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Abstract In this paper, we consider the problem of 2D hu-
man pose estimation on stereo image pairs. In particular,
we aim at estimating the location, orientation and scale of
upper-body parts of people detected in stereo image pairs
from realistic stereo videos that can be found in the Inter-
net. To address this task, we propose a novel pictorial struc-
ture model to exploit the stereo information included in such
stereo image pairs: the Stereo Pictorial Structure (SPS). To
validate our proposed model, we contribute a new annotated
dataset of stereo image pairs, the Stereo Human Pose Es-
timation Dataset (SHPED), obtained from YouTube stereo-
scopic video sequences, depicting people in challenging poses
and diverse indoor and outdoor scenarios. The experimental
results on SHPED indicates that SPS improves on state-of-
the-art monocular models thanks to the appropriate use of
the stereo information.

1 Introduction

Articulated Human Pose Estimation (HPE) is the task of ob-
taining the spatial configuration of human body parts from
images. There is an increasing interest in HPE in highly un-
controlled imaging conditions [21.[16]], but despite the re-
cent advances achieved, the problem is still open. Recover-
ing the human pose from a single image is the most popu-
lar technique to predict positions of body joints [6]. How-
ever, several research areas use other methods such as single
depth images [60.45], silhouettes for 3D reconstructed pose
[2ll62], Latent Variable Models [51], gradient combination
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Fig. 1 Objective of this work. Our goal is to estimate the 2D pose
of people in stereo videos. (Top row) Stereo pair from a video hosted
in YouTube. (Bottom row) From left to right, disparity map computed
from the stereo pair, and estimated pose of the upper-body (represented
by sticks).

and color segmentation cues [26], or Human Pose Coesti-
mation [[15].

Recently, the popularity of stereo video has grown sig-
nificantly, and it may become an interesting market for home
users in coming years [48]. Stereo image pairs provide ex-
tra information that can be employed to improve the re-
sults obtained by monocular approaches. This paper pro-
poses an extension of the Eichner et al. [16] method to cal-
culate 2D pose estimations in stereo image pairs as shown
in Fig. [TI]— we coin this problem Stereo Human Pose Esti-
mation (SHPE).

The contribution of this paper is twofold. First, we pro-
pose a new technique to automatically detect and estimate
the 2D pose of humans in stereo image pairs. The proposed
method is based on a similarity constraint that promotes a
collaboration between two pose estimators. We show exper-
imentally that our SHPE proposal improves the accuracy of
the estimated poses when compared to standard HPE tech-
niques running independently on each image (see Fig. [2).
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Fig. 2 Monocular HPE vs Stereo HPE. (a) Poses estimated by a monocular HPE model [16]], where each view is processed independently. Note
that a different pose is found for each image of the stereo pair. (b) Poses estimated by our stereo HPE model. In this case, a common pose is

estimated for both images of the stereo pair.

See for example top row of Fig. 2la where a state-of-the-
art HPE method (i.e. [16]) fails on one of the images of
the stereo pair but it is correctly estimated by our approach,
Fig2]b.

Our second contribution is a dataset for the SHPE prob-
lem. To experimentally validate our approach, we have cre-
ated a new annotated dataset of 630 stereo image pairs from
stereo videos depicting people in different backgrounds, cloth-
ing, lighting or locations in the image frames. The dataset
covers upright people with a great variety of arms poses,
covering the space of possible configurations quite uniformly.

The remaining of this paper is organized as follows: in
section Q] we discuss related previous work; in section E] we
describe the basis of Pictorial Structures (PS) and Eichner
et al.’s framework [16]); the methodology is outlined in sec-
tion ] proposing stereo adapted models for people detec-
tion, foreground-highlighting and inference; section [3] de-
scribes and presents the experimental results; and, finally,
the conclusions are outlined in section

2 Related works

Human Pose Estimation has been intensively studied in the
field of Computer Vision for the last 20 years [35]. However,
the problem of Human Pose Estimation in uncontrolled en-
vironments is still an open and challenging problem. Several
approaches have been reported, and significant improvements
have been obtained in both data representation and model
design. Holistic shapes, silhouettes in particular, are com-
mon features for pose estimation. Current approaches achieve

state-of-the-art performance by combining silhouettes with
new features or constraints, including motion templates [38]],
pedestrian detectors [S], shape-contents [[1]] and user interac-
tion [23]].

A well-known approach consists on assembling body
part detectors in a consistent configuration with the body
structure. Such configuration is not defined by physical con-
straints but is described by soft restrictions. Pictorial Struc-
tures (PS) [18]] are generative arrangements of parts, where
each part is detected with its specific detector. A popular
framework for HPE using PS models is the progressive search
space reduction by Ferrari et al. [21]]. This framework, based
on the work of Ramanan [37]], progressively reduces the
search space for body parts to greatly increase the chances
for correct pose estimation. Eichner and Ferrari [13] extend
the previous approach by improving the person-specific ap-
pearance model used in the PS. Besides improving the ap-
pearance of body parts with densely sampled shape con-
text descriptors, Andriluka et al. [4] propose to relate body
parts in the PS model by using Gaussian distributions. Pre-
vious results with PS-based models can be improved by us-
ing adaptive pose priors [40] and cascades of PS [41]. Yang
and Ramanan propose in [S6] a tree-structured model with
discriminatively trained parts that allows both people detec-
tion and human pose estimation simultaneously, in contrast
to some of previous approaches (e.g. [21]) that rely on the
detection of upper-bodies as a preprocessing stage. Zuffi et
al. [63] introduce the Deformable Structures model where
body parts can suffer non rigid deformations. We will see
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later that we also adopt the use of PS models in our pro-
posal.

Pictorial structures have been recently extended to deal
with multiple views for articulated 3D human pose estima-
tion. Amin et al.present in [3] a mixture of PS for 2D HPE
on monocular setups that is also generalized for 3D HPE
with multiple cameras. Nearly at the same time, Burenius et
al. [11] introduce the concept of 3D Pictorial Structures as
an extension of PS for estimating 3D human pose given a
set of calibrated cameras. Many works rely on several views
to improve the results. A popular approach for solving the
problem of pose ambiguity in multi-view pose estimation
is to increase the field of view with multiple images taken
simultaneously using calibrated cameras [47,/57,281159]. Al-
though they achieve excellent accuracy, potential applica-
tions are restricted to a fixed, calibrated multi-camera sys-
tem.

The emergence of new active depth sensors (such as Time
of Flight Cameras and the Kinect sensor) has led to the de-
velopment of novel techniques exploiting this type of in-
formation. One approach is based on decision forests that
are a classic method for inductive inference which have re-
cently regained popularity. One of the key contributions in
this context is the work of Shotton et al. [45], where the
segmentation of the human body into parts is carried out
by using a forest on single depth images. Other works use
a random forest classifier to deal with the variation in ap-
pearance of body parts in 2D images [28] or a conditional
regression forest model [49] that integrates dependency re-
lationships between output variables by using a global la-
tent variable. Lastly, Pons-Moll et al.’s work [36] introduce
the Metric Space Information Gain (MSIG), a new decision
forest training objective designed to directly optimize the
entropy of distributions in a metric space. Other methods
recognise 3D human poses from depth images, using tech-
niques such as point cloud matching [8.I58]], constrained op-
timization [61]] or constrained inverse kinematics [42]. De-
spite the good precision achieved by active stereo sensors,
they require a controlled illumination since ambient light in-
terferes with the sensor.

It is well known that the filming industry has recently
adopted the 3D video as a new standard. In contrast to depth
sensors, 3D video is normally recorded using a traditional
stereo vision scheme: a pair of horizontal video cameras
with short baseline. This configuration, that is initially se-
lected to produce the visual perception of depth in viewers,
can be exploited to improve state of the art HPE estima-
tors using monocular images. The goal of this work is to
extend the Eichner et al.’s HPE method [16] (summarized
in Sec. [3.2) to take advantage of the additional information
available in modern 3D films so as to detect and estimate the
2D pose of humans more reliably.

In general, most previous works carry out the estimation
of the human pose for each person independently (includ-
ing works based on other paradigms than Pictorial Struc-
tures [33L134]]). The exceptions are [14], which models the
occlusion interactions between nearby people in an image,
[44], which estimates the human pose in a stereo image pair
but is restricted to a single person and the dataset (H2view)
is limited to eight subjects in three locations and, finally,
[[LS]] which deals with multiple people that are in a common,
but unknown, pose.

Although the main goal of this paper is 2D pose esti-
mation, some works use stereo cameras to derive 3D poses.
However, its use is limited to very particular scenarios. The
authors of [24] address the problem of 3D HPE by combin-
ing silhouettes, from two synchronized wide-baseline cam-
eras, in a Bayesian Mixture Expert framework, where the
models are trained from synthetic data. In [55] the 3D body
pose is estimated from sequences of silhouettes represented
by the silhouette history image descriptor, which helps to
relate binary silhouettes with depth images within a hierar-
chy of clusters of body poses. In both previous works ([24,
S3]), the use of silhouettes as input data limits its range of
applicability to scenarios with static cameras, in contrast to
our approach which can handle multiple people in scenarios
with dynamic backgrounds. The system presented in [50]]
for 3D HPE on stereo sequences relies on the computation
of 3D coordinates of body points based on the estimated dis-
parity, and an ellipsoid-based body model that is fitted to
data by using a Variational Expectation- Maximization ap-
proach. Since the authors work on video sequences, the body
pose estimated in the previous frame is used to initialize the
current pose. Random forests are used in [31] to estimate
the 3D body pose from stereo images in two steps. Firstly, a
grid-based shape descriptor is computed from depth maps to
predict the orientation of the body. Then, such orientation in-
formation is used to select a pretrained random forest which
is specialized in such body orientation. Although the authors
present promising results on their custom dataset of ten peo-
ple performing controlled movements, we cannot predict the
behaviour of their method on uncontrolled scenarios, as the
ones used in this paper. Note that neither [50] nor [31] make
use of RGB data during the pose estimation process and,
therefore, a good quality of the estimated depth maps is re-
quired to obtain accurate results, even in controlled indoor
scenarios. In contrast, in this paper, the combination of both
RGB and depth information allows us to deal with a wide
range of body poses and very challenging imaging condi-
tions.

In our work, we deal with stereo videos available on the
Internet and, instead of using either calibrated cameras or
depth sensors (as required by other approaches), we estimate
disparity between the stereo image pairs to isolate people
from background (in combination with an upper-body de-
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tector) and, then, we apply a new Stereo Pictorial Structure
model that simultaneously estimates the body pose in both
viewpoints.

3 Human Pose Estimation using Pictorial Structures

This section provides the basis involved in HPE using Pic-
torial Structures (PS).

3.1 Pictorial Structures for HPE

Let us consider that the body parts of a person are repre-
sented by a Conditional Random Field [30] as proposed in
[18]. Each part [, is represented by a rectangular image patch,
whose position is parametrized by its spatial location (x,y),
orientation 0, scale s, and sometimes foreshortening [18,
10]). The tuple (x,y,8,s) constitutes the state-space of the
nodes. The posterior P(L|I) of a configuration of parts L
given an image / is defined as

P(L|I) o< exp ( Y
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In the previous equation, ®,(I|l,,) is the unary potential as-
sociated to part /, and encodes the local image evidence for
such part in a particular position (likelihood). It depends on
appearance models describing how parts look like. The suc-
cess of PS for HPE depends strongly on having good ap-
pearance models, which limits the image positions likely
to contain a part. Among the best performing models we
find generic models based on gradients [4] and superpix-
els [41], as well as person-specific models derived automat-
ically from the image [13l37]. Kinematic constraints (e.g.
the lower arms must be attached to the upper arms) are en-
coded by the pairwise potential ¥,,(I,,l;) (i.e. a prior on
the relative position of two parts). In addition to kinematic
constraints, the pairwise potentials can encode complex rela-
tions as parts coordination [32] or self-occlusion constraints
[46].

Inference on the model returns either the single MAP
configuration L* = argmax; P(L|I) [4[18]] or the posterior
marginal distribution for each part [37]. Exact inference is
possible when the model is a tree [18l137.21/4], however,
some works have explored more complex topologies [22]] or
mixtures of trees [27].

3.2 Reducing the Search Space for HPE

Eichner et al. [[16] propose a pipeline that progressively re-
duces the search space for body parts to increase the chances
of correct 2D pose estimation — assuming that the torso is re-
stricted to be nearly vertical and non-profile. This involves

a generic detector using a weak model of pose to substan-
tially reduce the full pose search space; and employ Grabcut
on detected regions, proposed by the weak model, to further
prune the search space. Also, they rely on the human pars-
ing technique of Ramanan [37]], on which they build directly.
This model can be summarized in the following stages:

1. Human Detection and Tracking. Firstly, human upper-
bodies (i.e. head and shoulders) are detected in every im-
age (see Fig.[3]a), using a sliding window detector based
on the part-based model of Felzenszwalb et al. [20]. In
case video frames are processed, upper-body (UB) de-
tections are grouped over time and each resulting track
connects the detections of a different person in every
video shot. Detections contains information about the
rough position and scale of people in the image. Thanks
to such information, the set of possible (x,y) locations
of the body parts is reduced, and by fixing their scale, a
dimension of the Pictorial Structures’ state space is re-
moved entirely. In practice, for each detected person, the
state space is limited to a region of the image around the
detection, covering the possible arms extent of the per-
son. This image region is called the enlarged window.

2. Foreground Highlighting. In the second stage the search
for body parts is limited to the so called enlarged win-
dow. The search area is further reduced by exploiting
prior knowledge about the structure of the detection win-
dow, where some areas are very likely to contain body
parts, whereas other areas are very unlikely. This allows
the initialization of a GrabCut segmentation [39] to re-
move part of the background (see Fig. [3]b). Therefore,
the search space will be limited to the (x,y) locations
that lie within the foreground area determined by the
GrabCut segmentation.

3. Appearance Model Estimation. In the third stage, a person-
specific appearance model [[13] is learnt from a single
image based on two observations: (i) certain body parts
have rather stable location with respect to the detection
window (e.g. head and torso); (ii) often a person’s body
parts share similar appearance (e.g. upper arms).

4. Parsing. A body pose is estimated by running inference

with generic appearance models (edges) and person-specific

appearance models (computed in the third stage). The
image area to be parsed is restricted to the region out-
put of foreground highlighting (second stage). Explicit
search for body parts over scales is not necessary as the
person’s scale has been fixed during the first stage. For
each person detected in the image, this parsing stage de-
livers the posterior marginal distribution P;(x,y, 0) for
every body part (see Fig. [3lc—d).
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Fig. 3 Eichner et al. [16] overview. (a) Upper body detection: the output of the human upper-body detector (smaller rectangle) is enlarged
(bigger rectangle) for the next processing steps. (b) Foreground highlighting: the result of the segmentation considerably eliminates most of the
background clutter, what facilitates the later search of body parts. (c) Inference: the remaining pixels are labelled into body parts or background.
Red specifies the torso, blue the upper arms, green the lower arms and the head. Frequently, the colors are overlapped, in that case yellow specifies
the combination between lower-arm and torso, purple between upper-arm and torso, etc. (d) Stick fitting: the body pose is represented by straight
line segments (sticks) that are obtained from the body part segmentations in (c).

4 Stereo Human Pose Estimation using PS

The main drawback of Eichner er al.’s method [16] (sum-
marized in Sec. can be found in the Foreground High-
lighting stage. This stage is crucial since a percentage of the
pixels are removed for further processing. Removing par-
tial or full body parts during that stage prevents the pose
estimator from being able to correctly localize such body
parts. This usually happens when the color distribution of
the background is similar to some of the body parts.

As already indicated, the extra information available in
stereo sequences can be used in order to overcome these
problems. We propose an extension of the previous method
based on stereo information. First a person detector (Sec.
is run on both images of the stereo pair, in all video frames.
Then, a temporal association algorithm is applied to remove
false positives. This process is run independently on each
stereo pair. Thus, we then match tracks using a measure
based on the degree of overlapping of the detected bounding-
boxes (BB). Then, for each detected person, disparity in-
formation is computed in the detected regions. Disparity is
computed only in the subregions of the image with people
to speed up the processing. Using the computed disparity,
a segmentation method (Sec. [4.2)) is employed to separate
body pixels from background in both images. Finally, we
apply our stereo parsing model (Sec.[d.3)) to infer the pose.

Note that, although the input of the proposed pipeline
is a single stereo pair, the detection rate would improve and
the amount of false positives would decrease [16]] by exploit-
ing temporal smoothness of the stereo video. However, we
choose not to restrict our proposal to video sequences by in-
cluding temporal constraints in the PS model, thus making
the model ready for stereo pictures.

The rest of this section provides a detailed explanation
of the stages summarized above.

4.1 People Detection and Tracking

As firstly done by Ferrari et al.in [21]], we start by detect-
ing human upper-bodies in every frame to reduce the search
space. We use the upper-body detector released by the au-
thors of [16] at [S2]. This upper-body detector is based on
the successful Deformable Parts Model (DPM) of Felzen-
szwalb et al. [19]. A DPM contains several Histogram of
Oriented Gradients filters [12]] related by deformable edges.

We run the upper-body detector on each frame of the
stereo pair independently. Then, in order to remove false
positives, we carry out a tracking-by-detection process, as
in [16], which generates one track per potential person in
each stereo pair independently. Tracks are given a score based
on their length and detection score. Low scored tracks are
discarded for the subsequent stages. Finally, possible gaps
in tracks (due to misdetections, e.g. low contrast or profile
viewpoints) are filled in by interpolation. Fig. ] shows the
raw upper-body detections (top) and the output of the tracker
(bottom) on one camera of the stereo pair for a given se-
quence. Note how the false positives are removed after the
tracking.

Using the above calculated (most reliable) tracks inde-
pendently for each camera, it is necessary to match the tracks
in the left camera with the ones in the right camera. To do
so, for a given instant of time, we compute the intersection-
over-union (IoU) [17] of all the possible pairs of bounding-
boxes belonging to a different stereo pair. Then, we match
the tracks whose sum of IoU is maximum. In case the cam-
eras diverge, a more sophisticated procedure, as matching
of histograms of colour, should be used. However, our IoU-
based matching works since the majority of commercial stereo
cameras used for recording user-consuming videos have a
short base line.

4.2 Stereo Foreground-Highlighting

As reported by [21]], the location and scale information pro-
vided by an upper-body detection greatly constrains the space
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t=1

=15

Fig. 4 People detection and tracking. Bounding-boxes returned by the upper-body detector (top row) and final tracks (bottom row) in frames 1
(left column), 8 (middle column) and 15 (right column) of a stereo sequence. After the tracking process, false positive detections are removed,

and a single track is assigned to each person for the whole stereo sequence.
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Fig. 5 Stereo image pair rectification. Images in the top row are the
original left (a) and right (b) image pairs from one of the sequences
tested, and images in the bottom row show the result of rectification.
Please focus on the regions enclosed in red squares. It can be seen that
the line passing below number 3 in original left image crosses the num-
ber in the original right image. That vertical misaligment causes inac-
curacies in the block-matching stereo algorithm. However, the alig-
ment errors are greatly reduced after rectification.

of possible body parts. In order to reduce even more the
search for the inference, image foreground/background seg-
mentation algorithms, i.e. GrabCut [39], are extended to ex-
tract body parts from the clutter [16]. However, to segment
all possible arm poses is still a hard problem. Therefore,
we propose a new strategy to extract the person from the
background, helping to solve the arm segmentation problem.
Most of the image segmentation algorithms are based on a
Gaussian Mixture Model of a two-class image. It has the
potential for effective segmentation provided that the his-
togram of the image approximates a Gaussian mixture and
the parameters of the model can be estimated accurately.

Our proposal, coined Stereo Foreground Highlighting
(SFH), exploits stereo information to separate the image pix-
els of people from the background. Since we deal with stereo
videos downloaded from the Internet, recorded by commer-
cial cameras aimed at 3D filming purposes, perfect horizon-
tal alignment cannot be guaranteed since human brain does
not need it to estimate three-dimensional information (see
Fig. [j] for a real example). However, special care must be
taken on the alignment so as to obtain good results from
stereo block-matching algorithms. To solve that problem,
we apply the uncalibrated stereo image rectification method
available online at Mathworks’ website [[] It consists in col-
lecting interest point from a image pair (using SURF [9])
and then finding putative correspondences filtered by epipo-
lar constraints [25)]. The correspondences are employed to
compute the rectification transformations that produces a
proper horizontal alignment (see Fig.[5). The estimation of
the transformations is done once per video (using the first
frame), and then applied to the rest of the frames.

Then, disparity information [29] is computed only in the
enlarged image subregions (Fig. [6la) where the person has
been detected (instead of computing it in the whole image),
so as to speed up computation. The computed disparity map
D (Fig. @b) indicates for each pixel D, of the left im-
age the horizontal displacement required to obtain the same
pixel in the right image, i.e., a pixel (x,y) in left image cor-
responds to pixel (x+ D), ) in the right image.

Given that the upper part of the torso is detected in the
previous phase, a smaller rectangular region in the center of
the bounding box is selected as a representative sample of
the disparity distribution for the whole body in the left image

! http://es.mathworks.com/help/vision/examples/
uncalibrated-stereo-image-rectification.html
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Fig. 6 People detection and stereo foreground highlighting. Stereo upper body detection: (a) The two enlarged bounding-boxes (from each
view) are averaged. Therefore, the resulting bounding boxes for both images are exactly the same. Stereo foreground highlighting: (b) Firstly, the
disparity map is computed. Brighter pixels indicate objects which are closer to the camera. Then, we establish a rectangular region G on the torso
which is used as a prior for segmentation. Point C is the seed selected to initialize the algorithm. (¢) We assume that the disparity values follow a
normal distribution, which parameter u is estimated from region G. (d) Finally, the previously learnt distribution is used to output a binary mask

from the disparity map by region growing from seed C.

(Fig. [6lb). Assuming that most of the person body configu-
rations can be modelled as a normal distribution A4 (u, o)
(Fig. [c), u is calculated as the mean of disparity values
in the torso region. Then, o is selected considering the av-
erage dimensions of people so that extended arms fits into
the distribution. Consequently, the segmentation problem is
tackled as a region growing algorithm with seeds selected
in the torso region (see point C in Fig. [g]b), and using the
previous normal distribution to determine the probability of
adding points to the segmented region. This approach allows
for extended arms to be properly added as part of the person.
Figure[6]d shows the result of applying the proposed method
to one of the images in our dataset. As in [16], we also add to
foreground a rectangular region, defined as a function of the
upper-body bounding box, that covers the head and part of
the torso, exploiting in this way prior information provided
by the UB detection.

The generated mask corresponds to the person’s upper
body in the left image /4. In order to obtain the equiva-
lent mask for the right image 15, the location of pixels from
I* are calculated in the right image by employing the dis-
parity. Please notice that although our Stereo Foreground
Highlighting shares some ideas with the method proposed
by Sheasby et al.in [43]], the latter runs a human pose esti-
mator [56] to define two starting seeds for their region grow-
ing algorithm. What for them is a stage of their method, for
us is our final goal.

Both the disparity estimation and the foreground seg-
mentation are carried out independently for each upper-body
enlarged region. Therefore, situations such as people stand-
ing next to each other, or people pointing towards or away
from the camera are treated satisfactorily, see for example
rows 1,4 and 5 of Fig.[/| We have included in column (c) the

segmentation mask obtained by applying the original fore-
ground highlighting algorithm of Eichner et al. [[16]. Note
how it frequently loses part of the arms, as in rows 2, 4 and
5, in contrast to our disparity-based proposal that satisfac-
torily keeps them. However, in the example depicted in row
6, due to a not very accurate estimation of the disparity, our
method removes fewer background pixels than the GrabCut-
based approach.

4.3 Stereo Pictorial Structure: SPS

Our proposal to add stereo information in pictorial models
is based on the model of Eichner et al.’s [16] summarized
in Sec. [3.2] Among other things, [16] extends Ramanan’s
model [37] with orientation priors 1 of the torso and the
head to be nearly vertical. We also benefit from the algo-
rithm of Eichner and Ferrari [[13] to generate person-specific
appearance models & for each image. Kinematic constraints
¥ are as in Ramanan’s work [37]: for the relative position
(x,y) we use a truncated cost, giving an uniform probabil-
ity close to the joint location and zero elsewhere, and for
the relative orientation 6 we use a histogram of orientations
learnt from training data [37].

Let /4 and I® be the segmented images after applying
SFH to the stereo image pair (Fig. a), and 14, lﬁ the upper-
body parts of I* and IZ respectively. Since we are working
with stereo pairs, the following relation holds: lg =9 (lﬁ ,D)
where Z(1,D) is an indicator function that applies the dis-
parity map D to the configuration /.

To take advantage of the appearance information encoded
in the images of the stereo pair, we combine the unary po-
tentials &, corresponding to the same body part in each
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(a) (b) (c)

Fig. 7 Qualitative results of background removal: Stereo Foreground Highlighting vs GrabCut. From left to right: (a) estimated disparity
map for the target person; (b) overlaid foreground mask proposed by SFH; (c) overlaid foreground mask proposed by GrabCut as used in [16]. The
inner green rectangles in (b) and (c) represent the upper-body detection, whereas the outer green rectangles represent the enlarged window where
the body parsing stage will be carried out. Note the different situations that SFH can handle satisfactorily: arms in a different plane of torso (e.g.
pointing to the camera in row 1); arms above the head (row 5); multiple people in different depth planes (row 3), etc. In general, SFH removes more
background pixels than GrabCut but keeping more actual foreground (e.g. in row 4, one hand is cut by GrabCut). In contrast, bottom row shows
an example where three people are in the same depth plane and are all included in the foreground mask of the central person, whereas GrabCut
keep the other persons as background.
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Fig. 8 Stereo inference. (a) The person segmentation (I4,17), returned by SFH, is used to compute P(L|I). (b) In the Stereo Pictorial Structure,
each node represents a body part from each stereo pair (head, torso, left/right upper/lower arms). The tree includes edges between every two body
parts, parametrized by location (x,y) and orientation 6, which are physically connected by kinematic priors ¥ in the human body. Each hidden
node (empty circle) is related to two observed nodes (one per view), represented by blue filled circles, which are associated to unary potentials @
(i.e. image evidences). (c¢) Configuration of the parts L given by the Stereo Pictorial Structure model. Note that the configuration L is the same for
both 4 and 1%, except the displacement in the horizontal axis given by the disparity.

view through a function €. Such function will be instan-
tiated later. Therefore, our upper-body stereo pictorial struc-
ture (SPS) (depicted in Fig. b) consists of two sub-models
(one per view) related by the disparity D and the function
€. Each sub-model consists of six body parts, namely head,
torso, upper and lower arms, connected in a tree structure
by the kinematic priors ¥(I,,1,). The probability of a con-
figuration L given the stereo pair .# =< I4,I® > and the
disparity map D is given the following equation:

Z W (lp, lg)+
(p.q)ee

P(L|.#,D) < exp {
Y 2(@p(111y), @y (1712 (1,D)) ) + @
p

T(lhead) + T(ltorso) } .

For the sake of clarity, /; refers to the configuration of
limb k on image A.

The selection of the function €2 leads to specific instanti-
ations of the proposed model. One could think of defining Q
as, for example, the sum, the product, the arithmetic mean,
etc. of the likelihoods. After carrying out some early experi-
ments, we define function £,,,, as the maximum of the two
likelihoods @* and P5:

Qax (P, DF) = max (94, *) (3)

This choice relates both viewpoints by giving preference
to greater likelihood values between pairs of corresponding
points.

4.3.1 Inference

At inference time, SPS finds a configuration of body parts
L* that maximizes P(L|.#, D) (see Fig.[8]c):

L* = argmaxP(L|.#,D). 4)
L

Note that the coordinates (x,y) of the body parts obtained in
L* are defined in the reference system of I4. Therefore, to
obtain the body parts location in I, the previously defined
function (-, -) is employed.

The inference can be performed in an efficient and exact
way [37], by sum-product Belief Propagation, since there
are no loops in the graphical model (i.e. the model structure
is a tree).

4.3.2 Implementation details

Unary potentials We use the unary potentials described in [16].

The edge images (Sec. are convolved with the person-
generic part templates released by the author of [37]. A total
of 24 discretized orientations are used during the convolu-
tion to deal with the rotation of the limbs. For the color-
based unary potentials (Sec. [3.2)), the CIE-Lab color space
is used to compute color histograms with dimensionality
8 x 16 x 16. For each body part /;, we have a probability
distribution of color ¢ for both foreground and background,
which will be used as likelihood: P;(c|fg) and P;(c|bg). The
color-based posterior probability (i.e. probability of belong-
ing to part i given the color pixel ¢) is computed by using
Bayes’ rule (assuming P;(fg) = Pi(bg)):

Pi(clfsg)
Pi(c|fg) + Pclbg)

As in [37]], the edge-based unary potential is used to ini-
tialize the color model. Then, both kind of unary potentials
are added to compute P,,. Reader is referred to [37]] for fur-
ther details.

P(fgle) =

Binary potentials For the binary potential W, (l,,l;), we
use a truncated cost as in [[L6], giving O probability to invalid
configurations and an uniform probability to valid configu-
rations, defined by the kinematic model (e.g. head must be
attached to the torso). A configuration is said to be valid
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(@) (b)

Fig. 9 Distribution of the ground-truth poses in the SHPE dataset. Colour coding of sticks: head in yellow; torso in gray; upper-arms in green
and dark blue; and, lower-arms in red and light blue. (a) Partition A. (b) Partition B. (¢) Whole dataset. (Best viewed in colour.)

if both the relative location of the limbs and their relative
orientation are within the intervals learnt during training. In
particular, we use the pretrained data provided by the author
of [37].

5 Experimental Results

This section aims at validating the proposed method and to
compare its results with state-of-the-art methods in the field.
Since using stereo information for human pose estimation
in uncontrolled Internet stereo videos is a new task, as far as
we know, there are no available datasets for comparison. As
a consequence, we start by introducing the dataset that we
have created (Sec. @, which contains ground-truth anno-
tations for body parts. Then, we describe how we evaluate
the performance (Sec.[5.2)). Next, we define the experiments
that we have carried out and quantitatively present the re-
sults of applying our SHPE framework and the competitors
algorithms on SHPED (Sec. [5.3). Finally, we present a dis-
cussion of the SHPE performance and analyze the impact of
various components of our method (Sec. [5.4).

5.1 Dataset of stereo image pairs for SHPE: SHPED

To analyze the results of the proposed stereo-based frame-
work, we introduce a new dataset for SHPE named SHPE
Dataset (SHPEDﬂ It contains 630 stereo image pairs (i.e.
1260 images) grouped into 42 video clips of 15 frames each.
The clips have been extracted from 26 stereo videos ob-
tained from the popular video-sharing website YouTubeEl

Fig.[13]shows some keyframes extracted from the dataset.

The clips included in the dataset depict people in a wide
range of variations in appearance, clothing, human pose, il-
lumination and/or background. Since there are many differ-
ent stereo cameras on the market, we obtained stereo videos

2 SHPED is available at:
grupos/ava/node/47

3 We used the tag yt3d:enable=true to find stereo videos in YouTube
(http://youtube.com)

http://www.uco.es/investiga/

with different image quality and baseline separation (dis-
tance between the two cameras).

We provide, as in [21]], 1470 stickman annotations (i.e.
there are sequences with more than one person per image)
for the upper-body of people. We have annotated all the peo-
ple that satisfy the following conditions (as in [[16]): up-right
position, non-profile viewpoint of the body, and all upper-
body parts almost visible along the whole sequence. We
have annotated 49 individuals in SHPED with these condi-
tions. In this work, these annotations are used only for eval-
uation purposes. In addition, we provide a plane projective
transformation for every clip, as a pre-processing step for
rectifying the stereo image pairs and the stickmen.

In order to allow comparable results for future publica-
tions on this dataset, we have defined two disjoint partitions
on the clips (i.e. 50% each). These two partitions have been
randomly created — just making sure that two clips extracted
from the same video were not located in the same partition.
Fig. 9] shows the distribution of the ground-truth poses per
partition (Fig.[9}a and .b), and the whole dataset. Each stick
represents a body part. Note that the clips included in SH-
PED cover a wide range of spatial locations and orientations
of the limbs, what makes a challenging task for HPE meth-
ods.

5.2 Evaluation metrics employed

Our SHPE technique estimates a stickman for each detection
window computed in SHPED. With this stickman and the
manually annotated in SHPED, we evaluate the performance
using two measures.

First, we employ the Percentage of Correctly estimated
body Parts (PCP) proposed in [16]. An estimated body part
is considered correct if its segment endpoints lie within a
fraction of the length of the ground-truth segment from their
annotated location. By varying the fraction (Tpcp) between
0.1 and 0.5 we obtain a PCP-curve. The lower (tpcp), the
stricter the criterion and the more accurate the estimated
body parts are deemed correct. PCP is evaluated only for
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Table 1 Summary of acronyms used in this paper.

Acronym Full name

SPS Stereo Pictorial Structure

SFH Stereo Foreground Highlighting

SHPE ,,,x SHPE framework using the function £2,,,,,
SHPED Stereo Human Pose Estimation Dataset

EA [16] Eichner et al.’s framework

FMP [56] Flexible Mixtures of Parts

PCE [15] Human Pose Co-Estimation (Direct Model)

stickmen that have been correctly localized by our stereo
upper-body detection windows. To allow an easy compari-
son of results, we use the implementation of the PCP crite-
rion published online by the authors of [[16]] in [54].

Second, in order to summarize the values obtained for
the different Tpcp values used to build the PCP-curve, we
compute the Area Under the PCP Curve (AUC-PCP). This
area allows to easily compare different algorithms without
having to choose any particular operational point Tpcp. For
the experimental results reported in Sec. [5.3] we compute
AUC-PCP in the interval tpcp = [0.1,0.5].

For evaluation purposes, in both monocular and stereo
cases, each image of the stereo pair is considered an inde-
pendent instance and, therefore, the two PCPs obtained from
the pair are not combined by any means.

5.3 Comparative results

Since the dataset defines two disjoint partitions (Sec. |3.1),
our experiments follow a two-fold cross validation approach.
We report the mean PCP and AUC-PCP over the two parti-
tions. The reader is referred to Tab. [I] for a summary of the
main acronyms used in this paper.

5.3.1 Baseline methods

In order to put in context our proposal, we compare it with
some state-of-the-art monocular HPE methods. Note that,
since each image of the stereo pair has its own stickman
annotation, we treat each view independently for evaluation
purposes (i.e. PCP for left view may differ from PCP for
right view).

Eichner et al. [16] (EA) Since we base our SHPE frame-
work on the one proposed by Eichner er al. in [16] (see
Sec. [3.2), we run their algorithm on SHPED by using their
source code [[54] and their default parameters. Here, we ap-
ply this method to each image of the stereo pair indepen-
dently. The results of this experiment are summarized in row
‘EA’ of Tab.[2l

Flexible Mixtures of Parts (FMP) Yang and Ramanan pro-
pose a Flexible Mixtures of Parts (FMP) [56] to address the
HPE problem. Since FMP is considered one of the state-of-
the-art models, we run their code [53] on our stereo dataset

for comparison purposes. We use the default parameters in-
cluded in their software. As done above, we apply this method
to each image of the stereo pair independently. The results
of this experiment are summarized in row ‘FMP’ of Tab. 2]
In addition, row ‘FMP+BB’ shows the results obtained
when the FMP method is applied to the same image win-
dows returned by our people detection stage (Sec. [4.1)), in-
stead of searching over the whole image. This will allow a
much more direct comparison with our SPS model.
Human Pose Co-Estimation (PCE) Human Pose Co-Esti-
mation (PCE) [[L5] tries to estimate a common pose for a
group of people in an image. Since PCE is somehow related
to SHPE (in the sense of sharing a common pose), we have
implemented, and applied to our stereo dataset, the Direct
Model presented in the original paper. In this case, we obtain
common estimations for each image of the stereo pair. We
use the same default parameters of the upper-body detector
and foreground highlighting stage used for the baseline EA.
The results of this experiment are summarized in row ‘PCE’
of Tab.[2

5.3.2 SPS evaluation

For evaluating our proposed pipeline (Sec.[d), we set the free
parameters so as to maximize AUC-PCP on the training set
— this is repeated for each partition of the dataset. In partic-
ular, we have to set the value of ¢ for the stereo foreground-
highlighting step (Sec.[4.2). We carry out a grid-search in the
interval o = [0.190,0.250]. As in the protocol of [13]], PCP
and AUC-PCP are computed only on correct detections (i.e.
covering a ground-truth stickman). In our case, these detec-
tions cover the 100% of the ground-truth for SHPED. Note
that we use as input of the HPE algorithms the same set of
detection windows for all the methods but the one repre-
sented in Tab.2las ‘FMP’.

Row ‘SHPE £,,,,,” of Tab.[2]show the results of our SPS
model by using Eq. 3] Note that we report the AUC-PCP
results for both the whole upper-body parts (UBP) and only
the arms. Moreover, we report the PCP values for values 0.2
and 0.5 of Tpcp. To evaluate the contribution of the proposed
Stereo Foreground Highlighting stage in the performance of
the system, instead of using the SPS model for inference, we
use the monocular approach of Eichner et al. [16] on top of
image pairs segmented by the SFH. The results of this case
are shown in row ‘EA+SFH’ of Tab.[2

Using our stickman ground-truth annotations, we try to
evaluate the percentage of foreground pixels that are miss-
ing after the SFH stage. In partition A we miss around 4.8%,
whereas in partition B we miss around 3.1% of the fore-
ground pixels. Two examples are represented in Fig. [T0}
where only few pixels are missing in top row (white pix-
els in column (c) ), but a significant percentage of important
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Table 2 Comparative with the state-of-the-art. We report the quantitative results after applying the different algorithms on SHPED. Each entry
reports either AUC-PCP or PCP values for both the whole upper-body (UBP) and only the arms (Arms). Column AUC represents the AUC-PCP
value, A denotes the difference of AUC-PCP values between target algorithm and EA (baseline), and column % shows the previous difference in
terms of percentage. With regard to PCP results, Tpcp is the threshold used in the PCP curve. Note that SHPE €, clearly improves on the results
offered by the baseline [16], particularly on the arms. The highest results are marked in bold.

AUC-PCP PCP (%)
Algorithm UBP Arms UBP tpcp Arms Tpcp
AUC A % AUC A % 0.2 0.5 0.2 0.5
SHPE Q,,4x 0.633 0047 8.0 0531 0066 142 50.0 856 366 79.7
EA [16] + SFH 0.627 0.041 7.0 0524 0.059 127 494 846 36.1 782
FMP [56] 0599 0.013 22 0509 0.044 95 457 814 367 729
FMP [56] + BB 0.589 0.003 0.5 0505 0.040 8.6 442 813 362 73.0
PCE [15] 0579 -0.007 -12 0469 0.004 09 472 780 342 68.7
EA [16] (baseline) 0.586 0 0 0465 0 0 473 786 331 694
(@) (b) (© )
Y 2
Fig. 10 Derived ground-truth for Stereo Foreground-Highlighting () (b)

evaluation. (a) Coarse ground-truth region derived from stickmen an-
notations. (b) Output of our SFH. (c) Positive differences of mask in
(a) minus mask in (b). White pixels represent ground-truth pixels not
included in the SFH mask. The top row example is considered a good
segmentation, whereas bottom row example represents missing pixels
in the arms.

pixels are not included by SFH in the foreground of the ex-
ample represented in the bottom row.

In general, wrong pose estimations with SHPE are due
to inaccurate estimations of the disparity maps. Two frames
of representative failure cases are shown in Fig. In both
cases, the SPS model is unable of correctly estimate the lo-
cation of body parts that have been previously removed from
the background area: one arm in the case of Fig. [IT]a, and
one arm plus a hand in case of Fig.[TT]b.

In addition to the previously described tables, Fig.
presents a comparative of the PCP curves obtained from the
evaluation of each method on set A and set B showed in
left column and right column respectively. Top row of figure
corresponds to the whole upper-body (UBP), whereas bot-
tom row corresponds to the four body parts related to arms
(Arms). AUC-PCP for each method is shown into parenthe-
sis in the legend of the plots.

Fig.[[3]shows some examples of correctly estimated poses
in diverse challenging situations, as well as one estimation
not as accurate as desired and two failures in difficult situa-

Fig. 11 Failure cases with SHPE. (Top) Estimated pose for a single
person. (Bottom). Estimated disparity map for the region of interest
and derived foreground mask. (a) The right arm of the man is not in-
cluded in the foreground mask due to a wrong estimation of the dis-
parity. (b) The left hand and the right arm are not included in the fore-
ground mask delivered by SFH. The head+torso prior is clearly visible
in this example in the head region.

tions (i.e. 5-b contains a difficult arm pose estimation, and
5—c shows blurry arms due to motion).

5.4 Discussion

We discuss here the results obtained in the previous experi-
ments.

If we compare, in terms of AUC-PCP, row ‘EA’ to ‘SHPE
Qnay of Tab. 2} we can see how our stereo pipeline greatly
contributes to the final performance of the system: 8%. If
we focus only on the estimation of the arms (i.e. 4 parts out
of 6), the improvement is even larger: 14.2%. In our opin-
ion, the clear improvement shown by SHPE is due to the
stereo foreground highlighting stage, where the removal of
actual background pixels is more precise thanks to the use of
disparity. In turn, making easier the success of subsequent
stages. This fact is reflected in row ‘EA+SFH’ where the
disparity-based segmentation boosts the performance up to
7% with regard to the baseline ‘EA’.
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Fig. 12 Comparison of PCP curves for stereo pose estimation on sets A and B of SHPED. The performance of the framework of Eichner et
al.(EA) [16] is shown in this figure as a baseline (black squares). The remaining curves represent our proposal (solid blue line) and the competitor
methods. Additionally, AUC-PCP values for each method are shown into parentheses. All models are independently run on set A (left column) and
set B (right column) of SHPED, categorized into two groups of upper-body parts: UBP (all upper-body parts) (top row) and arm parts (bottom
row). On average, the best result is returned by our SHPE £2,,,,. This is especially relevant in the case of the arms at Tpcp = 0.5.

The simplest model proposed in [13] (Sec.[5.3:) for co-
estimation is used in our comparison (row ‘PCE’ of Tab[2).
However, the results obtained in this case are even lower
than the ones achieved with the model in [16] (row ‘EA’).
In our opinion, although the detection windows should be
aligned due to the structure of the upper-body model used
for detection, the slight displacements existing between the
theoretically corresponding points in the two viewpoints lead
to a poor combination of appearance-based potentials in the
PS model during the inference.

We also compare with the successful model of Yang and
Ramanan [56] (row ‘FMP’ of Tab. [2). We verify that FMP
improves over the baseline in 2.2%. However, our SPS model
improves over FMP around 5.7% on the whole upper-body,
in terms of AUC-PCP, and a modest 4.3% on the arms. Note
that FMP uses an articulated model with finer-grained parts
than our model, which allows a more accurate estimation
of the arms, but with a significant increase in the computa-
tional cost. In addition, their body parts can be stretched and
shrunk independently, in contrast to ours that have a com-
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(a)

(b) (c)

Fig. 13 Qualitative results on SHPED with Q,,,,. Rows 1 to 4 show successful examples, while 5a shows an almost successful example, and
5b and 5c¢ show two examples of failures. Note the variety of image conditions and arm poses where our method works (e.g., 1la—c, 2¢, 3c, 4b).
Images are often very cluttered, and a person might cover only a small proportion of the image area (2b, 4a), as they can appear at any scale (3b).
Illumination varies over a wide range (2a). Sometimes, there is poor contrast between people and background, preventing the use of background
subtraction techniques (3a, 4¢). Examining failure cases, we found that our model can be confused by excessive bent arms (5Sb) (both the upper
and lower arms almost occupy the same image region), and when the camera is moving fast, causing an intense motion blur (5c).

mon scale given by the scale of the upper-body detection.
Comparing row ‘FMP’ to ‘FMP+BB’, we can say that FMP
does not benefit from the usage of a initial people detection
stage to limit its search, as both results are very similar. In
Fig. we can visually compare some results obtained by
FMP and SHPE models. Note that most cases of stretched
out arms are correctly handled by SHPE in contrast to FMP.

In terms of PCP (right most columns of Tab. @, our SPS
model achieves 85.6% at 0.5. This value is superior to the
one achieved by both ‘EA’ (78.6%) and ‘FMP’ (81.4%). Fo-
cusing on arms, FMP and SPS behaves quite similar at the
strict operating point 0.2.

Finally, in Fig. [I2] we can visually observe that (i) the
curve corresponding to SPS model is in general above the
other baseline methods (i.e. better PCP); (ii) FMP offers
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SHPE

FMP

() (b)

(©) (d)

Fig. 14 Qualitative comparison of SHPE versus FMP. (Top) Poses obtained by our method. (Bottom) Poses obtained by FMP model. Wrong

estimations are marked with a red border.

better estimates than both EA and PCE; and, (iii) the pose
estimation in set B is more difficult than in set A.

5.5 Computational time

We show here a breakdown of the computational time of
the different stages of our proposed algorithm given a target
upper-body window. The implementation has been done us-
ing as basis the source code of HPE framework of Eichner
et al. [16] released by its authors. Therefore, most code is
written in Matlab with a few mex functions. The non paral-
lelized and unoptimized code has been run on a Linux desk-
top (Ubuntu 12.04 LTS) with 6 GB of RAM and a CPU at
3.4 GHz. On average, for a standard enlarged image win-
dow of size 160 x 140, the Stereo Foreground Highlighting
stage takes 2.2 seconds and the parsing stage with the Stereo
Pictorial Structure model takes 8.6 seconds.

In addition, the image rectification carried out on each
pair of video frames (with a frame size of 1280 x 720 pix-
els) takes, on average, around 1.8 seconds. Note that this is
not performed per person but per frame. The estimation of
the parameters of the transformation is computed once per
sequence and takes, on average, 16.6 seconds.

6 Conclusions

This work has presented a novel technique to automatically
estimate the 2D human pose of upper-bodies in stereo im-
age pairs extracted from realistic stereo videos. Our proposal
extends the monocular Eichner et al.’s framework in three
ways: (i) an adapted people detection and grouping approach
for sequences of stereo pairs; (ii) a new stereo foreground-
highlighting algorithm to segment people by using dispar-
ity maps; and, (iii) a new Stereo Pictorial Structure model
that runs over the two images to find the single most likely
upper-body pose. In order to test the proposed method, the

Stereo Human Pose Estimation Dataset has been created
with ground-truth annotations.

The results obtained in our dataset show that our pro-
posal compares favourably with state-of-the-art techniques
such as [16] and [56]. Our method merges the information
from the two images obtaining a better approximation of the
upper body pose than monocular HPE techniques that run
independently on each image.

Finally, it must be indicated that although the proposed
approach has been defined and evaluated on upper-bodies, it
could be easily extended to full-bodies.

(a) (b) (©)

Fig. 15 Qualitative example of 3D estimation from 2D stickman
and disparity. (a) Estimated 2D pose. (b) Estimated disparity [7]. (c)
Proposed 3D pose obtained by approximating the depth of the limbs
from the estimated disparity.

As future work, we plan to exploit the stereo information
in such a way that coarse 3D information of the pose can be
recovered. In Fig. [I5 we show a qualitative example of an
early experiment, where the disparity information is used to
propose Z coordinates for the estimated 2D limbs.
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