by

combining points and lines. The reason of this might be

that line-based estimation suffers the effect of noise less

than point-based one, and consequently adding point

feature did not improve significantly the result of line-

based estimation. However, the result was not satisfac-

tory for the first door as it was near the image border

where there was much distortion, especially in fish-eye

images.

The reprojection of 3D lines into one of the fish-eye

views is illustrated in figure 14. As can be seen from

this figure, the point-based approach provided signifi-

cant reprojection error whereas line-based and point-

and-line-based approaches performed well and did not

differ from each other.

Fig. 11 Camera poses and 3D reconstruction of the doors
shown in figure 10

 

 
LIN
LIN + BA Geo

Fig. 12 Reprojection of some reconstructed 3D lines to the
first fish-eye image in figure 10 with (blue) and without (red)
bundle adjustment

3.2.3 Extension to heterogeneous cameras with

partially non-overlapping FOV

In order to calibrate a system of cameras with partially

non-overlapping FOV, we propose the fusion of camera

nodes as illustrated in figure 15. As the estimation of

camera poses based on lines requires correspondences

among at least three views, each node must consist of

at least three cameras with overlapping FOV, i.e. ob-

serving the same lines in 3D space; and two different

nodes in the network must share at least three common
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Fig. 13 Fish-eye and perspective images with point and line
correspondences

Door 1 Door 2
5-point (cm) - error (%) 242 - 19.21 199 - 1.97
Line (cm) - error (%) 228 - 12.31 206 - 1.48
Point-and-line (cm) - error (%) 229 - 12.81 206 - 1.48
Real height (cm) 203 203

Door 3 Door 4
5-point (cm) - error (%) 215 - 5.91 212 - 4.43
Line (cm) - error (%) 206 - 1.48 200 - 1.48
Point-and-line (cm) - error (%) 206 - 1.48 204 - 0.49
Real height (cm) 203 203

Table 4 Reconstruction result of the door sequence shown
in figure 13 by different approaches

cameras in order that they can be fused into the same

coordinate system at the same scale. These conditions

are usually satisfied when using large FOV cameras.

The extrinsic parameters of each camera node are re-

covered by the proposed line-based approach and then

all cameras in the network are fused into a single space

with the origin possibly chosen at the first camera of

the first node.

The 3D scene presented in figure 16 was captured by

different perspective and fish-eye cameras. According to

the 3D features observed by each camera, this hybrid

system was divided into three camera nodes as shown

in three columns of figure 17. The cameras in each node

captured the same 3D lines. The first and second nodes

had three common cameras, i.e. the first three cameras

of node 2. The second and the last nodes shared three

cameras, i.e. the last three cameras of node 2.

The camera orientation in each node was estimated

from vanishing points of parallel lines. Especially, the

rotations of cameras appearing in different nodes were

recovered by combining the vanishing points detected

in these nodes. The camera translations were computed

by the fusion of linear relations of line normals in three

 

 

Points

Lines

Points+Lines

Fig. 14 Reprojection of some reconstructed 3D lines to the
first fish-eye image in figure 13. The camera poses were
computed by different approaches: 5-point (red), line-based
(green) and point-and-line-based (blue).

nodes. Using the extrinsic parameters of the cameras,

three different planes belonging to three facades (col-

ored red in figure 16) were reconstructed in 3D space.

A snapshot of the camera poses and 3D planes are pre-

sented in figure 18. As these three planes are parallel in

real scene, we computed the direction and evaluated the

parallelism of three reconstructed planes. Noting these

planes by A, B and C from left to right, the obtained

result shows quite small error in the relative orientation

of the reconstructed 3D planes.

– Normal of plane A = [−0.0026,−0.1496,−0.9887]T

– Normal of plane B = [0.0144,−0.1737,−0.9847]T

– Normal of plane C = [0.0432,−0.1659,−0.9852]T

– Angle between planes A and B = 1.71 degrees

– Angle between planes B and C = 1.71 degrees

– Angle between planes C and A = 2.79 degrees
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Fig. 15 Cameras with partially non-overlapping FOV. Each
node is composed of at least three cameras which are linked
together by baselines of the same style and color. Two differ-
ent nodes share three common cameras.
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Fig. 16 Panoramic view

4 Conclusions

This paper presented a method to estimate the extrin-

sic parameters of a system of heterogeneous cameras,

which can be established from several types of cameras

such as perspective, catadioptric and fish-eye. The ex-

trinsic parameters are initially computed by a linear

approach based on line images and refined by bundle

adjustment. The proposed approach was validated with

both simulation data and real image sequences. Several

experiments show that using line feature for the esti-

mation of camera extrinsic parameters provides better

results than using point feature, especially when dealing

with cameras with strong distortion. As lines are om-

nipresent in urban scenes and more stable than points

regarding the detection and matching among hetero-

geneous images, this line-based technique of extrinsic

calibration is a simple and useful tool to determine the

topology of a camera network. Lastly, it is possible to

integrate point feature in the translation computation

to improve the estimation accuracy.
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