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Abstract

Cellular processes are governed by macromolecular complexes inside the cell. Study of the native 

structures of macromolecular complexes has been extremely difficult due to lack of data. With 

recent breakthroughs in Cellular Electron Cryo-Tomography (CECT) 3D imaging technology, it is 

now possible for researchers to gain accesses to fully study and understand the macro-molecular 

structures single cells. However, systematic recovery of macromolecular structures from CECT is 

very difficult due to high degree of structural complexity and practical imaging limitations. 

Specifically, we proposed a deep learning-based image classification approach for large-scale 

systematic macromolecular structure separation from CECT data. However, our previous work 

was only a very initial step toward exploration of the full potential of deep learning-based 

macromolecule separation. In this paper, we focus on improving classification performance by 

proposing three newly designed individual CNN models: an extended version of (Deep Small 

Receptive Field) DSRF3D, donated as DSRF3D-v2, a 3D residual block-based neural network, 

named as RB3D, and a convolutional 3D (C3D)-based model, CB3D. We compare them with our 

previously developed model (DSRF3D) on 12 datasets with different SNRs and tilt angle ranges. 

The experiments show that our new models achieved significantly higher classification accuracies. 

The accuracies are not only higher than 0.9 on normal datasets, but also demonstrate potentials to 

operate on datasets with high levels of noises and missing wedge effects presented.
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1 Introduction

As the basic unit of life, cell has always been a fundamental focus of biomedical research. 

Governed by macromolecules, cellular processes occur over a large length scale. To fully 
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understand the biological processes at different levels, it is essential to gain knowledge of 

native structures and spatial organizations of macromolecular complexes inside single cells. 

Due to the lack of data acquisition techniques, little has been known about such knowledge 

due to lack of suitable data acquisition techniques. Recent breakthroughs in Cellular 

Electron Cryo-Tomography (CECT) imaging technique enables the 3D visualization of 

macromolecular complex structures and their spatial organizations inside single cells at 

submolecular resolution and close to their native state [15,19,23,49]. CECT has made 

possible the discovery of numerous important structural features in prokaryotic cells, 

eukaryotic cells and viruses [3,11,18,21]. Therefore, CECT emerges as a very promising 

tool for systematically studying macromolecular complexes with unprecedented coverage, 

precision and fatality. In principle, a CECT image contains structural information of all 

macromolecular complexes inside the field of view. However, the systematic recovery of 

macromolecular structures from CECT is very difficult due to high degree of structural 

complexity and practical imaging limitations. Specifically, the densely populated cytoplasm 

makes a very crowded cellular environment for macromolecules. Also, macromolecules are 

dynamically interacting each other, forming more complex and heterogeneous structures 

[28]. On the other hand, current technical limitations inherent to the process of structure 

determination via single-particle cryo-EM require collecting very large datasets often images 

of several thousands of macromolecules. It would likely require separating and averaging 

millions of macromolecules represented by subtomograms, potentially containing hundreds 

of highly heterogeneous structural classes (a subtomogram is a cubic subimage that contains 

only one macromolecule). Although advances in data acquisition automation make it no 

longer difficult to acquire CECT images containing such amount of macromolecules, 

existing computational approaches have very limited scalability and discrimination ability, 

making them incapable of automatic processing such large amount of data.

Given this challenging task, a number of previous works have been done for analyzing 

macromolecules from CECT data. In [4,26], template searching-based algorithms were 

proposed to localize macromolecules of known structures from CECT data. In 2013, Briggs 

et al. reviewed a number of subtomogram averaging methods to resolve structure of 

macromolecular complexes in situ [7]. In addition, unsupervised classification-based 

approaches were also developed (e.g., [2,6,9,32,39]). Even though these methods showed 

promising macromolecule structure separation and recovery results, the scalability is strictly 

limited by the intensive computations. Other approaches such as rotation invariant feature 

[40] and pose normalization [46] were proposed to address the task while reducing the 

computational complexity. However, these approaches are limited by anisotropic resolution 

from missing wedge effect, and high level of noise in CECT data.

In order to overcome the limitations mentioned above, recently, we were the first to propose 

deep learning-based approach [44] for separating particles into structurally homogeneous 

subgroups through supervised feature extraction using Convolutional Neural Network 

(CNN). Such approach achieved significantly better separation performance in terms of both 

accuracy and scalability compared with our previous approaches, showing that deep 

learning-based approach is potentially a very powerful tool for large-scale particle 

separation. However, our previous proof-of-principle work is only an initial step toward 
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exploring the full power of deep learning-based large-scale particle separation. The accuracy 

of classification needs to be substantially improved for better structural reconstruction 

performance.

In this paper, we focus on improving deep learning-based separation of particles of 

macromolecular complexes extracted from CECT images by designing new CNN models. 

The three CNN models we are proposing include: an extended version of (Deep Small 

Receptive Field) DSRF3D [44], donated as DSRF3D-v2, a 3D residual block-based neural 

network [20], named as RB3D, and a convolutional 3D (C3D) [36]-based model, CB3D. 

Our experiment shows that new proposed models can achieve significantly better 

classification performances than our previous best CNN model proposed in [44]. Among 

them, CB3D has the best performances and yield accuracy close to 0.9 for normal datasets. 

Our models also show promising classification performance over datasets of extremely low 

SNR (0.01).

2 Method

2.1 Convolutional neural networks

Serving as a powerful tool, convolutional deep neural networks have been widely used by 

researchers to resolve challenging tasks in computer vision especially for image 

classification. Inspired by biological processes, CNN models are composed of stacked layers 

including an input, an output and multiple hidden layers, which include convolutional, 

pooling or fully connected layers. By stacking multiple processing layers, more and more 

image features are learned and extracted as the training proceeds. More specifically, each 

convolutional layer contains numerous of filters, considered as neurons with different 

weights. Neurons in this layer are connected to regions of neighboring neurons in the 

previous layer, donated as receptive field. For instance, a 1D convolution input x with filter 

size of 2m + 1 will yield an output yi = ∑ j = − m
m wixi − j, where wj is the jth weight of the 

convolutional filter. An activation function is applied after the convolution layer. Some 

common activation layers include sigmoid, tanh, the rectified linear unit (ReLU) [16], Leaky 

ReLU [20] and Maxout [17]. These activation functions take the input and perform certain 

fixed mathematical operations on it. They are used to accelerate the convergence of the 

optimization process. For example, ReLU is defined as oReLU(x) = max(0, x). Next, pooling 

layers are utilized to reduce the computational costs during the training process by down 

sampling the data. Two common ways of pooling are calculating the local maximum and 

average values of the pooling windows. After series of stacked convolutional and pooling 

layers, a fully connected layer is used to extract more global features. Each unit in fully 

connected layers, as name suggested, is connected to all units from the previous layer. For 

instance, given an ith input xi, the jth output yj is defined asy j = ∑i = 0
n − 1w jixi, where n is the 

total number of inputs and wji is the weight between ith input x and jth output y. Sometimes, 

special techniques such as Dropout [34] and L2 regularization are used to prevent 

overfitting. Dropout works by simply only keeping a neuron active with some probability p 
or setting it to zero otherwise during the training process. Lastly, in order to perform the 

multi-class classification, a softmax activation function is connected to the last fully 
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connected layer to compute a probability of a sample being assigned each class. The softmax 

function is defined in 1, where f j(x) = xTw j ⋅ w j are the weights with jth classand P (j|x) is 

the probability of the subtomogram is assigned to j class.

o j
softmax (x) = P( j x) = e

f j(x)
∑l = 1

L e f l (x)
(1)

The input of this classification problem is a subtomogram X, (i.e., 3D gray scale image of 

size n1 × n2 ×n3), represented as a 3D array of Rn
1
×n

2
×n

3, and the output label vector L, 

represented as a 1D array of Rl, where l denotes the number of classes in the dataset. The 

algorithm aims at classifying subtomograms into the correct class, that is, mapping X to l 
correctly.

Designing CNN architectures and tuning parameters are essential for the performance of 

networks. In 2012, Krizhevsky et al. proposed a novel CNN architecture AlexNet [22], 

which was the first to show a significant improvement of image classification results on a 

historically difficult dataset, ImageNet [31]. From that on, CNNs have become a household 

name in computer vision computer community. In recent years, more advanced CNN 

architectures were proposed and developed such as GoogleNet [35], ResNet [20] and 

VGGNet [33]. These networks gradually pushed the classification error rate on ImageNet 

down to 3.6% [20].

In this paper, we propose three different CNN models and comparing them with our 

previously proposed approaches in [44].

All the models are trained using stochastic gradient descent (SGD) optimizer. We minimize 

the categorical cross-entropy cost function by adding Nesterov momentum of 0.9. 

Momentum update [30] is an update approach that often has better converge rates while 

using gradient descent on deep network optimization. With momentum update, the 

parameter vector will build up velocity in any direction that has consistent gradient. 

Nesterov momentum [24] is a slightly different version of the momentum update that enjoys 

stronger theoretical converge guarantees for convex functions and in practice it also 

consistently works slightly better than standard momentum. The main difference is in 

classical momentum it first corrects the velocity and then makes a big step according to that 

velocity, but in Nesterov momentum it first makes a step into velocity direction and then is 

corrected to a velocity vector based on new location. Previous work [24] mathematically 

proves that Nesterov momentum has a better convergence rate in optimization. In addition, 

the initial learning rate is set at 0.005 with a decay factor of 1e ‒7. The training processes 

are performed with a batch size of64 for 20 epochs. However, for each dataset, if the 

classification performance shows no improvement over 5 consecutive epochs based on the 

loss function, the training process will end early.

Che et al. Page 4

Mach Vis Appl. Author manuscript; available in PMC 2019 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1.1 DSRF3D-v2 model—In this section, we propose a 3D variant VGGNet [33]-based 

CNN architecture called Deep Small Receptive Field (DSRF3D). This model is an extended 

version of our previously proposed model [44], and we donate this model as DSRF3D-v2. 

Just like a VGGNet, DSRF3D-v2 is featured with sequentially deep stacked layers and small 

3D convolution filters with size of 3 × 3×3. As shown in Fig. 1, the input layer is 

sequentially connected three sets of stacked layers, with each set consisting of 2 3 × 3 × 3 

3D convolutional layers and one 2 × 2 × 2 3D pooling layer. Then, it is followed by two 

fully connected layers with 70% dropout after each layer. The final fully connected output 

layer has the same number of units as the structure class number. The activation layers are 

ReLU for all hidden layers and softmax for fully connected layers. Compared to previously 

designed DSRF3D model, adding more stacked layers with appropriate dropouts should 

improve the classification performance intuitively.

2.1.2 RB3D model—In this section, a 3-D variant residual block-based [20] CNN model 

is proposed, donated as RB3D. One big advantage for ResNet-based model is that it avoids 

negative outcomes while increasing the network overall depth. As shown in Fig. 2, this 

model feeds the input layer to a convolutional layer, a ReLU activation layer and a 2 × 2×2 

3D max-polling layer. Then, four bottleneck [20] residual blocks are connected sequentially. 

For each block, there are two paths that merge together at the end of the block. One path 

contains one 1×1 layer to reduce dimension, a 3×3 layer and a 1 × 1 layer for restoring 

dimension. The other path, considered as a “shortcut”, only contains a 3×3 convolutional 

layer. Lastly, two fully connected layers are constructed with dropout of 50% to prevent 

overfitting. The usage of residual blocks might lead to higher classification accuracy.

2.1.3 CB3D model—In this section, we propose a 3D convolutional (C3D)-based model, 

named as CB3D. C3D [36] was originally proposed to be trained on large-scale supervised 

video datasets. We can think of the 3D structures of macromolecules as multiple slices of 2D 

images. If we look from the first slice to the last slice, we can interpret it as a continuously 

changing object just like a video dataset. In our model shown in Fig. 3, we concatenate eight 

3D 3 × 3 × 3 convolutional layers and each layer is activated by ReLU. Five max pooling 

layers are mixed among the convolutional layers. At end, two fully connected layers with 

50% dropout are added and a softmax activation is appended.

2.2 Generation of simulated subtomograms from experimental structures

Similar to previous works [4,12,25,29,39,39,42–45,48], we use known structures of 

macromolecular complexes to generate simulated subtomograms by simulating actual 

tomographic image reconstruction processes in order to have a reliable assessment of our 

proposed approaches. There are three significant aspects we focus on when simulating the 

subtomograms: missing wedge effects, noises and electron optical factors such as 

modulation transfer function (MTF) and contrast transfer function (CTF).

The contrast transfer function (CTF) mathematically describes how aberrations in a 

transmission electron microscope (TEM) modify the image of a sample. By considering the 

recorded image as a CTF-degraded true object, describing the CTF allows the true object to 

be reverse engineered. This is typically denoted CTF-correction, and is vital to obtain high 
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resolution structures in three-dimensional electron microscopy, especially cryo-electron 

microscopy. Its equivalent in light-based optics is the optical transfer function (OTF). A 

typical CTF is of the following form (Eq.2.20 of [13]):

CTF(k ; Δz ) = sin −πΔzΔk 2 + π
2 k 4

(2)

where ẑ and k  are generalized defocus and spatial frequency, respectively.

The modulation transfer function (MTF) is a variant of the optical transfer function (OTF), 

neglecting phase effects. The resolution and performance of an optical microscope can be 

characterized by a MTF, which is a measurement of the microscope’s ability to transfer 

contrast from the specimen to the intermediate image plane at a specific resolution. 

Computation of the modulation transfer function is a mechanism that is often utilized by 

optical manufacturers to incorporate resolution and contrast data into a single specification.

More specifically, we first generate density map volumes of 403 voxels with a resolution of 

0.92 nm using the PDB2VOL program from the Situs [38] package. The density map 

volumes are generated by convoluting the atomic structures with a Gaussian kernel, whose 

standard deviation is assumed to be half the target resolution. We then randomly rotate and 

translate the volumes. Next, we generate projection images of the density maps with 

different tilt angles to simulate missing wedge effects. The specific tilt angle ranges are 

± 60°,± 50° and ±40°. We then convolute the projection images CTF and MTF [13,25] to 

reproduce the electron optical effects to generate simulated electron micrographic images. 

Then, the simulated noises are added to electron micrographic images [12] with desired 

signal-to-noise ratio (SNR) levels so that the SNR of reconstructed subtomograms are of 0.1, 

0.05, 0.03 and 0.01. The acquisition parameters are set similar to [47], with spherical 

aberration of 2 mm, defocus of −5μm and voltage of 300kV. Finally, with all gathered 

information, we construct the simulated subtomogram datasets using a direct Fourier 

inversion reconstruction algorithm implemented in the EMAN2 library [14]. Figure4 shows 

an example of center slices of simulated subtomograms with different SNRs and tilt angle 

ranges.

We construct a simulated dataset for each pair of SNRs(4) and tilt angle ranges(3), which 

yields 12 sets of data in total. Within a single dataset, for each macromolecular complex, we 

generate 1000 simulated subtomograms that contain randomly rotated and translated particle 

of that complex. There are 22 macromolecular complexes collected from the Protein 

Databank (PDB) [5] shown in Fig. 5. Furthermore, we simulate 1000 subtomograms that 

contain no macromolecule. As an outcome, each dataset contains 23,000 simulated 

subtomograms of 23 structural classes.

To fully evaluate classification performances, we first split each dataset into two parts: 80% 

are used as training data, and 20% are used as testing data. Then, we take 20% of the 

training data and use it as validation data for parameter tuning during training process, and 

the rest 80% for training weights. Therefore, we end up with 14,720 training samples, 3680 
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validation samples and 4600 testing samples. We use the same partitioned datasets across all 

models to have a fair comparison on their classification performance.

2.3 Implementation details

This work is implemented using Keras [10] with Tensorflow [1] as back-end. Keras is a 

python-based, high-level neural networks API for fast deep learning experimentation. The 

experiments are performed on a computer with three Nvidia GTX 1080 GPUs, one Intel 

Core i7–6800K CPU and 128GB memory. The new proposed models are implemented with 

the same system as our previously proposed model [44]. For the baseline methods, the 

rotation invariant features is computed based on SHTools [37]. K-means clustering and 

support vector machine (SVM)-based supervised multi-class classification are implemented 

using the Sklearn toolbox [27].

3 Experiment results

3.1 Classification performance

In this section, we compare the classification performance of new CNN models (DSRF3D-

v2, RB3D and CB3D) with our previously proposed best model DSRF3D [44], as well as a 

baseline method on datasets with different SNRs and tilt angles ranges. The baseline method 

uses spherical harmonics rotation invariant feature [41,43] with SVM using Radial Basis 

function kernel, denoted as RIF-SVM. The results are shown in Table1. The best 

performances for each pair of imaging conditions are highlighted in bold. In general, our 

new proposed CNN models demonstrate significant improvements in classification 

performance. As shown, the best performance is achieved by newly designed models in all 

11 out of 12 situations. The only exception that new models perform worse than previous 

models (DSRF3D and RIFSVM) is with tilt angle ranges of ± 50° and SNR of 0.001. Given 

such poor qualities of images, the “best” performance is only around 0.2, which is still 

considered as bad performance.

When comparing among the three new models, we can observe that RB3D often ends up 

with lower accuracy than DSRF3D-v2 and CB3D. In fact, RB3D establishes obvious 

improvements (greater than 0.3) only with SNR of 0.1. In situations with low SNRs, RB3D 

does not show apparent improvement and it performs even worse than DSRF3D. Therefore, 

the RB3D model is not robust to image noises. In general, residual block structures are 

proposed and proved to work the best with very deep neural network structures [20]. We also 

tested increasing the depth of RB3D model by adding one more residual block and train the 

new structure on three datasets with SNR of 0.01. The accuracies using 5 residual blocks 

structures are 0.247, 0.042 and 0.171, compared to0.041, 0.042 and 0.171 when using 4 

residual blocks. This exploration shows that there is not clear pattern of classification 

performance improvement when increasing the depth of RB3D. Thus, further study on 

improving classification performance through increasing depth or modifying residual block 

internal structure remains open.

In contrast, both DSRF3D-v2 and CB3D show essential accuracy increases in most cases. 

With SNR of 0.01 and tilt angles of ± 60°, both models can remarkably achieve accuracy 
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greater than 0.4. Even though 0.4 is still not considered as high classification accuracy in 

Table 1, it at least shows the capability of deep learning to classify a large amount of 

subtomograms with extremely poor image quality.

DSRF3D-v2 and CB3D generate very similar results, usually with differences less than 0.1. 

It is proved that both model can accurately classify subtomograms even with much noises 

and missing wedge effects presented. CB3D is slightly better than DSRF3D-v2 because it 

achieves the best performance in 8 out of 12 datasets. With SNR of 0.03 and tilt angle ranges 

of ± 40°, CB3D can still obtain classification accuracy higher than 0.7, which is a very good 

performance if we consider the poor image qualities.

In addition, we also evaluate the computation time. On average, it takes 0.0056, 0.0083, 

0.0141 and 0.0136s for DSRF3D, DSRF3D-v2, RB3D and CB3D, respectively, to process 

one subtomogram for each epoch during training process. In testing process, it takes 0.0019, 

0.0027, 0.0026 and 0.0040s for DSRF3D, DSRF3D-v2, RB3D and CB3D, respectively, to 

process one subtomogram. Thus, compared to previous model (DSRF3D), our new proposed 

models cost48.21–151.79% more time for training and 36.84–110.53% more time for 

testing. Further work can be done to speed up our new deep learning models.

3.2 Classification capability

In this section, we examine the capability of deep learning to classify large-scale datasets of 

subtomograms. We first extract the the best performance for each of the 12 datasets and then 

plot the highest accuracy with respect to both SNRs and tilt angle ranges. The 3D surface is 

plotted in Fig. 6. As shown, the classification accuracy decreases as more noises are added 

to the dataset for all tilt angles. Similarly, for all SNRs, the accuracy will reduce if tilt angle 

ranges decrease from ± 60° to ± 40°. Based on the plot, we can observe that for datasets 

whose SNRs are above or equal to 0.05, our best model can achieve classification accuracy 

no lower than 0.877. For datasets with poor image qualities, as long as SNR is kept above 

0.03, classification can achieve higher than0.7 for all 3 tilt angle ranges. It is proven that our 

proposed approach has strong abilities to accurately classify macro-molecular structures 

from CECT images and even greater potentials to process datasets with extremely high level 

of noises and missing wedge effects.

4 Conclusions

In this paper, three novel CNN models are proposed to significantly improve deep learning-

based separation of macromolecules extracted from CECT images. We compare them with 

our previously proposed model and our best model CB3D ends up with classification 

accuracy of approximately 0.85 for image datasets with relatively low noise level. More 

importantly, it demonstrates good potentials to operate on datasets with extremely poor 

image qualities. After successfully and efficiently subdividing the subtomograms, the 

computationally intensive reference-free approaches can be applied to selected subsets 

separately in order to recover the structure of macromolecular complexes. The overall 

computational cost can be greatly reduced through such divide and conquer approach. This 

proof-of-principle work represents a useful step toward full systematic structural separation 

and recovery of millions of macromolecules extracted from CECT images.
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Recently, deep learning has also been used for analyzing CECT by other groups, for 

example [8]. There are several major differences between our approaches and the approach 

in [8]. (1) We focus on the recovery of macromolecular complexes captured by CECT, 

instead of supervised segmentation of ultrastructures as in [8]. (2) Because the 

macromolecules can have arbitrary orientation in a CECT image, our models aim at learning 

the rotational invariant features. We used 3D filters instead of 2D filters as in [8], so that our 

CNN models can isotropically capture the inherent 3D spatial structure in such 3D images.
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Fig. 1. 
DSRF3D-v2 model: Each box provides configurations for each layer. ‘32−3×3×3−1 Conv’ 

represents a 3D convolutional layer with 32 5×5×5 filters and stride of 1. ‘ReLU’ and 

‘Softmax’ are activation layers. ‘2×2 2–1 MaxPool’ means that max operation is 

implemented over 2×2×2 regions with stride of 2’. ‘FC-1024’ and ‘FC-L’ represents fully 

connected layers with 1024 and L(total number of the classes) neurons, respectively
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Fig. 2. 
RB3D model: each box provides configurations for each layer. The definition of the boxes 

follows Fig. 1. Four residual blocks are connected, represented by the black boxes. The 

specific design for a single residual block is shown in the dashlined box
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Fig. 3. 
CB3D model: each box provides configurations for each layer. The definition of the boxes 

follows Fig. 1. Note that ‘1×2 2− (1)2 MaxPool’ means that the max operation is 

implemented over region of 1×2×2. The stride is 1 for the first dimension and 2 for the 

others
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Fig. 4. 
Left: Isosurface of Yeast 20S proteasome (PDB ID: 3DY4); Right: Center slices of 

subtomograms with different levels of SNRs(0.5, 0.1, 0.05 and 0.01) and tilt angle 

ranges(± 60°, ± 50° and ± 40°)
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Fig. 5. 
Isosurfaces of all 22 types of macromolecular complexes collected from the Protein 

Databank (PDB), denoted with PDB ID
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Fig. 6. 
The highest classification accuracy with respect to different SNRs and tilt angle ranges

Che et al. Page 18

Mach Vis Appl. Author manuscript; available in PMC 2019 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Che et al. Page 19

Ta
b

le
 1

T
he

 c
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 u
si

ng
 f

ou
r 

C
N

N
 m

od
el

s 
un

de
r 

di
ff

er
en

t S
N

R
 a

nd
 ti

lt 
an

gl
es

SN
R

/t
ilt

 
an

gl
e 

ra
ng

e
±6

0°
±5

0°
±4

0°

R
IF

-S
V

M
D

SR
F

3D
D

SR
F

3D
-v

2
R

B
3D

C
B

3D
R

IF
-S

V
M

D
SR

F
3D

D
SR

F
3D

-v
2

R
B

3D
C

B
3D

R
IF

-S
V

M
D

SR
F

3D
D

SR
F

3D
-v

2
R

B
3D

C
B

3D

0.
1

0.
79

0
0.

91
1

0.
97

7
0.

95
0

0.
97

3
0.

67
2

0.
89

6
0.

96
3

0.
92

5
0.

97
1

0.
67

0
0.

86
8

0.
95

4
0.

89
9

0.
97

0

0.
05

0.
62

0
0.

84
4

0.
92

5
0.

85
2

0.
93

3
0.

49
3

0.
75

3
0.

91
0

0.
75

0
0.

89
9

0.
49

5
0.

73
5

0.
87

6
0.

67
1

0.
87

7

0.
03

0.
47

9
0.

70
6

0.
84

1
0.

71
1

0.
84

9
0.

35
0

0.
58

1
0.

74
6

0.
54

8
0.

74
7

0.
36

0
0.

53
7

0.
03

8
0.

50
2

0.
71

7

0.
01

0.
21

8
0.

04
0

0.
40

7
0.

04
1

0.
44

5
0.

15
3

0.
20

0
0.

04
1

0.
04

2
0.

04
1

0.
16

2
0.

04
3

0.
04

3
0.

17
1

0.
04

1

Mach Vis Appl. Author manuscript; available in PMC 2019 September 11.


	Abstract
	Introduction
	Method
	Convolutional neural networks
	DSRF3D-v2 model
	RB3D model
	CB3D model

	Generation of simulated subtomograms from experimental structures
	Implementation details

	Experiment results
	Classification performance
	Classification capability

	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1

