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Abstract
We study a series of recognition tasks in two realistic scenarios requiring the analysis of faces under strong occlusion. On the
one hand, we aim to recognize facial expressions of people wearing virtual reality headsets. On the other hand, we aim to
estimate the age and identify the gender of people wearing surgical masks. For all these tasks, the common ground is that half
of the face is occluded. In this challenging setting, we show that convolutional neural networks trained on fully visible faces
exhibit very low performance levels. While fine-tuning the deep learning models on occluded faces is extremely useful, we
show that additional performance gains can be obtained by distilling knowledge frommodels trained on fully visible faces. To
this end, we study two knowledge distillation methods, one based on teacher–student training and one based on triplet loss.
Our main contribution consists in a novel approach for knowledge distillation based on triplet loss, which generalizes across
models and tasks. Furthermore, we consider combining distilledmodels learned through conventional teacher–student training
or through our novel teacher–student training based on triplet loss.We provide empirical evidence showing that, in most cases,
both individual and combined knowledge distillation methods bring statistically significant performance improvements. We
conduct experiments with three different neural models (VGG-f, VGG-face andResNet-50) on various tasks (facial expression
recognition, gender recognition, age estimation), showing consistent improvements regardless of the model or task.
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1 Introduction

We aim to study and develop a generic framework suitable
for solving various recognition tasks requiring the analysis of
faces under strong occlusion. We underline that the studied
framework could be useful in several realistic scenarios. In
this work, we focus on two specific yet diverse scenarios to
demonstrate the practical applicability of our framework.Our
first scenario is related to the recognition of facial expressions
of people wearing virtual reality (VR) headsets. A system
able to solve this task with high accuracy provides the means
to control and change the VR environment with respect to
the user’s emotions, in real time. This could be useful for
adjusting the level of exposure for VR applications designed
for the treatment of various types of phobia. Our second sce-
nario stems from the regulations imposed by many countries
around the world to minimize the spread of the SARS-CoV-
2 virus, requiring people in public indoor and even outdoor
environments to wear surgical masks. In the context of the
COVID-19 pandemic, estimating the age and identifying the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-021-01270-x&domain=pdf
http://orcid.org/0000-0002-9301-1950


12 Page 2 of 19 M.-I. Georgescu et al.

gender of customers wearing surgical masks is very useful to
generate customer demographics for retail stores and super-
markets. Such demographics are necessary for businesses to
estimate the impact of advertisement campaigns or to cre-
ate strategic plans with respect to current trends in customer
demand.

In the scenarios enumerated above, the common denom-
inator is the fact that the automated analysis needs to be
performed on faces with an occlusion rate of about 50%,
i.e., either the upper half or the lower half of the face is
occluded. We consider this level of occlusion as drastic,
given the significant performance damage implied when a
deep convolutional neural network (CNN) trained on com-
pletely visible faces is applied on half-visible faces. Perhaps
the most natural solution to close the performance gap is to
fine-tune themodel onoccluded faces.Yet,we conjecture that
the performance gap can be reduced even further by distilling
knowledge froma teachermodel trained on fully visible faces
into a student model fine-tuned on partially visible faces. In
this work, we study a conventional knowledge distillation
technique based on teacher–student training [30,59] as well
as a newly developed technique based on triplet loss [17].
In our novel knowledge distillation framework, we formu-
late the objective such that the model reduces the distance
between an anchor embedding, produced by a student CNN
that takes occluded faces as input, and a positive embedding
(from the same class as the anchor), produced by a teacher
CNN trained on fully visible faces, so that it becomes smaller
than the distance between the anchor and a negative embed-
ding (from a different class than the anchor), produced by the
student CNN. In addition, we consider combining distilled
student models, learned with conventional teacher–student
training or triplet loss, into ensemble models.

We conduct experiments on multiple tasks and data sets
to demonstrate the generality of using knowledge distillation
to reduce the negative effect of face occlusion on accuracy.
More precisely, we present facial expression recognition
results onAffectNet [51] and FER+ [5], gender identification
results on UTKFace [83] and age estimation results on UTK-
Face. To simulate occlusions, we replace the pixel values in
the upper or lower half of an image with zeros, blacking
out the corresponding region as necessary. To demonstrate
the generality across models, we consider two VGG archi-
tectures, namely VGG-f [7] and VGG-face [55], and one
residual architecture, namely ResNet-50 [28]. Our empirical
results indicate that knowledge distillation yields superior
results across the investigated tasks and models.

With respect to our preliminary work [17], we make the
following contributions:

– We provide amore comprehensive description of the pro-
posed methods.

– We demonstrate the generality across multiple tasks,
adding gender recognition and age estimation as new
tasks.

– We demonstrate the generality across multiple models,
considering both residual and VGG-like architectures.

The rest of the paper is organized as follows. Section 2
contains an overview of the related scientific articles. The
investigatedmethods are detailed in Sect. 3. The experiments
and results are described in Sect. 4. Our conclusions and
future work directions are provided in Sect. 5.

2 Related work

2.1 Facial expression recognition

Over the past few years, the research efforts on facial
expression recognition have concentrated on building and
training deep neural networks aimed at obtaining state-of-
the-art results [11,18,20,27,31,34,40,42,44–47,50,52,64–67,
70,71,74]. Engineered models based on handcrafted fea-
tures [3,35,62,63] have attracted comparably less attention,
since such models typically attain less accurate results than
deep learning models. In works such as [5,25], the authors
adopted VGG-like architectures. Barsoum et al. [5] proposed
a CNN particularly for the FER+ benchmark, formed of 13
layers (VGG-13).Guo et al. [25] concentrated on recognizing
facial expressions onmobile devices, designing a lightweight
VGG architecture. In order to minimize computational costs,
the authors reduced the input size, the number of filters and
the number of layers and replaced the fully connected layers
with global average pooling. Their architecture is formed of
12 layers divided into 6 blocks.

Although the majority of works studied facial expression
recognition from static images, there is a body of works
focusing on video [27,39]. Hasani et al. [27] designed a neu-
ral architecture that is formed of 3D convolutional layers
followed by a long short-term memory (LSTM) network,
extracting spatial relations within facial images and tempo-
ral relations between different frames in a video.

In a different direction from the aforementioned methods,
Meng et al. [50] and Liu et al. [47] presented identity-
aware facial expression recognition models. Meng et al. [50]
suggested to jointly estimate expression and identity fea-
tures using a neural architecture consisting of two identical
CNN streams, aiming to alleviate inter-subject variations
introduced by personal attributes and attain superior facial
expression recognition performance. Liu et al. [47] consid-
ered deep metric learning, jointly optimizing a deep metric
loss and the softmax loss. They obtained an identity-invariant
model by using a scheme based on identity-aware hard-
negative mining and online positive mining. Li et al. [45]
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optimized a CNN architecture using an upgraded back-
propagation algorithm that uses a locality preserving loss
aiming to pull the neighboring faces from the same class
together. Zeng et al. [81] designed a model that addresses the
labeling inconsistencies across data sets. In their approach,
images are annotated with multiple pseudo-labels, either
given by human annotators or predicted by trained models.
Then, a facial expression recognition model is trained to fit
the latent ground truth from the inconsistent pseudo-labels.
Hua et al. [34] presented a deep learning algorithm consisting
of three sub-networks of different depths. Each sub-network
is based on an independently trained CNN.

Different from all the works mentioned so far and
many others [3,5,11,18,20,27,31,33–35,40,42,44–47,50,52,
62–67,70,71,73,74,80,81], which recognize facial expres-
sions from fully visible faces, we concentrate on recognizing
the emotion by looking only at the lower part of the face.
The number of works that focus on facial expression recog-
nition under occlusion is considerably smaller [16,29,46]. Li
et al. [46] applied a model on synthetically occluded images.
They designed an end-to-end trainable Patch-Gated CNN to
automatically detect the occluded regions and concentrate on
the most discriminative non-occluded regions. Unlike Li et
al. [46], we consider amore difficult scenario inwhich half of
the face is completely occluded. In order to learn effectively
in this difficult scenario, we propose to transfer knowledge
from teacher models that are trained on fully visible (non-
occluded) faces.

Closer to our method are the approaches designed for
the difficult VR setting [16,29,32], in which a VR head-
set covers the upper side of the face. Hickson et al. [29]
proposed a method that analyzes expressions from the eye
region. The eye region is captured by an infrared camera
mounted inside the VR headset, making the method less
generic. Georgescu et al. [16] proposed an approach that
analyzes the mouth region captured with a standard cam-
era. The same type of approach is adopted by Houshmand et
al. [32], but the experiments are conducted on a data set that
uses face landmarks to apply the occlusion. In this work, we
consider the same setting as [16,32], investigating the task of
facial expression recognition when the upper half of the face
is occluded. Unlike these closely related papers [16,32], we
propose to perform knowledge distillation to produce more
accurate CNN models. We study two knowledge distilla-
tion techniques to distill information from CNNs trained on
fully visible faces to CNNs trained on occluded faces. To our
knowledge, we are the first to apply knowledge distillation
in the context of facial expression recognition under strong
occlusion. Moreover, we show the generality of the studied
methods across different tasks and neural models.

2.2 Gender recognition

Gender prediction models are widely used across different
domains such as advertising, security and human–computer
interaction. Similar to [2,6,19,26,36,37,58,77], we focus on
gender prediction from facial images. Some of these works
[2,19,26,36,58] proposed the use of CNN models to pre-
dict the gender. Abirami et al. [2] used a CNN model to
jointly predict the gender and the age of a person from facial
images. Priadana et al. [57] proposed the use of CNN mod-
els to predict the gender based on profile pictures posted
on a social media platform. Jhang et al. [37] proposed an
ensemble of CNNs using a weighted-softmax voting scheme
to address the gender prediction task. The weighted-softmax
voting scheme is obtained by applying a fully connected layer
on top of the models’ predictions. The fully connected layer
is further trained to learn the weights for each model. The
weights of the other models are frozen during the additional
training process. Georgescu et al. [19] proposed a ResNet-
50 model based on pyramidal neurons with apical dendrite
activations (PyNADA) to address the gender prediction task,
among several other tasks. The neurons are equipped with
a novel activation function inspired by some recent neuro-
science discoveries.

Similarly to the main body of recent works on gender
recognition in images, we also employ a CNN model. Dif-
ferent from all the works mentioned so far [2,19,26,36,58],
which identify the gender in fully visible faces, we focus on
a harder problem, that of predicting the gender in strongly
occluded faces.More precisely, we aim to identify the gender
of a person wearing a surgical mask, half of the face being
occluded. While there are studies on face recognition under
occlusion caused by surgicalmasks [10], or studies on gender
recognition under random occlusions [38], to the best of our
knowledge, we are the first to propose knowledge distilla-
tion for the gender prediction task under consistently strong
occlusion of the lower half of the face.

2.3 Age estimation

Age estimation is a very important task across many domains
such as advertising, human–computer interaction and secu-
rity. There are many works [14,15,23,24,43,53,72,75,82]
addressing the problem of age estimation of people from
facial images. Before the era of deep learning, the age esti-
mation task was tackled by extracting handcrafted features
from facial images, then applying a regressor or a classifier
on top of the extracted features. Guo et al. [23] proposed the
use of biologically inspired features based on Gabor filters to
estimate the age of a person from an image. After extracting
the bio-inspired features, Guo et al. [23] applied the PCA
algorithm to reduce the number of components. In the end,
an SVR model is employed on top of the extracted features.
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In another work based on biologically inspired features [24],
people were separated based on gender and age groups, prov-
ing that the segregation approach improves the performance
of the model by a significant margin.

Wang et al. [72] employed a CNN model to estimate the
age of a person, given a facial image. Instead of estimating the
age based on the features resulting from the last layer, Wang
et al. [72] extracted features from different layers of the CNN
model and concatenated them to obtain an aging pattern. In
the end, both SVM and SVR models are applied on top of
the aging patterns. Nam et al. [53] also used a CNN model
to estimate the age, but before applying the CNN model,
the authors employ a generative adversarial network [22] to
increase the resolution of the image in order to improve the
accuracy of the age predictor.

Similarly to the recent age prediction methods [53,72],
we employ a CNN model to estimate the age of people from
facial images. However, the main difference is that we are
interested in estimating the age under severe occlusion. To
the best of our knowledge, we are the first to study the age
estimation task on severely occluded images (50%of the face
being occluded).

2.4 Knowledge distillation

Knowledge distillation [4,30] is a recently studied tech-
nique [13,48,54,76,78,79] that enables the transfer of knowl-
edge between neural networks. Knowledge distillation is a
framework that unifies model compression [4,13,30] and
learning under privileged information [48,68], the former
one being more popular than the latter. In model compres-
sion, knowledge from a large neural model [4,54] or an
ensemble of large neural networks [30,78,79] is distilled into
a shallower or thinner neural network that runs efficiently
during inference. In learning under privileged information,
knowledge from a learning model trained with privileged
information (some additional data representation not avail-
able at test time) is transferred to another learning model that
does not have access to the privileged information. In our
paper, we are not interested in compressing neural models,
but in learning under privileged information. In particular,
we study teacher–student training strategies, in which the
teacher neural network can learn from fully visible faces and
the student neural network can learn from occluded faces
only. In this context, hidden (occluded) face regions repre-
sent the privileged information.

To the best of our knowledge, we are the first to propose
the distillation of knowledge using triplet loss. We should
underline that there are a few previous works [13,54,78,79]
that distilled triplets or the metric space from a teacher net-
work to a student network. Different from these methods, we
do not aim to transfer the metric space learned by a teacher

network, but to transfer knowledge from the teacher using
metric learning, which is fundamentally different.

3 Methods

To demonstrate the effectiveness of our approach across var-
ious models, we consider three neural network architectures
namely, VGG-f [7], VGG-face [55] and ResNet-50 [28].
Eachof the consideredneural architectures is applied on three
different tasks that involve drastic face occlusions. Regard-
less of the task, our training procedure based on knowledge
distillation [4,17,30,68] is organized in a curriculum com-
posed of the following three steps:

1. Training a teacher neural model on fully visible faces.
2. Fine-tuning the teacher on half-visible faces, resulting in

a pre-trained student model.
3. Distill knowledge from the teacher model at step 1 into

the student model obtained at step 2.

We emphasize that, due to catastrophic forgetting [49], the
model fine-tuned at step 2 forgets useful information learned
on fully visible faces.We conjecture that the lost information
can be recovered at step 3, by distilling knowledge from the
model trained on fully visible faces. In this context, we refer
to the model trained on fully visible faces as the teacher
and the model fine-tuned on half-visible faces as the student.
In our experiments detailed in Sect. 4, we present ablation
results after pruning steps 2 and 3, one by one.

Our first step is to train the teacher models on fully vis-
ible faces. In the second step, the networks are fine-tuned
on occluded faces, thus obtaining pre-trained student models
ready to undergo knowledge distillation. In the final training
step, the students are fine-tuned on occluded faces, simulat-
ing either the setting in which people wear a VR headset or
the setting in which people wear a surgical mask.

We underline that each student architecture is identical to
the corresponding teacher architecture, as our goal is to learn
privileged information from the teacher [68]. Thus, during
the training process, we never mix the network architectures,
such that when the teacher is a VGG-f network, the corre-
sponding student is also a VGG-f network. The same applies
to VGG-face and ResNet-50. We do not aim to compress the
models, i.e., to train a shallow and efficient model by distill-
ing a deeper network. Instead,we aim to distill the knowledge
from the teacher as privileged information for the student.
The privileged information available for the student is the
other half of the face (the occluded half) seen only by the
teacher. More specifically, for people wearing VR headsets,
the upper half of the face represents the privileged informa-
tion, while for people wearing surgical masks, the privileged
information is the lower half of the face.
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In the remainder of this section, we describe the two
teacher–student training strategies for learning to predict the
facial expression, gender or age of people from images with
strong face occlusion. The two teacher–student strategies are
alternatively employed at step 3 in our training process. As
an attempt to increase robustness and stability, we also com-
bine the resulting student models into an ensemble based on
meta-learning.

3.1 Conventional teacher–student training

Ba et al. [4] proposed a method to compress a deeper model
into a shallow one, their purpose being that of training an
efficient network to mimic the complex representation of a
deeper neural network.Using a similar idea,Hinton et al. [30]
proposed to distill the knowledge of an ensemble of models
into a single neural architecture. In their study, the authors
demonstrated that even when an entire class of samples is
missing during training, through knowledge distillation, the
student is still able to recognize the examples belonging to
the missing class due to the knowledge received from the
teacher. The knowledge distillation is performed by training
the student model using a soft target distribution produced by
the teacher model. Besides the knowledge distillation loss,
the cross-entropy loss between the ground-truth labels and
the student predictions is also added, obtaining the following
weighted loss:

LK D(θS) = λL(N τ
T , N τ

S ) + (1 − λ)L(y, NS), (1)

where θS are the weights of the student model S, y is the
ground-truth label, NT is the prediction of the teacher net-
work T , NS is the prediction of the student network S, and
λ is a hyperparameter that controls the importance of each
loss function forming the final loss LK D . The first term of
LK D is the cross-entropy with respect to the soft prediction
of the teacher, and the second term is the cross-entropy with
respect to the ground-truth label. N τ

T and N τ
S are the softened

predictions of the teacher T and the student S, respectively,
where τ > 1 is a temperature parameter for the softening
operation. More precisely, N τ

T and N τ
S are derived from the

pre-softmax activations AT and AS of the teacher network
and the student network, as follows:

N τ
T = softmax

(
AT

τ

)
, N τ

S = softmax

(
AS

τ

)
. (2)

Lopez et al. [48] introduced the generalized distillation,
where a model can learn from a different teacher model, but
also from a different data representation. When training the
student model by optimizing the loss defined in Equation (1),
the student can learn privileged information available only to
the teacher. In our case, we employ the generalized distilla-

tion method to learn a student to recognize facial expressions
on strongly occluded faces with privileged information com-
ing from a teacher that has access to fully visible faces
[68]. The application of the conventional teacher–student
framework for facial expression recognition under drastic
occlusion is illustrated in Fig. 1.

We underline that the aforementioned knowledge dis-
tillation methods [4,30,48] are suitable for classification
problems with multiple classes, in which the softmax output
has sufficient components to contain edifying information.
As a solution for our regression and binary classification
tasks, we distill the knowledge in the penultimate layer of
the student. To distill knowledge at any given layer, including
the penultimate one, we can employ the approach of Romero
et al. [59]. In order to train a deeper and thinner student than
the teacher, Romero et al. [59] provided hints learned by the
teacher network to the student network. A hint is the output
of a teacher’s hidden layer, that is used to guide the corre-
sponding output of a student’s hidden layer. The loss function
used to guide the training of the student is the L1 distance
between the output HT of a teacher’s hidden layer and the
output HS of a student’s hidden layer. More precisely, the
following weighted loss is proposed by Romero et al. [59]:

LH T (θS) = λ‖HT − HS‖1 + (1 − λ)L(y, NS), (3)

where θS are the weights of the student model S, y is the
ground-truth label, HS is the output of a student’s hidden
layer, HT is the output of the teacher’s hint (hidden) layer,
NS is the final output of the student network S, and λ is
a hyperparameter that controls the importance of the two
components.

For the age estimation and gender recognition tasks, we
employ the knowledge distillation method of Romero et
al. [59]. We prefer the hint teacher–student paradigm [59]
over the standard teacher–student method [30], due to the
low number of available predictions in the final layers for
gender recognition (at most two components for male versus
female classification) and age estimation (one component for
estimating the age on a continuous scale).

3.2 Teacher–student training with triplet loss

When employing the teacher–student paradigm, aside from
training the student to predict the correct labels, related tech-
niques add a loss term to minimize the difference between
the output of the student and that of the teacher [4,30,48], or
the difference between some intermediate layers [59] of the
student and teacher networks. To our knowledge, we are the
first to perform distillation by adding a triplet loss term.

In general, triplet loss [60] is employed in neural network
training to produce close (similar) embeddings for objects
belonging to the same class and distant embeddings when
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Fig. 1 The standard teacher–student training pipeline for facial expression recognition on severely occluded faces. The teacher CNN takes as input
non-occluded (fully visible) faces, having access to privileged information. The student CNN takes as input only occluded (lower-half-visible)
faces, but learns useful information from the teacher CNN model. The loss functions L(y, NS) and L(N τ

T , N τ
S ) are the terms of the loss defined in

Equation (1). Best viewed in color

the objects belong to different classes. Our approach is to
employ triplet loss on the face embeddings (the activations
from the layer immediately before the final classification or
regression layer). We aim to obtain similar face embeddings
when the student network and the teacher network take an
input image from the same class, and different embeddings
otherwise.

We next present in detail how triplet loss can be applied to
train the student network to learn privileged information pro-
vided by the teacher network. Throughout the remainder of
this section, we use the prime symbol to denote an occluded
face. Let x be a fully visible face and x ′ be an occluded
face. Let ET (x) and ES(x ′) be the face embeddings pro-
duced by the teacher network T and the student network
S, respectively. In order to employ the triplet loss, we need
triplets of input images of the form (a′, p, n′), where a′ is
an occluded image from a class k, p is a fully visible image
from class k (the positive sample), and n′ is an occluded
image from a different class than k (the negative sample).
During training, our goal is to reduce the distance between
the anchor embedding ES(a′) and the positive embedding
ET (p) until it becomes smaller than the distance between
the anchor embedding ES(a′) and the negative embedding
ES(n′). In order to accomplish this goal, we use the following
triplet loss function:

Ltriplet(θS) =
m∑

i=1

[
‖ES(a′

i ) − ET (pi )‖22

− ‖ES(a′
i ) − ES(n′

i )‖22 + α
]
+,

(4)

where θS are the learnable parameters of the student network
S, m is the number of training examples, [·]+ = max(0, ·),
and α is the margin (minimum distance) between the positive

pair of embeddings (ES(a′
i ), ET (pi )) and the negative pair

of embeddings (ES(a′
i ), ES(n′

i )).
Similarly to the standard teacher–student loss expressed

in Equation (1), we want the student network to be able to
reproduce the correct labels. Thus, our final loss function
becomes:

LK DT (θS) = (1 − λ)L(y, NS) + λLtriplet(θS), (5)

where θS are the learnable parameters of the student network
S, L(y, NS) is the loss function with respect to the ground-
truth labels (cross-entropy for classification tasks and mean
absolute error for regression tasks), Ltriplet is the triplet loss
function, and λ is a hyperparameter that controls the impor-
tance of the second objective function with respect to the
first one. We illustrate our knowledge distillation paradigm
based on triplet loss in Fig. 2. We underline that only the
weights θS of the student are updated during training, while
the embeddings ET (pi ) are kept unchanged during thewhole
knowledge distillation process.

Following [60], we propose a fast hard example mining
scheme, as described next. In order to speed-up the training
process, we generate the triplets offline, at the beginning of
each epoch. One by one, each sample x ′ from the training set
is selected as the anchor a′. For each anchor a′ belonging to
the class k, we randomly select a subset Spos of fully visible
training faces belonging to the same class. Next, we compute
the distance between the embeddings produced by the teacher
network for the fully visible faces in Spos and the embedding
produced by the student for the anchor a′. The sample which
is the farthest from the anchor is selected as the positive
example p:
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Fig. 2 The teacher–student training based on triplet loss for facial expression recognition on severely occluded faces. During training, we modify
the weights of the student network such that the distance ‖ES(a′

i )− ET (pi )‖22 becomes smaller than the distance ‖ES(a′
i )− ES(n′

i )‖22. Best viewed
in color

p = argmax
j

{
‖ES(a′) − ET (p j )‖22

}
,∀p j ∈ Spos. (6)

In order to select the negative example n′, we randomly
select a subset Sneg of half-visible training faces from a dif-
ferent class than k. Then, we compute the distance between
the anchor embedding and the embeddings produced by the
student model for the half-visible faces in Sneg. The sample
which has the embedding closest to the anchor embedding is
selected as the negative example n′:

n′ = argmin
j

{
‖ES(a′) − ES(n′

j )‖22
}

,∀n′
j ∈ Sneg. (7)

The randomsubsets Spos and Sneg used in our hard example
mining scheme contain only a small percentage of the entire
training set (10% for facial expression recognition and 20%
for age and gender estimation), speeding up the training time
by a large margin. For additional efficiency improvements,
we generate the subsets of positive and negative samples
only once per epoch. Since age estimation is a regression
task, we do not have truly positive or negative examples.
Hence, for each anchor example,we consider examples under
a difference of 5 years as positive and the other examples as
negative. The threshold is set to roughly match the mean
absolute error of the teachers on UTKFace.

4 Experiments

4.1 Organization

We hereby present experiments to demonstrate the efficiency
of the proposed knowledge distillationmethods.We consider

three tasks (facial expression recognition, gender recogni-
tion, age estimation) and three models (VGG-f, VGG-face,
ResNet-50), evaluating all models across all tasks in three
scenarios (fully visible faces, lower-half-visible faces, upper-
half-visible faces). For each data set used in our experiments,
we also present ablation results, considering as baselines the
students trained on occluded faces (without employing any
knowledge distillation technique) and the teachers trained on
fully visible faces (without fine-tuning on occluded faces).
Our knowledge distillation frameworks are employed only
in the scenarios of interest (facial expression recognition
on lower-half-visible faces, gender prediction on upper-half-
visible faces, age estimation on upper-half-visible faces).

4.2 Facial expression recognition

4.2.1 Data sets

FER+ The FER+ data set [5] is a curated version of the FER
2013 data set [21]. The latter data set contains images with
incorrect labels as well as images not containing faces. Bar-
soum et al. [5] cleaned up the FER2013 data set by relabeling
images and by removing those without faces. In the relabel-
ing process, Barsoum et al. [5] added a new class of emotion,
contempt, while also keeping the other 7 classes from FER
2013: anger, disgust, fear, happiness, neutral, sadness and
surprise. The FER+ data set is composed of 25,045 training
images, 3,191 validation images and 3,137 test images. The
size of each image is 48 × 48 pixels.
AffectNetTheAffectNet [51] data set is one of the largest data
sets for facial expression recognition, containing 287,651
training images and 4,000 validation images with man-
ual annotations. The images from AffectNet have various
sizes. Since the test set is not yet publicly available, meth-
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ods [18,51,64,65,70,71,81] are commonly evaluated on the
validation set. The data set contains the same 8 classes of
emotion as FER+. With 500 images per class in the valida-
tion set, the class distribution is balanced. In the same time,
the training data are unbalanced. As proposed by Mollahos-
seini et al. [51], we down-sample the training set for classes
with more than 15,000 images. This leaves us with a training
set of 88,021 images.

4.2.2 Data preprocessing

In order to train and evaluate the neural models in scenarios
with drastic face occlusion, we replace the values of specific
pixels with zero to simulate occlusions.

For the setting introduced by Georgescu et al. [16], in
which facial expressions are recognized from the lower half
of the face, we occlude the entire upper half of the FER+
and AffectNet images. For the setting proposed by Hickson
et al. [29], in which facial expressions are recognized from
the eye region, we occlude the entire lower half of the FER+
and AffectNet images. All images are resized to 224 × 224
pixels, irrespective of the data set, in order to be given as
input to VGG-f, VGG-face and ResNet-50.

4.2.3 Evaluation metrics

Our metric for evaluating the classification models for facial
expression recognition is the accuracy between the ground-
truth labels and the predicted labels.Due to the fact that FER+
is highly imbalanced, we also report the weighted accuracy
for this data set.

4.2.4 Implementation details

We emphasize that all the hyperparameters specified below
are tuned on the FER+ validation set. Since the AffectNet
validation set is used for the final evaluation, on AffectNet,
we use the hyperparameter settings found optimal on the
FER+ validation set. The VGG-f and VGG-face models are
trainedwith stochastic gradient descent withmomentum.We
set themomentum rate to 0.9. TheVGG-facemodel is trained
on mini-batches of 64 images, while the VGG-f model is
trained onmini-batches of 512 images, since the latter model
has a lower memory footprint. We use the same mini-batch
sizes in all training stages. The ResNet-50 model is trained
using theAdamoptimizer [41] onmini-batches of 16 images.
Preliminary training of teachers and students For the prelim-
inary fine-tuning of the teacher and the student models, we
use the MatConvNet [69] library. The teacher VGG-face is
fine-tuned on facial expression recognition from fully visible
faces for a total of 50 epochs. The teacherVGG-f is fine-tuned
for 800 epochs. The student VGG-face is fine-tuned on facial
expression recognition from occluded faces for 40 epochs.

Similarly, the student VGG-f is fine-tuned on occluded faces
for 80 epochs. Further details about training these VGG-face
and VGG-f baselines on fully visible or occluded faces are
provided in [16]. The teacher ResNet-50 is fine-tuned for 75
epochs using a learning rate of 10−4. Similarly, the student
ResNet-50 is fine-tuned on lower-half-visible faces for 75
epochs with a learning rate set to 10−4.
Standard teacher–student training For the conventional
teacher–student strategy, the student VGG-face is trained for
50 epochs starting with a learning rate of 10−4, decreasing it
when the validation error does not improve for 10 consecu-
tive epochs. By the end of the training process, the learning
rate for the student VGG-face drops to 10−5. In a similar
manner, the student VGG-f is trained for 200 epochs starting
with a learning rate of 10−3, decreasing it when the valida-
tion error does not improve for 10 consecutive epochs. By
the end of the training process, the learning rate for the stu-
dent VGG-f drops to 10−4. The student ResNet-50 is trained
for 10 epochs starting with a learning rate of 10−5. Hinton
et al. [30] suggested to use a lower weight on the second
objective function defined in Equation (1). Therefore, we set
λ to a value of 0.9 for ResNet-50 and a value of 0.7 for both
VGG-f and VGG-face models. The parameter λ is validated
on the FER+ validation set.
Teacher–student training with triplet loss To implement the
teacher–student training based on triplet loss, we switch to
TensorFlow [1], exporting the VGG-f and VGG-face models
from MatConvNet. We train the student VGG-face for 10
epochs using a learning rate of 10−6. In a similar fashion, we
train the VGG-f and ResNet-50 students for 10 epochs using
a learning rate of 10−5. The parameter λ in Equation (5) is set
to a value of 0.5 for the VGG-f and VGG-face models, and a
value of 0.1 for theResNet-50model. The value of themargin
α from Equation (4) is chosen based on the performance
measured on the validation sets, considering values in the
interval [0, 0.5] at a step of 0.1.
Combining distilled embeddings After training the student
models using the two teacher–student strategies indepen-
dently, we concatenate the corresponding face embeddings
into a single embedding vector. The concatenated embed-
dings are provided as input to a Support Vector Machines
(SVM) model [8]. The regularization parameter C of the
resulting SVM models is chosen according to the perfor-
mance on the validation sets, considering values between
10−1 and 103, at a step of 101. We use the SVM implemen-
tation from Scikit-learn [56].

4.2.5 Baselines

As baselines for facial expression recognition, we con-
sider two state-of-the-art methods [16,29] designed for facial
expression recognition in the VR setting. The key contribu-
tion of these methods resides in the region they use to extract
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features, the lower half of the face (mouth region) [16] or the
upper half of the face (eye region) [29]. In order to conduct
a fair comparison, we use the same neural architectures for
both baselines and our approach.

As reference, we include some results on FER+ and
AffectNet from the recent literature [5,12,18,25,35,42,51,
64–66,70,71]. We underline that these state-of-the-art meth-
ods are trained and tested on fully visible faces. Hence, the
comparison to our approach or other approaches applied on
occluded faces [16,29] is unfair, but we included it as a rel-
evant indicator of the upper bound for the models applied
on occluded faces. We also underline that the included state-
of-the-art methods [64–66,70,71] are not based on standard
modeling choices, using sophisticated loss functions, label
smoothing, ensembles of multiple neural architectures or
more of the above. Our approach is closer to the methods
trained undermore simple settings [5,25,51], since our teach-
ers and students are trained using fairly well-known loss
functions and the evaluation is performed using only one
model.

4.2.6 Results

In Table 1, we present the empirical results obtained on
AffectNet [51] and FER+ [5] by the VGG-f, VGG-face
and ResNet-50 models based on our teacher–student train-
ing strategies in comparison with the results obtained by
the state-of-the-art methods [5,12,25,35,42,51,64–66,70,71]
tested on fully visible faces and by the methods [16,29]
designed for the VR setting (tested on occluded faces).
Comparison with the state of the art First of all, we note
that it is natural for the state-of-the-art methods [5,12,25,
35,42,51,64–66,70,71] to achieve better accuracy rates (on
fully visible faces) than our approach or the other approaches
applied on occluded faces [16,29]. One exceptional case is
represented by the VGG-face model of Georgescu et al. [16]
and our student VGG-facemodel, as both of them surpass the
bag-of-visual-words model [35] on both data sets. Another
exception of the above observation is represented by the fine-
tuned or distilled ResNet-50 students, both surpassing the
bag-of-visual-words on FER+.
Comparison between lower-half- and upper-half-visible faces
With respect to the baselines [16,29] designed for the VR
setting, all our teacher–student training strategies provide
superior results. We observe that the accuracy rates of Hick-
son et al. [29] are considerably lower than the accuracy rates
of Georgescu et al. [16] (differences are between 5% and
12%), although the neural models have identical architec-
tures. We hypothesize that this difference is caused by the
fact that it is significantly harder to recognize facial expres-
sions from the eye region (denoted by ��) than from the
mouth region (denoted by ��). To test this hypothesis, we
evaluate the teachers (VGG-f, VGG-face and ResNet-50) on

upper-half-visible and lower-half-visible faces. We observe
even larger differences between the results on upper-half-
visible faces (accuracy rates are between 24% and 49%)
and the results on lower-half-visible faces (accuracy rates
are between 37% and 71%), confirming our hypothesis. We
also underline that the results attained by the teacher models
on occluded faces are considerably lower than the results of
the baselines [16,29] designed for the VR setting, although
the teacher models attain results close to the state-of-the-art
methods [5,12,25,35,42,51,64–66,70,71]when testing is per-
formedon fully visible faces. This indicates thatCNNmodels
trained on fully visible faces are not particularly suitable to
handle severe facial occlusions, justifying the need for train-
ing on occluded faces.
Comparison with closely related methods The results pre-
sented in the last nine rows of Table 1 indicate that the
teacher–student learning strategies provide very good results
on lower-half-visible faces, surpassing the othermethods [16,
29] evaluated on occluded faces. We believe that the accu-
racy gains are due to the teacher neural networks that are
trained on fully visible images, which bring additional (priv-
ileged) information from the (unseen) upper half of the
training faces. Our teacher–student training strategy based
on triplet loss provides results that are comparable to the
standard teacher–student training strategy. We also achieve
additional performance gains when the two teacher–student
strategies are combined through embedding concatenation.
Our final models based on the concatenated distilled embed-
dings attain results that are close to some state-of-the-art
methods [5,25,35,42,51]. For example, our VGG-face with
triplet loss and standard teacher–student training yields an
accuracy rate of 82.75% on FER+, which is 2.24% under
the state-of-the-art VGG-13 [5]. We thus conclude that our
models can recognize facial expressions with sufficient relia-
bility, despite being tested on faces that are severely occluded
(the entire upper half is occluded).
Statistical significance testing We also performed statistical
significance testing to compare our models (VGG-f, VGG-
face and ResNet-50) based on teacher–student training with
the models of Georgescu et al. [16], which are equivalent
with our students before undergoing distillation. Notably,
the combined teacher–student strategies provide significant
improvements for the VGG-f, VGG-face and ResNet-50
models on both data sets, with a significance level of 0.05.
Grad-CAM visualizations In order to better understand how
our models make decisions, we used the Grad-CAM [61]
approach to provide visual explanations for some image
examples illustrated in Fig. 3. First, we notice that we, as
humans, are still able to recognize the facial expressions in
the presented examples, even if the upper half of each face
depicted in the second row of Fig. 3 is occluded. We observe
that the neural architectures turn their attention on the lower
part of the face, particularly on the mouth region. This indi-
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Table 1 Accuracy rates of various models on AffectNet [51] and FER+ [5], for fully visible faces (denoted by �), lower-half-visible faces (denoted
by �� ) and upper-half-visible faces (denoted by �� )
Model Train faces Test faces AffectNet (%) FER+

Accuracy (%) Weighted accuracy (%)

VGG-13 [5] � � – 84.99 –

DACL [12] � � 65.20 – –

CNNs+BOVW+LC [18] � � 59.58 87.76 –

VGG-12 [25] � � 58.50 – –

Bag of visual words [35] � � 48.30 80.65 –

MT-VGG [42] � � 54.00 – –

AlexNet [51] � � 58.00 – –

Res-50IBN [64] � � 63.11 89.51 –

MBCC-CNN [65] � � – 88.10 –

ESR-9 [66] � � 59.30 87.15 –

SCN [71] � � 60.23 89.35 –

PSR [70] � � 60.68 89.75 –

Teacher VGG-f � � 57.37 85.05 59.71

Teacher VGG-face � � 59.03 84.79 66.15

Teacher ResNet-50 � � 56.07 85.91 65.67

Teacher VGG-f � �� 41.58 70.00 43.24

Teacher VGG-face � �� 37.70 68.89 39.69

Teacher ResNet-50 � �� 40.50 70.89 44.56

Teacher VGG-f � �� 26.85 40.07 32.82

Teacher VGG-face � �� 31.23 48.29 37.36

Teacher ResNet-50 � �� 24.12 44.21 30.01

VGG-f [16] �� �� 47.58 78.23 50.52

VGG-face [16] �� �� 49.23 82.28 58.69

ResNet-50 �� �� 45.90 81.79 60.57

VGG-f [29] �� �� 42.45 66.18 44.66

VGG-face [29] �� �� 43.18 70.19 48.83

ResNet-50 �� �� 43.37 72.26 54.62

VGG-f (standard T-S) � + �� �� 48.75† 80.17† 53.00†

VGG-face (standard T-S) � + �� �� 49.75 82.37 59.46

ResNet-50 (standard T-S) � + �� �� 46.95† 82.37† 59.19†

VGG-f (triplet loss T-S) � + �� �� 48.13 80.05† 52.87†

VGG-face (triplet loss T-S) � + �� �� 49.71 82.57 59.12

ResNet-50 (triplet loss T-S) � + �� �� 46.17 81.28 60.93

VGG-f (triplet loss + standard T-S) � + �� �� 48.70† 81.09† 58.90†

VGG-face (triplet loss + standard T-S) � + �� �� 50.09† 82.75† 61.23†

ResNet-50 (triplet loss + standard T-S) � + �� �� 47.00† 82.37† 59.30†

The VGG-f, VGG-face and ResNet-50 models based on our teacher–student (T–S) training strategies are compared with state-of-the-art methods [5,
12,18,25,35,42,51,64–66,70,71] tested on fully visible faces and with methods [16,29] designed for the VR setting (tested on occluded faces). The
test results of our student networks that are significantly better than the stronger baseline [16], according to a paired McNemar’s test [9], are marked
with † for a significance level of 0.05
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Fig. 3 Fully visible images (�) on top row, lower-half-visible faces ( �� ) on second row, Grad-CAM [61] explanation masks on third row and
lower-half-visible faces with superimposed Grad-CAM masks on bottom row. The predicted labels provided by the distilled VGG-face (left-hand
side) or VGG-f (right-hand side) models are also provided at the bottom. The first two examples from each side are selected from AffectNet [51]
and FER+ [5], respectively. The third example from each side is a person wearing an actual VR headset. Best viewed in color

cates that our neural networks can properly handle situations
in which people wear VR headsets. We note that the pre-
dicted labels for the first five samples presented in Fig. 3 are
correct.

4.3 Age and gender estimation

4.3.1 Data sets

The UTKFace [83] data set contains images with faces of
people of various age, gender and ethnicity. The data set
consists of 23,689 images. We randomly divide the data set
obtaining 14,213 (60%) images for training, 4,738 (20%)
images for validation and 4,738 (20%) images for testing.
The size of each image is 200× 200 pixels. We perform two
types of experiments on UTKFace: gender recognition and
age estimation.

4.3.2 Data preprocessing

We adopt a similar technique as in the VR setting to simulate
occlusions caused by surgical masks, thus replacing the val-
ues of pixels in the lower half of each face in the UTKFace
data set with zero. The images from the data set are resized
to 224 × 224 pixels to correspond to the input size of the
convolutional networks.

4.3.3 Evaluation metrics

Our metric for evaluating the gender prediction models is the
standard classification accuracy. To evaluate the regression
models for age estimation, we consider the mean absolute
error (MAE) between the predicted age and the target age of
each test sample.
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4.3.4 Implementation details

The networks are trained using the same optimizer and batch
size as in the facial expression recognition experiments. We
tune all other hyperparameters on the UTKFace validation
set.
Preliminary training of teachers and students The teacher
and student VGG-f models are fine-tuned for 200 epochs
starting with a learning rate of 10−4. We note that there is
a teacher and a student for each of the two tasks (gender
recognition and age estimation). Both teacher and student
VGG-face networks are fine-tuned for 250 epochs with the
learning rate set to 10−4. The teacher and student ResNet-50
models are trained from scratch to predict the gender or the
age of people in images, for 100 epochs. The learning rate
for all teacher and student ResNet-50 models is set to 10−4.
Standard teacher–student training In order to apply the stan-
dard teacher–student strategy to estimate the age and the
gender from an image containing a face, the VGG-f students
are each trained for 20 epochs starting with a learning rate of
10−6.We set the parameter λ in Equation (3) to a value of 0.3
for gender prediction and a value of 0.5 for the age estima-
tion task. The VGG-face students are trained for 40 epochs,
setting the learning rate to a value of 10−5 for the age esti-
mation task and a value of 10−6 for the gender prediction
task. The parameter λ in Equation (3) is set to 0.3 for both
tasks. The ResNet-50 students are each trained for a number
of 40 epochs to estimate the age or the gender of a person,
respectively. The starting learning rate is 10−5, and we opted
to decrease it when the validation error does not improve for
10 consecutive epochs. The parameter λ in Equation (3) is
set to 0.1 for both tasks, based on the performance observed
on the UTKFace validation set.
Teacher–student training with triplet loss The VGG-f model
is trained for 30 epochs for the gender prediction task, start-
ing with a learning rate of 10−5. For the age estimation task,
the model is trained for 40 epochs and the learning rate is set
to 10−6. The VGG-face model is trained for 40 epochs with
the learning rate set to 10−6 for both tasks. The parameter λ

in Equation (5) is set to 0.7 for both tasks and both VGG net-
works. Each of the two student ResNet-50 models is trained
for 40 epochs with a learning rate of 10−5. The value of the
parameter λ is 0.7 for the age estimation task and 0.4 for the
gender prediction task. The value of the margin α in Equa-
tion (4) is tuned on the validation set, considering values in
the range [0, 0.5] at a step of 0.1.
Combining distilled embeddings We concatenate the embed-
dings obtained from our two teacher–student training strate-
gies and provide them as input either to an SVM model [8]
for the classification task (gender recognition) or to an ε-
support vector regression (SVR) for the regression task (age
estimation). The regularization parameter C of these mod-
els is chosen according to the performance on the validation

set, considering values between 10−1 and 103, at a step of
101. We keep the default value for the parameter ε of the
SVR, that is ε = 0. As for the SVM, we employ the SVR
implementation from Scikit-learn [56].

4.3.5 Baselines

As reference, we include the state-of-the-art results of the
ResNet-50 based on pyramidal neurons with apical dendrite
activations (PyNADA) reported in [19], although the results
are not directly comparable due to the different splits applied
on UTKFace. As baselines, we also include the student
trained on lower-half-visible faces and the teacher trained
on fully visible faces.

4.3.6 Gender recognition results

Comparison with the state of the art We present the gender
prediction results in Table 2. The teacher ResNet-50 trained
and evaluated on fully visible faces (denoted by �) reaches
an accuracy of 90.88%, which is quite close to the top result
reported in [19]. The VGG-f and VGG-face teachers surpass
the performance reported in [19] by at least 2%.
Comparison between lower-half- and upper-half-visible faces
Whenwe evaluate the teachers on half-visible faces (denoted
by �� and ��), the accuracy rates drop by considerablemargins.
On the one hand, evaluating the teachers on the lower half ( ��)
of the faces (the upper half being occluded) induces a perfor-
mance drop between 14% and 19%. On the other hand, when
we black out the lower half of each face, evaluating the teach-
ers on upper-half-visible faces ( ��), the accuracy decreases by
less than 7.68% (the maximum drop being observed for the
ResNet-50 teacher), suggesting that it is easier to perform
gender recognition on the upper side of the face. Despite the
significant performance drop, this represents an encouraging
result for the surgical mask scenario.

When we train the students on half-visible faces and eval-
uate them in the same setting, the accuracy rates improve.
The ResNet-50 student trained and evaluated on the lower-
half-visible faces reaches an accuracy of 86.47%. The other
ResNet-50 student, the one trained and evaluated on upper-
half-visible faces, yields an accuracy of 88.75%. Both stu-
dents obtain better performance compared with the teacher
trained on fully visible faces, when the evaluation is con-
ducted on half-visible faces.
Comparison with the baseline Further, we observe that,
with respect to the baseline students, both teacher–student
strategies attain superior performance. When we fine-tune
the students using the standard teacher–student strategy, we
obtain improvements ranging between 0.19% and 0.70%,
reaching a top accuracy rate of 89.45% with the ResNet-50
model. The privileged information received from the teacher
helps the student to outperform its ablated version trained
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Table 2 Accuracy rates for
gender prediction on
UTKFace [83], for fully visible
faces (denoted by �),
lower-half-visible faces
(denoted by �� ) and
upper-half-visible faces
(denoted by �� )

Method Train faces Test faces Accuracy (%)

ResNet-50+PyNADA [19] � � 90.80

Teacher VGG-f � � 92.78

Teacher VGG-face � � 92.20

Teacher ResNet-50 � � 90.88

Teacher VGG-f � �� 78.13

Teacher VGG-face � �� 73.05

Teacher ResNet-50 � �� 72.69

Teacher VGG-f � �� 85.69

Teacher VGG-face � �� 88.18

Teacher ResNet-50 � �� 83.20

VGG-f �� �� 88.70

VGG-face �� �� 90.62

ResNet-50 �� �� 86.47

VGG-f �� �� 88.92

VGG-face �� �� 88.26

ResNet-50 �� �� 88.75

VGG-f (standard T-S) � + �� �� 89.13

VGG-face (standard T-S) � + �� �� 88.45

ResNet-50 (standard T-S) � + �� �� 89.45†

VGG-f (triplet loss T-S) � + �� �� 89.55†

VGG-face (triplet loss T-S) � + �� �� 88.31

ResNet-50 (triplet loss T-S) � + �� �� 89.19

VGG-f (triplet loss + standard T-S) � + �� �� 89.82†

VGG-face (triplet loss + standard T-S) � + �� �� 90.35†

ResNet-50 (triplet loss + standard T-S) � + �� �� 89.63†

A state-of-the-art model [19] is included as reference. The results of distilled models that are significantly
better than the student trained on upper-half-visible faces, according to a paired McNemar’s test [9] at a
significance level of 0.05, are marked with †

with the standard loss (binary cross-entropy between the
predicted labels and the ground-truth labels). The VGG-f
student fine-tuned using the teacher–student training strat-
egy based on triplet loss obtains an accuracy of 89.55%,
surpassing its ablated version by 0.63%. Concatenating the
VGG-face embeddings of the two knowledge distillation
strategies provides an accuracy of 90.35%. We emphasize
that the performance of the ensemble formed by the two
ResNet-50 students evaluated on upper-half-visible faces ( ��)
is only 1.25%below theResNet-50 teacher trained and evalu-
ated on fully visible faces (�). We thus conclude that putting
on amask does not represent a significant problem for gender
recognitionwhen both fine-tuning and knowledge distillation
are employed.
Statistical significance testing Furthermore, we also per-
formed statistical significance testing to compare our distilled
models with the ablated version of the student (the ver-
sion before undergoing distillation). For all network types
(VGG-f, VGG-face and ResNet-50), the results obtained
by concatenating the two strategies and those obtained by

the model fine-tuned using the standard teacher–student
paradigm are indeed statistically significant at a significance
level of 0.05.
Grad-CAM visualizations To further investigate how our
models make decisions, we employ Grad-CAM [61] to visu-
alize what parts of the image are important in the gender
recognition process. A set of representative Grad-CAM [61]
visualizations are shown in Fig. 4. We observe that our
model tends to concentrate on the upper half of the face,
especially on the eye region. We notice that the focus area
usually extends until it covers some hair. Thus, it is likely
that our model considers the shape of the eyes and the length
of the hair as discriminative features for gender prediction.
Additionally, we underline that the predicted classes for the
samples presented in Fig. 4 are all correct.

4.3.7 Age estimation results

Comparison with the state of the art In Table 3, we present
the results for the age estimation task. The teacher ResNet-
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Fig. 4 Fully visible images (�) on top row, upper-half-visible faces ( �� ) on second row, Grad-CAM [61] explanation masks on third row and
upper-half-visible faces with superimposed Grad-CAM masks on bottom row. The predicted gender provided by the distilled ResNet-50 model
is shown at the bottom. The first four examples are selected from the UTKFace [83] data set. The last two examples are people wearing surgical
masks. Best viewed in color

50 trained and evaluated on fully visible faces (denoted by�) obtains an error of 5.27 years, surpassing the reference
model proposed in [19].
Comparison between lower-half- and upper-half-visible faces
When we evaluate the teacher models on the half-visible
faces, the error increases by considerable margins. Indeed,
evaluating the teacher models on lower-half-visible faces
(denoted by ��) increases the error up to 14.23 years. Sim-
ilarly, when we evaluate them on upper-half-visible faces
(denoted by ��), the MAE grows up to 11.92 years.

Training the neural networks on half-visible faces and
evaluating them in the same manner reduces the error by
large margins. More precisely, the MAE goes down to 6.15
years on lower-half-visible faces and 5.53 years on upper-
half-visible faces. Based on the results discussed above, we
conclude that the upper half of the face is more informative
for age estimation than the lower half.
Comparison with the baseline When fine-tuning the student
models with the standard teacher–student training strategy,

the error decreases from 6.44 to 6.35 years for the ResNet-
50 model, and from 5.53 to 5.40 years for the VGG-face
model. Fine-tuning the ResNet-50 student using our teacher–
student training paradigm based on triplet loss reduces the
error to 6.34 years. By concatenating the embeddings of the
two VGG-f students, we obtain a MAE of 6.22, this being
our best improvement over the ablated version which scores
a MAE of 6.36 years. In the end, the maximum difference
between the teacher model trained and evaluated on fully
visible faces and the student evaluated on lower-half-visible
faces is 1.07 years. Hence, we conclude that the negative
performance impact on age estimation generated by putting
on a mask can be reduced by employing both fine-tuning and
knowledge distillation.
Grad-CAM visualizations To explain how our distilled
ResNet-50 models make decisions, we employ Grad-CAM
[61] to observe what parts of the image are seen as important
when estimating the age. We provide some relevant Grad-
CAM [61] visualizations in Fig. 5. First, we observe that
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Table 3 Mean absolute error
(MAE) values for age
estimation on UTKFace [83],
for fully visible faces (denoted
by �), lower-half-visible faces
(denoted by �� ) and
upper-half-visible faces
(denoted by �� )

Method Train faces Test faces MAE

ResNet-50+PyNADA [19] � � 5.79

Teacher VGG-f � � 5.63

Teacher VGG-face � � 5.11

Teacher ResNet-50 � � 5.27

Teacher VGG-f � �� 11.16

Teacher VGG-face � �� 13.08

Teacher ResNet-50 � �� 14.23

Teacher VGG-f � �� 9.60

Teacher VGG-face � �� 10.30

Teacher ResNet-50 � �� 11.92

VGG-f �� �� 6.80

VGG-face �� �� 6.15

ResNet-50 �� �� 6.66

VGG-f �� �� 6.36

VGG-face �� �� 5.53

ResNet-50 �� �� 6.44

VGG-f (standard T-S) � + �� �� 6.34

VGG-face (standard T-S) � + �� �� 5.40

ResNet-50 (standard T-S) � + �� �� 6.35

VGG-f (triplet loss T-S) � + �� �� 6.34

VGG-face (triplet loss T-S) � + �� �� 5.42

ResNet-50 (triplet loss T-S) � + �� �� 6.34

VGG-f (triplet loss + standard T-S) � + �� �� 6.22

VGG-face (triplet loss + standard T-S) � + �� �� 5.40

ResNet-50 (triplet loss + standard T-S) � + �� �� 6.33

A state-of-the-art model [19] is included as reference

our student model tends to focus on the upper half of the
face, especially on the forehead region. We conjecture that
our model views the wrinkles formed on the forehead as
a discriminative feature for age estimation. On the bottom
of the figure, we show the predicted age (first number) and
the ground-truth age (second number) for each image. For
the selected samples, the maximum difference between the
predicted and the actual age is 3 years. We consider these
predictions as fairly accurate.

4.4 Ablation study regarding neural embeddings

To understand which part of the ensemble of distilled mod-
els brings a larger improvement, i.e., the concatenation of
embeddings or the SVM model, we conduct an ablation
study by training an SVM on top of each type of embedding
extracted from the distilled students (without concatenat-
ing the embeddings). We present the corresponding results
in Table 4. The experiments are performed for the VGG-f
and VGG-face models on the FER+, AffectNet and UTK-
Face data sets. For the facial expression recognition data sets
(FER+, AffectNet), we select the distilled models trained

on lower-half-visible faces, while for the gender prediction
data set (UTKFace), we select the distilled models trained on
upper-half-visible faces. For the VGG-f model, we observe
that the largest improvement is brought by the concatena-
tion of embeddings, not by the SVMmodel. However, on the
UTKFace data set, the SVM model trained on embeddings
from theVGG-face based on triplet loss performs on par with
the SVMensemble of distilledmodels. In this particular case,
it seems that the SVM itself makes the difference. Neverthe-
less, none of the SVMs trained on individual embeddings is
able to surpass the performance of the SVM ensemble. We
thus conclude that concatenating the embeddings is useful.

5 Conclusion

In this paper, we presented two teacher–student methods to
improve the performance of neural network models evalu-
ated in scenarios with strong face occlusion.We demonstrate
that our methods generalize across different classification
and regression tasks (facial expression recognition, age esti-
mation, gender prediction) and neural architecture types
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Fig. 5 Fully visible images (�) on top row, upper-half-visible faces ( �� ) on second row, Grad-CAM [61] explanation masks on third row and
upper-half-visible faces with superimposed Grad-CAM masks on bottom row. The estimated age provided by the distilled ResNet-50 model is the
first number shown at the bottom. The second number is the ground-truth age. The first four examples are selected from the UTKFace [83] data
set, while the last two examples are people wearing masks. Best viewed in color

Table 4 The accuracy rates of
SVMs trained on embeddings
extracted from students based on
standard teacher–student (TS) or
triplet loss (TL) strategies

Network Method FER+ (%) AffectNet (%) UTKFace (%)

VGG-f TS 80.17 48.75 89.13

TL 80.05 48.13 89.55

TS+SVM 80.39 48.52 89.04

TL+SVM 79.06 47.01 89.70

TS+TL+SVM 81.09 48.70 89.82

VGG-face TS 82.37 49.75 88.45

TL 82.57 49.71 88.31

TS+SVM 82.34 48.89 90.35

TL+SVM 82.37 49.90 90.27

TS+TL+SVM 82.75 50.09 90.35

These models are compared with SVMs trained on concatenated embeddings as well as the students providing
the embeddings. Results are reported for two tasks: facial expression recognition (on FER+ and AffectNet)
and gender prediction (on UTKFace)
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(VGG-face, VGG-f, ResNet-50). To the best of our knowl-
edge, we are the first to study teacher–student strategies
to learn privileged information aiming to cope with strong
occlusions in images. We also proposed a novel teacher–
student method based on triplet loss. The empirical results
suggest that our knowledge distillation methods obtain supe-
rior performance over the baselines. On facial expression
recognition, our ensemble of distilled models is only 2.24%
below the performance of VGG-13 [5], when the former
method is evaluated on occluded faces and the latter method
is evaluated on fully visible faces. Similarly, on gender recog-
nition, our ensemble of distilled ResNet-50 models is only
1.25% below the corresponding teacher. On age estimation,
the difference between our ensemble of distilled ResNet-50
models applied on occluded faces and the teacher applied on
fully visible faces is 1.06 years. In conclusion, we believe
that the performance levels of our distilled models are suffi-
ciently high to be used in real-life scenarios, such as changing
the environment in VR applications based on user’s emotions
and estimating the age and gender of people wearing surgical
masks in supermarkets or retail stores.

In future work, we aim to study if models trained under
occlusion can be used to boost the performance of teachers on
fully visible faces. Our future goal is to find an effective way
to combine students specialized on specific parts of the face
with teachers looking at the entire face. We believe that this
line of research can lead to significant performance gains.
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