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On the safety of vulnerable road users by cyclist
orientation detection using Deep Learning

M. Garca-Venegas1, D. A. Mercado-Ravell1,2 and C. A. Carballo-Monsivais1

Abstract—In this work, orientation detection using Deep
Learning is acknowledged for a particularly vulnerable class of
road users, the cyclists. Knowing the cyclists’ orientation is of
great relevance since it provides a good notion about their future
trajectory, which is crucial to avoid accidents in the context of
intelligent transportation systems. Using Transfer Learning with
pre-trained models and TensorFlow, we present a performance
comparison between the main algorithms reported in the liter-
ature for object detection, such as SSD, Faster R-CNN and R-
FCN along with MobilenetV2, InceptionV2, ResNet50, ResNet101
feature extractors. Moreover, we propose multi-class detection
with eight different classes according to orientations. To do so, we
introduce a new dataset called “Detect-Bike”, containing 20, 229
cyclist instances over 11, 103 images, which has been labeled
based on cyclist’s orientation. Then, the same Deep Learning
methods used for detection are trained to determine the target’s
heading. Our experimental results and vast evaluation showed
satisfactory performance of all of the studied methods for the
cyclists and their orientation detection, especially using Faster
R-CNN with ResNet50 proved to be precise but significantly
slower. Meanwhile, SSD using InceptionV2 provided good trade-
off between precision and execution time, and is to be preferred
for real-time embedded applications.

I. INTRODUCTION

In recent years, significant progress has been achieved in
the care and protection of Vulnerable Road Users (VRUs),
including pedestrians, motorcyclists and cyclists. This effort
began with the creation of road rules that attempt to convert
roads into safer spaces for these users [1]. On the other
hand, several research have been done working on vision-
based detection systems for VRUs, specially pedestrians, along
with improvements in the field of Intelligent Transportation
Systems (ITS) for traffic monitoring and the development
of Advanced Driver Assistance Systems (ADAS), such as
pre-collision systems. However, the number of accidents and
deaths on the road continues to climb at high rate, as evidenced
by the World Health Organization (WHO), which ranked road
traffic injuries as the tenth world’s cause of death in 2002,
and projected it to be the eighth cause of death by 2030 [2].
In the same way, according to WHO, there has been 1.35
million annual deaths, it is nearly 3,700 people are dying on
the world’s roads every day, from where more than half of
all road deaths were VRUs [1], with 39% pedestrians and 8%
cyclists.

Accordingly, research on the detection and monitoring of
pedestrians have received most of the attention [3], [4], [5],
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Fig. 1: Multi-class cyclist’s orientation detection using Deep
Learning. Cyclists are a particularly vulnerable kind of road
user whose dynamics are tightly related to their heading.
Knowing the orientation provides useful information about the
future motion of the cyclist, helping to prevent accidents.

[6], [7], [8], [9], [10], [11]. Unfortunately, little attention
has been paid to cyclists, even though the lack of special
infrastructure, protection and road safety culture makes them
particularly vulnerable to road accidents. Furthermore, in
contrast to pedestrian’s detection, the cyclist’s detection task
presents other challenges, mainly due to the cyclists’ visual
complexity, variety of possible orientations; aspect ratios and
appearance, along with the lack of labeled datasets [12] and
the presence of occlusions and cluttered backgrounds [13],
[14].

Former techniques for detection of VRUs included classic
artificial vision approaches for pedestrian detection, which
were mainly implemented using Histogram of Gradients Ori-
ented (HOG) for feature extraction and Support Vector Ma-
chine (SVM) for classification [3], [4], [5]. Also the De-
formable Parts approach has been implemented in [6] based
on HOG, as part of traditional algorithms.

On the other hand, works on bicycle detection have also
been developed. For instance, in [15] the authors explored a
combination of HOG, Shearlet Coefficient Histogram (HSC)
and multi-scale local binary pattern (MLBP), using linear
SVM. Moreover, in [16] authors used HOG features extraction
with Light sampling and Pyramid sampling (HOG-LP) along
with a linear SVM classifier to detect cyclists crossing a road,
while in [17] the authors proposed the Multiple-Size Cell
HOG (MSC-HOG) features detection and the RealAdaboost
algorithm to detect a human on a bicycle.

HOG-SVM combination proved to be a good option for
human and bicycle detection, until the arrival of Deep Learning
(DL) based algorithms within the last decade. With the boom
of Convolutional Neuronal Networks (CNNs), more recent
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works like [7], [8], [9], [10] applied them to a region pro-
posal, with significant improvements in precision. This kind
of algorithms are referred as Region-based CNN, or R-CNN.

With the rapid development in DL, more powerful ma-
chine learning methodologies and techniques have emerged,
addressing the problems existing in traditional architectures.
Now, with the CNNs, it is possible to learn semantic, high-
level, deeper features. Taking advantage of the large learning
capacity of CNNs [18], some computer vision challenges can
be considered and resolved from different viewpoints, for
example, using an hierarchical feature representation. In addi-
tion, modern CNN based techniques are capable to optimize
several interrelated tasks, for example to classify multiple
objects at a time, or to propose multiple regions to analyze
[18]. This converts them in a powerful tool for detection and
classification, specially when further combined with the great
advances in hardware for parallel processing, with the recent
developments in Graphics Processing Units (GPUs).

More recently, for generic object detection, two types of
frameworks have been introduced in the literature, “region
proposal based” and “regression/classification based” [18].
The former pursues the traditional object detection pipeline,
generating region proposals at first and then classifying each
proposal into different object categories. These methods gen-
erally include R-CNNs [8], Spatial Pyramid Pooling Net
(SSP-net), Fast R-CNN [19], Faster R-CNN [20], Region-
based Fully Convolutional Network (R-FCN) [21], Feature
Pyramid Networks (FPN) [22] and Mask R-CNN [23]. The
second framework considers object detection as a regression
or classification problem, implementing a unified framework
to accomplish the final result, which involves categories and
locations. These methods mainly include Multibox [24], At-
tentionNet [25], You Only Look Once (YOLO) [26], Single
Shot MultiBox Detector (SSD) [27], YOLOv2 [28], Decon-
volutional Single Shot Detector (DSSD) [29] and Deeply
Supervised Object Detectors (DSOD) [30]. In general, “region
proposal based” methods are know to be more accurate, while
“regression/classification based” algorithms are significantly
faster [18].

Since the proposal of CNN have suggested a lot of improved
models, including Fast R-CNN that jointly optimizes classi-
fication and bounding box regression; Faster R-CNN which
introduces an additional Region Proposal Network (RPN),
that can predict bounding box and score at each position
simultaneously; and SSD that accomplishes object detection
via regression. All of them have implemented important im-
provements in accuracy and execution time, and can even be
used for real-time applications. In this scenario, SSD presents
an interesting solution, providing the fastest detection at the
cost of some precision. Then, at current state-of-the-art, there
is a trade-off between precision and time response, and the
best detector is to be chosen according to the application.

In consequence, CNN methods have been used for cyclist
detection, being Fast R-CNN [13], [31], Faster R-CNN [32],
[10] and YOLO [33], [34] the most studied ones. For example,
in [31] a unified joint detection framework for pedestrians
and cyclists was presented based on Fast R-CNN to esti-
mate three categories: pedestrians, cyclists and background,

using the target candidate region selection method (MIOP)
along with VGG8, VGG11 and VGG16 feature extractors. It
was trained with the “TsinghuaDaimler Cyclist Benchmark
dataset” (TDCB) presented in [14]. This dataset has also been
used in [34] where the authors proposed Aggregated Channel
Feature- Region Proposal- YOLO (ACF-PR-YOLO) for cyclist
detection. Meanwhile, in [32] Faster R-CNN was used for
detecting instances of cyclists in depth images, but it requires
data from an extra sensor such as the laser scanner. It was
showed that this method outperforms the classical HOG+SVM
object localization on the synthetic depth images dataset. In
addition, in [10] the authors evaluated the pedestrian and
cyclist detection using thermal images. Also, in most recent
investigations, [33] studied cyclist detection using the Tiny
YOLO v2 algorithm with a dataset proposed on [14].

As can be seen, most of the studies have focused only
in the cyclist detection task. Nevertheless, in the context of
ITS and VRUs’ safety, detecting the objects of interest is
not enough, provided that VRUs are constantly moving and
changing their appearance. It is then of great interest to further
gather information about the movement of the cyclist, and try
to predict their location in the near future to determine on-
time weather or not it will be in danger. While pedestrians
may be unpredictable in the direction of their movement, both
cyclists and motorcyclists are a different matter, provided that
they always move in the forward direction. Then, knowing the
orientation of this kind of VRUs is of great relevance, since
it provides an important notion about their future movement,
which may significantly help to avoid accidents.

In this work, we are interested in the road safety of
a particular kind of VRU whose dynamics strictly depend
on their heading, such as two-wheeled vehicles like bicy-
cles. Henceforth, we propose a multi-class detection strategy
based on the cyclist orientation (see Fig. 1). Accordingly,
we introduced a new dataset called ”Detect-Bike”, containing
20, 229 cyclist instances over 11, 103 images, which has
been labeled based on the cyclists orientation. In order to
accomplish orientation detection, we make use of the state-of-
the-art DL techniques, such as, Single Shot Multibox Detector
(SSD), Faster Region-based Convolutional Network (Faster R-
CNN) and Region-based Fully Convolutional Networks (R-
FCN) meta-architectures in combination with MobilenetV2,
InceptionV2, Residual Network 50-layers (ResNet50), Resid-
ual Network 101-layers (ResNet101) and InceptionResNetV2
feature extractors. Taking advantage of Transfer Learning
with pre-trained models and TensorFlow Object Detection
API (Application Programming Interface), we implemented
different models for cyclist’s orientation detection and evaluate
them thoroughly. Experimental results suggested that Faster
R-CNN with InceptionV2 offers the best alternative for the
cyclists detection task when greater precision is required,
however, when a better time response is needed, the best
option is given by SSD with InceptionV2. Finally, for cyclist’s
orientation, Faster R-CNN with ResNet50 was superior in
precision, but like for cyclists detection Faster R-CNN with
InceptionV2 provided a better trade-off between precision and
time response, while again SSD with InceptionV2 was the
fastest solution with acceptable precision.



3

The remaining of the paper is organized as follows: Section
II presents related works about cyclist’s orientation detection.
Afterwards, Section III describes the proposed methodology
introducing a new cyclist detection dataset. Then, Section IV
describes the evaluation protocol and comparison results for
cyclist detection and orientation detection. Finally, Section V
discusses the conclusions and future work.

II. RELATED WORKS

As previously stated, it is not enough to merely detect
objects in the context of VRUs’ safety and ITS, but it is of vital
importance to further know their dynamics in order to predict
their position in time, henceforth, detect potential collision
danger. For the particular case of two-wheeled vehicles, such
as bicycles, which always move forward in normal conditions,
it is very interesting to know their orientation, since it provides
great insight on their movement. Unfortunately, little attention
have been payed to this key task, and to our knowledge there
are not many works reported in the literature that attempt to
detect the cyclist orientation.

Somehow related, there are some studies that have shown
interest in the division of the cyclist from its aspect ratio in
order to facilitate the cyclist detection [14], [13]. In [14] a
new method called Stereo-Proposal based Fast R-CNN (SP-
FRCN) was introduced to detect cyclists using their own
dataset TDCB, which contains VRUs including pedestrians,
cyclists and motorcycles instances, recorded from a moving
vehicle in the urban traffic of Beijing. It divides the cyclist
samples into three classes: narrow, intermediate and wide,
based on the aspect ratio of bikes. They consider three diffi-
culty levels (easy, moderate and hard) according to the object
size and occlusion level. In a similar fashion, in [13] the same
authors presented another unified framework for concurrent
pedestrian and cyclists detection, including a proposal method
called Upper Body - Multiple Potential Regions (UB-MPR)
for generating object candidates and using Fast R-CNN for
classification and localization. Even though the aspect ratio is
directly related to the cyclist orientation, such works do not
intend to detect it, neither they are interested in predicting the
cyclists movement.

Regardless of the importance of detecting both the posi-
tion and orientation in order to predict potential accidents,
orientation detection is rarely considered in cyclist’s detection
[35]. In [36] the authors proposed dividing the cyclists into
eight subcategories based on orientation using the KITTI
dataset [37], analogously to an idea previously used for vehicle
detection [38]. For each orientation a detector is built in
a cascaded structure, using a classical approach with HOG
features, along with Decision Trees (DT) and one SVM
for both visible and occluded cyclists. Besides, they used
a geometric method for Region of Interest (RoI) extraction
and Kalman Filters to estimate cyclists trajectories, with a
total of 16 detectors, considerably increasing the computa-
tional complexity of the algorithms. In a posterior work in
[39], the same authors proposed using Decision Forest (DF)
instead of DT, which along with the inclusion of a non-
maximum suppression algorithm allowed them to reduce to

half the number of cascaded detectors. Lastly, in [35] the same
authors improved their previous proposal by adding a max
pooling operation over spatial bins and orientation channels.
Nevertheless, the use of multiple detectors and traditional
techniques significantly compromises precision and increases
the amount of calculations required, when compared to modern
CNN based techniques.

In the growing interest of protecting VRUs and not only
knowing their location, but also their orientation, the KITTI
dataset continues to be a benchmark for current work [40],
[41], [42]. This dataset provides 3D bounding box annotations,
for object classes such as cars, vans, trucks, pedestrians,
cyclists and trams, and it is evaluated in three regimes: easy,
moderate and hard, depending on the levels of occlusion
and truncation. For example, in [43] the authors proposed
a joint detection and viewpoint estimation system with a
monocular camera using Faster R-CNN meta-architecture with
VGG16 feature extractor, for determining the orientation of
the three objects: car, pedestrian and cyclist. For estimation
of the object’s viewpoint they adopt discrete pose estimators
to partition the view sphere into a predefined number of
bins, and compute the viewpoint as the weighted average of
adjacent viewpoint bin centers, using their respective estimated
probabilities provided by the network. In a posterior work in
[42], the same authors proposed an approach for recognition
and 3D localization of dynamic objects on images from
a stereo camera, with a stereo-based 3D reconstruction of
the environment, besides they evaluated with others feature
extractors, such as, Zeiler and Fergus (ZF) and MobileNet
using the KITTI dataset with 1, 626 samples of cyclist, finally
they implemented their system on an intelligent vehicle. Un-
fortunately, it is not possible to make a direct comparison with
these works, because the approach adopted is different, they
perform the detection and estimation of the viewpoint using
inference algorithms, while we divided each orientation as an
independent class, so we avoid using estimation algorithms,
then the task of training the neural network with eight pre-
defined classes allows us to directly solve the problem as a
multi-class detection task in monocular images.

As can be seen, nowadays it is not only sufficient to carry
out object detection, but it is also necessary to include their
orientation. In this case, the trend of the most recent works is
the use of 3D stereo vision and continue to take advantage of
the KITTI dataset. Lamentably, this database only provides a
small amount of cyclist instances (no more than 2, 000 [14],
[42]). From our part, we only focus on monocular vision with
a new dataset specialized in cyclists, that has been labeled with
the orientation and has been tested thoroughly, comparing the
main techniques reported in the literature that have proven to
be more efficient for this problem, hence offering an update
on the evaluation of the state-of-the art.

Henceforth, we present a new cyclist dataset called “Detect-
Bike”, annotated according to the cyclist orientation, which
further takes into consideration particular aspects from our
local context. We believe that current available databases do
not take into account particular characteristics which are com-
mon to certain regions in the world, which is the case of the
Mexican countryside, where people normally use traditional
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Input Image Feature
Extractor Classifier

Meta-architecture

Class
Localization

Fig. 2: Object detection model. A meta-architecture is com-
posed of any convolutional feature extractor to obtain high
level features [44], then, this features are used for classifica-
tion, providing the class and the localization of the bounding
box of the cyclists in the image.

clothing and hats, which may compromise the performance
of the algorithms. This provides a benchmark for cyclist’s
orientation detection, which consists of two subsets: “Detect-
Bikev1” with bounding box based labels that provides the
class: Cyclist, and “Detect-Bikev2” with bounding box based
labels according to eight different classes depending on the
orientation. These subsets stress the importance of taking
into consideration the cyclist direction of movement in the
context of intelligent vehicles. Besides, we present an in depth
evaluation of the most important meta-architectures up to date,
such as SSD, Faster R-CNN and R-FCN, along with the most
relevant feature extractors like MobilenetV2, InceptionV2,
ResNet50, ResNet101. Finally, we discuss the main results
observed in the evaluation and propose our choice of the best
models under various scenarios, according to different criteria
such as precision and time response, as well as a good trade-
off between them.

The main contributions of this paper are then summarized
as follows:
• Creation of a new database which has been labeled based

on the cyclist’s orientation, which contains 20, 229 cyclist
instances over 11, 103 images.

• An alternative technique for cyclist’s orientation detection
in monocular images, which allows us to have a good
notion of the cyclist’s movement, which is of great
relevance to prevent accidents.

• A more in depth and updated evaluation of state-of-the-art
techniques to perform this cyclist detection task. Particu-
larly to determine a good trade-off between precision and
time response under different scenarios.

III. METHODOLOGY

We propose cyclist detection and orientation estimation
using the meta-architectures available on [44], which consist
of a single convolutional network, trained with a mixed
regression and classification objective, and use sliding window
style predictions, as shown in Fig. 2. In this work, SSD
[27], Faster R-CNN [20], R-FCN [21] meta-architectures have
been evaluated in combination with the state-of-the-art feature
extractors MobilenetV2 [45], InceptionV2 [46], ResNet50,
ResNet101 [47] and InceptionResNetv2 [48]. Moreover, we
introduce a new dataset for training and testing called “Detect-
Bike”, containing images with cyclist instances taken from
our nearby environment in the central-north region in Mex-
ico, considering the particular aspects of our region such
as people with traditional hats. The new dataset has been
labeled according to the cyclist orientation, into eight different

Dataset Image
annotation

Label Map
preparation

TF Record
creation

Pipeline 
configuration

Training
the model

Export
Inference graph

(a) Training pipeline

Input image
or video

Inference 
graph
model

Get bounding 
boxes, scores, 
labels

Visualization
object 
detection

(b) Inference pipeline

Fig. 3: Workflow diagram. a) As input for training, every
image has been labeled to obtain the ground truth of each of
the instances of cyclists, also TF Record files and the label map
has been configured into the pipeline, and as output it obtains
the inference model. b) An input image or video is evaluated
using the inference model, which provides the bounding boxes,
scores and classes.

categories. We consider two different cases for object detection
using deep learning. First, single class detection for the class
cyclist. Second, multi-class detection with eight classes of
cyclist’s orientation. As part of the methodology we performed
the implementation in the Tensorflow Object Detection API,
taking advantage of the pre-trained models provided on [49]
for Transfer Learning.

The workflow diagram shown in Fig. 3 is divided into two
phases, the first is the model’s training phase and the second is
the model’s inference where the visual results are shown. Fig.
3a depicts the workflow for the model training phase, where
first of all the new cyclists’ dataset was generated and labeled
with the orientations. Within the Label Map file, each of the
classes has been indicated, and for the generation of the binary
files TF Records, each bounding box of each instance is taken
for each class. For the pipeline configuration, the parameters
for executing the detector have been established. Here the
paths for checkpoints, label map and TF Record have been
settled, and finally the frozen model has been generated. In
Fig. 3b when the training model has been frozen, it is possible
to execute the model for detection, in this case the input can be
an image or video. Then, the model inference graph displays
the bounding boxes, scores and labels of each class. In order
to display the detected cyclists.

A. Cyclist Image Dataset

The database is essential for the proper training of object
detectors. As we have seen, the first step in building an object
detector is the preparation of a dataset with labeled images. In
the case of public databases available with cyclist’s instances,
only two databases were found: TDCB [14], which has been
considered for the detection of pedestrians and cyclists mainly,
however it is not labeled based on the orientation of the cyclist,
and KITTI database [37], which unfortunately provides a very
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Fig. 4: Cyclists are divided into 8 classes according to ori-
entation: CyclistN, CyclistNE, cyclistE, cyclistSE, cyclistS,
cyclistSW, cyclistW and cyclistNW.

limited number of cyclist’s instances (less than 2, 000). For this
reason, we propose a new dataset with 20, 229 instances over
11, 103 images, labeled according to eight different classes
of orientation, as observed in Fig. 4. Moreover, we included
images taken from our surroundings, since the available
datasets do not represent properly the particular problematic
present in our national and regional context, as is the case
for several other regions in the world, such as people using
traditional clothing like hats. Furthermore, we provide new
labels according to the cyclist orientation, which may be used
to determine their heading and predict their movement, which
is vital to prevent accidents on the roads.

For the evaluation of meta-architectures, we have divided
our own dataset “Detect-Bike” into two subsets: Detect-Bikev1
and Detect-Bikev2, whereas the former contains 12, 075 cyclist
instances over 6, 605 images and is labeled for detection
of a single class, Cyclists. The images were collected in
approximately 450 videos and images taken from sports events
and streets in the state of Zacatecas Mexico, where some
people usually wear traditional hats to protect themselves from

TABLE I: Detect-Bikev2 database for cyclists’ orienta-
tion. At current time we provide 20, 229 instances over
11, 103 images, where 80% of the images were used for
the training set and 20% for the test set. By now, we
focus mainly in large size instances.

Class Orientation Total Training Test

CyclistN 3,870 3,100 770
CyclistNE 3,023 2,406 617
CyclistE 2,232 1,789 443
CyclistSE 1,849 1,513 336
CyclistS 2,427 1,931 496
CyclistSW 1,864 1,478 386
CyclistW 1,918 1,544 374
CyclistNW 3,046 2,438 608
Total 20,229 16,199 4,030

the harsh sun. On the other hand, Detect-Bikev2 combines
these images with others obtained from the web, and labeled
according to our approach for multi-class detection depending
on the cyclist’s orientation. For this approach, in total we
annotated 20, 229 cyclist instances over 11, 103 images. In
both cases, 80% of the images were used for the training set
and 20% for the test set. For dataset Detect-Bikev2, all images
were labeled and divided into eight classes. As suggested
in [43], eight categories are a good choice to represent the
cyclist’s orientation, similarly to [36], with the difference that
a special label is assigned according to the compass rose, it
is, according to the orientation of the cyclist, in order to know
the direction of movement of the cyclist. These classes are
then Cyclist N, Cyclist NE, Cyclist E, Cyclist E, Cyclist SE,
Cyclist S, Cyclist SW, Cyclist W and Cyclist NW, as shown
in Fig. 4. Meanwhile, Table I shows the number of each class
instance available in the dataset.

B. Convolutional Neural Networks

Deep Learning, and more in particular CNN based methods
are considered to be the best for object detection up to today
[8], [18]. Hence, in this work we use them for the cyclist detec-
tion task. In order to establish a baseline comparison between
the main object detection algorithms for this particular task,
we have studied three of the main meta-architectures reported
in the literature, such as Faster-RCNN [20], R-FCN [21], and
SSD [27]. Since Faster-RCNN and R-FCN are region proposal
based, they are well known for their superior precision, while
SSD is regression/classification based, therefore it provides
considerably faster response, at the cost of precision. We are
particularly interested in finding out a good trade-off between
precision and detection time.

Faster R-CNN [20] performs the detection in two stages:
a Region Proposal Network (RPN) produces a set of object
proposals on an input image, each object proposal with an ob-
jectness score, and a network of object detection that uses the
proposals to detect the classes. Similarly, the R-FCN method
employs two-stages for object detection: region proposal and
region classification, but the ROIs are taken from the last layer
of features before the prediction, instead of taking them from
the same layer where region proposals are predicted, it is to
say, the main difference being the order in which the Fully
Connected Layers (FCL) are applied. Besides R-FCN applies
a voting method to detect the object. Both Faster R-CNN
and R-FCN use a RPN to obtain the localization loss of the
bounding box regressor for the RPN, and objectness loss, it
is, if a bounding box corresponds to an object of interest or is
part of the background. All detectors obtain both classification
and localization loss for the final classifier.

On the other hand, Single Shot Detector (SSD) [27] works
using a single deep neural network for detecting multiple
objects within an image, without requiring a second stage,
but combining ideas from RPN in Faster R-CNN, where
SSD simultaneously produces a score for every category for
each object. Such strategy allows it to considerably reduce
the execution time, at the cost of precision, making it an
interesting alternative for real-time applications. This meta-
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Feature Vectors
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Meta-architecture (Faster R-CNN, R-FCN, SSD)

Fig. 5: Overall strategy. First an input image is needed, as part of the meta-architecture one of the feature extractors is chosen:
MobileNetV2, InceptionV2, ResNet50, ResNet101 or InceptionResNetV2. Then, we can notice that both Faster R-CNN and
R-FCN use RPN to generate object proposals, and are well known for their superior precision. On the other hand SSD uses
multi-scale feature maps for detection in a single stage, considerably reducing the execution time.

architecture performs detection over multiple scales, by oper-
ating on multiple convolutional feature maps, adding feature
layers that decrease in size progressively, allowing prediction
of detections at multiple scales, where each added feature
layer can produce a fixed set of detections, using a set of
convolutional filters, each of which predicts category scores
and box offsets for bounding boxes of appropriate sizes.

In all meta-architectures, first, the images are processed by
a feature extractor to obtain high level features. The choice
of the feature extractor is very important, since the number of
parameters and types of layers directly affect memory usage,
time response, complexity and performance of the detector
[44]. In this paper, five state-of-art feature extractors are
considered MobilenetV2, InceptionV2, ResNet50, ResNet101
and InceptionResNetV2, provided that they have been efficient
for the task of object detection, and they are available with the
Open Source TensorFlow Object Detection API.

The MobileNetV2 [45] structure is built on depth-wise
separable convolutions, where a full convolutional operator
is replaced with a factorized version that splits convolution
into two separate layers, the first layer called a depth-wise

convolution, which applies a single convolutional filter per
input channel. The second layer is a point-wise convolution
with a 1 × 1 kernel, which builds new features through
computing linear combinations of the input channels. This
feature extractor improves the state-of-the-art performance of
mobile models on multiple tasks and benchmarks.

Other interesting extractor is called Inception [50], which
is based on finding how an optimal local sparse structure,
in a convolutional vision network, can be approximated and
covered by dense components, assuming that each unit from
the earlier layer corresponds to some region of the input
image, and grouping these units into filter banks. One of the
main beneficial aspects of this architecture is that it allows
for significantly increasing the number of units at each stage,
without a heavy increase of computational complexity. This
enables the creation of lighter versions, such as, InceptionV2
and InceptionV3 that were introduced in [46]. In InceptionV2
convolution factorization was added and filter banks were
expanded as new variant of the Inception network, which
yields a good speedup in training. At current time, the 4th
version InceptionV4 has been released, which was introduced
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in the same work that Inception ResNetV2 [48].
In ResNet [47], a deep residual learning is introduced, such

that it allows that the learnable parameters of a layer or set
of layers in a CNN, are mapped into a residual function. This
eases the optimization by providing faster convergence at the
early stage. ResNet has been divided into 18, 34, 50, 101 and
152 layers, where increasing the number of layers increases
the depth, however among 50, 101 and 152 layers there is
no significant increase in accuracy, and even for the 152-
layer ResNet has lower complexity than VGG-16. ResNet won
the 1st place on the tasks of ImageNet detection, ImageNet
localization, COCO detection and COCO segmentation in
2015.

Inception ResNetV2 [48] is a hybrid feature extractor that
combines the Inception style networks and utilize residual
connections instead of filter concatenation, with an important
improvement in the recognition performance. In comparison
with InceptionV4, Inception ResNetV2 obtains similar accu-
racy, nonetheless is faster because InceptionV4 contains higher
number of layers.

As mentioned before, cutting edge meta-architectures for
object detection require a feature extractor and a classifier, the
Fig. 5 summarizes the overall methodology employed in this
work.

We have selected these meta-architectures and feature ex-
tractors because they have achieved state-of-the-art detection
performance and are commonly employed in Generic Object
Detection. In addition, the combination of these models has
not been recorded in the literature for the detection of cyclists
as a class, nor for the detection of their orientation.

IV. EXPERIMENTS AND RESULTS

In this section, evaluation and implementation details of
the selected meta-architectures and feature extractors are de-
scribed. We provide a thoroughly comparison of the more
relevant multiple object detection meta-architectures available
on [49], using the Detect-Bike dataset. The study is conducted
in two stages, first a comparison of the performance of the
main models for single class object detection is provided,
for the particular case of cyclist detection in Sec. IV-C. The
second stage in Sec. IV-D, consists in the proposal of a new
multi-class detection strategy that further takes into account the
orientation of the cyclists, which we consider to be of great
relevance in the context of road safety of VRUs. In order to do
so, we take advantage of the new dataset for cyclist detection
with orientation labels Detect-Bikev2.

Detection examples of all models for cyclist detection with
Detect-Bikev1 are shown in Fig 6, and for cyclist’s orientation
detection are shown in Fig. 7. Moreover, a video demonstrating
the performance of some of the different models is available
at: https://youtu.be/6L MNIrCgfI. The video is divided in two
parts, the first part shows the results for single-class detection
of cyclist as described in Sec. IV-C, meanwhile, the second
part shows the results for multi-class cyclist’s orientation
detection in Sec IV-D.

This work offers an updated comparison study of the state-
of-the-art techniques applied to detect cyclists. We focus on

identifying the best meta-architectures in terms of Average
Precision (AP), execution time in Frames Per Second (FPS)
and a good trade-off between both. For this evaluation, we
have used Microsoft Common Objects in Context (COCO)
detection Metrics. In addition, for the multi-class detection
task of cyclist’s orientation, we also employ the Open Images
V2 detection metrics. A detailed explanation on the metrics
used is provided in the following.

A. Experimental setup

To perform the experiments, our dataset has been divided
into an 80% training set and 20% testing set. In order to
measure the speed of the detector, one video of 1920× 1080
pixels with 435 frames taken in the streets has been used used
for obtaining the FPS required by each model using our current
hardware.

The implementation has been carried out in a portable
computer using Windows 10 64-bit Operative System, with a
processor Intel Core i7-9750H and a dedicated GPU NVIDIA
GeForce RTX 2070 (8GB GDDR6). For the network imple-
mentation we make use of the TensorFlow-gpu V1.14.0 API,
along with CUDA v10.0. Finally, the evaluation has been
carried out with the help of the package python pycocotools.

Seven models were considered and formed using a meta-
architecture combined with some feature extractor, as shown
in Table II. These models were trained for the detection
of cyclists using the label: “cyclist”, and the same seven
models were trained but for the multi-class detection of cyclist
orientation, using the 8 classes already defined in the dataset
according to orientation.

B. Evaluation protocols

For evaluation, we have used the COCO detection Metrics
[51] and Open Images V2 detection metrics, available on [52],
for the comparison of each meta-architecture. COCO metrics
have been selected mainly because COCO-trained models
were employed for training by means of transfer learning,
while Open Images V2 metrics have allowed to evaluate multi-
class cyclist orientation.

In COCO, 12 metrics are handled for describing the perfor-
mance of an object detector, and all of them were computed
in the present study, but only the most representative ones are
presented.

In order to evaluate each meta-architecture using the Detect-
Bike dataset, the performance is calculated in terms of Average

TABLE II: Seven different models were generated from the
combination of a meta-architecture and a feature extractor.

Models
Meta-architecture Feature Extractor

SSD
MobilenetV2
InceptionV2

RFCN ResNet101

Faster RCNN

ResNet50
InceptionV2
ResNet101
InceptionResNetV2

https://youtu.be/6L_MNIrCgfI
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(a) FasterRCNN-ResNet101 (b) FasterRCNN-InceptionV2 (c) FasterRCNN-ResNet50

(d) FasterRCNN-InceptionResNetV2 (e) RFCN-ResNet101 (f) SSD-MobilenetV2

(g) SSD-InceptionV2

Fig. 6: For single-class detection examples from seven different models: a) Faster R-CNN with ResNet101, (b) Faster R-CNN
with InceptionV2, (c) Faster R-CNN with ResNet50, (d) Faster R-CNN with InceptionResNetV2, (e) R-FCN with ResNet101,
(f) SSD with MobilenetV2 and (g) SSD with InceptionV2. The bounding box and score are display when a cyclist is detected.
Most detectors showed acceptable performance. Faster R-CNN with ResNet101, Faster R-CNN InceptionV2 and Faster R-CNN
with ResNet managed to identify all cyclist within an image with high score, while R-FCN with ResNet101 generated several
undesired bounding boxes with different scroes for the same cyclist instances. And the other hand SSD with MobilenetV2 did
not manage to detect all the cyclist, specially the ones further away.

Precision (AP ), which is introduced in the Pascal VOC
Challenge [53]. In the detection task, recall r is defined as
the proportion of correct detections, or True Positives TP ,
with respect to the total number of instances given by the sum
of TP and False Negative FN detections, where the model
misses a positive detection, i.e.

r =
TP

TP + FN
(1)

similarly, precision p provides a measure on the certainty on
each detection and is defined as

p =
TP

TP + FP
(2)

where FP are the False Negative detections. The AP sum-
marizes the shape of the precision/recall curve, and is defined
as the mean precision at a set of eleven equally spaced recall
levels [0, 0.1, ..., 1]

AP =
1

11

∑
rε{0,0.1,...,1}

(Pinterp(r)) (3)

where Pinterp(r) is an interpolation function that takes the
maximum measured precision at each recall level [53]. For
single-class detection, there is no distinction between Average
Precision (AP) and mean AP (mAP).

Another important metric is the Intersection Over Union
(IoU), which is used to obtain the area of overlap between the
predicted bounding box Bp and the ground truth bounding box
Bgt

IoU =
area (Bp ∩Bgt)
area (Bp ∪Bgt)

(4)

Then, AP can be also averaged over multiple IoU values
between 0.5 and 0.95 thresholds, such as AP@.50IoU (PAS-
CAL VOC metric) and AP@.75IoU . Other scores are Average
Recall (AR), which measures the maximum recall given a
fixed number (1, 10 or 100) of detections allowed in the image.
Both AP and AR are averaged over three instance sizes:

• Small: objects with area < 32 pixels2.
• Medium: objects with 322 < area < 96 pixels2.
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(a) FasterRCNN-ResNet101 (b) FasterRCNN-InceptionV2 (c) FasterRCNN-ResNet50

(d) FasterRCNN-InceptionResNetV2 (e) RFCN-ResNet101 (f) SSD-MobilenetV2

(g) SSD-InceptionV2

Fig. 7: Multi-class orientation detection examples from seven different models: (a) Faster R-CNN with ResNet101, (b) Faster
R-CNN with InceptionV2, (c) Faster R-CNN with ResNet50, (d) Faster R-CNN with InceptionResNetV2, (e) R-FCN with
ResNet101, (f) SSD with MobilenetV2 and (g) SSD with InceptionV2. For each class a different colored bounding box is
displayed. For this example, only Faster R-CNN with InceptionV2 and R-FCN with ResNet101 managed to detect all cyclists
within the image. A problem that was identified is that similar classes such as CyclistNW and CyclistNE are hard to differentiate.

• Large: objects with area > 96 pixels2.

The Open Images V2 metric provides the AP by category on
AP@0.5IoU , and we used it only for evaluating multi-class
detection for each meta-architecture, in the case of orientation
detection.

Also, as an important part of the functioning of each meta-
architecture, loss functions are evaluated to help minimize the
error in classification and localization of an object of interest.
For the final classifier, classification loss Lcls is defined as a
log loss of the true class u [19], i.e.

Lcls = −log(pu) (5)

where pu is the probability distribution for class u. On the
other hand, the localization Loss Lloc represents the error of
the bounding box regressor and is defined as

Lloc (t
u, v) =

∑
i∈{x,y,w,h}

smoothL1 (t
u
i − vi) (6)

where the smoothL1 loss is used, it is, for a variable ξ

smoothL1 (ξ) =

{
0.5ξ2 if |ξ| < 1

|ξ| − 0.5 otherwise,
(7)

there, a ground truth for class u and a ground-truth bounding
box regression for target v, the Lloc is defined over a four-
tuple (vx, vy, vh, vw) for top-left corner (x, y) and height and
width (h,w), and a predicted tuple tu =

(
tux, t

u
y , t

u
w, t

u
h

)
for

the ground-truth class u. In addition, for region proposal based
meta-architectures with stage of Region Proposal Network, the
objectness loss, that indicates if a bounding box is an object
or part of the background, is also considered [20].

Other important aspect to evaluate the performance of the
detection algorithms is the execution speed in Frames Per
Second (FPS) [54]. In this sense, we calculated the mean
Frames Per Second for each detection model using the same
hardware on a video of 1920× 1080 with 435 frames.
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(b) Classification Loss
Fig. 8: Single-class cyclist detection using Detect-Bikev1 a)
Average Precision with threshold 0.5 and 0.7 on IoU. All
models based on the Faster R-CNN meta-architecture and R-
FCN achieved similar results for the cyclist detection task,
from which Faster R-CNN with InceptionResNetV2 was the
most precise. b) Classification loss (axis-y) and localization
loss (size) for each model.

C. Cyclist Detection

In this sub-section, we focus on the single-class cyclist
detection, in order to identify which state-of-the-art techniques
are the best suited for detection of these particular case of
VRU.

The seven models that have been selected by combining a
meta-architecture with a specific feature extractor, shown in
Table II, have been trained for the instance “cyclist”, using
the dataset Detect-Bikev1, and evaluated with the metrics
explained in Sec. IV-B. Even though all the metrics proposed
by COCO [51] have been analyzed in this work, only the most
relevant ones are presented through Figures 8a and 8b, along
with Tables III and IV.

Considering the size of the objects is important for the
cyclist’s detection on the roads, since it considerably affects
the detection performance (further away objects are smaller
and harder to detect), moreover, it is a good indicator of how
close cyclists are to the camera, where larger objects present
higher collision risks. In Fig. 8a the AP performance for each

of the models evaluated by object size (large, medium and
small) is presented, along with the AP@50IoU and the overall
AP. From there, it can be observed how their performance
changes with respect to the size of the cyclist instances, Faster
meta-architecture R-CNN and R-FCN were the more efficient
if we consider the medium and small instances as opposed
to SSD. Further information is included in Table III, with the
most important metrics to evaluate the good functioning of the
each model.

For cyclist’s detection, Faster R-CNN meta-architecture
using InceptionResNetV2 feature extractor was found to be the
most precise, with the highest AP for medium and small cyclist
sizes, APm and APs respectively. Meanwhile, Faster R-CNN
using ResNet101 feature extractor achieved betters result for
AP large APl, as well as for AP@.50IoU and AP@.75IoU .
Also, for AR in all cyclist sizes, again Faster R-CNN meta-
architecture was in the top detectors, as can be appreciated in
Table III and Fig. 8a. These results are consistent with the ones
reported in the literature for object detection. Nevertheless,
it is important to notice that there is a trade-off between
precision and detection time, where the most precise algorithm
FasterRCNN with InceptionResNetV2 is up to 30 times slower
than the fastest model, SSD with MobilenetV2, when running
on our baseline hardware. This stresses the importance on se-
lecting the most suitable technique according to the particular
scenario.

When considering the AP with threshold 0.50 by IoU, all
models showed competitive results to address the cyclist’s
detection. Regarding Faster R-CNN with 50-layers and 101-
layers it was observed that indeed there is no significant in-
crease in the values of AP obtained, even with 50-layers a bet-
ter AR was obtained for all sizes of cyclist, along with a faster
response. On the other hand, R-FCN with ResNet101 obtains
very similar results to Faster R-CNN with InceptionV2, which
indicates that placing a more robust feature extractor benefits
the meta-architecture classifier. Besides, when considering the
time response, Faster R-CNN with InceptionV2 was superior.

Nonetheless, SSD was found to be far superior in time
response with respect to the other meta-architectures, and
despite having problems with medium and small cyclists, it
has achieved good results for large size cyclists, specially
when combined with the InceptionV2 feature extractor. Hence,
it appears as a suitable alternative for real-time applications
where far away cyclists can be neglected in order to get a
faster response.

On the other side, it is important to analyze the results in
the detection loss, which are presented in Table IV, since these
assessments are relevant because they provide information
about how well the bounding box covers the cyclist (local-
ization loss) and how well the class is detected (classification
loss). From there, Faster R-CNN using ResNet101 obtained
the lowest losses in both the classification and location of the
box classifier, and also in terms of localization and objectness
loss of the RPN. This shows that increasing the architecture
complexity, allows better results in both classification loss and
localization loss. Nevertheless, when evaluating time response,
Faster R-CNN and R-FCN meta-architectures are strongly
overcome by the SSD meta-architecture, as can be appreciated
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in Table IV. This is why it is important to select the best model
according to the application, and determine good trade-offs
between the parameters of interest. In particular, for the case
of VRU safety on the road with ITS, it is important to detect
them correctly, but it is also relevant to detect them on time.
Furthermore, having detections at high rate can be of great use,
specially when combined with other algorithms, for example
to track the objects in real-time.

D. Cyclist Orientation Detection

Cyclist detection is not a trivial task, however, nowadays it
has become a much more challenging problem when consider-
ing the cyclist’s orientation, reason why the focus of this work
is on identifying the cyclist’s direction of movement based on
his orientation. Once we have evaluated the meta-architectures
along with the main feature extractors using Detect-Bikev1,
in this sub-section we present the evaluation for multi-class
detection, where each class is considered one of the cyclist’s
orientations.

In this case we have provided and used for training the
Detect-Bikev2 dataset, with the cyclist’s orientation labels, and
evaluated with the metrics explained in Sec. IV-B. Analogous
to the previous subsection IV-C, the most relevant metrics
are presented in Fig. 9a, and for time response the FPS
in Fig. 10, along with Table V. Also, since the orientation
detection problem is accomplished as a multi-class detection,
with eight different classes, we further employ the Open Image
V2 metrics such as AP by category of cyclist orientation on
AP@.50IoU, as depicted in Fig. 9b along with Table VI.

It is noteworthy to point out that the new introduced labeled
dataset Detect-Bikev2 is still under construction, and the num-
ber of instances by class are not perfectly balanced, containing
mostly large instances. In this study we focus mainly on
large instances, since as an starting point, large instances are
the more critical to avoid collisions. The majority of models
trained with this new labeled dataset were competitive to
perform the cyclist orientation detection, as can be appreciated
in Fig. 9a, except for the class CyclistSE, which fails mainly
because the detectors frequently confuse it with CyclistSW. In
order to correct this issue, more instances of these two classes
must be added to the dataset, however, it is worth mentioning
that such confusion is not critical for the considered scenario,
provided that both classes are very similar and the cyclist is
going away from the camera. Also, further employing tracking
techniques would considerably mitigate such problem.

For cyclist’s orientation detection, in general Faster R-CNN
meta-architecture with ResNet50 feature extractor obtained
the best results for this multi-class detection. Surprisingly,
ResNet with 50-layers outperformed precision-wise ResNet
with 101-layers. This suggests that deeper networks require
more instances to work better. Besides, all models with Faster
R-CNN meta-architecture managed good result for this task.

We can observe that the SSD meta-architecture works
correctly for large instances. On the other side, for all meta-
architectures, we note that they are significantly degraded in
precision performance by classes similar in appearance, partic-
ularly CyclistNE vs CyclistNW and CyclistSE vs CyclistSW.
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Fig. 9: Cyclist orientation detection a) mean Average Precision
(mAP) with threshold 0.5 and 0.7 on IoU for large size. b)
Average Precision with threshold 0.5 on IoU for each class.
Faster R-CNN with ResNet50 was the most consistent meta-
architecture for all classes. In all the models it is observed
that the number of instances by class considerably affects the
detection performance.

(see Tables I and VI). This issue can be corrected by adding
more instances of these classes in the database.

Also, Fig. 10 presents the time response in FPS, using
a testing video on our baseline hardware, for each model,
where it can be identified that despite implementing multi-
class detection, the response times are comparable with those
obtained for single-class detection in Section IV-C. This Figure
suggests that for scenarios where time response is important
for orientation detection of mainly large cyclists, the best
option is SSD with InceptionV2.

In summary, for cyclist’s orientation detection, the evalua-
tion suggests that Faster R-CNN meta-architecture with Incep-
tionV2 feature extractor allows for a good trade-off between
precision and time response, offering a good performance
considering AP, AR, localization and classification loss, as
stated in Table VI. Moreover, in terms of response time for the
region-based methods considered in this study, FasterRCNN-
InceptionV2 was the fastest. On the other hand, if the main
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Fig. 10: Execution time in FPS for each model measured using
the same video on a baseline hardware. SSD-MobilenetV2 is
the fastest model with 54.71FPS, considerably overcoming
the region-based models. Meanwhile, among the region-based
strategies, FasterRCNN-InceptionV2 turned out to be fastest
with 9.1FPS.

objective is to obtain a fast model for real-time applications,
and high speed is required, the best trade-off is obtained with
SSD meta-architecture using InceptionV2 feature extractor.
This is a good strategy to detect the orientation of the cyclist,
even if it is not the most precise, since it allows to obtain the
notion of the cyclist’s movement at high rate, and is suitable
to be implemented embedded on a low-cost vehicle with
limited computation. Furthermore, this can be improved when
combined with tracking techniques, which usually require fast
estimation updates of the cyclist’s position and orientation. In
addition, this model achieves considerably faster detections
compared to other strategies reported in the literature for
orientation detection [43], [42].

V. CONCLUSION AND FUTURE WORK

In this work, we propose a new approach to improve the
safety on the road of a particularly vulnerable kind of VRU
in the context of ITS, where it is not enough to detect an
object to prevent potential accidents, but it is also critical to
predict the movement of the object in the near future. The
key idea relies on the fact that two-wheeled vehicles, such as
bicycles and motorbikes, always move in the forward direction,
hence, knowing their orientation provides useful information
about their motion. Then, we propose a multi-class object
detection technique based on the state-of-the art CNN meta-
architectures and feature extractors, where in addition to only
detecting the object and its position, the detector also provides
its orientation. It is important to note that the proposed strategy
can be easily extended to other kinds of vehicles such as
motorcycles or car-like vehicles.

In order to accomplish the multi-class orientation detection,
we provide a new cyclist image dataset “Detect-Bike”, which
contains 20, 229 cyclist instances over 11, 103 images, labeled
according to their orientation.

Besides, we extensively compare the state-of-the-art meta-
architectures SSD, Faster R-CNN and R-FCN, combined
with MobilenetV2, InceptionV2, ResNet50, ResNet101 and

InceptionResNetV2 feature extractors for cyclist’s and their
orientation detection. With this we provide an updated and
broader study of the state-of-the-art methods for cyclists de-
tection and their orientation, considering the two frameworks
used for generic object detection, “region proposal based”
and “regression/classification based”, and analyzing the most
important metrics for this task.

We consider that there is a trade-off between precision and
time response, hence the selection of the best suited models
should be made taking the particular application into account.
In the cyclists detection, if we look for higher precision and
sacrifice some time response, we can choose the Faster R-
CNN meta-architecture using InceptionV2 feature extractor.
On the other hand, if we are mostly interested in the time
response, cyclists detection can be achieved with up to 34 FPS
using SSD-InceptionV2 on a medium-cost computer equipped
with a GPU. Similarly, for cyclists orientation detection, our
selection is SSD meta-architecture with InceptionV2 feature
extractor, since it obtained a good AP for a threshold of
0.5 over IoU and fast time response, hence it is well suited
for the cyclist’s orientation detection in real-time embedded
applications. However, if we consider precision as a more
important feature than speed, we may select Faster R-CNN
using InceptionV2 as it obtained similar results in precision
than Faster R-CNN with InceptionResNetV2, while proving
to be faster than them in response times.

In conclusion, the proposed strategy for multi-class orien-
tation detection is a simple but effective alternative way to
protect cyclists on the road, by further providing important
information about the heading of the cyclist. Furthermore,
such information can be easily used along with some tracking
algorithm to estimate the cyclist movement, and predict its
trajectory in order to detect potential collisions. The later is
left as future task.

Future efforts will be dedicated to extending and balancing
the provided dataset, increasing the number of instances by
class, but also by size in order to improve the detectors
performance, specially for similar classes such as CyclistSE vs
CyclistSW. Also, increasing the number of smaller instances
will help to better detect further away objects.

Finally, it would be interesting to implement and test the
proposed techniques embedded on a scaled intelligent vehicle.
Also, it is desired to determine the cyclist movement-intention
by detecting standard cycling hand signals.
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TABLE III: COCO metrics for each model, AP@.5IoU, AP@.95IoU, AP and AR for all sizes of cyclist’s instances and
FPS. All models exceed 89% AP@.5IoU. Faster R-CNN meta-architecture with InceptionResNetV2 feature extractor
was the most precise and SDD meta-architecture with MobilenetV2 feature extractor was the speediest, while Faster
R-CNN meta-architecture with InceptionV2 offers a good trade-off between precision and time response, but SSD meta-
architecture with InceptionV2 feature extractor was the best choice for real-time applications, specially if far away objects
are neglected.

AP@.5 AP@.75 AP APl APm APs AR ARl ARm ARs FPS Architecture Feature Extractor

0.899 0.670 0.5691 0.6426 0.1673 0.0129 0.6365 0.7087 0.3005 0.0125 47.1278 SSD MobilenetV2
0.918 0.699 0.6042 0.6820 0.2348 0.0018 0.6690 0.7349 0.3642 0.0250 33.7189 SSD InceptionV2
0.978 0.863 0.7316 0.7795 0.4457 0.1391 0.7706 0.8135 0.5732 0.2750 7.7476 RFCN ResNet101
0.981 0.882 0.7354 0.7757 0.4822 0.1692 0.7766 0.8156 0.6005 0.1750 8.9099 FasterRCNN InceptionV2
0.981 0.891 0.7808 0.8303 0.4831 0.0757 0.8139 0.8592 0.6050 0.3125 6.4775 FasterRCNN ResNet50
0.984 0.910 0.7973 0.8410 0.5445 0.2440 0.8275 0.8674 0.6442 0.3625 5.1536 FasterRCNN ResNet101
0.985 0.936 0.8007 0.8364 0.5827 0.2488 0.8352 0.8685 0.6861 0.2625 1.5618 FasterRCNN InceptionResNetV2

TABLE IV: For all the considered models, the classification loss of bounding box (Classification-Box) and localization
loss of bounding box (Localization-Box) were obtained, and in the same way, the localization loss (Localization-RPN)
and objectness loss (Objectness-RPN) of the RPN-based methods are presented. Note that regression/classification based
methods such as SSD do not provide this losses. Here, Faster R-CNN and R-FCN architectures were characterized by
low values in all metric losses.

Classification-Box Localization-Box Localization-RPN Objectness-RPN Architecture Feature Extractor

0.041877 0.025038 0.094797 0.070329 FasterRCNN ResNet101
0.042922 0.027770 0.097316 0.051907 FasterRCNN ResNet50
0.047551 0.031910 0.094501 0.052287 FasterRCNN InceptionV2
0.052672 0.026272 0.153935 0.103883 FasterRCNN InceptionResNetV2
0.067570 0.040941 0.107662 0.068421 RFCN ResNet101
1.865798 0.337980 - - SSD InceptionV2
2.582322 0.431545 - - SSD MobilenetV2

TABLE V: COCO metrics for each model, AP@.5IoU, AP@.95IoU, AP and AR for large and medium sizes of cyclist
instances, classification loss (clloss), localization loss (locloss) and FPS. Faster R-CNN meta-architecture with ResNet50
feature extractor was the most precise, while SDD meta-architecture with MobilenetV2 feature extractor was the speediest.

AP@.5 AP@.75 mAP APl APm AR ARl ARm clloss locloss FPS Architecture Feature Extractor

0.5890 0.471 0.4022 0.4354 0.0619 0.6775 0.7183 0.3199 3.1016 0.3290 54.7106 SSD MobilenetV2
0.6190 0.514 0.4426 0.4836 0.0496 0.6992 0.7412 0.2931 2.9726 0.2906 34.0071 SSD InceptionV2
0.6634 0.599 0.5035 0.5348 0.1628 0.7845 0.8042 0.5725 0.1661 0.0491 7.6540 RFCN ResNet101
0.6720 0.617 0.5170 0.5496 0.1693 0.7951 0.8198 0.5899 0.1337 0.0353 9.1028 FasterRCNN InceptionV2
0.6640 0.616 0.5262 0.5572 0.1988 0.8259 0.8469 0.6095 0.1305 0.0295 1.5290 FasterRCNN InceptionResNetV2
0.6930 0.635 0.5438 0.5763 0.1950 0.8155 0.8376 0.6122 0.1365 0.0306 5.3274 FasterRCNN ResNet101
0.7117 0.647 0.5448 0.5782 0.1829 0.7939 0.8160 0.5996 0.1166 0.0350 6.0998 FasterRCNN ResNet50
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TABLE VI: Average Precision with Threshold AP@.50 by IoU using the Detect-Bikev2 dataset for cyclist orientation
detection. The three most efficient meta-architectures were Faster R-CNN with ResNet50, Faster R-CNN with
InceptionResNetV2, and Faster R-CNN with ResNet101, but also SSD with InceptionV2 managed to obtain relatively
good results in most classes, which positions it as a good alternative in orientation detection.

CyclistE CyclistN CyclistNE CyclistNW Architecture Feature Extractor

0.753154 0.716062 0.453501 0.506868 SSD MobilenetV2
0.789926 0.842027 0.622228 0.649831 FasterRCNN ResNet101
0.767118 0.809508 0.581257 0.604005 FasterRCNN InceptionV2
0.781269 0.739766 0.579011 0.579609 SSD InceptionV2
0.794934 0.763203 0.544258 0.625844 RFCN ResNet101
0.763053 0.852115 0.577617 0.577302 FasterRCNN InceptionResNetV2
0.808598 0.828415 0.657107 0.686987 FasterRCNN ResNet50

CyclistS CyclistSE CyclistW CyclistSW Architecture Feature Extractor

0.620308 0.358924 0.711381 0.599037 SSD Mobilenetv2
0.797039 0.443562 0.719340 0.690445 FasterRCNN ResNet101
0.773338 0.484934 0.672358 0.695525 FasterRCNN InceptionV2
0.599015 0.363876 0.724558 0.591662 SSD InceptionV2
0.761743 0.470963 0.678240 0.668205 RFCN ResNet101
0.838598 0.491344 0.567436 0.658789 FasterRCNN InceptionResNetV2
0.791745 0.499857 0.746269 0.674663 FasterRCNN ResNet50
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