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ABSTRACT

In visual tracking, part-based trackers are attractive since they
are robust against occlusion and deformation. However, a
part represented by a rectangular patch does not account for
the shape of the target, while a superpixel does thanks to
its boundary evidence. Nevertheless, tracking superpixels is
difficult due to their lack of discriminative power. There-
fore, to enable superpixels to be tracked discriminatively as
object parts, we propose to enhance them with keypoints.
By combining properties of these two features, we build a
novel element designated as a Superpixel-Keypoints structure
(SPiKeS). Being discriminative, these new object parts can
be located efficiently by a simple nearest neighbor matching
process. Then, in a tracking process, each match votes for the
target’s center to give its location. In addition, the interesting
properties of our new feature allows the development of an
efficient model update for more robust tracking. According
to experimental results, our SPiKeS-based tracker proves to
be robust in many challenging scenarios by performing favor-
ably against the state-of-the-art.

Index Terms— Tracking, Superpixel, Keypoint, Model-
free

1. INTRODUCTION

A robot needs to track its target to interact with it. Doubtful
behaviors can be detected thanks to tracking in visual surveil-
lance. Hands are tracked for gesture recognition. Those ex-
amples show only a small part of a wide range of tracking ap-
plications, thus encouraging many research efforts to focus on
this topic. When no prior information about the object to track
is available, tracking is referred to as model-free tracking. In
a video, the goal is to locate a particular target given its loca-
tion only in the first frame. This task is challenging because
of numerous factors such as illumination variation modifying
object color, occlusion hiding some parts, or new parts ap-
pearing if the viewpoint changes. While some of these issues
are handled efficiently by different techniques, it is challeng-
ing for a single tracker to handle them all.

Trackers are generally split into two categories: dis-
criminative and generative. Discriminative trackers consider
tracking as a binary classification problem. Samples from
foreground and background are selected to train a classifier

Fig. 1: Decomposition of a frame into SPiKeS. Superpix-
els (black) stuctured by keypoints (red dot) linked by vectors
(green).

that is able to separate the target from the rest of scene. After-
wards, this target detection yields a location estimation. This
is the typical “tracking-by-detection” framework followed by
many discriminative trackers [1, 2, 3, 4], although Struck [5]
achieves the classification and location in one step. In most
approaches, samples are selected randomly, limiting their
number for computational efficiency. Instead of random sam-
ples, Henriques et al. [6] proposed to select all the samples
and exploited their redundancy to build a kernel classifier
which tracks very quickly in the Fourier domain. Due to its
simplicity and rapidity, many recent trackers build upon it
[7, 8, 9].

In generative trackers, only foreground information mod-
els the target appearance and the tracking task aims to find
the most similar image region to this model. In [10], the tar-
get is represented with a sparse model by using templates.
The tracking location is the patch whose projection error into
the template space is minimum. To account for appearance
change and different kinds of motion, Kwon et al. [11] build
different observation and motion models, so that each pair can
be used within a basic tracker. These multiple basic trackers
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are then integrated into a main tracker, which is more robust
thanks to the interaction between its components.

Although these methods can handle some appearance al-
terations, they are not robust against deformation and occlu-
sion due to their holistic representation. These issues are
usually handled by the family of part-based trackers. As the
model is decomposed into several parts, an occlusion only af-
fects some of them, without preventing the other ones to track
the target. Typically, usual approaches consider the parts as
rectangular patches structured in a grid [12, 13, 14, 15]. How-
ever, non-rectangular targets are not well represented because
background patches inside the bounding box inevitably affect
the model and make it drift. To this end, Li et al. [9] assigns
reliability to patches so that noisy background patches do not
affect the tracking.

Another part-based approach consists of oversegmenting
the target into superpixels. Thanks to their boundary evi-
dence, they take better the shape into account. In [16], a map
is built showing the probability of a superpixel to belong to
the target and the target location is the area with maximum
likelihood. This tracker shows good performance but it needs
a model which has to be learned in the first frames. Therefore,
it needs manual annotation or another tracker for the initial-
ization step. Recent approaches such as [17] and [18] propose
to integrate superpixels in a matching-tracking framework.
An appearance model is built with superpixels and each of
them attempts to find a match in the new frame in order to
locate the target. One common problem is the low discrim-
inative power of superpixel resulting in ambiguous matches.
It then requires a complex strategy for matching.

Better features for matching are the keypoints. Because of
their saliency and invariance to transformations, a keypoint-
based appearance model can be matched efficiently even in
case of occlusion and deformation. Nonetheless, keypoint-
based trackers [19, 20, 21, 22] often fail to represent uniform
regions, where no keypoints can be found.

Therefore, we hypothesize that superpixels and keypoints
can complement each other. An object can always be seg-
mented into superpixels but their lack of discriminative power
makes them hard to match. Conversely, keypoints are more
reliable to match but they poorly represent uniform-colored
and non-textured regions. In our method, we propose to
combine the assets of these two features in a single one: a
Superpixel-Keypoints structure (SPiKeS). This is our first
contribution. Figure 1 illustrates a frame decomposed into
SPiKeS. Notice that keypoints contributing to a SPiKeS can
be inside the superpixel or nearby. A single keypoint can
contribute to many SPiKeS. Incomplete SPiKeS are possible
if there is no keypoint around. In that case, they are only
described with the superpixel.

Our second contribution is the design of a tracker that cap-
italizes on the SPiKeS. Experimental results show that our
SPiKeS-based tracker performs well in numerous challeng-
ing situations and performs favorably against state-of-the-art

trackers.
The paper is structured as follows. Section 2 presents

works related to ours, i.e. trackers based on superpixels or
keypoints. Our combination of these two features to build a
SPiKeS is described in Section 3. Then, section 4 shows how
this new feature can be integrated into a tracking framework
for robust target location estimation. Finally, the evaluation
of section 5 compares the proposed tracker to the state-of-
the-art.

2. RELATED WORK

The idea of combining keypoints with other features for track-
ing has been exploited in [23]. The RGB and LBP histograms
are extracted from patches to create an appearance model.
SIFT keypoints [24] are then detected and their disposition
is described by a circular histogram that represents a global
geometric structure of the target. Our method is more flexi-
ble against deformation as each SPiKeS has its own keypoint
structure, which allows local deformations.

Instead of patches, Liu et al. [25] proposed a tracker
based on superpixels and SURF keypoints [26]. But unlike
our proposition, their matching step only involves keypoints.
The superpixels are only used for their boundary evidence,
which is a useful clue when updating the model. Indeed, a
new keypoint belonging to the same superpixel than a match-
ing keypoint tends to be a part of the target since every point
within a superpixel is likely to belong to the same object. We
also consider this benefit in our method but in addition, be-
cause we are matching superpixels, even if there is no match-
ing keypoint inside them, new keypoints can still be added.
Therefore, our model update is more accurate.

Our localization process is inspired by [19, 20]. Their ap-
proach assigns to each matching keypoint a vote for the cen-
ter of the target, allowing keypoints to locate the target inde-
pendently from each other. Hierarchical clustering then con-
verges to a consensus of votes such that outliers are removed.
Finally, the selected votes estimate the position as a simple
center of mass. Furthermore, Bouachir et al. [22] proposed
to weight the votes according to the reliability of keypoints.
We do the same, but instead of voting with keypoints, we vote
with SPiKeS.

3. SUPERPIXEL-KEYPOINTS STRUCTURE

As shown in figure 2, a Superpixel-Keypoints Structure (
SPiKeS ) consists in a superpixel and all the keypoints found
in a region of radius R around that superpixel’s center. It
implies that keypoints can be inside and outside the super-
pixel. Each keypoint is linked to the superpixel’s center by
a vector with a magnitude and an orientation. Therefore, a
SPiKeS is a superpixel that acquired a spatial structure of
keypoints, making it more discriminative. A SPiKeS without
any keypoints is simply a superpixel.



R

Fig. 2: SPiKeS representation. Keypoints are found inside or
nearby the superpixel in a region of radiusR around its center.
Keypoints relative positions are given by vectors.

3.1. SPiKeS definition

Let s be a superpixel and k the set of keypoints around s, we
write the associated SPiKeS denoted by S as

S = {(s,k) | k = (k1, ..., kn, ..., kN ), ||xkn−xs||<R} (1)

with xs and xkn the centers of superpixel s and keypoint n
respectively. N is the total number of keypoints found in a
description region of radius R centered on xs. Therefore, we
define a descriptor for a SPiKeS as being f = {h,dk, e} with

• h: HSV histogram of s

• dk = {dk1 , ..., dkn, ..., dkN} with dkn the descriptor of kn.

• e = {~e1, ..., ~en, ..., ~eN} with ~en = xkn − xs the vector
from the superpixel’s center to kn

3.2. SPiKeS comparison

In order to compare two SPiKeS, we propose a measure of
similarity based on their descriptors. Let z(Si, Sj) be the sim-
ilarity score between SPiKeS Si and Sj . Because the color
information of the superpixel and the keypoints structure are
available, the score is a contribution of two terms:

z(Si, Sj) =

{
zc + zk if d(hi, hj) < θc
0 otherwise (2)

The first term zc represents the similarity between super-
pixel’s color histograms

zc = exp(−d(hi, hj)) (3)

with d(., .) being the Bhattacharyya distance measure.

The second term zk represents the similarity between key-
points structure. The higher the number of matching key-
points between ki and kj , the higher the score. Moreover,
if both keypoints of a matching pair are positioned similarly
with respect to their superpixel’s center, the score should also
increase. Thus we define

zk =
∑
km∈ki

∑
kn∈kj

γmnpmn (4)

with pmn = 1 if km and kn match, else pmn = 0. The factor
γmn weights the contribution of a keypoints match by com-
paring edges em and en. We compute γmn with the vector
difference magnitude normalized by the diameter of the de-
scription region:

γmn = exp

(
−||

~e′m − ~e′n||
2R

)
(5)

Note that to benefit from keypoints rotation invariance,
e′m and e′n are the vectors em and en reoriented according
to the principal orientations given by keypoints km and kn
respectively.

Finally, the threshold θc ensures a minimum of color sim-
ilarity to handle the case of wrong matching keypoints result-
ing in a high zk.

4. THE SPIKES TRACKER

In model-free tracking, the information about the target loca-
tion in the first frame is given by a bounding box. The SPiKeS
are extracted from it to represent the appearance model. In
the subsequent frames, after oversegmentation and keypoint
detection, we build SPiKeS and locate those who match the
model. Then, each matching SPiKeS votes for a position in
the frame. The target’s center is estimated from all votes. If
no occlusion is detected, the model is updated. These tracking
steps are illustrated in figure 3.

4.1. Model

From the initial bounding box, we first detect keypoints,
store them in a pool Kf and combine them with the Nm
extracted superpixels to form our model of SPiKeS: Sm =
{Sm1 , ..., Smi , ..., SmNm

}. Then, SPiKeS Smi is assigned a vote
vector vi such that it can locate independently the target’s
center:

vi = xT0 − xSm
i

(6)

with xT0 the target’s center at time t = 0, known as the center
of the initial bounding box. We refer to xSm

i
as the center of

Smi which is equivalent to its superpixel’s center.
In addition, we extract keypoints in a surrounding region

of the bounding box to keep a keypoint background model
Kb, which will help to detect occlusion similarly to [27].



(b) Keypoints detection

(c) Superpixels segmentation

(a) Input frame d) SPiKeS construction (e) SPiKeS matching

(f) SPiKeS vote(g) OutputSPiKeS model

(h) Update

Fig. 3: Tracking steps of our SPiKeS-based tracker. Keypoints detection (b) and superpixels segmentation (c) are processed on
an input frame (a). Each superpixel forms a SPiKeS with its surrounding keypoints (d). Our SPiKeS model is matched with the
new SPiKeS and the matching ones vote for the target’s center (f) . The model is updated from the estimated bounding box (g)
if no occlusion occurs.

4.2. Matching

During tracking, we extract a pool Sq = {Sq1 , ..., S
q
j , ...S

q
Nq
}

of Nq SPiKeS from the entire incoming frame. Afterwards,
we apply a greedy matching algorithm. The first step is look-
ing for the nearest neighbour Sqj∗ ∈ Sq of every Smi ∈ Sm:

(Smi , S
q
j∗) = argmax

j
(z(Smi , S

q
j )) i = 1, ..., Nm (7)

However, Sqj∗ could be the nearest neighbour of different Smi
meaning a many-to-one match. Since a one-to-one match is
required, only the highest score is kept:

(Smi∗ , S
q
j∗) = argmax

i
(z(Smi , S

q
j∗)) (8)

At this point, there are now L ≤ Nq one-to-one matches
that we refer to as pairs of matches Ml = (Sml , S

q
l ) with

l = 1, 2, ..., L.
The next step consists in the rejection of wrong pairs of

matches. Firstly, a given SPiKeS of the model may not have
a valid match in a given new frame, e.g. when a part is not
visible. In this case, the nearest neighbour has a low matching
score relative to a threshold and it can be discarded. We set
a different value for the threshold according to the presence
or not of matching keypoints. Indeed, if there are no keypoint
matches, only the color provides the match between SPiKeS.
As we already set a color threshold θc, the minimum value of
the matching score is e−θc according to equation 2 and 3. On

the other hand, if there are matching keypoints, the score will
always be higher than this minimum value, thus the threshold
is set higher.

Secondly, as we assume the target motion is smooth and
continuous in time, a match Ml is also considered inconsis-
tent if the displacement between Sml and Sql is too large with
respect to recent motion.

Formally, a matching pair Ml is valid and not discarded if
and only if

z(Sml , S
q
l ) >

{
e−θc if Nkp

match = 0
e−θc + λ1 otherwise

(9)

and
||xSm

l
− xSq

l
|| < ||xt−1 − xt−2||+ λ2 (10)

with Nkp
match the total number of foreground keypoints

matches, λ1 a score threshold parameter and λ2 a motion
constraint parameter.

4.3. Location Estimation

Once the L∗ retained matching pairs have been determined,
each Sql votes for a position in the frame according to the
vote vector vl given by its respective Sml :

xl = xSq
l
+ vl (11)



The estimated target location is computed by a weighted
average of the votes:

xTt =

L∗∑
l

ωlφlxl

L∗∑
l

ωlφl

(12)

The factors ωl and φl, as introduced in [22], are the persis-
tence and predictive factor of Sml . They give more impor-
tance to SPiKeS that often match and vote correctly for the
target’s center. More details are given in the next section.

4.4. Update

Section 4.1 introduced Kf and Kb, our models of foreground
and background keypoints. During the matching process,
keypoints belonging to Kb are matched at the same time as
the foreground ones. Once the new bounding box has been
evaluated, if the number of keypoints inside it matching the
background model exceeds a threshold θo, an occlusion is
detected. Therefore, no update takes place and the next frame
is processed. Otherwise, if no occlusion occurs, the following
update scheme is applied.

Step 1 : Descriptors and votes update. For each valid
match (Sml , S

q
l ), the SPiKeS descriptor f defined in subsec-

tion 3.1 is updated with:

fml = (1− αf )fml + αff
q
l (13)

This simple formula adapts the model to gradual change of
illumination by updating the color of the superpixels and the
position and description of the keypoints.

For a non-rigid target, local parts tend to move with re-
spect to the center. Vote vectors need to be modified accord-
ing to the SPiKeS new position to take into account local de-
formations:

vml = (1− αv)vml + αv(x
T
t − xSq

l
) (14)

As SPiKeS are the “parts” of our model, these terms are
used interchangeably. A part that matches more often means
that it is easier to identify and constitutes a stable part of the
model. Consequently, this part should have more weight in
the final vote because it has proved its reliability by the persis-
tence of its matches. This persistence is interpreted as a factor
ω. At the initialization, we consider every SPiKeS from the
initial bounding box equally reliable and set an initial weight
ω0 = 1 which is updated as

ωt+1
i = (1− β)ωti + β1 (15)

with 1 = 1 if Si is a matching SPiKeS, 1 = 0 otherwise.
However, suppose an unexpected part of the background

is included in our model. It could match as often as a fore-
ground part if it is also present in the other frames. In that

Fig. 4: A wrong vote of a background SPiKeS included in the
model (cyan) will have a weak predictive factor φ.

case, the persistence factors ω would be the same while the
foreground part should have more importance. It can be ob-
served on figure 4 that, as a background SPiKeS will not fol-
low the target, the center estimated by its vote will be far from
the predicted location, whereas the foreground SPiKeS votes
will be closer. To leverage this behaviour, we introduce a pre-
dictive factor φ. Given a factor φ0l = 1 at time t = 0 for a
SPiKeS Sml belonging to the model, the predictive factor φl is
updated such that it increases if the local prediction xl given
by the vote is near the final location:

φt+1
l = φtl + exp(−||xl − xTt ||2) (16)

Those two factors ω and φ allow a SPiKeS to be more reliable
if it often matches and votes correctly.

Step 2 : SPiKeS insertion. To handle appearance changes
such as pose change resulting in new parts not visible in the
initial bounding box, one needs to add these new parts to the
model. The main problem at this step is to avoid adding
background parts that make the model drift. Therefore, in-
stead of naively adding all the SPiKeS from the bounding
box, we select only superpixels and keypoints that will make
good SPiKeS candidates. Figure 5 illustrates how superpixels
and keypoints help each other selecting good candidates. As
the introduction stated, a keypoint inside a matching SPiKeS
is assumed to belong to the target because of the boundary
evidence given by the superpixel. Indeed, all the points in-
side that area are likely to belong to the same object. Simi-
larly, a superpixel containing a matching foreground keypoint
is more likely to belong to the target.

Let sc and kc be the sets of superpixels and keypoints can-
didates that meet these conditions. At first, the set kc is added
to the foreground keypoints pool Kf . Then, the old SPiKeS
from Sm refresh their structure with those new keypoints. Fi-
nally, we add the new SPiKeS made from the superpixels in
sc and the updated Kf .



Fig. 5: A new keypoint (yellow, right) inside a matching su-
perpixel (cyan) can be added to Kf because this superpixel
belongs to the target, unlike the red keypoint. In the same
way, a new superpixel (green, right) can be added to Sm be-
cause it includes a matching keypoint (white).

In order to complete the keypoint-based background
model, keypoints detected around the estimated bounding
box are added to Kb if they did not match the background
keypoints.

Step 3 : SPiKeS deletion. As we add SPiKeS, our model
grows and increases the complexity of the matching process.
Furthermore, some SPiKeS may be irrelevant like redundant
or background SPiKeS, which need to be deleted. To keep a
reasonable number of SPiKeS in our model, once a maximum
size Nmax

m is exceeded, the (Nm − Nmax
m ) weakest SPiKeS

are removed based on their persistence factor ω. The same
discarding method apply for Kf and Kb. Thus a persistence
factor ωk is assigned to each keypoint, updated similarly to
equation 15, so that the weakest ones can be identified.

5. EXPERIMENTS

In this section, we first present details of our implementation
and the values for our parameters. Afterwards, we evaluate
our method with the procedure proposed by [28] and compare
our results to state-of-the-art trackers.

5.1. Experimental setup

For the oversegmentation, we choose the SEEDS superpix-
els [29] which have smooth boundaries and similar shapes in
addition to be one of the fastest superpixel segmentation in
the litterature. The size of a superpixel depends on the initial
bounding box of dimension wB × hB . In order to have about
30 superpixels included in the initial bounding box, a frame of
dimensionw×h should be segmented inN = wh

30wBhB
super-

pixels of diameterDs =
√

wh
N . Their HSV color histogram is

quantified in 6×6×6 bins and normalized. Similarly to [30],
Grabcut [31] is used on the first frame to select foreground su-
perpixels inside the given bounding box. This process makes
the model more accurate as it avoids including background
superpixels in the initial model. As for the keypoints and their

descriptors, we use the SIFT algorithm [24] which produces
scale and rotation invariant keypoints robust against illumi-
nation variation. A match between keypoints is defined as
proposed in [24] with a ratio threshold θlo = 0.75. When
building the SPiKeS, each superpixel searches its keypoints
in a surrounding region of radius R = 2Ds. We limit the
size of Sm to 3 times the number of superpixels in the initial
bounding box. The keypoints model Kf and Kb are limited
to 1000. During the matching process, the color threshold is
set to θc = 0.7, the score parameter to λ1 = 1 and the motion
constraint factor to λ2 = 4Ds. At the update stage, the occlu-
sion parameter is set to θo = 3. A smooth appearance adap-
tation is obtained with interpolation factor αv = αf = 0.1
and learning factor β = 0.1. Finally, when a new SPiKeS is
added, it starts with a weak persistence factor ωmin = 0.1
such that it could be discarded quickly if it does not match
directly in the next frame. Our results can be reproduced
with our C++ implementation available online1. The follow-
ing evaluation gives an average of 3 frames per second on a
3.4 GHz CPU with 8 GB memory, without code optimiza-
tion. Note that most of the time is spent on superpixels seg-
mentation, keypoints computation and matching, which are
tasks that could be implemented on GPU to improve execu-
tion speed.

5.2. Evaluation

5.2.1. Comparison to the state-of-the-art

The CVPR2013 Online Object Tracking Benchmark (OTTB)
of Wu et al.[28] allows us to evaluate our approach against
29 state-of-the-art trackers over a dataset of 51 challenging
sequences. The given groundtruth is a rectangular bounding
box whose center corresponds to the target location. We also
added a more recent tracker, KCF [8], as the code is available
online.

After running the one-pass evaluation (OPE), we obtain
two types of graphs based on different metrics. The precision
plot shows the percentage of frames for which the center lo-
cation error (CLE) is lower than a Location Error Threshold
(LET), with CLE computed as the Euclidian distance between
the tracker estimated location and the groundtruth’s center.
On this plot, trackers are ranked by the precision obtained for
LET = 20 pixels. The second graph is the success plot. It rep-
resents the percentage of frames for which the overlap ratio
(OR) is larger than a given threshold. This ratio is computed
between the intersection and union of the bounding box given
by the tracker (BT ) and the groundtruth (BG)

OR =
S(BT ∩BG)
S(BT ∪BG)

with S denoting the number of pixels of the covered surface.
The ranking on this plot employs the area under the curve

1https://github.com/fderue/SPiKeS_T

https://github.com/fderue/SPiKeS_T
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Success plots of OPE - motion blur (12)
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(d) Motion Blur
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Precision plots of OPE - in-plane rotation (31)
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Success plots of OPE - in-plane rotation (31)
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(e) In-plane Rotation
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Precision plots of OPE - illumination variation (25)
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Success plots of OPE - illumination variation (25)
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(f) Illumination Variation
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Precision plots of OPE - scale variation (28)
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Success plots of OPE - scale variation (28)
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(g) Scale Variation
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Precision plots of OPE - fast motion (17)

SPiKeS-T [0.671]
Struck [0.604]
TLD [0.551]
KCF [0.536]
CXT [0.515]
LOT [0.420]
TM-V [0.420]
OAB [0.416]
MTT [0.401]
MIL [0.396]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e
Success plots of OPE - fast motion (17)
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(h) Fast Motion
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Precision plots of OPE - out-of-plane rotation (39)

SPiKeS-T [0.666]
KCF [0.649]
VTD [0.620]
SCM [0.618]
VTS [0.604]
Struck [0.597]
TLD [0.596]
CXT [0.574]
CSK [0.540]
CPF [0.529]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE - out-of-plane rotation (39)
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(i) Out-of-plane Rotation
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Precision plots of OPE - occlusion (29)
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Success plots of OPE - occlusion (29)
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(j) Occlusion

Fig. 6: Precision and Success plots for the one-pass evaluation (OPE) on OTTB. The number into brackets is the number of
videos in the subset.
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Precision plots of OPE
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Success plots of OPE
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(a) Overall
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Precision plots of OPE - deformation (19)
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Success plots of OPE - deformation (19)

SPiKeS-T [0.503]
CMT [0.397]
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(b) Deformation

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Precision plots of OPE - background clutter (21)
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Success plots of OPE - background clutter (21)

SPiKeS-T [0.509]
CMT [0.429]
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(c) Background clutter
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Precision plots of OPE - occlusion (29)
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Success plots of OPE - occlusion (29)

SPiKeS-T [0.477]
CMT [0.435]
DGT [0.365]

(d) Occlusion
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Precision plots of OPE - illumination variation (25)
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Success plots of OPE - illumination variation (25)

SPiKeS-T [0.512]
CMT [0.420]
DGT [0.368]

(e) Illumination variation
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Precision plots of OPE - fast motion (17)
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Success plots of OPE - fast motion (17)
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(f) Fast motion

Fig. 7: Comparison of a superpixel-based tracker (DGT), a keypoint-based tracker (CMT) and ours (SPiKeS-T) on OTTB.

(AUC) value as it measures the overall performance instead
of the success obtained for a single threshold.

Figure 6a shows the overall plots obtained from the whole
dataset, while plots 6b-6j are obtained from subgroups gath-
ering videos of the same challenging factor. Only the top ten
methods are shown for clarity. We observe that our tracker
(SPiKeS-T) gives promising performances since it ranks first
for almost all of these cases. However, it reaches only the sec-
ond place on the overall plot after KCF. KCF has the benefits
of a scale adaptation, unlike our method, which explains why
it tracks better on sequences with scale variation (fig. 6g).

As Struck does not adapt to scale change either, we can
fairly compare to it on the overall success and precision plots
where our method reaches better performance on both. This is
mainly due to our part-based model, which shows best results
against deformation as seen in figure 6c. Indeed, our local
parts, the SPiKeS, are very flexible as we do not enforce rigid
connection between them. Each one is matched regardless of
the others allowing large deformations. Moreover, a super-
pixel is a deformable part itself and better represents local de-

formation. This advantage has been exploited in our update
scheme making our tracker more robust against background
clutter than the other trackers as we observe on figure 6b. For
example, SCM updates its generative model with rectangular
patches, which are less reliable than superpixels as patches
cannot adapt to the shape. Qualitative results for the top five
trackers are also presented on figure 8.

5.2.2. Comparison to related trackers

As our goal is to show the benefits of the SPiKeS for tracking,
we also compare our method to two specific recent trackers:
CMT [20] and DGT [17]. Both are part-based trackers which
locate their target with votes like ours. However, the former
is a keypoint-only tracker while the latter is a superpixel-only
tracker. As their codes are available online, we evaluate them
on the benchmark of Wu et al. [28], keeping the default pa-
rameters given by the authors. Results in figure 7 show that
our approach outperforms the other two, demonstrating that
combining superpixels and keypoints leads to a more robust
tracking than using these features alone. More specifically,



SPiKeS-T KCF SCM Struck TLD

Fig. 8: Qualitative results of top five trackers for sequences bolt, woman, david3, singer2 from top to bottom.

the results can be explained for different situations:

• Deformation: As they are all part-based trackers, they
are more suited to handle deformations. To alleviate the
lack of discriminativity of superpixels, DGT employs
spectral matching to match a graph of superpixels. This
technique requires the computation of an affinity ma-
trix. However, for that matrix to be computationally
manageable, constraints on the deformation must be
set. Consequently, this tracker fails in case of heavy
deformation. As for CMT, keypoints can be difficult
to match when the target undergoes deformation, since
some keypoints will disappear and new ones appear.
Therefore, only a few matches will determine the lo-
cation, which will be inaccurate if some of the matches
are wrong. On the contrary, as an image can always be
segmented in a same number of superpixels, numerous
SPiKeS are candidates to be matched even in case of
deformation. Moreover, since SpiKeS may have key-
points in common, a single keypoint can lead to several
matches of SPiKeS resulting in a more accurate loca-
tion.

• Background clutter: In this situation, the background
distracts the tracking and often leads to a model drift.
Where DGT will match wrong superpixels and CMT
false keypoints, the more discriminative power of a
SPiKeS helps in avoiding such ambiguous matches.
Indeed, the color of a superpixel can avoid bad key-
point matches while the structure of keypoints can

differentiate two superpixels of similar color. Com-
pared to CMT, the boundary evidence brought by a
superpixel avoids adding noisy keypoints to the model,
as presented in figure 5 in the previous section. Further-
more, even if noisy SPiKeS are added to our model,
the persistence and prediction factors favor reliable
SPiKeS, which also prevents the model from drifting.

• Occlusion: On this curve, we see that DGT is less ef-
ficient. If the occluder has similar color as the target,
it will be classified as foreground and no occlusion will
be detected. Thus, it will not be able to avoid updating
the model which will make it drift. To detect occlusion,
it seems that keypoints are better but SpikeS has still
an advantage over keypoints-only trackers. In case of
a missed occlusion detection and an unwanted update,
it is less probable to add bad keypoints to a SpiKeS
thanks to the boundary of the superpixel. However, as
keypoint-only trackers have no clue as whether a new
keypoint belongs to the target, it is more likely that the
model will drift due to a background keypoint added
erroneously to the model.

• Illumination variation: In case of illumination varia-
tion, DGT tends to fail as it relies only on color and
unlike CMT that detects BRISK keypoints [32], our
tracker uses SIFT keypoints which are designed to be
robust against illumination variation.

• Fast motion: Constraints on the affinity matrix com-



puted by DGT also limits the motion of each of its su-
perpixels. This is why it performs poorly when there
is fast motion. Our tracker adapts its motion constraint
according to the target’s motion.

It is also interesting to see the influence of other types of
superpixels and keypoints to build the SPiKeS. Figure 9 com-
pares different combinations of features such as SIFT [24]
and SURF [26] for keypoints and SLIC [33] and SEEDS [29]
for superpixels. Although the results are quite equivalent, the
best combination is not a surprise. SEEDS has shown to fit
better to boundaries than SLIC in [29] and SIFT is more ro-
bust than SURF to illumination changes [34].
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Fig. 9: Influence of different superpixels-keypoints combina-
tions on the overall performance on OTTB.

6. CONCLUSION

In this paper, we proposed a novel feature combining su-
perpixels and keypoints that we called SPiKeS. We showed
that this new feature can be matched efficiently by a sim-
ple nearest neighbor technique. Therefore, we developed a
SPiKeS-based tracker that leverages this matching to locate
accurately target parts in a new frame. Furthermore, based on
the SPiKeS properties, we provided a reliable update scheme
that avoids the model to drift. Finally, the evaluation against
the state-of-the-art shows promising results, as our results are
close to the ones of KCF tracker, even outperforming it in
many scenarios, despite that our tracker does not yet include
an adaptation to scale variation. In addition, our superior per-
formance compared to superpixels-only and keypoints-only
trackers first demonstrates the benefits of fully combining
these two features for more robust tracking. As a final word,
we point out that the use of SPiKeS could advantageously be
extended to other applications such as object detection and
foreground segmentation.
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