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Abstract
Satellite imagery is changing the way we understand and predict economic activity in the world. Advancements in satellite 
hardware and low-cost rocket launches have enabled near-real-time, high-resolution images covering the entire Earth. It is 
too labour-intensive, time-consuming and expensive for human annotators to analyse petabytes of satellite imagery manually. 
Current computer vision research exploring this problem still lack accuracy and prediction speed, both significantly important 
metrics for latency-sensitive automatized industrial applications. Here we address both of these challenges by proposing a 
set of improvements to the object recognition model design, training and complexity regularisation, applicable to a range of 
neural networks. Furthermore, we propose a fully convolutional neural network (FCN) architecture optimised for accurate and 
accelerated object recognition in multispectral satellite imagery. We show that our FCN exceeds human-level performance 
with state-of-the-art 97.67% accuracy over multiple sensors, it is able to generalize across dispersed scenery and outperforms 
other proposed methods to date. Its computationally light architecture delivers a fivefold improvement in training time and a 
rapid prediction, essential to real-time applications. To illustrate practical model effectiveness, we analyse it in algorithmic 
trading environment. Additionally, we publish a proprietary annotated satellite imagery dataset for further development in 
this research field. Our findings can be readily implemented for other real-time applications too.

1  Introduction

Quantamental hedge funds utilize satellite imagery as a 
source of intelligence for their financial trading algorithms in 
order to generate access returns (alpha) [40]. Near-real-time 
satellite imagery combined with computer vision enables 
investment managers to leverage insights from the “ground-
truth” data to predict financial markets. Real-life uses cases 
include company’s revenue prediction based on car count 
across parking lots; production estimate based on supply 
chain activity; agricultural commodity prices forecast based 
on estimated crop yields and oil supply detection based on 
global oil tank lids [31]. It also enables government entities 
and non-profits to leverage these insights for humanitarian 

purposes including assessment of Coronavirus (COVID-19) 
economic impact (object count of aircraft, lorry, container 
ship), rapid forest wildfires detection [15], global whale 
count and extinction prevention [19], time-sensitive flash 
flood hydraulic modelling [10] and other surveillance for 
disaster relief [56].

According to The Committee on Earth Observation Sat-
ellites (CEOS) [4] commercial satellite imagery will soon 
reach the coverage of the entire Earth, near-real-time fre-
quency and high-resolution (< 30 cm per pixel). It will con-
sequently increase the demand for the development of high-
precision and real-time computer vision techniques [13]. 
Most recent computer vision models, however, still take a 
significant time (> 30 min) to process ~ 100 km2 of satellite 
imagery [64] with accuracy similar or below [39] the pro-
fessional human annotator (~ 90%) [48, 32, 42, 14]. Also, 
current academic research, lacks methods improving object 
recognition models suited for this purpose [28, 59] increas-
ing the bottleneck for satellite imagery adoption in real-time 
applications such as algorithmic trading [40, 8]. In Fig. 1 we 
illustrate the data flow in the algorithmic trading system and 
identify signal origination latency per data input to illustrate 
this bottleneck: market data (< 40 ms delay), non-market 
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data (< 50 ms delay), satellite imagery (> 3.5 min delay), 
research-based metrics (no delay/pre-event).

Here we propose an improved fully convolutional neu-
ral network (FCN) architecture (subtype: U-net) for a 
semantic segmentation task that allows us to significantly 
improve accuracy and speed. For empirical investigation, 
we utilize specific problem: “light-vehicle recognition 
in satellite imagery”. “Light-vehicle” object recognition 
requires the highest precision (due to a small object size 
of ~ 120 pixels only) as well as the model’s ability to gen-
eralize across dispersed scenes. This particular problem 
was selected because the solution could be applicable to 
larger objects (e.g., aircrafts, trucks, ships, buildings) and 
generalizable across other satellite imagery datasets. We 
have adapted a floating-point operation (FLOP) framework 
[50] to measure the model’s computational complexity 
(G-FLOPs) and establish its correlation with time-to-pre-
dict performance. Latency reduction in real-life practical 

experiments was tested by adapting two leading-edge com-
putational architectures, modern GPU and TPU.

The research contributions of this paper are summarised 
in the following list:

•	 It proposes a U-net architecture optimised for accurate 
and accelerated object recognition in multispectral satel-
lite imagery suitable for alternative data-driven algorith-
mic trading;

•	 It provides and applies a modified G-FLOPS method for 
measuring network’s architectural complexity;

•	 It introduces “Pixel frame selection and sequencing” 
methods for reduction of contextual noise in training and 
improved accuracy in prediction;

•	 It presents a well annotated satellite imagery dataset for 
public use and further development in this research field.

The rest of this paper is organized as follows. In Sect. 2 
we review the specifics of multispectral satellite imagery and 

Fig. 1   Signal generation bottleneck from satellite imagery data in algorithmic trading system. Modified with an additional layer based on Cliff 
et al. [8]
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provide an overview of related work in the field. Section 3 is 
dedicated to a detailed presentation and analysis of proposed 
approaches that enhanced the artificial neural network to 
state-of-the-art (SOTA) level performance. In Sect. 4 we 
describe and interpret the experimental findings. Section 5 
concludes the paper.

2 � Related works

Poor pixel resolution, rich multispectral aperture, and a 
wide aspect ratio are the unique properties of optical sat-
ellite imagery [44, 33]. Objects such as light-vehicles are 
depicted in a relatively small 15 × 8 pixel matrix in contrast 
to millions of pixels offered by the ImageNet. To capture 
these rich multispectral properties given the resolution 
constraints, we deploy semantic segmentation [2] for light-
vehicle recognition problem. It outputs the semantically 
interpretable category of each pixel [21], and it is more pre-
cise compared to object detection and scene interpretation 
[1]. Semantic image segmentation techniques originated 
from recursive thresholding method [7], spatial constrained 
k-means approach [35], histogram-based image segmenta-
tion, non-parametric clustering, entropic thresholding and 
edge detection techniques [27]. These methods are manually 
calibrated [35, [27], consequently lacking generalization and 
scalability [28].

The vehicle recognition problem has received a lot of 
research attention [37], and Convolutional Neural Networks 
(CNNs) were popularised [30] since they do not require prior 
feature extraction [28, 63]. A CNN processes data in the 
form of multiple arrays [29], and therefore, multiband satel-
lite imagery dataset is well suited for it by design [36]. Con-
siderable amounts of research papers have been published on 
the implementation of semantic segmentation using various 
CNN architectures [37]. Nguyen et al. [43] presented the 
five-layer CNN and achieved high object recognition accu-
racy of 91% for large urban area objects [3]. Later, Chen 
et al. [6] developed a Hybrid Deep Convolutional Networks 
(HDCN) architecture for light-vehicle objects and claimed 
best performance at a time [6] and significantly surpassed 
other Hybrid CNN structures such as Hierarchical Robust 
CNN (HRCNN) using AlexNet as a backbone [63]. Build-
ing on that work Yu et al. proposed the convolutional cap-
sule network that delivered a 93%, state-of-the-art (SOTA) 
results for vehicle recognition [60].

Ferdous et al. [12] introduced prediction speed criteria 
in 2019 and argued that Regions-CNN (RCNN) [17], Fast-
RCNN [16], and Faster-RCNN [47] are incompatible for 
real-time applications due to slow multistage regional-pro-
posal based approach. End-to-end detection-based methods 
like You Only Look Once (YOLO) [46] and Single Shot 
Detectors (SSD) [34], where suggested to increase prediction 

speed, yet compromising on accuracy (only 89.21%) [38]. 
An alternative fully convolutional neural network was pro-
posed by Shelhamer et al. [51] that combined features from 
complementary resolution levels (contextual and spatial 
information). The FCN architecture has demonstrated the 
best precision using semantic segmentation [51] and also 
improved parameter optimization and gradient flow, as dis-
cussed by Estrada et al. [11].

Ronneberger et al. developed FCN called U-net for solv-
ing high-level feature extraction in biomedical image seg-
mentation [48] that won a competition at Symposium for 
Biomedical Imaging [32]. Biomedical images share similar 
dimensionality, resolution, and perspective properties with 
satellite imagery, and it was later realised that the over-
weighting model’s higher-level feature extraction (i.e., the 
contours of the object) improves prediction accuracy in both 
of dataset types [48]. Subsequently, U-net was adapted to 
satellite imagery by Iglovikov et al. [25] and won the 3rd 
place in Kaggle competition achieving the highest Jaccard 
coefficient confirming U-net suitability for this problem 
[14]. In addition to feature extraction, network’s ability to 
extract spatial information was researched by Yuan et al. 
[61] where they discuss benefits of convolution and decon-
volutions similar to U-net structure. They also introduce a 
light network structure MobileNet that suggested ideas of 
light network infrastructures [61]. In this paper, we signifi-
cantly enhance U-net architecture and propose techniques 
enabling U-net deployment in real-time applications.

3 � Proposed approaches

We propose advancements to the process of U-net design, 
hyperparameters tuning, training, and complexity optimisa-
tion to enhance the prediction accuracy and speed. The entire 
process from satellite imagery acquisition (P1) to end-signal 
generation and delivery to algorithmic trading system (P13) 
is depicted in Fig. 2. Components from P5 to P10 coloured 
in blue represent areas of advancements proposed in this 
article and are described in the following subsections: (1) 
Network depth construction and feature extraction; (2) Com-
putational complexity analysis; (3) Pixel frame sequencing.

3.1 � Network depth and feature extraction

We propose four distinctive architectures to derive an opti-
mal network configuration for solving a prediction speed 
vs. accuracy problem (Fig. 2, component P5 and P6). To 
originate these proposed configurations, we have conducted 
quantitative experiments (see Sect. 4) and visual examina-
tion (see Fig. 3 and Fig. 4) [25, 48].

Each proposed U-net model consists of an even number 
of layers plus a single fully-connected layer with Sigmoid 
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activation function generating per-pixel semantic segmenta-
tion as an output (Fig. 3). Models were initiated at fifteen 
convolutions and sequentially (in four groups) increased by 

six layers (three in the encoder and three in the decoder part) 
to a total of thirty-nine layers:

Fig. 2   Schematic workflow diagram for object recognition in satellite imagery
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•	 U-net_Model_1: 21 layers in total (15 conv2d);
•	 U-net_Model_2: 27 layers in total (19 conv2d);
•	 U-net_Model_3: 33 layers in total (23 conv2d);
•	 U-net_Model_4: 39 layers in total (27 conv2d).

During the encoder process, we capture semantic/contex-
tual information, strengthening features extraction of “what” 
and reducing the “where”. Each decoder convolutional block 
is part of the up-sampling and contains 2 × 2 convolution 
(up-convolution) that halves the number of feature chan-
nels [11]. On the back of these up-sampling operations, we 
recover the spatial information and enable precise localiza-
tion i.e., the “where”. A fully-connected layer leverages the 
corresponding concatenation and outputs the segmentation 
map of object classes. Rectified Linear Unit (ReLU) was 
selected as an initial activation function for non-linear map-
ping. The drop-out scheme was deployed to avoid overfitting 
[32] and provided a computationally cheap way to regularize 
the neural network [52] that increased the learning speed.

Given that there are no empirical methods to investigate 
how effective a network is in performing feature extraction, 
we deploy a deconvolution-based Lucid visualization tech-
nique [41]. We compare the feature maps from the last layer 
of convolution operation of four U-net architectures (Fig. 4) 
[65]. In general, detectable objects in satellite imagery over-
all have specific contours (e.g., light-vehicle, truck, ship, or 
plane), which are consistent due to perspective invariance of 
the camera. Specific of our particular dataset is detailed in 
Sect. 4 and in our dataset directory [18]. Lucid visualization 
method allows us to investigate how well the network per-
formed high-level-feature extraction task, i.e., recognizing 
the contours of the object, which is an important prediction 
accuracy driver [22].

Based on visual examination we can suggest that contours 
of the object (i.e., high-level features) are more defined as the 
network depth increases. We can see a gradual improvement 

Fig. 3   U-net_Model_1 design. Input image (left) and an output image (right). Blue colour pixels represent “light-vehicle” object class recognised 
by the U-net, red colour represents the original annotator marked object contours, white colour represents accurate per-pixel prediction
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U-net_Model_1 U-net_Model_2

U-net_Model_3 U-net_Model_4

Fig. 4   Feature extraction capabilities with different U-net depth
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in feature extraction at each step with the equal depth differ-
ential (six convolutional layers) between architectures. Lucid 
visual experimentation method can be utilized in other neu-
ral networks performance testing since it allows to compare 
performance “inside” the network.

3.2 � Computational complexity

Significant signal latency from satellite imagery is caused 
by slow object recognition models (as illustrated in Fig. 1) 

because complex models take time to “scan”, detect and 
recognise objects in large land Area of Interest (AOI) (e.g., 
10 km2 at a time). Object recognition speed is a factor of 
computational complexity and power of computing [62]. 
For the design of efficient models, a detailed analysis of 
the number of floating-point operations (FLOPs) is required 
based on matrix operations such as matrix–matrix products 

(Fig. 2, component P7). Product of two matrices Am×n and 
Cn×l needs mnl FLOPs for multiplication operations and 
ml(n − 1) FLOPs for summation operations [24]. However, 
to our knowledge, there is no conventional benchmark that 
sets to define the computational complexity of the neural 
network [26]. Researches show that the number of opera-
tions in a network model can effectively estimate inference 
time [5]. The number of FLOPs represents how computa-
tionally expensive a model is [50]. We customize the FLOPs 
approach suggested by Sehgal et al. [50] to calculate the 
computational complexity of a neural network as defined 
in Eq. (1):

Model complexity (G-FLOPs) is a sum of FLOPs for 
every layer, where E—number of conv2D layers, De—
number of output dimensions, Aed—size of dimension of 
e layer, Fe—filter in depth parameter of e layer, He—filter 
height parameter of e layer, We—filter width parameter of 
e layer, B—number of Max-pooling layers, Xb—number of 
filter dimensions of layer b , Pbx—size of x dimension in 
layer b , Zb—number of output dimensions of layer b , Obz

—size of dimension z in layer b . The Conv2D layer count of 
floating-point operations is dependent on layer parameters 
count and layer output size [62]. The MaxPool layer count 
of floating-point operations is dependent on filter area size 
and layer output size. Activation functions, including ReLU 
operations, can be executed by a single instruction. It was 
considered as one floating-point operation. Upsampling2D 
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Fig. 5   Four unrelated scenes artificially combined in one frame. 
When used for training, it captures the partially-cut objects and scene 
shifts as ground-truth. By doing so it distorts the object-specific and 
contextual information and generates noise reducing the overall accu-
racy of the training set. Blue colour pixels represent “light-vehicle” 
object class recognised by the U-net, red colour represents the origi-
nal annotator marked object contours, white colour represents accu-
rate per-pixel prediction

Fig. 6   Pixel frame selection approach for network training. Green 
colour depicts valid pixel frames; red colour represents rejected pixel 
frames that were excluded from training

Page 7 of 14 98



	 P. Gudžius et al.

1 3

 

only reads the data from memory and writes to the certain 
position in the output using indices and other pixels are filled 
by 0. Indices array always has the same shape as the input. 
Concatenation is just a memory copy; hence no floating-
point operation will be conducted [9]. Depending on the 
concatenation axis, index calculation might be needed, 
but our approach ignores such operations. This calculation 
allows us to examine the relationship between computational 
cost of the network, prediction accuracy and prediction 
speed, all further examined in a Sect. 4.

3.3 � Pixel frame sequencing

Due to practical GPU/TPU memory limitations, training a 
neural network using pixel frame size equivalent to full raw 
satellite image would cap the training batch size to minimum 
and prevent the network from training effectively [25]. Thus, 
satellite images with large AOI’s are segmented into frames 
and then consolidated into smaller pixel frame mosaics for 
training. Smaller pixel frames allow larger training batches 
as well as context variability in each backpropagation cycle. 
The drawback of this approach, however, is that on frame 
edges, it collates mixed landscapes and cropped objects, 
consequently generating noise that distorts the contextual 
information in the training set (Fig. 5).

To prevent the above drawback, we developed a pro-
grammatic conditional approach called “pixel frame selec-
tion” that feeds the U-net (Fig. 2, component P9). It is an 
improvement from the method proposed by Chen et al. [6]. 
Via this approach, the network is trained on selected pixel 
frames (small cropped images) that allows intersections for 
better augmentation, yet prevents duplications. It follows 
three rules as described in Fig. 6: (1) selection of 160 × 160 

training frames at random; (2) rejection if the particular 
pixel frame falls across multiple large satellite images; (3) 
rejection if pixel frames duplicate entirely. This approach 
reduced the number of incorrect object polygons and the 
contextual noise in the training set, allowing improved train-
ing accuracy and, consequently, prediction precision.

In addition to solution for training, we introduce a tech-
nique called “prediction frame sequencing” for improved 
prediction (Fig. 2, component P10). It essentially allows the 
neural network to broaden the contextualization of the object 
it is classifying. Object classification is done given at least 
two different backgrounds (prediction frames). In an event 
of classification mismatch, the object is considered as posi-
tively recognized (i.e., “OR” function) as illustrated in four 
steps at Fig. 7.

To assess the impact of this technique, we trained and 
tested two identical neural networks on identical datasets. 
The first network utilized a standard prediction function 
(single random step, a non-overlapping prediction frame). 
The second network with implemented “prediction frame 
sequencing” approach outperformed the first network with 
3.57% higher object recognition accuracy rate.

4 � Experimental investigation and results

In order to derive the most optimal U-net architecture for 
real-time applications we have conducted hundreds of 
experiments with network configuration, complexity and 
hyperparameters. The training set used in these experi-
ments was created from an open-source raw satellite imagery 
database SpaceNet with high-resolution imagery taken by 
DigitalGlobe WorldView-3 satellite. A total of 250 (125 
augmented) high resolution (30 cm per pixel) multispectral 

Fig. 7   Prediction frame sequencing method
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satellite images, equivalent to 50 km2 AOI of Paris, Shang-
hai, Las Vegas, and Khartoum were used for training/vali-
dation (80%) and testing (20%). From the 8-band spectrum, 
Coastal (400–452 nm) to near-infrared (NIR 866–954 nm) a 
4-band RGB + P (450–630 nm) bands was applied. In order 
to expose the training to the desired invariance and ensure 
model is robust, the following data augmentation was imple-
mented: random brightness (30% of images in the training 
set with random brightness), rotation (10%), perspective dis-
tortion (10%) and random noise addition (30%). Local con-
trast normalization and pan-sharpening were applied; how-
ever, it did not generate significant improvement in accuracy.

A total of 350 h of professional annotation work has 
been conducted to prepare a high-quality training set with 
80,316 labelled objects. Images were annotated using 
QGIS geospatial imagery software. Labelling and poly-
gon coordinate generation has been manually completed 
by multiple professional annotators and quality cross-
checked. There are no publicly available high-resolution 
satellite imagery datasets with labelled light-vehicle object 
class. We are publishing our in-house developed, propri-
etary dataset with labelled polygons online to enable fur-
ther development in this research field [18].

Stochastic gradient descent (SGD) was implemented 
via Keras [20] as well as momentum optimization 

algorithm—Adam [49]. As suggested by Ronneberger 
et al. [48], to minimize the overhead and make maximum 
use of the GPU and TPU memory, we favour a large input 
pixel frame over a large batch size and therefore experi-
mented training batch sizes ranging from 32 to 192. Exper-
iments were conducted on the custom-built Google Cloud 
Platform (GCP) architecture specifically developed for 
our research problem. To further experiment with latency 
reduction, two leading-edge computational machines GPU 
NVIDIA Tesla P100 64 GB (1 core) and TPU v3-8 128 GB 
(8 cores) were deployed on our GCP system.

4.1 � Results: accuracy

To quantitatively evaluate vehicle recognition results, the 
following metrics were adopted: True Positive Objects 
(TPO) and False Positive Objects (FPO), and Jaccard coef-
ficient. TPO reflects proportion (in %) of objects (“light-
vehicles”) correctly detected as compared to the “ground 
truth”. FPO measures overprediction error i.e., objects 

Table 1   Prediction accuracy results on the test set

Accuracy 
(TPO) %

Overpredic-
tion (FPO) %

G-Flops Jaccard 
coefficient

U-net_Model_1 95.33 12.01 5.3218 0.6402
U-net_Model_2 97.67 17.83 6.9832 0.6162
U-net_Model_3 97.01 26.45 8.6443 0.5573
U-net_Model_4 96.70 16.60 10.3053 0.6226

Fig. 8   Comparison of performance results between U-net models (x-axis: computational complexity (G-Flops); y-axis: prediction accuracy 
(TPO’s); red colour: highest and blue: lowest overprediction (FPO’s)

Table 2   Impact of activation function on prediction results on U-net_
Model_2 

Activation Accuracy 
(TPO) %

Overpredic-
tion (FPO) 
%

TPO/FPO Jaccard coefficient

ELU 96.74 18.12 5.34 0.6209
Tanh 90.81 6.09 14.92 0.5999
Softsign 86.62 5.42 15.99 0.5711
Softplus 93.76 23.17 4.05 0.5574
LeakyRelu 95.72 11.76 8.14 0.6562
PreLu 96.74 14.70 6.58 0.6364
ReLU 97.67 17.83 5.71 0.6162
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labelled by the network, not by the annotator. TPO/FPO 
ratio gives an indication of networks’ performance vs. the 
noise it generates. Jaccard coefficient (see Eq. (2)) is a 
pixel-level classification accuracy metric of segmentation 
masks, particularly useful for calibration of network train-
ing process [54]: 

where TPc is the number of “True positive pixels” in a class 
c across the entire data set; FPc is the number of “False Posi-
tives pixels” in c ; FNc—“False Negatives” in c . U-net model 
experimentation results of are provided in Table 1.

We were able to achieve the state-of-the-art object 
recognition accuracy of 97.67% with U-net_Model_2. 
This network also maintained an FPO level 17.83%, and 
a 0.6162 Jaccard coefficient. A close second best, U-net_
Model_3 has, however, provided a significant overprediction 
(FPO = 26.45%) rate. G-Flops metric indicates the computa-
tional complexity and U-net_Model_2 represents relatively 
light computational complexity with 6.9832 allowing faster 
prediction. Figure 8 compares the accuracy performance 
between models as well as their complexity below:

In order to continue enhancing the U-net_Model_2 per-
formance, we have experimented with the following activa-
tion functions (see Table 2) expecting an increase in accu-
racy and quality.

(2)Jaccard coefficientc =
TPc

TPc + FPc + FNc

.

Rectified Linear Unit activation (ReLU) has provided 
the best accuracy (TPO) results for U-net [22]. However, 
activation function that generates the lowest level of noise 
(FPO = 6.09) is a Hyperbolic Tangent (Tanh) activation 
function still providing > 90% accuracy and, simultaneously 
a high TPO/FPO ratio (14.92).

To optimize the network training time, we moni-
tored U-net_Model_2 with the various number of epochs 
(20–100). Training completeness was measured using three 
metrics, as illustrated in Fig. 9. U-net reached the peak vali-
dation accuracy at epoch 35–40 and starts to overfit. Valida-
tion loss curve (c) confirms the overfit by reaching minimal 
at 15 and rapidly increasing beyond 35 as well as Jaccard 
coefficient plateaus beyond epoch 40. The variability of the 
optimal range has not changed after experimenting with the 

Fig. 9   Training of U-net_Model_2 (x-axis: number of epochs)

Table 3   Quantitative evaluation 
of different leading methods

Dataset Proposed method Y. Yu’s method [60] H. Zhou’s 
method [64]

L. Wan’s 
method 
[57]

CPT VEDAI 0.90 0.79 0.73 0.64
CPT OIRDS 0.89 0.89 0.87 0.82
CRT​ VEDAI 0.57 0.56 0.47 0.42
CRT​ OIRDS 0.78 0.70 0.64 0.62
E = Epochs
K = Iterations

V and O E = 40 E = 2000 K = 3000 K = 3000

Table 4   TPU vs GPU prediction speed for U-net_Model_2

Type Frame size Batch size Jaccard 
coeffi-
cient

Time-to-Predict 
(10 k patches/s)

TPU-v8 128 × 128 128 0.64 20.45
TPU-v8 160 × 160 128 0.64 36.42
TPU-v8 192 × 192 128 0.63 41.49
GPU-p100 128 × 128 128 0.64 6.94
GPU-p100 160 × 160 128 0.65 12.37
GPU-p100 192 × 192 128 0.65 20.45
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other U-net models. Understanding an optimal epoch range 
(35–40 epochs) minimises computational expense and re-
training time and therefore is useful in applications where 
models need to be recalibrated (retrained) on a frequent basis 
such as algorithmic trading.

To benchmark our proposed approach performance, we 
have compared the performance with the latest leading 
object recognition methods using external datasets. Table 3 
provides quantitative evaluations of the performance of our 
and other competing methods on two high-resolution remote 
sensing image data sets: OIRDS [53] and VEDAI [45]. Per-
formance metrics of completeness (CPT) and correctness 
(CRT​) were adopted from the competing articles to ensure 
consistency and are calculated as PT =

TP

TP+FN
 , and 

CRT =
TP

TP+FP
 , where TP is True Positives, FN is False Nega-

tives, and FP is False Positives.
Our proposed method achieved the highest accuracy 

across all external datasets and methods in both CPT and 
CRT​ metrics. Furthermore, the number of epochs used to 
train the proposed U-net_Model_2 architecture was forty 
(40) epochs as compared to Yu’s [60] of two thousand 
(2000) epochs resulting in a significantly lower computa-
tional cost. Zhou’s and Wan’s methods have used K = 3000 
algorithm iterations. K iterations is the closest comparable 
metric to E = Epochs. It can only be used as a rough compa-
rable estimate of the computational resources used for the 
training stage of these fundamentally different methods.

4.2 � Results: prediction speed and computational 
complexity

We have conducted experiments utilizing U-net_Model_2 
for time-to-predict on two computational architectures GPU 
and TPU to compare its performance in practise. GPU has 
generated faster prediction speed results (see Table 4).

One of the reasons why TPU might have performed 
slower at the prediction task is that TPU-v8 is designed for 
larger complexity computations and longer operations as 
compared to GPU-p100 with a much lower upfront compu-
tational load. As confirmed by Wang et al. “TPU speedup 
over GPU increases with larger CNNs” [60]. U-net_Model_2 
architecture works better on GPU due to its light complexity 
(6.98 G-Flops). Therefore, we have selected GPU as pre-
ferred computational engine for U-net’s rapid object recogni-
tion in real-time applications.

Total of eight U-net configurations with two different 
pixel frame parameters (128 × 128 and 160 × 160) were 
examined on GPU machine to test the relationship between 
three metrics: (1) object recognition accuracy (%), (2) com-
putational complexity (G-Flops), and (3) time it takes to 
predict a total of 10,000 patches of raw satellite imagery (in 
milliseconds).

Figure 10 depicts a direct relationship between the num-
ber of G-Flops in the computational architecture and pre-
diction latency. Experiments were conducted with all four 
models and two pixel frame sizes each. The higher the com-
plexity, the longer it takes to predict when using the identical 
computational machine. Furthermore, larger input frame size 
increases computational expense (G-Flops) in the network, 
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Fig. 10   Object recognition accuracy vs prediction speed vs com-
putational complexity. X-axis: prediction speed (in milliseconds), 
Y-axis: accuracy (TPO); size of the circle: computational complexity 

in G-Flops; colour scale: red colour indicates highest overprediction 
error (FPO) and blue the lowest
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slowing down the prediction and not increasing accuracy in 
return. We can see that the fastest CNN network is U-net_
Model_2 (128 × 128) that generated low overprediction (FP) 
and high accuracy (TP), which, as a result, is concluded 
as an optimal network for this real-time application on the 
GPU machine.

5 � Conclusions

In this paper, we propose an accurate and high-speed U-net 
architecture that is able to conduct a semantic segmenta-
tion operation for object recognition in multispectral satel-
lite imagery. We also publish our proprietary training and 
testing dataset with 350 h of professional annotation work 
in order to encourage further scientific research in this 
field. Different from the traditional methods using hand-
crafted features, we introduce three generally applicable 
approaches to enhance neural networks’ ability to extract 
high-level features, measure network complexity, fine-
tune training process and increase prediction speed. On 
the back of the suggested approaches and experimental 
investigation, our developed U-net architecture exceeded 
the human-level performance with 97.67% accuracy for a 
“light-vehicle” object class over multiple sensors. It has 
also outperformed other known methods to date and was 
able to generalize across dispersed scenery. Additionally, 
U-net_Model_2 computationally light architecture deliv-
ered a fivefold improvement in training time and a rapid 
prediction, essential for real-time applications. The pro-
posed neural network and process enhancement techniques 
could be readily applied to other latency-sensitive indus-
trial and humanitarian applications. This research topic 
will become increasingly important with the growth of the 
near-real-time satellite imagery coverage and a number of 
cross-disciplinary applications of remote sensing.
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