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Abstract
In this paper, we address the problem of content-based image retrieval (CBIR) by learning images representations based on
the activations of a Convolutional Neural Network. We propose an end-to-end trainable network architecture that exploits a
novel multi-scale local pooling based on the trainable aggregation layer NetVLAD (Arandjelovic et al in Proceedings of the
IEEE conference on computer vision and pattern recognition CVPR, NetVLAD, 2016) and bags of local features obtained by
splitting the activations, allowing to reduce the dimensionality of the descriptor and to increase the performance of retrieval.
Training is performed using an improved triplet mining procedure that selects samples based on their difficulty to obtain an
effective image representation, reducing the risk of overfitting and loss of generalization. Extensive experiments show that
our approach, that can be effectively used with different CNN architectures, obtains state-of-the-art results on standard and
challenging CBIR datasets.

Keywords Image retrieval · CBIR · CNN · NetVLAD · Max-pooling

1 Introduction

Content-based image retrieval (CBIR) has received large
attention both from computer vision and multimedia scien-
tific communities since the early 1990s. In many contexts an
image has to be retrieved using another image, by the objects
depicted, the style of the image or its purpose. The inception
of social networks has further increased the need of CBIR
techniques to manage the ever copious number of images
produced every minute in the world [6,24]. At the end of the
“early years” of image retrieval [48] global and local visual
cues such as texture, color and shape were commonly used
to index images. Then, for about 10 years, approaches based
on local invariant features like SIFT and representations
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based on Bag-of-Words and its variants [e.g. Fisher Vec-
tors and VLAD (Vector of Locally Aggregated Descriptors
[9])] have obtained state-of-the-art results. Nowadays, since
the inception of Convolutional Neural Networks (CNNs),
approaches using either convolutional or fully connected
layer activations have started to obtain better results [40]
than those that aggregate local manually engineered features.
The most recent CNN-based approaches aggregate regional
activations, learning image representations in an end-to-end
approach [39], somewhat fulfilling the forecastmade20years
ago in [48]. “Learning is quickly gaining attention as ameans
to build explicit models for each semantic term. … It is our
view that, in order to bring semantics to the user, learning is
inevitable”.

We start from two complimentary observations. On the
one hand, global descriptors are robust to appearance and
illumination changes since they are directly optimized to
recognize places [57]. On the other hand, local descriptors,
thanks to their fixed spatial neighbourhood, have high spatial
precision and provide highly accurate pose estimation [12],
also requiring aggregation [57] sometimes at the expense
of high dimensionality [1]. Few works have attempted to
develop a combination of them [7,44,50]. Our novel model
takes the strengths of global and local features, while reduc-
ing their weaknesses. Hence, in this paper, we present a
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Fig. 1 The basic idea of our proposed method: an image is split into bags of local features which are weighted and pooled with NetVLAD. The
entire process is automatically learned with a deep neural network trained with a triplet mining procedure

novel multi-scale CNN regions pooling that aggregates local
features before performing a second aggregation step using
NetVLAD [1]. NetVLAD, a generalized form of the hand-
crafted VLAD, is an end-to-end trainable layer for CNN
that performs aggregation of descriptors, currently consid-
ered state of the art aggregator for local descriptors in recent
applications [16,52]. To reduce NetVLAD dimensionality
the features are split in bags of local features. This is used
in an end-to-end learning approach in conjunction with a
3-stream Siamese network, to learn optimized image repre-
sentations. A second contribution of this work is an improved
tripletmining procedure,with a complexity ofO(n), that pro-
vides a diverse set of semi-hard and hard triplets, avoiding
extremely hard ones that may hinder learning and avoiding
excessively similar triplets that may lead to overfitting. The
proposedmethod is evaluated on two standard image retrieval
datasets: Revisited Oxford5K and Revisited Paris6K, as well
as the previous versions Oxford5K and Paris6K, outperform-
ing previous state-of-the-art results. Experiments show that
the proposed approach can be applied to different network
architectures, from VGG [46] and ResNet [17], used to pro-
vide a fair comparison with competing approaches, to the
very recent ResNeSt [58], used to show the applicability to
more modern computationally efficient backbones.

The paper is organised as follows: Discussion of previ-
ous works is provided in Sect. 2; description of the proposed
method and its contributions is provided in Sect. 3; experi-
ments on standard CBIR datasets to evaluate the proposed
contributions and a thorough comparison with competing
state-of-the-art approaches are reported in Sect. 4; finally,
conclusions are drawn in Sect. 5.

2 Previous works

After the introduction of the successful Bag-of-Visual-Words
model in [47], many works have improved over it address-
ing aspects such as approximating local descriptors [21],

learning improved codebooks [27], improving local features
aggregation [9,20,34]. In the last years, following the success
obtained using CNNs to solve the problem of image classi-
fication, CNN-based features have started to be used also
for image retrieval tasks. A thorough survey that compares
SIFT-based and CNN-based approaches for instance-based
image retrieval is provided in [59].

2.1 CNN-based feature extraction

The most basic CNN-based approach is to use the convo-
lutional network as a feature extractor. That is achieved by
taking the activations of fully connected or convolutional lay-
ers as descriptors. The use of the first fully connected layer
of AlexNet (FC6) has been used in [40], outperforming local
features approaches for instance retrieval in several standard
datasets. The performance of different AlexNet layers and
the effects of PCA have been evaluated in [5]. The relative
performance of the aggregation methods for deep convolu-
tional features was shown to be different than the case of
shallow descriptors [4]. More recent approaches have used
max-pooled or sum pooling activations from convolutional
layers as in [2,4,41,60].

CNN features can be aggregated using the Bag-of-Words
model applied to local convolutional features as in [29];
VLAD has been applied to global features as in [57] and to
local patches as in [12,57]; Fisher Vectors have been applied
to localized local featuremaps derived fromobjectness detec-
tors as in [50,57]. Component-wise max-pooling of CNN
features computed on object proposals has been used in [42].
The application of these approaches to compute CNN-based
features may have a negative impact on the computational
performance: the approaches used in [12,40] require to com-
pute CNN features on a large number of sub-patches, an
operation that may not be practical when dealing with large
datasets; this problem has been addressed in [50,57], where
object proposals and “dense sampling” from max-pooling of
convolutional layers are used. At the same time, aggregations
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were also studied in [4], showing that performing classical
aggregation, after learning a CNN, can obtains inferior per-
formance compared to even simple sum pooling present at
training time.

Another solution is to use faster pooling approaches.
Regional maximum activation of convolutions (R-MAC)
aggregation [49] consider a set of fixed squared regions at
different scales, and collects the maximum response in each
channel. These descriptors are sum-pooled to create the final
R-MAC descriptor. Hashing of CNN features, either global
[11,30] or local, based on objectness scores [54], have been
used to speed-up image retrieval tasks.

2.2 End-to-end approaches

In this class of approaches, CNN models are fine-tuned on
a training set to learn better representations or aggregations
of features, so to extract features through a single pass of the
model and learning them in an end-to-end manner. Typically
this results in an improved performance w.r.t. methods based
on CNN feature extraction only [13,38].

In [1] has been proposed a layer called NetVLAD,
pluggable in any CNN architecture and trainable through
back-propagation, that is inspired by the commonly used
VLAD representation. This allows to train end-to-end a
network using an aggregation of VGG16 convolutional acti-
vations. Multi-scale pooling of CNN features followed by
NetVLAD has been proposed in [51], obtaining state-of-the-
art results using VGG16. Simultaneous learning of CNN and
Fisher Vector parameters using a Siamese network and con-
trastive loss has been proposed in [32].

The current state-of-the-art approaches such as [14,39,43,
51] follow an end-to-end approach: [14] uses a three-stream
Siamese network with triplet loss, [39] uses a two-stream
Siamese networkwith contrastive loss, and [43] directly opti-
mizes for themeanAverage Precisionmetric using thousands
of images instead of pairs or triplets. In [3] is proposed a so-
called SPoC descriptor, based on the aggregation of raw deep
convolutional features without embedding. In [14] an end-to-
end learned version of R-MAC descriptor is presented, along
with a triplet mining procedure to efficiently train a three
streams Siamese Network using triplet loss. In this approach,
a region proposal network selects themost relevant regions of
the image, where local features are extracted, in three scales
of the input images. In [39] a trainable Generalized-Mean
(GeM)pooling layer is proposed, alongwith learningwhiten-
ing, for short representations. Two stream Siamese network
is trained using contrastive loss. The authors use structure-
from-motion information and hard-matching examples for
CNN training, and use up to 5 image scales to extract fea-
tures. More recently, in [18] a method that uses a novel
conditional attention model to localize region of interests is
proposed, combining it with aGeMpooling layer. In [43] it is

proposed to directly optimize the global mAP score by lever-
aging list-wise loss formulation, using a histogram binning
approximation that can be employed for end-to-end learn-
ing. In this approach it is possible to use large batches of
high-resolution images during training and reduce the need
of engineeringmining procedures. In [7] an end-to-end train-
able “DEep Local and Global features” (DELG) model, that
combines global features for first stage retrieval and local fea-
tures for re-ranking, has been recently proposed. It uses GeM
pooling for global features and attentive selection for local
features. In [31] it is proposed to exploit the second-order
relationships between features at different spatial locations;
in this approach feature maps are re-weighted according to
second-order spatial attention, improving results on chal-
lenging datasets.

In [25] a novel spatial attention block to weight salient
regions is combined with semantic segmentation and a class
weighting network to implement an end-to-end semantic-
aware object retrieval based on R-MAC. In [45] is pre-
sented amethod called Strong-Response-Stack-Contribution
(SRSC), that computes a global representation vector com-
bining spatial and channel contribution of VGG features.

In [10] vision transformers are proposed to generate image
descriptors for retrieval, training the models with a metric
learning objective that combines a contrastive loss with a dif-
ferential entropy regularizer. In [26], the problem of retrieval
under noisy datasets is addressed proposing a novel noise-
robust loss based on Multiple Instance Learning (MIL). The
proposed method allows to use noisy generated training sets,
that can be easily created, to adapt CNNs for image retrieval
on new objects. In [61] a novel metric learning approach is
proposed, that shifts part of the learning to an online local
metric adaptation. The goal is to reduce the demand of a
huge set of positive/negative training pairs, and in particu-
lar to address the problem of obtaining positive pairs for a
specific instance.

Our proposedmethod shares similarity with the approach-
es of [14,39,51], but in addition to our proposed pooling
and triplet mining, it has important subtle differences that
increase performance of the resulting system, compared to
previous methods [7,43]. Differently from [12,50,57] our
method is fully trainable end-to-end; differently from [57]
multiple scales and only one convolutional layer are used;
differently from [12] the VLAD aggregation is performed
concurrently at all the scales, and differently from [50] there
is no use of region proposals. Differently from [1], our input
to the NetVLAD layer is not directly convolutional acti-
vations, but the concatenation of two max-pooled sets of
activations.Differently from [51]weadd aReLU layer before
multi-scale pooling, the feature splitting, a PCA that allows
to greatly reduce the dimensionality of the embedding and a
new triplet mining procedure.
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3 The proposedmethod

The idea is to train a CNN network which provides opti-
mized embeddings to perform image retrieval.1 Theproposed
method is inspired by the approaches used in [1,14,39,51],
with several differences. First, the CNN activations are col-
lected using three different aggregation steps. The first one
through max-pooling operations, i.e. using 2-scales local
features; the second through an operation of ‘splitting’ the
high-dimensional features into a more compact descriptor
with reduced curse of dimensionality. A bag of words rep-
resentation is obtained and fed into the NetVLAD layer. A
second difference is the triplet (hard-negatives) mining pro-
cedure used to train a three-stream Siamese network. We
select “stable” triplets, whose loss is targeted around a given
value, avoiding positive samples that could be considered as
extremely hard, i.e. whose visual similarity is very low due to
minimal overlap, extreme zooming [39], etc. This procedure
reduces the risk of overfitting and loss of generalization, also
due tomathematical implications related to the loss gradients
[53].

3.1 Pooling of local CNN features and descriptor
splitting

Convolutional features are max-pooled using a 2 × 2 and
3 × 3 (both using stride = 1) process, so to obtain repre-
sentations at finer and larger detail where each local feature
encodes information about its neighbourhood. This operation
produces two batches of local descriptors. For each location
of the two partitions the f activation maps are collected, cre-
ating a 1× 1× f “column feature” (as defined in [59]). This
process, shown in Fig. 2, is akin to dense grid-based sampling
of SIFT descriptors [19]. Sets of column features are concate-
nated, to provide a multi-scale descriptor of the image. After
this step, we perform feature splitting, that is the operation of
splitting each “column feature” into a given number of equal
dimensional features. Given a D-dimensional vector f , with
D mod N = 0:

f = [ f0, f1, . . . , fi , fi+1, . . . , fD−1] (1)

We refer to the N-Split of f to the set:

fN = {fi = [ fi×D/N , . . . , f(i+1)×D/N ], i ∈ [0, N − 1]} (2)

This splitting is simply implemented by a tensorial
reshaping and each N-Split is obtained starting from the
features contained in the bag of words. The purpose of this

1 The code and models are released at the following address: https://
github.com/fede-vaccaro/NetVlad.

Fig. 2 “Column feature” extraction: top) max-pooling with different
scales, bottom) activation maps collection as column features: this is
performed at each pooling scale

transformation is reducing the dimensionality of the embed-
dings into a more suitable form for the NetVLAD layer, and
avoiding the dimensionality explosion of the final VLAD
descriptor that would happen combining non-trivial vocabu-
lary size with highly-dimensional features, like the features
produced by modern network architectures (e.g. ResNet has
2048 filters in the output layer).

All the local CNN features are then aggregated using a
NetVLAD [1] layer. The activations of this layer are used
as a descriptor of the content of the image. The NetVLAD
layer is initialized with a K-Means clustering,2 with the soft-
assignment parameter α = 30. As in [1] for NetVLAD we
use K = 64 vocabulary words; we used for the ResNet archi-
tecture the N -Split of the local features with N = 4, thus
resulting in a 32k-D representation.

The approach can be applied in principle to any CNN.
In the following experiments we have tested VGG16, as it
was commonly used in many competing methods and com-
parisons, ResNet, as it has been used in the most recent
state-of-the-art methods, and the novel ResNeSt architecture
[58] that has recently improved results over previous ResNet
in image classification, object detection, instance segmenta-
tion and semantic segmentation.

An overview of the proposed network is shown in Fig. 3.
TheFCNNblock infigure is theCNNused to extract features;
we extract the feature from the last convolutional layer of
each tested network. The FCNNblock is followed by aReLU
block, followed by the two local max-pooling aggregations.
Thebagof local features that are aggregatedby theNetVLAD
layer are obtained by the union of the feature splitting of the
column features of the two max-pooling layers.

2 In the experiments we performed it on the training dataset.
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Fig. 3 Overview of the proposed architecture, using VLAD aggregation of local multiscale max-pooling CNN features

Fig. 4 Schema of the proposed training method: the three stream Siamese network is used at training time. At test time the query image is fed to
the learned network to produce an effective image representation used to query the database

3.2 Training and triplet mining

In this workwe use a ranking loss based on triplets of images;
the idea is to learn a descriptor so that the representation of
relevant images is closer to the descriptor of the query than
that of irrelevant ones. The design of the training setup is
shown in Fig. 4: the weights of the convolutional layers of the
CNN network and the NetVLAD layer are shared between
the streams, since their size is independent of the size and
aspect ratio of the images.

At training time the network is provided with image
triplets. Given a query image Q with embedding q, a positive
(i.e. relevant with respect to the query) image P with embed-
ding p, a negative (i.e. not relevant w.r.t. the query) image
N with embedding n, with q,p,n ∈ R

n , a distance measure
d : Rn → R (in our case it was the squared Euclidean dis-
tance) and a scalarm that controls the margin, the triplet loss
used is L = max(m+d(q,p)−d(q,n), 0). Themarginm is
set to 0.1 as in [1,13,39] which is proved to be a safe default
value.

An issue that may arise with this approach is due to the
sampling of the triplets: e.g. a random approach may select

triplets that do not incur in any loss and thus do not improve
the model. Before discussing Algorithm 1, we have to make
considerations about the triplets and the samples from which
they are composed, and their impact respect to the gradients
and, therefore, the weight updates. For the sake of simplicity
from here we refer to an image and its embedding indis-
criminately. Given a distance measure d, a dataset of labeled
images D = {(x, y)} and a query image (q, yq) ∈ D , we
refer to the hardest-positive of q, to the image (p, yp) s.t.:

p = argmax
p∈D

d(q,p){p|yq = yp} (3)

meaning the farther image from q belonging to the same
class. Conversely, we refer to the hardest-negative of q, the
image (n, yn) s.t.:

n = argmin
n∈D

d(q,n){n|yq �= yn} (4)

meaning the nearest image from q belonging to a different
class. Ideally, for a perfect ranking, we would desire that
d(q,p) < d(q,n) for each q ∈ D , so we are naively led to
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Algorithm 1 Triplet mining
1: procedure Triplet mining(mining_batch_si ze,

images_per_classes, landmarks, t, T , δ)
2: k ← mining_batch_si ze/images_per_classes
3: Pick k random landmarks
4: X, y ← pick mining_batch_size random images from
5: the selected landmarks and their labels
6: features ← model.extract_ f eatures(X)

7: triplets[] ← new list()
8: for i ∈ [1,mining_batch_si ze] do
9: if n �= null and j − n ≥ t then
10: break
11: end if
12: f eature = features[i]; query_label = y[i]
13: indices[] ← Compute k-NN of feature
14: q ← i ; p ← null; n ← null
15: for j ∈ [2,mining_batch_si ze] do
16: if label[indices[ j]] �= query_label and

n = null then
17: n ← j
18: if j > 2 with Probability 0.5 then
19: p ← j − 1
20: break
21: end if
22: else if label[indices[ j]] = query_label and

n �= null then
23: p ← j
24: end if
25: if p �= null and n �= null then
26: losst ← compute_loss(X [q], X [p], X [n])
27: if m − δ < losst < m + δ then
28: p ← indices[p]
29: n ← indices[n]
30: tr i plet ← (X [q], X [p], X [n])
31: triplets.append(tr i plet)
32: else
33: break
34: end if
35: end if
36: end for
37: end for
38: Keep just one triplet per class
39: Keep at most T triplets
40: return triplets
41: end procedure

sample p and n and train the model on triplets composed as
this; however while it is common practice [13,39] perform-
ing the hard-negativesmining, selecting the hardest-positives
involves two main issues:

– The gradient of the loss respect to the positive-term
would have a large module; this implies that this gradient
dominates the negative-term, thus the backpropagation
is driven only from the positives samples, leading to a
“collapsed” model: if the negative term is missing, the
problem of minimizing the distance of a set of points
would be trivially solved by mapping each image to a
constant vector without any attention to keep the classes
separated;

– Some classes may contain outliers and/or samples whose
visual similarity is very low due to minimal overlap,
extreme zooming [39]; images like these are more likely
to be far from the query image. This information is
encoded in the gradient via a noise-component although
the distance may not be extremely large.

These phenomena have been analyzed in detail in [53]. The
purpose of our mining algorithm is yielding hard-negative
triplets, whose positive sample is selected s.t. is equally dis-
tant to the query w.r.t. the negative sample, implying that
the loss at mining-time of these triplets is approximatively
equal to the margin m and positive and negative gradients
have equal strength. This avoids the positive collapse while
keeping the positive samples non trivial.

Our algorithm operates by loading a subsetB ⊂ D , since
mining on the entire dataset is unfeasible. The parameters
are: images_per_classes is the maximum number of images
loaded for each randomly sampled class (of course we need
at least two samples per class in order to compose a valid
triplet);mining_batch_size the maximum value of |B|, land-
marks are the dataset classes; t, T and δ are thresholds and
their purpose will be explained later. After the extraction
of all the descriptors from the mining batch, the outer loop
iterates along each feature vector and compute its nearest
neighbours, then it starts generating the triplet with the cor-
responding image as query.

The inner loop iterates over the query ranking list. The
hardest negative in the mining batch size is found (line 17),
then if it is not the nearest sample in the batch (line 18), a ran-
dom selection with the same probability is used to select the
positive sample (line 19, case A) as the element before in the
ranking list. Note that in this case, d(q,p) < d(q,n), so the
loss of this triplet is lesser than m. Alternatively (case B) the
algorithm keeps with the search of the positive sample; how-
ever, if it does not find it within t-indices from the negative
index n, the inner loop terminates (lines 9-10). This early exit
is motivated both to avoid searching a hard-positive sample
and to control the complexity of the algorithm, avoiding use-
less iterations over the ranking list. After that the algorithm
composes the triplet, its loss is computed and if its value is
in the interval (m − δ,m + δ), the triplet is appended to the
triplet list, otherwise it is discarded (line 31, 33). This filter-
ing, paired with the random selection in line 18 makes sure
that each triplet is balanced, without easy or hard samples,
and with the average loss of the triplet list approximately
equal to m. At the end of the outer loop, we have a list of
up to mining_batch_size triplets that is further filtered with
two thresholds. For the first one, only one triplet per class
is maintained (with respect to the query/positive) to reduce
redundant information (e.g. two different triplets where posi-
tive and anchor are swapped and with the same negative) and
reduce overfitting risk of learning similar triplets. The second
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thresholding (line 39) was fundamental in our experiments,
since this practice forces the training procedure to mine the
triplets more often, avoiding the problem of triplets aging.
The issue of triplet aging is when, after some weight updates
via backpropagation, a triplet has a lower loss than before,
and thus has little or no information worth to be learned. In
our experiments, themining_batch_size used in Algorithm 1
is 8000, images_per_classes is 15, t is 20, δ = 0.04 and
T was 240. The triplets are returned as minibatches of 6,
while the mining was performed every 40 iterations (weight
updates).

It can be shown that, ignoring the features extraction
and Nearest-Neighbours steps, assuming t ′ = images_per_
classes and n = |B| = mining_batch_size the complexity
of Algorithm 1 is O(n). In fact, the inner loop has first to find
the hard-negative, which in the worst case is found at the iter-
ation t ′ + 1; with probability 0.5 the positive is selected with
no additional costs, otherwise the loop continues the search,
but if it is not found after t iterations, the algorithm exits from
the inner loop, for a cost of O(t + t ′). The loss computation
(line 26) could be optimized by reusing the k-NN metrics.
Since the inner loop is repeated n times, the overall complex-
ity is O((t + t ′)n). In our setup, t ′ < t and t << n, so the
cost can be reduced to O(n).

Training of the network is performed using Google Land-
mark V2 dataset.3 In particular we use the train split of the
“cleaned” version4 presented in [33], that contains 1,580,470
images and 81,313 labels. In our experiments one epoch was
equivalent to 400 steps, so themining process was performed
every 40 iterations, ten times for epoch, to account for the
fact that descriptors may change greatly and the triplet aging
we mentioned, especially during the initial training. The net-
work has been trained using the Adam [23] optimizer; we
performed the LR warm-up, starting from 10−6 increasing
linearly until 10−5 at the 2000th iteration; then, the LR was
decreased of one order of magnitude at the epoch 120; at the
epoch 240,we stopped the training.We set theBatchNormal-
ization layers of ResNet architectures to inferencemode even
during training, to reduce overfitting. In our experiments, the
training images have been resized to resolution 336 × 336
pixels, regardless to the original aspect-ratio, but the final
architecture has been trained at resolution 512 × 512, prov-
ing that an high training resolution is highly beneficial to the
final result, as observed in [7,43], since at training time the
weights are optimized for seeing patterns at closer scale and
resolution to testing (Sect. 4.4.3). The PCA-Whitening has
been trained on a subset of 65K descriptors extracted from
the training images.

3 https://github.com/cvdfoundation/google-landmark.
4 https://www.kaggle.com/confirm/cleaned-subsets-of-google-
landmarks-v2.

4 Experiments

For the convolutional part of the network we thoroughly
evaluate two popular architectures, commonly used in other
competing approaches, i.e. VGG16 and ResNet, but other
architectures can be plugged, such as the recent ResNeSt,
etc.

4.1 Datasets andmetrics

Themajority of the experiments have beenmade usingRevis-
ited Oxford5K and Revisited Paris6k datasets [37], using the
Medium andHard setups, and using ResNet backend, as this
combination has become the most commonly used in the
most recent state-of-the-art methods. To further extend com-
parison with other methods we have compared our method
also using Oxford5k dataset [36] and Paris6k dataset [35],
using VGG16 as backend. It has to be noted that the Revis-
ited version of the datasets is more challenging.We usemean
Average Precision (mAP, higher values are better) to evalu-
ate the performance, as this is the metric commonly used
to compare different approaches on the selected datasets.
mAP is obtained computing the mean of the average pre-
cision (AP) of the set of queries used in the various datasets
used in the following experiments. AP is the area under the
precision-recall curve obtained plotting Precision (P) as a
function of Recall (R), and accounts for the ranking of the
retrieved results, so that a system that retrieves correct ele-
ments in the first positions of the result list is scores better.
In particular, we use the following formulation:

AP =
∑

k P(k) × rel(k)

#rel_images

where k is the rank in the sequence of retrieved documents,
P(k) is the precision at cut-off k in the list, rel(k) is an indi-
cator function equaling 1 if the image at rank k is a relevant
image, and #rel_images is the number of relevant images
for the query.

4.2 Test configuration

In our experiments we used a multi-resolution approach,
using an image pyramid to produce a representation at mul-
tiple scales. Considering the base resolution of 512 × 512,
our final descriptor is produced by averaging the whitened
descriptors at resolutions { 23 , 1, 3

2 } of the chosen base res-
olution, regardless of the aspect-ratio, and then applying a
final L2-normalization. However, we added a simple pre-
processing step for the query images: since some test queries
would have been heavily distorted by the rescaling operation,
we first added a white padding to produce a squared image
(thus the actual content is not distorted), and then we resized
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Table 1 Effects of multi-scale pooling (mAP)

Pooling ROxf (M) ROxf (H) RPar(M) RPar(H)

3 × 3 61.1 36.4 78.9 59.5

2 × 2 60.8 39.5 78.2 59.0

Both 61.3 39.5 79.0 59.9

Table 2 Effects of using multi-scale images (mAP)

Scaling factors ROxf (M) ROxf (H) RPar(M) RPar(H)

{1} 63.0 36.7 80.9 62.4

{ 23 , 1} 64.3 38.2 82.2 64.1

{1, 3
2 } 62.9 38.1 80.5 61.9

{ 23 , 1, 3
2 } 64.6 39.8 82.5 64.7

Best results for each dataset are highlighted in bold

the queries using the base resolution multiplied by a scaling
factor equal to 0.7; the motivation for this is to cope with
the scale differences of the query images and the database
images.

4.3 Multi-scale pooling and image resolutions

In this first set of experiments we use ResNet101 as FCNN.
The experiments reported inTable 1 evaluate the effects of the
first contribution of this work, i.e. using multi-scale features
obtained from two max-pooling layers before the NetVLAD
layer. Results show that using both 2 × 2 and 3 × 3 pool-
ing improve the performance. A single resolution image is
used as input, resized at resolution 336×336, without apply-
ing the PCA-Whitening. It must be noted that all the results
improve upon the standard NetVLAD pooling [1] as shown
in Table 7, showing the benefit of the two-step local CNN
features aggregation.

Different resolutions may provide different clues regard-
ing the appearance of objects in the scene. Hence, we extract
and combine features at different resolutions, improving the
performance of the multi-scale pooling. In the experiments

reported in Table 2 we evaluate using different image resolu-
tions at test time, evaluating the best combination onmultiple
datasets. Images are resized to, starting fromabase resolution
of 512×512, to different combination of the image pyramid,
produced multiplying the base resolution to the scaling fac-
tors in { 23 , 1, 3

2 }; the images are resized regardless of aspect
ratio, also enabling feature extraction in batches. The multi-
resolution column reports the combination of scaling factor
used. Results show that image multi-resolution improves the
performance of the retrieval.

4.4 Ablation studies, dimensionality reduction and
network architectures

In this set of experiments we use the more modern ResNet
and the very recent ResNeSt networks.

4.4.1 Ablation studies

In these tests we evaluate the improvements of our mod-
ifications over the original NetVLAD configuration. All
the models from Table 3 have been trained at resolution
336 × 336. Each model is tested after averaging the three
multi-resolution embeddings, then applying PCA-Whitening
to reduce the dimensionality of the resulting descriptor to
2048. In our setup the split of the max-pooled descriptors is
equal to a 4-Split, i.e. we split the ResNet final descriptor
into four descriptors of dimensionality 512. We show how
applying the ReLU activation is fundamental for obtaining a
representative descriptor (1st row vs. 2nd row) especially to
deal with the more challenging ROxford5k dataset, despite
what was reported in [1] where it was believed that ReLU
activations are not meaningful in image retrieval, since the
networks were trained for ImageNet classification. In the 3rd
row, is shown how the addition of the two scalemax-poolings
is simple yet effective. Proved the effectiveness of the pool-
ings and the convolutional activations, in the last rows the
results without splitting the final tensor are presented. For
these tests, we reduced theNetVLADvocabulary to avoid the

Table 3 Effectiveness of the architectural improvements (mAP, using ResNet101 trained at 336 × 336 resolution)

ROxf (M) ROxf (H) RPar(M) RPar (H) ReLU N-Split Poolings Vocabulary dim. Feat. dim. VLAD dim.

66.2 42.8 80.6 61.4 • • • 64 512 32K

62.8 37.9 79.2 60.3 • • 64 512 32K

65.8 41.7 78.6 59.1 • • 64 512 32K

65.9 43.1 79.1 59.7 • • 32 2048 65K

58.9 30.6 76.5 56.5 • • 64 512* 32K

66.2 40.9 78.1 58.4 • • 16 2048 32K

62.9 38.5 78.9 60.2 • 32 2048 65K

61.3 33.8 79.0 60.5 32 2048 65K
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Table 4 Scores varying the PCA final dimension (mAP)

PCA dim. ROxf (M) ROxf (H) RPar(M) RPar (H)

4096 66.6 43.7 80.7 61.3

2048 66.2 42.8 80.6 61.4

1024 66.0 41.0 79.6 60.0

512 63.0 35.4 79.2 59.0

256 61.6 33.6 77.5 56.7

dimensional explosion of the VLAD descriptor. We reduced
the vocabulary first to 32 words, then to 16, thus yielding a
descriptor of size comparable with our proposed setup. Com-
parison with the first three rows of the table clearly show the
benefit of the splitting. In row 5, where the feature dimension
is marked with * and is equal to 512, we did not extracted the
features from the last layer but from the last bottleneck layer
with dimensionality 512 to avoid the splitting: these results
prove how is better achieving dimensionality reduction with
the split operation rather than using an intermediate layer.
In the penultimate row, is employed the configuration with
just the double-scale max-poolings, as in [51]. A baseline
method, that simply uses NetVLAD without any of the pro-
posed improvements is reported in the last line of the table.

4.4.2 Triplet mining

We tested our proposed triplet mining procedure versus
several baseline sampling methods on the ROxf and RPar
datasets with the same ResNet architecture. In particular, we
compare two different image sampling for positive images.

Descriptor distance We chose as positive the image that
has the lowest descriptor distance relative to the query. That
is p = argmin p∈D d(q,p) where basically we take the
nearest positive image in the feature space.

Maximum inliers Similarly as in [39], and as typically
used in BoW methods, we exploit 3D information to choose
the positive image, independently of theCNNdescriptor. The
image that has the highest intersection of 3D points with the
query is chosen. Formally,p = argmaxp∈D |P(q)∩P(p)|

Results Results are reported in Table 5. We can observe
that our triplet mining strategy obtains the best perfor-
mance compared to the baselines. In a qualitative inspection,
our method consistently proposes more challenging positive
examples with increased variability of viewpoints.

4.4.3 PCA-whitening dimensionality reduction

NetVLAD descriptors have a high dimensionality, thus it is
required to reduce it to obtain a more manageable descriptor.
In Table 4 we evaluate the effect of PCA-based compression
on the final descriptor, varying from 4096 to 256 dimension-

Table 5 Performance of different sampling methods (mAP)

Method ROxf (M) ROxf (H) RPar(M) RPar(H)

Descr. distance 63.37 39.82 80.44 62.35

Max. inliers 67.68 44.51 80.18 61.92

Our mining 73.18 53.03 82.59 64.38

ality. It can be observed how keepingmore eigenvectors from
the PCA increases the descriptor performance; under 1024
dimensions there is amajor information loss, noticeable espe-
ciallywhen testingwith the ROxford5k dataset. However, for
our tests we kept the 2048-dim compression for the sake of
the comparison with other state-of-the-art descriptors.

4.4.4 Trainings at higher resolution with modern
architectures

Wepreviously stated how training at high resolution is proven
to be fundamental [7,43] for Image Retrieval. It is common
knowledge and practice in Image Retrieval, that extracting
features from images at higher resolution produces more
meaningful descriptors. Still, this is sub-optimal: it can be
explained by the fact that, if the weights are fine-tuned with
images at lower resolution respect to the testing phase, the
model does not have the chance to learn in-depth some
patterns, which disappear with the downsampling, instead.
Moreover, it should be considered that the receptive field
would be larger during training, thus the network learns
patterns at larger scale with respect to the testing phase;
however, this is partially addressed with the multi-resolution
descriptor. On these premises, and after selecting our more
prominent setup (4-Split + ReLU + Max-Poolings), we pro-
ceed for a more time-expensive experiment training the
networks at resolution 512 × 512. Finally, we test a very
recent ResNet variant, the ResNeSt101 and ResNeSt50 [58],
that have shown improved results in different tasks, from seg-
mentation to classification; our experiments show that this
architecture heavily outperforms its more traditional version
also for the image retrieval task. In our experimental setup,
the ResNeSt101 and ResNeSt50, respectively, completed the
features extraction from the test datasets in about 120% and
85% of the total time employed by the original ResNet101.
These results are shown in Table 6.

4.5 Comparison with state-of-the-art

In these experiments we evaluate the proposed method with
current state-of-the art methods on all the datasets and using
the three CNN architectures used in the two previous sets of
experiments.
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Table 6 Scores varying network architecture and training resolution
(mAP)

Net Train res. ROxf (M) ROxf (H) RPar(M) RPar (H)

ResNeSt101 512 75.3 55.4 86.9 72.5

ResNeSt101 336 75.2 53.4 84.8 68.1

ResNeSt50 512 72.0 51.6 81.7 64.9

ResNeSt50 336 71.3 50.3 82.3 64.7

ResNet101 512 70.9 47.3 82.1 64.7

ResNet101 336 66.2 42.8 80.6 61.4

Table 7 Comparison with state-of-the-art methods (mAP) using
VGG16

Method Oxford5k Paris6k

Our method 86.0 88.7

Our method (no crop) 87.3 91.5

MS-NetVLAD (no crop) [51] 83.8 89.3

GeM [39] 87.9 87.7

SAB [25] 74.3 86.9

SRCS [45] 74.6 85.9

R-MAC [14] 83.1 87.1

NetVLAD [1] 71.6 79.7

Fisher-Vector [32] 81.5 82.4

BoW-CNN [29] 73.9 82.0

R-MAC [49] 66.9 83.0

CroW [22] 70.8 79.7

PWA [55] 72.0 82.3

LS [29] 74.2 82.0

SpoC [4] 68.1 78.2

Best results are highlighted in bold and second best results are under-
lined

Table 7 reports a comparison of methods that use VGG
networks tested on Oxford5k and Paris6k; this combination
of architecture and dataset has been superseded in the most
recent works and we report it because it allows to provide
a more extensive comparison. Results of our method have
been obtained using multi-resolution (see Sect. 4.2) and the
VGG network has been trained at resolution 336 × 336 this
time using the LR warm-up and keeping the activation func-
tions after the final convolutional layer. The proposedmethod
obtains the best resultwhenperformingquerieswithout using
image crops, as done in [51]; in this case it has state-of-the-art
performance on Paris6k and second best result on Oxford5k.
Instead, when using query crops as in the other competing
approaches, it consistently obtains the second best result in
both datasets, unlike the other two bestmethods that obtained
the best result only in one of the two datasets and the third
best result in the other.

Table 8 reports a comparison of methods using the more
challenging Revisited Oxford5k and Revisited Paris6k data-

Table 8 Comparison with the state of the art (mAP) using ResNet. Best
results are highlighted in bold and second best results are underlined.
SpoC values reported from [18]

Method ROxf (M) ROxf (H) RPar(M) RPar (H)

Ours (ResNeSt101) 75.3 55.4 86.9 72.5

Ours (ResNet101) 73.2 53.0 82.6 64.4

SOLAR [31] 69.9 47.9 81.6 64.5

DELG [7] 69.7 45.1 81.6 63.4

BE [26] 67.5 41.8 80.3 61.2

OLMANS [61] 65.7 40.4 76.9 55.4

IRTR [10] 55.1 28.3 72.7 49.6

GeM+CA [18] 67.3 42.6 77.5 56.5

AGeM [15] 67.0 40.7 78.1 57.3

HesAff-HardNet [28] 65.6 76.9 43.1 55.4

ASDA [56] 66.4 38.5 71.6 47.9

AP-Loss [43] 67.5 42.8 80.1 60.5

GeM [39] 64.7 38.5 77.2 56.3

SuperLoss [8] 62.7 38.1 77.0 56.5

R-MAC [14] 60.9 32.4 78.9 59.4

NetVLAD [1] 37.1 13.8 59.8 35.0

SpoC [4] 39.8 12.4 69.2 44.7

sets, using theMedium andHard setups. These combinations
of datasets and setups are used in the more recent works.
Our results have been obtained using multi-resolution (see
Sect. 4.2) and all the three proposed techniques (ReLU, N-
Split and multi-resolution pooling) analyzed in Table 3. The
competing methods use ResNet networks, so they should be
compared with our results reported on line 2. Our proposed
method outperforms the most recent approach of [31] in 3 of
the 4 setups, and obtains the second best result in ROxford5k
Hard.

It is worth noting the very large performance boost pro-
vided by ResNeSt architecture shown in line 1, that suggests
that this novel architecture should be used instead of ResNet
for image retrieval tasks. Using ResNeSt50 would still pro-
vide results that are better than ResNet101 (see Table 6) but
with smaller computational costs.

5 Conclusions

In this paper we presented a novel multi-scale local CNN
features pooling that, by exploiting end-to-end learning on
a Siamese network, is able to learn an effective images
representation.A feature splitting step allows to avoid dimen-
sionality explosion due to VLAD coding. The approach
can be used with different network architecture blocks for
feature extraction as shown in the experiments performed
usingVGG16, ResNet and the recent ResNeSt. The proposed
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approach has been thoroughly analysed and compared with a
large number of competing approaches and obtains state-of-
the-art results in standard and challenging datasets for image
retrieval. This result is obtained also thanks to a novel triplet
mining procedure that is able to diversify triplets based on
their difficulty and focus the learning on the most significa-
tive ones.

Despite using one of the most recent backbones and an
improved tripletmining algorithm, the task at hand still suffer
from the problem of semantic gap which is evident from the
experimental results. Our future work will then consider the
applicability of the proposed method to visual transformer
backbones and the extension to include temporal aspects
to address near duplicate video retrieval and video retrieval
using query frames.
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