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Abstract
Phytoplankton parasites are largely understudied microbial components with a potentially significant ecological influence on
phytoplankton bloom dynamics. To better understand the impact of phytoplankton parasites, improved detection methods are
needed to integrate phytoplankton parasite interactions into monitoring of aquatic ecosystems. Automated imaging devices
commonly produce vast amounts of phytoplankton image data, but the occurrence of anomalous phytoplankton data in such
datasets is rare. Thus, we propose an unsupervised anomaly detection system based on the similarity between the original and
autoencoder-reconstructed samples.With this approach,wewere able to reach an overall F1 score of 0.75 in nine phytoplankton
species, which could be further improved by species-specific fine-tuning. The proposed unsupervised approach was further
compared with the supervised Faster R-CNN-based object detector. Using this supervised approach and the model trained
on plankton species and anomalies, we were able to reach a highest F1 score of 0.86. However, the unsupervised approach is
expected to be more universal as it can also detect unknown anomalies and it does not require any annotated anomalous data
that may not always be available in sufficient quantities. Although other studies have dealt with plankton anomaly detection
in terms of non-plankton particles or air bubble detection, our paper is, according to our best knowledge, the first that focuses
on automated anomaly detection considering putative phytoplankton parasites or infections.
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1 Introduction

Phytoplankton are key players in aquatic systems, where they
mediate biogeochemical cycles and form the base ofmultiple
food webs [1]. The dynamics of phytoplankton populations
result from the interplay between resource availability and
mortality losses [2]. While some loss mechanisms such as
grazing are well known, the contribution of loss mecha-
nisms like parasitism remains poorly considered and largely
understudied in many aquatic systems. Phytoplankton are
susceptible to a wide variety of parasites, such as viruses,
bacteria, protists, and fungi. Such parasites can cause mor-
tality of certain phytoplankton species, thereby altering the
phytoplankton bloom dynamics and changing the cycling of
matter and flow of energy in aquatic ecosystems [3–5].

Zoosporic or nanoflagellate parasites that infect phyto-
plankton comprise a highly diverse functional group of
eukaryotic protist and fungal species [6]. They have in com-
mon the production of free-living motile stages as their
infective propagules, which attach to a phytoplankton host
cell and develop either inside (endobiotic) or outside (epibi-
otic) the host cell using host resources for their growth
and reproduction. Due to their inconspicuous nature, phy-
toplankton parasites are difficult to identify, and objects that
are difficult to identify typically tend to be overlooked or
neglected. Consequently, although the presence and potential
importance of these phytoplankton parasites are increasingly
recognized, quantitative data of their occurrence in nature are
extremely scarce.

An additional challenge to study of phytoplankton par-
asites is the need to capture rapid infection dynamics on a
relevant temporal and spatial scale (e.g., days). Obtaining
quantitative information about parasite infections using tradi-
tionalmethods is labor-intensive and time-consuming, which
limits the spatial and/or temporal coverage of many studies
investigating phytoplankton–parasite interactions [7].

Recent technological advances in imaging instruments
have made it possible to collect large volumes of plankton
image data for study of plankton populations, thus opening
new research possibilities [8]. The possibility of high-
frequency sampling enabled by imaging instruments can
potentially result in better understanding of phytoplankton
dynamics and their potential interactions with parasites [7].
However, while methods for automatic recognition of phy-
toplankton classes have been widely developed, methods
for automatic recognition of phytoplankton parasite infec-
tions remain underdeveloped. The absence of an effective
approach for parasitic infection recognition is likely associ-
ated with challenges related to obtaining sufficient volumes
of image data of plankton parasites, which requires screen-
ing of huge amounts of raw image data. Such tasks are best
addressed with automated solutions.

Fig. 1 Anomalous sample of theCentrales plankton species: aOriginal,
b encoded space, c reconstruction, and d difference image

The scarcity of plankton parasite images is a major chal-
lenge for the development of deep learning-based computer
vision methods for parasite detection.While object detection
methods such as FasterR-CNN [9] andYOLO [10] have been
shown to achieve high accuracy on various detection tasks,
including parasite detection (see, e.g., [11]), they struggle
when the amount of training data is limited. Therefore, a
more promising approach is to formulate parasite detection
as an anomaly detection task. Here, the idea is to train the
model with images of healthy plankton and detect images
that deviate from the data on which the models were trained.
Due to the availability of large amounts of plankton image
data without parasites for training and relatively small intra-
class variation among healthy samples, images that deviate
notably from the training data can be expected to contain
potential parasites.

This work investigates automated image-based phyto-
plankton parasite detection. The problem is formulated as
an anomaly detection problem and solved using an autoen-
coder. The proposed method consists of a vector-quantized
variational autoencoder (VQVAE) [12] that encodes the input
image into a compressed latent representation and uses the
compressed representation to reconstruct the original image.
The rationale is that when the autoencoder is trained only
on images of healthy phytoplankton, the autoencoder fails to
reconstruct the parasites, which allows them to be detected
from the difference image (see Fig. 1). The proposed method
further employs the HardNet [13] feature extractor and Local
Outlier Factor [14] to distinguish between healthy plankton
and plankton with parasites.

In the experimental part of the work, an extensive set of
different backbone convolutional neural networks (CNNs),
autoencoder architectures, feature extractors, and classifiers
are systematically evaluated on challenging phytoplankton
image data to find the best combination and to demonstrate
the performance of the proposed method. In addition, we
compare the autoencoder-based anomaly detectionmethod to
a Faster R-CNN-based object detector. The results show that
the proposed method achieves comparable accuracy to the
state-of-the-art Faster R-CNN object detector while requir-
ing no images with parasites for training. Consequently, the
autoencoder-based method can be considered a promising
approach for utilization in plankton image analysis where
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the collection of large training data of plankton with para-
sites is infeasible.

The main contributions of our paper are the development
of a novel anomaly detection framework and its application
to phytoplanktonparasite detection.High-frequency imaging
data coupled to automatic presorting of potentially infected
plankton allow to capture and quantify infection dynamics on
relevant temporal and spatial scales. This is an essential step
toward understanding the role of parasites in shaping phy-
toplankton community dynamics and ecosystem processes.
The proposed framework is general and can be applied to
other anomaly detection task such as industrial fault control.

2 Related work

Anomaly detection is a data classification technique in which
a detectormodels the representation of sampleswithin a spec-
ification (OK) and classifies all samples that deviate from
the specification as anomalous (NOK). This problem can be
challenging because of potentially high diversity within the
NOK samples, imbalance between the number of samples
in the OK and NOK groups, and irregularity of the NOK
class. A comprehensive overview describing anomaly detec-
tion problems, techniques, and categorization is presented
in [15].

First introduced for image data in [16], autoencoder (AE)
models are now widely used in computer vision. The use of
insufficient generalization ability on out-of-training data for
anAEmodel with the aim of detecting anomalies in synthetic
and real-world data, in the case studied, telemetry data, was
first demonstrated in [17]. The results showed that such AEs
can be used to detect previously unseen anomalous samples.
The concept was further enhanced and used on image data
in, for example, [18] and [19]. A comprehensive overview of
AE techniques can be found in [20].

Plankton anomaly detection has been previously studied
in the context of open-set recognition, i.e., image classifica-
tion with the presence of previously unseen classes (plankton
species). In [21], the authors presented an unsupervised
approach to classify a plankton sample and detect potential
significant differences (i.e., anomalies) with respect to the
detected class. Image features were extracted using classical
computer vision methods utilizing geometrical, moment-
based, and other traditional features.

In [22], a CNN trained on OK samples and artificial NOK
samples derived from the OK data by common data aug-
mentation techniques such as blurring and noise addition
was used as the feature extractor. An anomaly score was
then computed from these features and used together with
the trained feature extractor to distinguish between the OK
plankton samples and anomalies. In thework, air bubbles and
non-plankton water particles were considered as anomalies.

In [23], the authors used a parallel network of custom
statistical classifiers calledTailDeTect (TDT) to discover pre-
viously unseen plankton species. Each of the TDT classifiers
was trained on one particular species, and a sample was con-
sidered as unknown if none of the classifiers was able to
detect it. Unknown samples were collected and validated by
experts. Feature extraction and the concept itself were based
on work presented in [21].

In [24], open-set recognition plankton recognition was
addressed using a similarity learning approach. Metric learn-
ing with angular margin loss was applied to obtain image
embedding vectors thatmodel the similarity between images.
The anomalies (images frompreviously unseen classes) were
detected by setting threshold values for the similarity.

Faster R-CNN [9] is a popular deep learning (DL) algo-
rithm that has been successfully applied to various domains
and tasks, including object detection and anomaly detec-
tion [25]. Anomaly detection using Faster R-CNN involves
training the model on abnormal images to learn the features
of abnormal instances. Then, during classification, the model
is used to detect abnormal samples that deviate from the
expected outcome. For instance, in industrial manufactur-
ing, abnormal behavior can include machine malfunctions,
while in medical diagnosis, it can take the form of unusual
patterns in medical images.

An example of anomaly detection is presented in [25],
where an improved Faster R-CNNwas used to detect defects
in steel plates. The algorithm was trained on a dataset of
abnormal regions on steel plate images and was able to
accurately detect anomalies such as cracks and holes in test
images. Using a similar approach, a subtle modification of
Faster R-CNN for detection of anomalies in CT images of
lungs was considered in [26].

Object detection methods have also been successfully
used for parasite detection. For example, in [11], where a
YOLOv5 object detector is used to detect a parasitic mite on
the body of a honey bee. An overview of other object detec-
tion techniques and commonly used datasets can be found,
for example, in [27].

In plankton research, Faster R-CNN has been widely
adopted for segmentation and object detection. Several object
detection approaches, including Faster R-CNN,were utilized
in [28] to evaluate a synthetically augmented dataset. Simi-
lar work is presented in [29], where a plankton dataset from
a darkfield microscope was compiled and then tested with
various object detection methods, including YOLOv3 [30],
R-CNN [31], and SSD [32].
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3 Proposedmethods for phytoplankton
anomaly detection

In this work investigating detection of phytoplankton sam-
ples with anomalies, we primarily employ an unsupervised
autoencoder-based approach, followed by the use of differ-
ent feature extractors and one-class classifiers. Supervised
object detection based on the Faster R-CNN [9] is utilized to
compare the results of our proposed method with a state-of-
the-art approach.

3.1 Autoencoder-based approach

The proposed method to detect anomalous plankton sam-
ples is constructed on the framework available in [33]. This
implementation allows various combinations of different AE
architectures without consideration of the convolutional lay-
ers (i.e., fully connected AE, variational AE and others)
termed as AE cores, convolutional layers architectures, fea-
ture extractors, and one-class classifiers to be tested. In the
approach used in this paper, we combined five AE cores, six
convolutional encoders and decoders, six feature extractors,
and four classifiers (720 combinations in total). The process-
ing pipeline is shown in Fig. 2 and described in more detail
in the sections below.

The anomaly detection is based on comparison between
the original data and the autoencoder-reconstructed data, fol-
lowed by feature extraction and one-class classification.

3.1.1 Autoencoder architectures and convolutional layers

As the first step of anomaly detection, we use AE mod-
els trained only on OK data to reconstruct unknown input
samples of both OK and NOK classes. On account of the
non-optimal generalization of the AE models and training
only on the OK class of data, we hypothesize that data from
the NOK class will be reconstructed worse than data from
the OK class, as described in [17].

To better understand the effect of the AE architecture’s
core and the complexity of the convolutional encoding and
decoding layers, we decided to build our implementation
such that the core of the model could be combined with the
selected convolutional pairs of the encoders and the decoders.
The proposed structure allows us to analyze the contribu-
tions of the selected architecture and convolutional layers
separately.

We evaluated five different options for the AE cores. As
the first alternative, we used implementations of basic convo-
lutional AE [34] as the BAE1 core, convolutional variational
AE [35] as the VAE1 core, and vector-quantized AE [12] as
the VQVAE1 core. As well as using these cores, we tried to
further reduce the features extracted by an encoder by insert-
ing fully connected layers to the basic convolutional AE as
the BAE2 core [36] and to the variational AE as the VAE2
core. Thesemodifications to the autoencoder cores are shown
in Fig. 3.

Fig. 2 Processing pipeline of the proposed autoencoder-based anomaly detection method
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Fig. 3 Schemes of the modified
autoencoder cores: a BAE1
core, b VAE2 core

We expect that the basic convolutional AE is going to
be surpassed in performance by both the variational and
the vector-quantized cores because of their non-probabilistic
encoding space, which allows leak of more input image’s
anomalous parts to the encoded space and reconstructed
image. The quality of the reconstructed images should be
better in the case of the basic and vector-quantized cores
than with variational cores, which typically produce blurry
outputs [37]. When training on different classes, the best
results are expected from the vector-quantized core, which
should create separable clusters for each class in the encoded
space.

Besides the AE cores described above, we also consider
six pairs of convolutional encoding and decoding layer archi-
tectures, whose structure is described in the complementary
tables: Table 5 for encoders, and Table 6 for decoders. Each
convolutional layer or block described in these tables is com-
plemented with the batch normalization layer. The activation
function was set as Leaky ReLu by the ConvM1 architecture
and as ReLu for the other architectures.

The tested convolutional layers go from the more com-
plex ConvM2 architecture, suggested for anomaly detection
in [19], and ConvM1 architecture, where we expect the
ability to reconstruct fine features and details, to the sim-
pler architectures ConvM5, ConvM4 and ConvM3. By using
the simpler architectures, we expect that fine features and
smaller image structures will be suppressed and the archi-
tecture might thus perform better on shape or structure
anomalies. The last architecture, ConvM6, is unsymmet-
rical, as suggested in [38], and uses the more complex
encoder of the ConvM5 architecture and the simpler decoder
of the ConvM4 architecture. Using this architecture, we
expect that anomalies that are propagated to the encoded
space will be further suppressed by the decoder reconstruc-
tion.

In the optimal case, anomalous areas of the original image
are removed during the image reconstruction as shown in
Fig. 11. A difference image between the original sample and
the reconstructed sample is then computed and used in the
feature extraction.

3.1.2 Feature extraction

The second step of the framework applies feature extrac-
tors to analyze the reconstructions. The features are based
on comparison between the original and reconstructed data
(Error metrics, HardNet3 and HardNet4) or analysis of the
difference image (SIFT feature extraction, HardNet1 and
HardNet2).

The first feature extraction approach (Error metrics) cre-
ates a low-dimensional feature vector for each image by
computing selected error metrics between the original and
reconstructed images. The L2 and SSIM metrics applied
in [36] are complemented with the Average hash and mean-
squared error metrics.

The second feature extraction method (SIFT feature
extraction) uses scale and metrics properties of the image
keypoints found by the SIFT method. It is a direct re-
implementation the approach presented in [39]. The method
uses difference images between the original and recon-
structed data.

The last four feature extractionmethods (HardNet1, Hard-
Net2, HardNet3 and HardNet4) are all based on the batch
similarity metric presented in [13]. HardNet1 is the sim-
plest method where each sample is described by the HardNet
(HN) feature vector of the original image resized to the size
of 32 × 32 as required by the original HN implementation.
Since such resizing might not be optimal for small anoma-
lies, HardNet2 splits the image of the original size to blocks
of 32×32 and computes the HN feature vector for each such
block. The resulting feature vector consists of the norms over
those vectors. HardNet3 splits the original and reconstructed
images to 32×32 blocks as in the HardNet2 method, but the
resulting feature vector is computed as a cosine similarity
between the HN feature vectors of the corresponding blocks
of the original and decoded images. HardNet4 uses the same
technique, but the cosine similarity is supplemented by the
logarithm, which is supposed to emphasize smaller differ-
ences of the HardNet3 feature vector.

A 2D visualization of the resulting feature space obtained
by the ConvM5-BAE2 autoencoder over theAphanizomenon
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Fig. 4 Example feature space of
the Aphanizomenon plankton
species

plankton species using the HardNet2 feature extractor is
shown in Fig. 4. The OK samples form an elliptical cluster,
and most of the NOK samples are separate from that cluster.

3.1.3 One-class classification

For the classification part, we used the following one-class
classifiers:

• Robust covariance (RC) [40]: The RC classifier assumes
the same distribution for all OK samples and fits an ellip-
tic envelope to the central data point. The anomaly score
is computed using the distribution estimations andMaha-
lanobis distance.

• One-class SVM (OC-SVM) [41]: The OC-SVM clas-
sifier utilizes the support vector machine (SVM) and a
nonlinear kernel to create a separating hyperplane of the
training data from the origin of the feature space. Sam-
ples on the other side of this hyperplane are considered
as anomalies.

• Isolation Forest (IF) [42]: The IF classifier uses random
feature selection and splitting to isolate observed sam-
ples. The anomaly score is based on the total number of
splits. Anomalies are supposed to have a smaller number
of splits as it should be easier to separate them.

• Local Outlier Factor (LOF) [14]: The LOF classifier is
based on the local density deviation of the observed point
with respect to its k-nearest neighbors. The density of the
anomalies should be lower in comparison with the OK
samples, which are considered to create denser clusters.

The fraction of anomaly samples for the OC-SVM, IF and
LOF was set to 1% since this value is the minimum value of
common implementations. Based on the normal distribution,
we should also assume that even some OK samples might
slightly differ from the majority. All classifiers are fit on the
dataset containing only OK samples.

Input features for the one-class classification are nor-
malized using robust scaling, which normalizes the median

Fig. 5 Illustration of equal-error-rate (EER) threshold selection crite-
rion on the ROC curve

and the interquartile range, as suggested in [43]. This nor-
malization should be more robust to outliers than simple
normalization approaches such as min–max normalization
or standardization.

To select the optimal decision threshold for anomaly
detection, we use the equal error rate (EER) over the ROC
curve of the classifier as shown in Fig. 5. All classifiers are
fit only on the OK data, and the ROC curve is obtained from
the test dataset.

3.2 Object detection-based approach

The Faster R-CNN [9] algorithm is composed of three main
components: a base feature extractor network, a region pro-
posal network (RPN) for extracting the regions of interest,
and a detector that uses the region proposals and respective
feature maps to classify the detected objects as shown in
Fig. 6. The first component is the feature extractor responsi-
ble for generating feature maps from the input image. This
module is usually a CNN such as VGG-16 [44] or ResNet-
50 [45].
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Fig. 6 Faster R-CNN architecture

Fig. 7 The Faster R-CNN
approach for anomaly detection

Fig. 8 Object detection tasks
using the Faster R-CNN
approach: a Plankton versus
Anomalies; b Plankton versus
Anomalous Plankton; c
Anomalies only. The NOK
samples are shown in the top
row and the OK samples in the
bottom row

The RPN is a kind of fully convolutional network that
takes the feature maps from the previous step and returns a
set of region proposals that guide the detector onwhere to find
the objects in the image. The proposals and corresponding
feature maps from the CNN are then utilized to yield can-
didate objects with bounding boxes and fixed-length feature
vectors using theROI pooling layer. Finally, these outputs are
passed to the R-CNN network. The R-CNN network uses the
proposed feature maps to classify each bounding box as an
object or background and predict final class scores with the
bounding boxes.

For our object detection experiments, we used the Faster
R-CNN implementation available from [46] based on the
ResNet-50 backbone presented in [47]. To employ an
anomaly detection task in the Faster R-CNN baseline, the

architecture is supplemented by a one-class classification
module based on the predicted object labels, as shown in
Fig. 7.

Since anomalies such as parasites are relatively small com-
pared to the image size, it is important to consider the anchor
generator which is a part of the region-proposal network.
Anchors define regions of an image, usually of different
aspect ratios and sizes, that are used as references to detect
objects. The anchor generator creates a set of anchors for
each location in a feature map; then, for each region of inter-
est, the model predicts which anchor box best encloses the
object. The choice of an anchor generator mostly depends on
the type of detection task. For example, if we want to detect
small objects, then a smaller anchor size should be used. On
the other hand, if the task is to detect objects of various sizes,
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a range of anchor sizes should be defined [9]. Additionally,
the aspect ratios of the anchors shouldmatch the aspect ratios
of the objects in the image.

As suggested in [11], three separate object detectors are
considered, each trained on different ground truth: (1) plank-
ton and anomalies, (2) plankton (clean) and anomalous
plankton, and (3) anomalies only (see Fig. 8). In the first
column, we can see that the model detects a plankton sample
in both cases and an anomaly in the top row. The second col-
umn shows detection of a plankton sample with anomaly in
the top row and detection of a clean sample in the bottom row,
and finally, the third column shows detection of an anomaly
in the top row only.

4 Experiments

In this section, we describe the datasets used, the evaluation
metrics, and the results of the autoencoder-based experiments
and the object detection-based experiments.

Table 1 Species-specific statistics of the plankton anomaly dataset

Plankton class OK samples count NOK samples count

Aphanizomenon 830 140

Centrales 400 57

Dolichospermum 515 406

Chaetoceros 606 371

Nodularia 118 357

Pauliella 160 433

Peridiniella Chain 183 31

Peridiniella Single 459 63

Skeletonema 769 419

4.1 Phytoplankton anomaly dataset

Natural Baltic Sea phytoplankton communities are contin-
uously imaged with an Imaging FlowCytobot (IFCB) [48]
deployed at Utö Atmospheric and Marine Research Station,
Finland (59◦46.84’ N, 21◦22.13’ E). The IFCB is connected
to the station flow-through system, which receives water
pumped from an∼5mdeep inlet located 250moffshore, rep-
resentative of the sub-surface layer.AtUtö, IFCB takes a 5-ml
sample nearly every 20min and the system is set to trigger
based on the detection of chlorophyll, i.e., targeting phyto-
plankton cells rather than non-living particles. The research
station and IFCB deployment at Utö are described in detail
in [49] and [50].

The phytoplankton data from Utö IFCB can be currently
classified near real-time into 50different classes, as described
by [51]. Putative parasite infection images were manually
annotated by experts based on other Utö data, collected
between February and August 2021, using phytoplankton
data from nine classes. These classes were selected based on
their importance during the spring or summer blooms in the
Baltic Sea.

In our experiments, we used a phytoplankton anomaly
dataset derived from the annotated images used to train the
classifier described above with OK samples from the dataset
published in [51] and NOK samples from unpublished 2021
Utö data. The anomaly dataset contains over 6200 manu-
ally annotated and expert-validated samples for 9 plankton
classes with known anomalies, as shown in Table 1. Non-
anomalous and anomalous samples of each class are shown
in Fig. 9. As an annotation tool, we used the free version of
the Label Studio available at [52]. The annotated dataset is
available online at [53] in both COCO and YOLO formats.

Fig. 9 Anomalous (left column,
or upper row) and
non-anomalous samples (right
column, or lower row) from all
dataset classes of the used
dataset
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Fig. 10 Example of the annotation bounding boxes

4.1.1 Dataset annotations

When annotating the dataset, we used three different labels
to define a separate species set:

• The label Anomalymarks the parasite or other anomalies
on the plankton sample.

• The label PlanktonSpecies_Anomaly marks plankton
species with the attached parasite.

• The labelPlanktonSpecies_Cleanmarksplankton species
with or without the parasite.

The last two labels could overlap, but whenever it was
possible, thePlanktonSpecies_Clean label does not cover the
sample part with parasite. To distinguish between theOK and
NOK samples, the PlanktonSpecies_Clean label should be
removed if it overlaps with the PlanktonSpecies_Anomaly
one.

An example of the annotation over a Dolichospermum
plankton species sample is shown in Fig. 10. The red color
marks a plankton anomaly and, in this case, the darker green
marks the clean sample and the lighter green marks the sam-
ple with an anomaly.

4.1.2 Derived dataset for autoencoder-based experiment

For the purposes of the autoencoder-based experiment, we
used the above-described dataset to derive a one-class dataset
with noNOK samples and 70%of theOK sample in the train-
ing set. Test and validation datasets always contain a balanced
number of OK and NOK samples. The experiment with all
plankton species contains all available training samples, 10
validation samples, and 10 test samples from each species.

In order to help the AE model to learn more robust fea-
tures, we added salt-and-pepper noise to the image samples
used during the trainingwith a clean sample used as a label as
suggested in [54]. Besides this noise augmentation, we also
use random flipping, contrast, saturation, brightness, inver-
sion, and hue augmentation.

Because the HardNet-based feature extractors work cor-
rectly only with image sizes of multiples of 32, all samples
were resized with respect to the major aspect ratio of each
class (1:4 for five classes, 1:1 for three classes and 1:2 for
one class) as can be seen in Fig. 9. For the experiment over
all classes, we chose the aspect ratio of 1:2 as a compromise.

4.1.3 Derived dataset for object detection-based
experiment

For the object detection experiment, the model was trained
in a supervised manner. The split ratios were set as 70%,
10%, and 20% for the training, validation, and test subsets,
respectively. Training and validation sets do not include clean
samples, whereas a test set contains a balanced number of
anomalies and clean images.

Additionally,we applied the following augmentation tech-
niques: horizontal and vertical flip with a probability of 30%,
and random brightness, contrast and saturation adjustment
with a probability of 10%.

4.2 Performancemetrics

To compare the results of the autoencoder and object detec-
tion experiments, we need to evaluate the predictions of the
models with respect to the ground-truth labels. To do so,
we can define true-positive (TP) and true-negative (TN) pre-
dictions, where the model correctly classifies OK and NOK
samples, together with false-positive (FP) and false-negative
(FN) predictions, where the model misclassifies NOK sam-
ples as OK in the FP case and OK samples as NOK in the
FN case.

Precision, Recall and F1 score metrics are used for com-
parison of the different variations of autoencoders and object
detection methods. The metrics are defined as follows:

Precision = TP

TP + FP
(1)

Recall = TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(3)

Similarly to precision and recall, we can also define speci-
ficity as:

Speci f ici t y = TN

TN + FP
(4)

In the autoencoder experiment, we complemented the
metrics with the area under the curve (AUC) score. This
parameter is defined as the area under the receiver operator
characteristics (ROC) curve, an example of which is shown
in Fig. 5. This curve is obtained by changing the decision
threshold of a binary classifier by a defined step and plotting
the resulting specificity on the x-axis and recall on the y-axis
for each threshold step. Each point of the ROC curve then
corresponds to one threshold setting.
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4.3 Autoencoder-based approach

Due to the high number of combinations in our framework
(five autoencoder types, six pairs of convolutional layers, six
feature extractors and four classifiers), we decided to split the
experimental results into two parts. The first part describes
the optimal combination ofmodel, feature extractor and clas-
sifier trained on all datasets togetherwith its selection criteria,
and the second part describes the optimal results achieved per
plankton species. The optimal combination of autoencoder
model, convolutional layers, feature extractor and one-class
classifier was determined based on the maximum-achieved
F1 score because the detection results appeared to be more
consistent in comparison with the AUC metric. This met-
ric is also advantageous because of the easier comparison
with the results of the object detector-based approach. The
whole implementationwas built using the TensorFlow 2 plat-
form [55] and Scikit-learn library [56].

4.3.1 Optimal model for anomaly detection

To select an optimal anomaly detection model, we analyzed
the results of all model combinations for the experiment with
all plankton species. The best results were achieved with
the autoencoder ConvM2-VQVAE1, HardNet1 as the feature
extractor, and Local Outlier Factor as the one-class classifier.
These results are reported in Table 2, and illustrative exam-
ples of the results are shown in Fig. 11.

To further demonstrate that the selected anomaly detec-
tion model performs best, we evaluated the F1 score over:
(1) model combinations with a fixed feature extractor and
classifier (Table 7), (2) feature extractor combinations with a
fixed model and classifier (Table 10), and (3) classifier com-
binations with a fixedmodel and feature extractor (Table 11).
The highest F1 score was 0.75 consistently over all described
combinations.

Table 2 Species-specific results with the optimal combination anomaly
detection model over all plankton species based on the highest F1-score
(ConvM2-VQVAE1, HardNet1, Local Outlier Factor)

Plankton class AUC score F1 score Prec Rec

Aphanizomenon 0.89 0.83 0.83 0.83

Centrales 0.64 0.60 0.60 0.60

Dolichospermum 0.87 0.81 0.83 0.80

Chaetoceros 0.64 0.61 0.61 0.61

Nodularia 0.70 0.67 0.67 0.67

Pauliella 0.73 0.70 0.70 0.70

Peridiniella Chain 0.73 0.69 0.69 0.69

Peridiniella Single 0.90 0.83 0.83 0.83

Skeletonema 0.80 0.76 0.76 0.76

Plankton all 0.80 0.75 0.75 0.74

4.3.2 Optimal anomaly detection model per plankton class

Results of the optimal anomaly detection models per plank-
ton class are shown in Table 12. The detection results are
approximately 10% better than when using the optimal
anomaly detection model trained on all datasets described
above, which could be particularly important for the Cen-
trales and Chaetoceros, which showed the lowest values on
the performancemetrics. This performance gain nevertheless
comes at the cost of the need for a separately trained anomaly
detection model for each plankton class.

4.4 Object detection-based approach

Results of the Plankton versus Anomalies, Plankton ver-
sus Anomalous Plankton and Anomalies Only experiments
over all samples are shown in Table 3. The Plankton versus
Anomalies experiment contains both large bounding boxes
of plankton annotations and small bounding boxes of anoma-
lies. Therefore, the anchor generator was set up such that the
sizes of feature map were 16, 32, 64, 128, 256 and 512. In the
Plankton versus Anomalous Plankton experiment, only the
large bounding boxes were used, and the sizes were 64, 128,
256, 512, and 1024. For the Anomalies only experiment, the
sizes were 4, 8, 16, 32, 64, and 128. The scales and the aspect
ratios of sizes for each experiment were the same: 0.5, 1.0,
1.5, 2.0, 3.0.

The highest F1 score was achieved with the Plankton
versus Anomalies experiment and the lowest one with the
Anomalies only experiment. We were able to reach a high
F1 score also in the Plankton versus Anomalous Plankton
experiment, but the resulting plankton labels were often mis-
leading in this case.

For the object detection approach, one major issue is that
the model is incapable to distinguish between plankton parts
and anomalies, as shown in Fig 12. This major drawback of
the Faster R-CNN object detection method originates from
the architecture itself and could not be solved by anchormod-
ifications or other parameter tuning.

To have a better comparison with Table 12, we also
performed an anomalies only experiment trained on species-
specific data, whose results are shown in Table 4. In this
experiment, the approach performed worse than the species-
specific autoencoder experiment and also worse than the
universal model on average.

We also provide supplementary material as Table 14,
Table 13 and Table 15, which show the results of the Plankton
versus Anomalies, Plankton versus Anomalous Plankton and
Anomalies only experiments with respect to the individual
plankton class.
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Fig. 11 Illustration of the
results with the
ConvM2-VQVAE1 autoencoder
model: a original, b encoded
space, c reconstruction and d
difference image

Table 3 Faster-RCNN detection results

Configuration F1 score Prec Rec

Plankton versus Anomalies 0.86 0.94 0.79

Plankton versus Anomalous Plankton 0.83 0.82 0.85

Anomalies only 0.75 0.76 0.74

Bold value indicates the best performing models and the best achieved
results

Fig. 12 Plankton species without any anomalies recognized as an
anomaly by Faster RCNN. The model is confused by a chain of cells
and cannot distinguish between plankton parts and anomalies

Table 4 Species-specific dataset Faster-RCNN detection results

Plankton class F1 score Prec Rec

Aphanizomenon 0.66 0.63 0.68

Centrales 0.67 0.50 1.00

Dolichospermum 0.38 0.41 0.36

Chaetoceros 0.43 0.38 0.43

Nodularia 0.79 0.72 0.87

Pauliella 0.75 0.69 0.83

Peridiniella Chain 0.67 0.50 1.00

Peridiniella Single 0.67 0.50 1.00

Skeletonema 0.53 0.48 0.61

Average 0.62 0.53 0.75

5 Discussion

Learning to detect parasites from phytoplankton images is
a challenging problem due to large variation in the appear-
ance of the plankton cells and parasites, the small size of
parasites combined with the limited spatial resolution of the
images, as well as the scarcity of training data because of
the relative rarity of plankton cells with parasites. Even for
an expert, it is often impossible to confirm with certainty
the parasitic nature of all the attached (non-host) structures
from the images alone. For example, spherical structures that
are attached to the host cell and have a different appearance
to the phytoplankton cell are typically parasites, but they
can also be loosely attached free living (i.e., non-parasitic)
cells or phytoplankton-cell derived organelles expelled from
the cell due to stress. Complexity of those structures makes
it infeasible to collect annotated training and test data just
on phytoplankton parasites. Therefore, we formulated the
problem as anomaly detection where the goal is to detect
the phytoplankton cells that deviate from “healthy” cells.
The method can be seen as an anomaly detector of putative
parasite infections allowing screening of large volumes of
plankton image data to obtain a subset of interesting images
for further analysis.

A large dataset of phytoplankton cell images with and
without anomalies was collected for the study. Untypically
for most anomaly detection studies, the collected dataset
contains a relatively large number of images with putative
parasites (NOK samples). This made it possible to train
also supervised object detectors for the task and to com-
pare unsupervised anomaly detection methods with object
detector-based methods. We evaluated two approaches to
detect whether an image contains anomalies or not: (1) an
autoencoder-based anomaly detection approach and (2) a
Faster R-CNN-based object detector for anomalies.
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For the autoencoder-based approach, a full pipeline con-
sists of the CNN-based autoencoder architecture, feature
extraction from the reconstruction and difference image, and
one-class classifier was proposed. Various methods were
considered for each part of the pipeline and extensively evalu-
ated. The best overall accuracy (F1 score) was obtained using
the combination of vector-quantized variational autoencoder
(VQVAE) [12] architecture with the CNN backbone by [19],
the HardNet feature extractor [13] and the Local Outlier Fac-
tor classifier [14]. The F1 score for the best combination
varied between different classes from 0.6 (Centrales) to 0.83
(Peridiniella Single) with an overall F1 score of 0.75 over all
classes. The ablation study (Tables 8, 9, 10 and 11) demon-
strated the superiority of the proposed combination over the
other alternatives. The accuracy could be further improved
by optimizing the method for each phytoplankton classes
separately, as can be seen from Table 12 with F1 scores
varying from 0.73 to 0.94. While fine-tuning class-specific
models reduces the generalizability of the method, these are
promising results for studying parasites on individual plank-
ton species.

The limited amount of training data is a notable challenge
for supervised object detectors. To properly learn the large
variation in the appearance of anomalies, the training stage
would require a sufficient number of example images for each
class. The difficulty of the detection task is further empha-
sized by the fact that the anomalies are typically attached
to the host cell and are often very small compared to the
plankton cell. These challenges are apparent when observ-
ing the Faster R-CNN results (Table 3), where the accuracies
are not as high as commonly seen in object detection prob-
lems. Three configurations for the R-CNN-based method
were evaluated: (1) detection of anomalies only, (2) detec-
tion of both anomalies and plankton cells, and (3) detection
of healthy plankton cells and plankton cells with anomalies
as separate classes. Based on the results, it is evident that
learning how normal plankton cells look like is beneficial for
the R-CNN. The model trained only on anomalies tends to
often detect parts of the phytoplankton itself as anomalies.
It was further noticed that when trained on healthy plankton
cells and plankton cells with anomalies as separate classes,
the detector often fails to correctly detect the bounding boxes
in the presence of anomalies but still produces correct clas-
sification results (OK vs. NOK). This raises questions about
the generalizability of the method.

The Faster R-CNN-based method (model trained on both
anomalies and plankton cells) achieved higher accuracy
(F1 score: 0.86) than the autoencoder-based method (F1
score: 0.75). This is understandable as the autoencoder-based
method did not have access to the imageswith anomalies dur-
ing the training stage. The Faster R-CNN-based method is
more suitable when enough annotated training data is avail-
able. This, however, is not typically the case in plankton

anomaly and parasite detection due to the reasons discussed
above. The autoencoder-based approach has some notable
advantages over supervised object detectors: (1) no training
data with anomalies are needed, (2) no annotated bounding
boxes are needed, and (3) the method works also with previ-
ously unseen anomalies. These advantages together with the
comparable accuracy to the R-CNN-based method make the
proposed autoencoder method a more promising approach
for plankton anomaly detection on new datasets.

Being able to screen large volumes of plankton image
data for anomalies has potential to noticeably reduce manual
work and allows more extensive research on parasitic infec-
tions. Ecologically speaking, separating cells with anomalies
is interesting and can lead to new research avenues in the
future. Anomaly detections can give a valuable first hint of
putative parasite infections (or physiologically stressed phy-
toplankton).However, furthermethoddevelopment is needed
to make it possible to distinguish between the different types
of anomalies and relate themwithmore certainty to parasites.
An interesting future direction would be to apply clustering
methods for anomalies to identify different types of anoma-
lies. The classification of anomaly types could be validated
by a wider community effort with expertise on different par-
asite groups, epibionts and symbionts. In combination with
classifying different types of anomalies, different datasets
could also be collected from known parasites/epibionts/host-
derived anomalies from culture systems. Detected parasites
and their presence could be further qualitatively confirmed in
parallel by additional methods such as microscopy or eDNA-
based approaches.

6 Conclusion

This paper presents an unsupervised anomaly detection
approach to detect anomalies, which was tested over nine
phytoplankton classes. Although studies exist on plankton
anomaly detection in the context of open-set recognition,
i.e., detecting previously unseen plankton classes and non-
plankton particles, our paper is according to our best knowl-
edge thefirst one focusingon thedetectionof small anomalies
such as potential phytoplankton parasites or infections in a
known set of plankton classes.

We propose an anomaly detection pipeline consisting of a
vector-quantized variational autoencoder (VQVAE) in com-
bination with the eight-layer deep convolutional architecture
(ConvM2), the HardNet feature extractor and the Local Out-
lier Factor classifier. With this pipeline, we achieved an
average F1 score of 0.75 for all nine analyzed phytoplankton
classes. We also suggest that the achieved anomaly detection
results could be further improved by optimizing the compo-
nents of the pipeline for each class separately.
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The results achieved with this approach were compared to
a supervised Faster R-CNN object detector for experiments
in three configurations: (1) detection of anomalies only, (2)
detection of anomalies and plankton cells, and (3) detection
of plankton cellswith andwithout anomalies. The best results
were achieved with the second configuration with an aver-
age F1 score of 0.86. Although this score is higher than the
one achieved by the autoencoder proposed in this paper, our
approach is more universal because it can detect also pre-
viously unseen data and it needs no anomalous samples for
its training. These benefits make the proposed autoencoder
approachmore promising for plankton research, where anno-
tated anomaly datasets are not available or their collection is
infeasible. The code and dataset used in this study have been
made publicly available as a part of this paper.

To identify parasitic infections in phytoplankton, manual
scrutiny of the data is still needed as our knowledge of them
is still very poor. Our proposed method, however, provides
a solution to reduce the workload of manual checking enor-
mously by pointing out the proportion of images an expert
potentially needs to go through. This opens a possibility to
begin understanding the important role that parasites play in
the phytoplankton community dynamics.
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Appendix A: Convolutional encoders and
decoders

See Tables 5 and 6.

Table 5 Overview of the tested convolutional encoder models

Encoder name Layer name Filters Kernel size Stride

ConvM1 ConvE1 32 3 × 3 2

ConvE2 64 3 × 3 2

ConvE3 64 3 × 3 2

ConvE4 64 3 × 3 2

ConvE5 64 3 × 3 2

ConvM2 ConvE1 32 4 × 4 2

ConvE2 32 4 × 4 2

ConvE3 32 3 × 3 1

ConvE4 64 4 × 4 2

ConvE5 64 3 × 3 1

ConvE6 128 4 × 4 2

ConvE7 64 3 × 3 1

ConvE8 32 3 × 3 1

ConvE8 1 8 × 8 1

ConvM3 ConvE1 32 3 × 3 2

ConvE2 64 3 × 3 2

ConvM4 ConvE1 8 5 × 5 1

MaxPool – 2 × 2 –

ConvE2 4 3 × 3 1

MaxPool – 2 × 2 –

ConvM5 ConvE1 16 3 × 3 1

MaxPool – 2 × 2 -

ConvE2 8 3 × 3 1

MaxPool – 2 × 2 –

ConvE3 4 3 × 3 1

MaxPool – 2 × 2 –
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Table 6 Overview of the tested convolutional decoder models

Decoder name Layer name Filters Kernel size Stride

ConvM1 ConvT1 64 3 × 3 2

ConvT2 64 3 × 3 2

ConvT3 64 3 × 3 2

ConvT4 32 3 × 3 2

ConvT5 Image channels 3 × 3 2

ConvM2 ConvD1 16 3 × 3 1

ConvD2 64 3 × 3 1

Upsampling - 2 × 2 -

ConvD3 128 4 × 4 1

Upsampling - 2 × 2 -

ConvD4 64 3 × 3 1

Upsampling - 2 × 2 –

ConvD5 64 4 × 4 1

Upsampling – 2 × 2 –

ConvD6 32 3 × 3 1

Upsampling – 2 × 2 –

ConvD7 32 4 × 4 1

Upsampling – 2 × 2 –

ConvD8 32 4 × 4 1

Upsampling – 2 × 2 –

ConvD8 Image channels 8 × 8 1

ConvM3 ConvD1 64 3 × 3 1

ConvD2 32 3 × 3 1

Upsampling – 2 × 2 –

ConvD3 Image channels 3 × 3 1

ConvM4 ConvD1 4 3 × 3 1

Upsampling – 2 × 2 –

ConvD2 8 3 × 3 1

Upsampling – 2 × 2 –

ConvD3 Image channels 3 × 3 1

ConvM5 ConvD1 4 3 × 3 1

Upsampling – 2 × 2 –

ConvD2 8 3 × 3 1

Upsampling – 2 × 2 –

ConvD3 16 3 × 3 1

Upsampling – 2 × 2 –

ConvD4 Image channels 3 × 3 1

Appendix B: Complementary results of the
autoencoder-based experiment

See Tables 7, 8, 9, 10, 11, 12

Table 7 Results over all plankton species for fixed feature extractor
(HardNet1) and classifier (Local Outlier Factor)

Model name AUC score F1 score Prec Rec

ConvM1-BAE1 0.73 0.70 0.70 0.70

ConvM1-BAE2 0.81 0.72 0.72 0.72

ConvM1-VAE1 0.74 0.66 0.66 0.66

ConvM1-VAE2 0.72 0.65 0.65 0.64

ConvM1-VQVAE1 0.72 0.64 0.64 0.64

ConvM2-BAE1 0.73 0.67 0.67 0.67

ConvM2-BAE2 0.79 0.72 0.72 0.72

ConvM2-VAE1 0.72 0.67 0.67 0.67

ConvM2-VAE2 0.79 0.70 0.71 0.70

ConvM2-VQVAE1 0.80 0.75 0.75 0.74

ConvM3-BAE1 0.68 0.60 0.60 0.60

ConvM3-BAE2 0.69 0.62 0.62 0.62

ConvM3-VAE1 0.72 0.67 0.67 0.67

ConvM3-VAE2 0.69 0.63 0.63 0.63

ConvM3-VQVAE1 0.71 0.65 0.66 0.64

ConvM4-BAE1 0.70 0.61 0.62 0.61

ConvM4-BAE2 0.72 0.64 0.65 0.63

ConvM4-VAE1 0.69 0.64 0.64 0.64

ConvM4-VAE2 0.71 0.64 0.64 0.64

ConvM4-VQVAE1 0.74 0.71 0.71 0.71

ConvM5-BAE1 0.74 0.69 0.69 0.69

ConvM5-BAE2 0.69 0.64 0.64 0.64

ConvM5-VAE1 0.66 0.57 0.57 0.58

ConvM5-VAE2 0.74 0.68 0.68 0.68

ConvM5-VQVAE1 0.72 0.68 0.69 0.68

ConvM6-BAE1 0.70 0.64 0.64 0.64

ConvM6-BAE2 0.73 0.68 0.68 0.68

ConvM6-VAE1 0.72 0.69 0.69 0.69

ConvM6-VAE2 0.75 0.70 0.70 0.70

ConvM6-VQVAE1 0.71 0.67 0.67 0.67

Bold value indicates the best performing models and the best achieved
results

Table 8 Results over all plankton classes for fixed convolutional layer
architecture (ConvM2), feature extractor (HardNet1) and classifier
(Local Outlier Factor)

Model architecture AUC score F1 score Prec Rec

BAE1 0.73 0.67 0.67 0.67

BAE2 0.79 0.72 0.72 0.72

VAE1 0.72 0.67 0.67 0.67

VAE2 0.79 0.70 0.71 0.70

VQVAE1 0.80 0.75 0.75 0.74

Bold value indicates the best performing models and the best achieved
results
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Table 9 Results over all plankton classes for fixed model architecture
(VQVAE1), feature extractor (HardNet1) and classifier (Local Outlier
Factor)

Conv. architecture AUC score F1 score Prec Rec

ConvM1 0.72 0.64 0.64 0.64

ConvM2 0.80 0.75 0.75 0.74

ConvM3 0.71 0.65 0.66 0.64

ConvM4 0.74 0.71 0.71 0.71

ConvM5 0.72 0.68 0.69 0.68

ConvM6 0.71 0.67 0.67 0.67

Bold value indicates the best performing models and the best achieved
results

Table 10 Results over all plankton classes for fixed model (ConvM2-
VQVAE1) and classifier (Local Outlier Factor)

Feature extractor AUC score F1 score Prec Rec

ErrMetrics 0.50 0.51 0.51 0.51

SIFT 0.49 0.43 0.43 0.43

HardNet1 0.80 0.75 0.75 0.74

HardNet2 0.64 0.60 0.60 0.60

HardNet3 0.75 0.68 0.70 0.67

HardNet4 0.77 0.73 0.73 0.72

Bold value indicates the best performing models and the best achieved
results

Table 11 Results over all plankton classes for fixed model (ConvM2-
VQVAE1) and feature extractor (HardNet1)

Classifier AUC score F1 score Prec Rec

Robust covariance 0.66 0.61 0.62 0.61

One-Class SVM 0.59 0.56 0.56 0.57

Isolation Forest 0.54 0.53 0.53 0.52

Local Outlier Factor 0.80 0.75 0.75 0.74

Bold value indicates the best performing models and the best achieved
results
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Appendix C: Complementary R-CNN results

See Tables 13, 14 and 15.

Table 13 Faster-RCNN detection results for Plankton vs Anomalies
experiment

Plankton class F1 score Prec Rec

Aphanizomenon 0.98 1 0.96

Centrales 0.85 0.73 1

Dolichospermum 0.89 0.97 0.81

Chaetoceros 0.80 0.89 0.73

Nodularia 0.76 0.98 0.62

Pauliella 0.86 0.99 0.77

Peridiniella Chain 0.60 0.75 0.5

Peridiniella Single 0.76 1 0.62

Skeletonema 0.98 0.97 1

Plankton & Anomalies 0.87 0.95 0.81

Table 14 Faster-RCNN detection results for Plankton vs Anomalous
Plankton experiment

Plankton class F1 score Prec Rec

Aphanizomenon 0.66 0.58 0.75

Centrales 0.60 0.47 0.82

Dolichospermum 0.85 0.82 0.88

Chaetoceros 0.74 0.71 0.78

Nodularia 0.78 0.96 0.66

Pauliella 0.79 0.76 0.83

Peridiniella Chain 0.67 0.67 0.67

Peridiniella Single 0.88 0.92 0.85

Skeletonema 0.94 0.92 0.94

Plankton & Anomalous plankton 0.83 0.82 0.85

Table 15 Faster-RCNN detection results for Anomalies experiment

Plankton class F1 score Prec Rec

Aphanizomenon 1 1 1

Centrales 0.77 0.67 0.91

Dolichospermum 0.38 0.87 0.25

Chaetoceros 0.67 0.66 0.68

Nodularia 0.85 0.88 0.82

Pauliella 0.85 0.78 0.94

Peridiniella Chain 0.44 0.67 0.33

Peridiniella Single 0.89 0.86 0.92

Skeletonema 0.83 0.75 0.93

Anomalies 0.75 0.76 0.74
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