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Abstract
The elderly population is increasing at a rapid rate, and the need for effectively supporting independent living has become
crucial. Wearable sensors can be helpful, but these are intrusive as they require adherence by the elderly. Thus, a semi-
anonymous (no image records) vision-based non-intrusive monitoring system might potentially be the answer. As everyone
has to eat, we introduce a first investigation into how eating behavior might be used as an indicator of performance changes.
This study aims to provide a comprehensive model of the eating behavior of individuals. This includes creating a visual
representation of the different actions involved in the eating process, in the form of a state diagram, as well as measuring the
level of performance or decay over time during eating. Also, in studies that involve humans, getting a generalizedmodel across
numerous human subjects is challenging, as indicative features that parametrize decay/performance changes vary significantly
from person to person.We present a two-step approach to get a generalized model using distinctive micro-movements, i.e., (1)
get the best features across all subjects (all features are extracted from 3D poses of subjects) and (2) use an uncertainty-aware
regression model to tackle the problem. Moreover, we also present an extended version of EatSense, a dataset that explores
eating behavior and quality of motion assessment while eating.

Keywords EatSense · Motion assessment · Performance-level assessment

1 Introduction

On a global scale, the proportion of people aged 60 or over
was just 8% in 1950, but this is projected to rise to 20% by
2050 [5]. The number of people growing older is increas-
ing, whereas the increase in the number of caregivers is not
proportionate. In a study carried out by Redwood et al. [41],
it was reported that, in 2010, the caregivers ratio was more
than 7 caregivers (including informal carers, such as family
members) for every person in the high-risk age i.e., 80-plus.
By 2050 the ratio of caregivers to seniors (i.e., seniors living
in the community) will decrease to less than 3 to 1. With
this growing burden, healthcare systems are under pressure
and the situation of care homes is depressing as they have
inadequate facilities [14, 38]. However, smart senior homes
can be a potential solution that will not only help seniors to
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live independently more safely but also monitor their health
status.

Seniors require constant monitoring and evaluation of
their health and motor movements [24]. Unfortunately, peri-
odic checkups and irregular motion analyses do not monitor
the health status of an individualwell enough. Reliable health
profiling can only be done by constant monitoring with suf-
ficient situational diversity. To bridge this gap, a variety of
passive and active sensors have been proposed [24]. In this
paper, we present a vision-based system that monitors a per-
son while they eat and can assist in the early diagnosis of
motor deterioration.

Why eating? Eating is one of the main, regular, and most
important actions of one’s daily life, so this is an opportunity
for regular monitoring. We believe that monitoring the sub-
actions of eating can provide evidence of major anomalies
such as the presence or start of a neurological disorder or
deterioration/decay of movement over time.

In this paper, we explore several research questions: What
actions do people perform while they eat? Can we observe
and distinguish gradual decay in motion over time while
relying only on the camera as a sensor? Can we develop
generalized models over all age groups for decay classifica-
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tion/regression as there might not be any consistent pattern
to exploit across all subjects?

To answer these questions, firstly, we demonstrate through
trunk stability and speed of movement tests that decay in per-
formance is observable when weights of different levels are
attached to the wrists of the subjects (Sect. 5). Secondly, we
present a generalizedmodelwith strictly explainable features
across various subjects in all age groups (Sect. 6).

For the results presented here, we propose an extension
of EatSense [40], which is a human-centric, upper-body-
focused dataset that supports themodeling of eating behavior
as well as the investigation of changes in motion/motor
decline (i.e., quality of motion assessment). Four levels of
weights are put on the volunteers’ wrists while they eat to
simulate a change in mobility. The weights are not intended
to be a model for aging, but only to demonstrate that minor
changes in motion are detectable. The contributions of this
paper are:

• The first computer vision-based quality of motion assess-
ment quantitative approach solely based on the eating
behavior of individual subjects.

• A state model for eating micro-movements1 that repre-
sents the most common eating behavior among subjects
of all ages (see Sect. 4).

• Address the most common problem of lack of gener-
alizability when it comes to modeling human behavior
(limited to the performance of eating assessment in our
case). (see Sect. 6).

• Demonstrate that 4 weight classes simulate decay in the
upper-body movements.

• Present the extension of the quality of motion assess-
ment capability beyond EatSense by introducing a new
abstraction level to the labels for each video (see Sect. 3)

2 Literature review

A brief review of past clinical and sensor-based techniques
for decay assessment and behavior analysis is presented.
Some publicly available benchmark datasets formotion qual-
ity assessment are also discussed.

2.1 Decay assessment tests

There have been many studies that list a set of tests in a
clinical setting to observe decay in the functional motor
movements [13, 15]. Alonso et al. [1] summarize clinical

1 Micro-movements, or sub-actions, refer to the individual and basic
actions that are combined to form a single action. For instance, eating
can be seen as a single action that involves several sub-actions, such as
bringing the hand to the mouth.

tests, such as ‘timed up and go’ and ‘Functional Reach Test,’
and computerized methods, such as ‘Equitest’ and ‘Force
Platforms’ for assessing one’s balance.

In a non-clinical setting, there also has been research that
explores inertial measurement unit (IMU) or magnetometer-
based motion tracking and assessment techniques. Fil-
ippeschi et al. [10] presented a survey where they compare
IMU-based human motion tracking techniques with a focus
on upper-body limbs which is potentially useful for motion
assessment. Carnevale et al. [8] focused on shoulder kine-
matics assessment via wearable sensors after neurological
trauma or musculoskeletal injuries. Recently, Meng et al.
[27] presented an IMU-based upper limb motion assessment
model and achieved good results.

Also in a non-clinical setting, there have been many
vision-based healthcare results on (1) motion tracking, (2)
fall detection [2], (3) anomaly in gait detection [51, 54], (4)
exercises that help in the rehabilitation of people recovering
from any disease that directly impacts their activity levels [4,
18, 42].

Nalci et al. [29] proposed a computer vision-based alter-
native test for functional balance that was compared with a
BTrackS Balance Assessment Board (used in clinical assess-
ments) to demonstrate the effectiveness of their proposed
approach. Yang et al. [53] proposed a cost-effective and
portable decision support system that used a single camera to
track joint markers of upper-body limbs, perform data ana-
lytics for rehabilitation parameters calculation, and provide a
robust classification suitable for home healthcare. In [22, 25,
30] the authors proposed a real-time risk assessment rapid
upper-body limb assessment tool using cameras (depth or
RGB) to detect anomalous postures in real-time and offline
analysis.

Recently, Barlett et al. [3] proposed a vision-based bal-
ance assessment test while sitting. However, to the best of
our knowledge, no vision-based study exists that explores
decay/deterioration strictly based on the movement of upper-
body limbs with the human pose.

2.2 Behavior analysis

Human behavior analysis is a broad term that deals with
gesture recognition, facial expression analysis, and activity
recognition. Onofri [33] suggests that activity recognition-
based behavior analysis algorithms require knowledge that
can be divided into two categories: contextual knowledge and
prior knowledge. Contextual knowledge pertains to the con-
text in which the action is taking place, such as the objects
involved or the time and place. Prior knowledge is that the
recognition system is aware of the past, such as event C fre-
quently happens after event B, and the probability of event
C happening after A is very low.
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Many studies have investigated human motion in sports
games [7, 35, 49] and other applications [23, 26, 37]. Com-
bining human body characteristics such as position, distance,
speed, acceleration, motion type, and time is often used to
quantify and evaluate behaviors. Oshita et al. [35] extracted
the spatial, rotational, and temporal characteristics of the
major poses of tennis trainees and compared their exercise
patterns with experts.

In [55], to monitor a person’s daily kitchen activities, Yor-
danova et al. presented a method for recognizing human
behavior called Computational Causal Behavior Models
(CCBM). This combined a symbolic representation of a per-
son’s behavior with probabilistic inference to analyze the
person’s actions, the type of meal they are preparing, and its
potential health effects.Kyritsis et al. [21] introduced an algo-
rithm that can automatically detect food intake cycles that
occur during a meal using inertial signals from a smartwatch.
They use five specific wrist micro-movements to model the
chain of actions involved in the eating process ‘pick food,’
‘upward,’ ‘downward,’ ‘mouth,’ and ‘other movements.’

Previous research such as [32, 56] that utilize eating
actions are mostly done for the sake of individual action
understanding, i.e., to classify eating/drinking actions. On
the other hand, in Tufano et al. [48] presents a systematic
comparative analysis of 13 frameworks including deep learn-
ing and optical flow-based frameworks. The study focuses
on detecting three specific eating behaviors, such as bites,
chews, and swallows.

However, we are not aware of any previous studies ana-
lyzing eating behaviors and assessing the quality of motion
based on those characteristics.

2.3 Public datasets for healthcare

Numerous openly accessible datasets explore certain aspects
of healthcare. A few of them are discussed below.

Objectively Recognizing Eating Behavior and Associ-
ated Intake (OREBA) [45] is a dataset to offer extensive
data collected from sensors during communal meals for
researchers interested in the detection of intake gestures.
OREBA includes various types of sensors, such as a 360-
degree camera mounted at the front to capture video, as well
as a sensor box that contains a gyroscope, an IMU, and an
accelerometer attached to both hands. Other studies such as
[21, 28, 46] also present small-scale datasets mainly focused
on intake gestures, chews, and swallow behavioral charac-
teristics.

Mobiserv-AIIA [17] was created to assess the intake of
meals to prevent undernourishment or malnutrition. The col-
lection includes recorded films that weremade in a controlled
laboratory setting usingmany cameras positioned at different
angles. It entails employing a variety of tools while engag-
ing in activities like eating and drinking for several meals

(breakfast, lunch, and fast food) with using different tools to
pick or scoop the food (spoon, fork or glass of water, etc.).
The MSR-DailyActivity dataset [50] was created to simu-
late the day-to-day activities of a person sitting on a couch.
It includes 320 examples of 16 daily activities such as ‘play
guitar’ and ‘eat.’ RGBand a depth sensorwere used to collect
the MSR-DailyActivity dataset.

Sphere [36] was designed for motion quality assessment
via gait analysis. Six participants were observed in this
dataset, while they ascended a set of stairs. Init Gait DB
[34] is a benchmark dataset for gait impairment research.
The movement of limbs and body posture were changed to
simulate eight various walking types. Several view angles
were captured utilizing RGB cameras. The gait analysis-
based walking dataset [31] replicates nine different walking
gait patterns. This was recreated by attaching weights to the
ankle or making one shoe with a thicker sole. This was cap-
tured using Microsoft Kinect where the participants walked
on a treadmill with two flat mirrors behind them.

To the best of our knowledge, none of the existing datasets
besides EatSense (discussed in the next section) provide the
capability to assess the motion quality of humans with an
emphasis on eating behaviors and a focus solely on the upper
body joints.

3 EatSense

Aging has adverse effects on the musculoskeletal strength
levels of all living beings, i.e., the older one gets, the motions
of limbs slow down, postural control lessens, and hand-eye
coordinationgets tough.However, eating is an essential activ-
ity that everyone has to do regularly even in bad times. We
presented EatSense, a novel dataset [40] that explores two
areas in particular, i.e., sub-action recognition and quality of
motion assessment. EatSense tries to address a few major
research gaps, (1) sub-action recognition: The dataset has
three levels of label abstraction and labels sub-actions with
16 classes where some of them only occur for less than a
second, (2) sub-action temporal localization in videos that
contains over a hundred subactions (on average) per video,
(3) human-centered (hand gestures/posture based) eating
behavior understanding, (4) decay in motor movement, i.e.,
small changes in upper-body movements, caused by attach-
ingweights to thewrists of the subjects. However, previously,
data were limited to only the binary classes ‘weight’ and ‘no
weight’ (Y/N) at that time.

In this research, we present an extended version of Eat-
Sense2 that simulates this decay inmovement on a finer scale.
Thus we expand our decay assessment classes by adding four
different sizes of weights to the wrist, i.e., 0, 1kg, 1.8kg, and

2 https://groups.inf.ed.ac.uk/vision/DATASETS/EATSENSE/.
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2.4kg. We also demonstrate the effectiveness of weights to
simulate decay in Sect. 6.3.

3.1 EatSense collection and labeling

An RGB-Depth camera, Intel RealSense D415 was mounted
on a wall at an oblique view angle in a dining/kitchen envi-
ronment. The subjects were allowed to eat; however, they
preferredwithout any external input from the recording team.
The field of view had only one person at the dining table. Eat-
Sense contains 135 videos (53 for 0kg, 25 for 1kg, 33 for
1.8kg, and 24 for 2.4kg)with dense labels (all frames labeled
without any stride). These videos are recorded at 15 frames
per second (fps) with 640×480 resolution. Altogether, there
are 705,919 labeled frames. Figure1 shows the setting of the
camera system in one of the dining room environments. It
also shows one sample from the dataset both with and with-
out wrist weights.

EatSense contains several labels for various levels of
abstractions, i.e., (1) both 2D (extracted with HigherHRNet)
and 3D (2D poses projected into 3D space using depth maps)
for 8 upper body joint positions, (2) manually labeled 16 sub-
actions for all frames in the videos, (3) binary labels based
on if the subject is wearing a weight or not, i.e., ‘Y’/‘N’. The
extension introduces a new level of abstraction, i.e., labels
based on the weight a subject is wearing on their wrists, i.e.,
0kg, 1kg, 1.8kg, 2.4kg.

Initially, we store both depth maps and RGB images. We
employ Deep Privacy [16] to disguise the real face of the
subjects in RGB videos to obscure their identity. The pro-
cessed RGB, depth maps, and 3D skeletons are available to
the general public for research.

3.2 EatSense properties

EatSense has many interesting properties that make it distin-
guishable from other existing datasets.
Dense Labels There are no unlabeled temporal patches in
any of these videos, in contrast to the majority of large-
scale datasets currently available. Additionally, a two-stage
label quality control process enhances label consistency and
reduces label errors.

Human-Centric Actions EatSense contains very consis-
tent backgrounds and human posture-centric action exam-
ples, in contrast to other available datasets where back-
ground/environment can play a key role in differentiating
between distinct actions.
Healthcare Analytics EatSense has a wide range of data that
may be utilized to analyze human health. For instance, it
has a layer of labels that can simulate (by the increase of
weights) the gradual loss in a person’s motor function over
time. Continuously keeping an eye on the person’s eating
behavior and searching for signs of motor function decline
mayhelp save lives and identify the need for assistance before
the situation gets worse.

3.3 EatSense feature extraction

For the purpose of exploration in the domain of health care,
we propose and compute explainable hand-crafted features
for EatSense and also compare them with deep features.

3.3.1 Hand-crafted features

The purpose of exploring hand-crafted feature-based tech-
niques is to have an in-depth understanding of the individual
subject’s health. Deep features are convoluted and do not
effectively help health professionals to understand the root
cause of health problems faced by individuals. The proposed
features are extracted over all individual frames.

These include instantaneous spatial features such as (1)
relative distances of all joint locations concerning the chest,
(2) relative joint locations in polar coordinates, (3) angles
between shoulders and elbows, (4) product of all joints, (5)
distance from the table of all joints. Also, temporal features
such as (1) velocity, (2) acceleration, and (3) lags (past instan-
taneous joint position, i.e., if the current frame is captured at
time t andwe denote the joint position at t as xt , then the joint
position in the previous frame taken at time t − n denoted as
xt−n is the nth lag), (4) weighted sum of the last three lags.
The mathematical formulation of each of these features is
similar to that in [40].

Fig. 1 Left) the eight
upper-body joints (1) nose (n),
(2) chest, (3) right-shoulder, (4)
right-elbow, (5) right-wrist, (6)
left-shoulder, (7) left-elbow, and
(8) left-wrist. Middle) subject is
performing ‘eat it’ action
without weights. Right) subject
is performing ‘eat it’ action with
weights
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3.3.2 Deep features

For deep feature extraction for the videos in EatSense, a
Spatial–Temporal Graph Convolutional Network (ST-GCN)
[52] was used. In this approach, similar to the hand-crafted
features, we exclusively utilize the 3D poses of the subjects.
As previously discussed, HigherHRNet was used to estimate
2D poses from RGB data which were then projected into the
3D space with the help of depth maps, to estimate 3D joint
location.

However, unlike the manual feature extraction, which
operates on a frame-by-frame basis, we consider an entire
action that extends across several frames to leverage both
spatial and temporal characteristics to construct a graph.
High-level featuremaps are estimated by applying graph con-
volutions on the constructed graph.

4 Eating behavioral model

The EatSense dataset’s sequences are densely labeled with
16 sub-actions of variable lengths to represent the eating
behavior of individuals. Figure2 presents a general state dia-

gram showing the sequential relationships between the 16
sub-actions.

Upon examination, it becomes evident that the diagram
allows much situational diversity, including a single-hand
eatingwith orwithout a tool, twohands eatingwith orwithout
a tool, and if the subject switches between either of these.

The eating behavior model illustrates that the actions ‘eat
it’ and ‘drink’ consistently occur after the action ‘move hand
toward mouth’ and are subsequently followed by the action
‘move hand away from mouth.’ Since the video recordings
were acquired in an uncontrolled environment, the subjects
were permitted to engage in conversations and use mobile
phones, just as they would in their routine. Consequently,
the state diagram demonstrates that nearly all actions can be
followed by the activity labeled as ‘other.’

5 Decay simulation

This section demonstrates the effectiveness of simulating
decay in performance by adding different weights to the
wrists of the subjects. For this purpose, experimentally
proven tests such as the balance assessment and speed of
motion tests are used. These tests are slightly modified

Fig. 2 State diagram of common eating behavior with 16 action classes
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Fig. 3 Shown for demonstration of negative slopes only. This chart
indicates 20% frames sampled randomly from each of the 4 weight
cases of subject no. 4. These frames are then subsequently arranged in
ascending order of their respective weights

according to the need of exploring decay in an eating sce-
nario. These subtle changes alongwith the plots are explained
in the sub-sections below.

5.1 Balance assessment test

The Balance Assessment Test [3, 20] also known as trunk
stability or postural sway [6] test is defined as how well the
subject maintains the center of mass of their body within
its base support. In clinical trials, this is carried out while
standing up; however, here the test is performed, while the
person is seated for about 6–10min for a full meal. Each of
the subjects is recorded while wearing weights ranging from
0 to 2.4kg in each individual video.

At every frame, using the 3D pose of the subject, we esti-
mate the feature ‘the distance of the chest with respect to the
table’ (discussed in Sect. 3.3) to detect sway in the subject’s
posture. As videos are recorded with participants wearing
weights, we temporally stack the videos one after another
in the increasing order of the weights. Two of the subjects
were left-handed which were flipped around the y-axis for
consistency.

Linear regression fits a line through the temporal data
(videos stacked in the order of increasing weights). This
is shown in Fig. 3 for demonstration purposes. The pre-
dicted line (shown in red) depicts a negative sloped line. The
decrease in distance from the table while increasing weights
is indicated by a negative slope. Hence, the negative slope
in the experiment indicates the decay in performance as the
weights are increased.

A negative slope indicates decay in the core/trunk posi-
tion over time, and a positive slope should mean that the
posture got better over time.A plot depicting the relationship

Fig. 4 Balance Assessment Test. +1 (blue) represents subjects with
positive slopes, −1 (orange) represents subjects with negative slopes,
and 0 (green), which indicates a change in their trunk positions, i.e., the
subjects started with an upright posture but over time as the weight is
increased, their chest position changed. See the text for more discussion
(color figure online)

between slope coefficients and intercepts is shown in (Fig. 4)
where +1 (blue) represents positive slopes,−1 (orange) rep-
resents negative slopes; and 0 (green) represents no visible
change in their trunk position. Here, visible change is mea-
sured and marked as either blue or orange if the coefficients
are greater or less than ±0.03 × 10−5. The plot reveals that
the majority of the subjects, specifically 15 out of 27, exhibit
negative slopes. This indicates a weakened core as they were
unable to maintain an upright position. On the other hand, a
few subjects demonstrate a positive trend, which leads us to
hypothesize that this occurswhen they attempt to compensate
for the weights by adjusting their balance.

5.2 Speed of motion test

The speed of motion test is based on how fast a subject per-
forms a task at hand in their normal routine tomonitormuscle
degradation due to aging. The age-based decay in muscle
functionality is knownas sarcopenia [43, 44]. In this research,
different levels of weights are used to simulate this decay in
muscle strength over time and quantify it by monitoring the
speeds of the motion of the upper body limbs.

Firstly, as the dataset contains multiple sub-actions, many
of which include unpredictable orders of motion, only the
‘move hand toward mouth’ sub-action is analyzed, as it is
themainmicro-movement that involves motion against grav-
ity. For this purpose, we estimate (by inter-frame position
differences) the velocity of the dominant hand using the dis-

123



Vision-based approach to assess performance levels while eating Page 7 of 14 124

Fig. 5 Speed of Motion Test. 0 (blue) represents subjects with positive
slopes, and 1 (orange) represents subjects with negative slopes, which
indicates a decrease in hand speed as the weight is increased. See the
text for more discussion (color figure online)

tance of wrist joint position relative to the chest (discussed
in Sect. 3.3). Two of the subjects were left-handed which
were flipped around the y-axis for consistency. Similar to the
postural sway test, the wrist velocities are estimated in the
increasing order of the weights. A line is fit through the speed
versus weight curves for each subject using linear regression.

The slopes are expected to be negative to demonstrate that
there is a decay in the upward movement speed. In Fig. 5, a
scatter plot illustrating the relationship between slope coef-
ficients and intercepts indicates that 17 out of 27 subjects
exhibit a decline in their motion speeds across various weight
classes. Conversely, the subjects who show either positive or
neutral trends in the data are predominantly those who report
having an active lifestyle.

6 Generalized regression

EatSense simulates decay by adding weights (i.e., 0kg, 1kg,
1.8kg, and 2.4kg) to thewrists of the subjects. These subjects
belong to various ethnicities, genders, and age groups. Ide-
ally, there would exist motion model with a common set of
parameters to predict performance as weights are increased.
However, it seems that people react to theweight increase dif-
ferently; for example, some slouch more and some make a
distinctly visible posture difference (dropped shoulders, etc.).
Hence, finding a set of features and amodel that parametrizes
the performance change process without over-fitting on a
subset of subjects is a problem. To model how performance
changes with weight level, we divide our experiments into
two sub-experiments, i.e., deep features-based and hand-
crafted features-based regression.

6.1 Hand-crafted features-based regression

Both spatial and temporal features were extracted from joint
locations. These are briefly discussed in Sect. 3.3, and their
detailed mathematical formulation is given in [40]. The com-
plete pipeline of the regression approach is shown in Fig. 6.
The primary aim of delving into hand-crafted feature-based
techniques is to gain a comprehensive understanding of an
individual subject’s health. By utilizing these techniques,
researchers and health professionals can obtain detailed
insights into various aspects of a person’s well-being. On the
other hand, deep features, although powerful in their ability
to represent intricate patterns and relationships in data, have
thus far not proven to be as conducive to providing inter-
pretable explanations. Health professionals often seek clear
and understandable insights into the factors influencing a
subject’s health, and in this regard, the complexity of deep
features might present a challenge in meeting that need.

6.1.1 Feature selection

To select a common subset of features across all subjects,
a forward sequential feature selector (FSFS) was used [39]

Fig. 6 The complete pipeline of the proposed regression approach
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with LightGBM [19] as the classifier of the four classes of
different weights in subsets of the dataset. Assume D repre-
sents the data comprising the subjects’ joint locations relative
to the chest and the rest of the features. A set fi of the top-
most contributing 12 features for each subject i , was selected
based on maximum macro-accuracy.

Afterward, a union of fi was taken to create a collection of
30 features. Finally, the forward sequential feature selector
(FSFS) method was employed, using GMR as a regressor
and mean-squared error as the loss function, to identify the
top 8 most significant features (F) from this set of 30 (which
were all used in the LightGBM, GMR, and MLP regression
experiments in Sect. 6.3).

The process for feature selection across all subjects is
shown in Eqs. 1 and 2, where di ⊂ D is the subset that
contains data for the i th subject only (i = 1, . . . , 27). The
subscripts C and R under FSFS show that the first FSFS
used a classifier and the second used a regressor to shortlist
the best set of features.

fi = FSFSC (di )
27
i=1 (1)

F = FSFSR(∪27
i=1 fi ) (2)

The shortlisted 8 features in the order of their contribution
are: (1) distance of the left-wrist from the table, (2) position
at time t of the x-component of the left-wrist, (3) position
at time t − 1 of the y-component of the right-shoulder, (4)
distance of table to the right-elbow, (5) position at time t
of the y-component of the left-wrist, (6) distance of table
to the left-shoulder, (7) velocity of x-component of the left-
shoulder computedwithwindow-size of± 2, and (8) distance
of table to the left-elbow.

The selected features contain both spatial (instantaneous
distance from the table, position at time t , etc.) and temporal
properties (position at time t − 1, velocity, etc.). One notice-
able trend is that most of the selected features are related
to the left-arm. This highlights that the non-dominant arm
plays a significant role for discriminating between different
weights. This potentially indicates thatwithweights of differ-
ent magnitudes, the movement of non-dominant arm appears
to suffer from a more noticeable change then the right arm.
This may be attributed to the fact that individuals typically
employ their dominant arm for eating, as it is more accus-
tomed to precise motor tasks and possesses greater strength.

6.1.2 Feature visualization

To illustrate how the data look like with 8 most contributing
features, we project the 8-dimensional data to 2 dimensions
using T-SNE. The data are visualized in Fig. 7. Although
there are not four clearly separable groups for the four
weights, there is somewhat of a clustering (especially for

Fig. 7 T-SNE plot for the best performing 8 features mapped to 2D
plane

the red/no weight class) that suggests that some modeling is
possible.

6.1.3 Gaussian mixture regression

Gaussian mixture regression (GMR) [9, 12] is a modified
version of Gaussian mixture modeling (GMM) used for
regression.GMR is a probabilistic approach that assumes that
all the data points in the input × output space can be effec-
tively represented by a finite number of Gaussian mixtures.
As it deals with probabilistic distributions rather than func-
tions, it can model multi-modal mappings. A brief overview
of training and prediction details for GMR is given below.
Readers are encouraged to go through [12, 47] for further
details.

The training forGMRis donebyfitting aGaussianmixture
model (GMM) over the feature set F (Eq. 2), in an unsuper-
vised format using the EM algorithm. There is no distinction
between input xn and target yn ; hence, they can be concate-
nated into one vector zn = [xTn yn]T . The GMM represents
a weighted sum of E Gaussian functions as a model of the
probability density function of the vector zn , shown in Eq.3.

p(zn) =
E∑

e=1

πeN (zn;μe, σe), with
E∑

e=1

πe = 1 (3)

For inference, with regressionwe are interested in predict-
ing ŷ = E(y|x), i.e., the expected value of y given x. For this
purpose, μe and σe can be separated into input and output

123



Vision-based approach to assess performance levels while eating Page 9 of 14 124

components as follows:

μe = [μT
e,X , μT

e,Y ]; σe =
[

σe,X σe,XY
σe,Y X σe,Y

]
(4)

Given the decomposition in Eq.4, the expected value of y
given x can be calculated by,

ŷ =
E∑

e=1

he(x)(μe,Y + σe,Y Xσ−1
e,X (x − μe,X )); (5)

where

he(x) = πeN (x;μe,X , σe,X )
∑E

l=1 πlN (x;μl,X , σl,X )
(6)

Due to flexibility in the intrinsic nature of probabilis-
tic models, as they are uncertainty-aware and can represent
complex problems effectively, we propose to use GMR for
modeling the regression problemacross various subjects. The
experiments, as shown in Sect. 6.3, show that GMR performs
well.

6.1.4 Multilayer perceptron regression

A multilayer perceptron (MLP) is a type of artificial neural
network (ANN) that is popular due to its ability to learn and
recognize complex (non)linear patterns in data. It is a super-
vised algorithm that is made up of several interconnected
layers of neurons, each layer processes and alters the input
to conform to an output.

The deterioration (i.e., weight) estimation problem tends
to not generalize over all the subjects, i.e., over-fitting to a
subset of subjects in training. Thus, a joint loss function is
used that includes both lasso (L1) and ridge (L2) regular-
ization. If the ground truth label (i.e., weight) is y, and ŷ
is the regression predicted output, then Eq.7 shows the loss
function. The feature set F (Eq. 2) was used for training.

L = α‖y − ŷ‖22 + (1 − α)|y − ŷ| (7)

where α was set to 0.5.

6.2 Deep features-based regression

Deep features are defined as high-level representations of
data learned by deep neural networks (DNN) that capture
complex patterns and relationships in data. Deep features
possess several advantages over handcrafted features or
shallow representations. One key benefit is their automatic
inference from the data, allowing the network to dynamically
adjust and adapt to the specific task.

To demonstrate generalized regression with deep features,
we used a Spatial–Temporal Graph Convolutional Network
(ST-GCN) [52]. ST-GCNwas chosen for this task as itwas the
best action recognition algorithm for EatSense, as evidenced
in [40].

6.2.1 ST-GCN

When using ST-GCN [52], given the sequence of the body
joints (3D in our case), a spatial–temporal graph is con-
structed with joints as graph nodes, inter-joint connections,
and temporal connections (e.g., joint j at time t and t +1) as
graph edges. By applying spatial–temporal graph convolu-
tion operations to the input data, high-level feature maps are
generated. Subsequently, a classification head is employed
to perform the classification task.

The same approachwas used for extracting high-level fea-
tures. The specific problem here required regression instead
of classification. Therefore, two important modifications
were made to the ST-GCN framework. Firstly, the classi-
fication head was replaced by a regression head. Secondly,
the loss function was replaced by the mean-squared error, as
described in Eq.8.

L = ‖y − ŷ‖22 (8)

6.3 Experiments

Asmentioned earlier, the experiments for generalized regres-
sion are divided into two sub-experiments: handcrafted
feature-based regression and deep features-based regression.
Each of these sub-experiments has a prior step of hyper-
parameter tuning. The sub-experiments along with their
hyperparameter selection methods are discussed below.

6.3.1 Hyperparameter tuning

The most important hyperparameter for GMR is the number
of Gaussians E used to represent the input × output space
effectively. An iterative approach that alternates between
searching for E and running 26-vs-1 cross-validation across
subjects was used.

In 26-vs-1 cross-validation, 26 subjects were used in the
training and validation, and 1 was left out for testing. This
was repeated for all 27 subjects,with average results reported.
Each set contains different subjects. Searching for the best E
used Bayesian optimization to find the configuration that has
the minimum mean-squared error across subjects between
the ground truth and predicted labels.

The hyperparameters in MLP include the number of lay-
ers, neurons in each layer, learning rate, drop-out rate, and
batch size. They were chosen empirically. For MLP, similar
to GMR, only features selected with the criteria mentioned
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in Sect. 6.1.1 were used. Hyperparameters for ST-GCN such
as learning rate and others were also chosen empirically.

The experimental question is: How accurately can the
amount of weight worn by the subject be estimated (as a
proxy for modeling deterioration in elderly eaters)?

6.3.2 Estimating the weight level using regression

After selecting the best configurations, leave-one-out cross-
validation was used for measuring the average mean-squared
errors (MSE) and actual error for GMR, MLP, LightGBM,
and ST-GCN regression. In the leave-one-out approach, the
model is trained on all of the available data (here 26 subjects)
except for one subject, and then the model’s performance is
evaluated on the left-out subject. This process is repeated for
all subjects, and the overall performance of the model is the
average performance across all subjects.

Each of the two sub-experiments used only the 2most dis-
tinctive micro-movements (actions), i.e., ‘move hand toward
mouth’ and ‘move hand from mouth.’ These 2 actions were
chosen because they are the ones that seem most likely to
be impacted by varying weights because they involve work-
ing against or with gravity. For MLP, LightGBM, and GMR,
a frame-by-frame setting of the features was used, whereas
for training ST-GCN, vectors containing the 3D poses of one
full action eachwere used to extract featuremaps. Afterward,
these featuremaps go through regression head and predict the
weights. The regression models for each subject are used to
predict the weight worn by the subject.

To demonstrate the performance of the proposed regres-
sion model, we present both visual and quantitative results.
Figure8 shows the predictions of the 27 different models
trained using the leave-one-out strategy. Each curve is the
output of the one subject whowas not involved in the training
process. Since the test set comprises multiple instances of the
micro-movements, i.e., every subject moves the hand to and
away from the mouth multiple times in one eating session,
hence these predictions are averaged over time. The solid-
colored line represents this mean and the shading around
it shows the ±1 standard deviation of the predictions. For
‘summary’ purposes, we fit a RANSAC [11] linear regres-
sion model across the predicted weights of all 27 of the
regression models.3 In Fig. 8, the black solid line represents
the RANSAC linear regression fit line across the predicted
weights and the black dashed line illustrates the perfect cor-
relation between the predicted and ground truth weights.

To analyze quantitatively, results are provided using two
measures: mean-squared error (MSE) and actual error. The
MSE is the (L2)-norm of the difference between predicted
and true values. Likewise, the actual error is the average of the

3 RANSAC is a technique that estimates the model parameters by ran-
domly sampling the observed data and hence is robust to outliers.

difference between predicted and true values, indicating the
deviation in kilograms from the actual weight. Equations9
and 10 estimate the actual error. Results are given in Table 2.

Mp = 1

Np

Np∑

n=1

(predictedp,n − truep,n) (9)

where Mp is the actual error of pth subject in a set of 27
subjects, i.e., p ∈ (1, . . . , 27). Np are the total number of
samples in the test set for each person p. So, the overall mean
across all subjects is given by,

mean = 1

27

27∑

p=1

Mp (10)

6.4 Discussion of results

Both MLP and ST-GCN can handle a wide range of data
distributions and excel in different contexts. For example,
ST-GCN is specialized for tasks that involve both spatial and
temporal dimensions, whereas anMLP can effectivelymodel
intricate nonlinearities in high-dimensional data.GMRon the
other hand employs a probabilistic approach andmodels data
distributions as combinations of Gaussian mixtures. LGBM
works as an ensemble of decision trees and is suitable for
tasks where exploitation of high-dimensional feature space
is required.

Figure8 visually compares the effectiveness of three hand-
crafted feature-based methods—GMR, MLP and Light-
GBM, anddeep feature-basedST-GCN—using line plots that
compare the predicted weights to the ground truth. The more
closely the predicted weights (solid black line) align with
the actual values (dashed black line), the better the regres-
sion model performs.

When examining the results depicted in the top-left figure,
it is clear that GMR performs well as there is a noticeable
upward trend in the plot, indicating a good prediction of
weights (0, 1, 1.8, and 2.4kg). In contrast, the top-right
(MLP) and bottom-left (LightGBM) figures suggest that
these models do not generalize as well on the data, as they
have aweaker correlation betweenground truth andpredicted
values. The figure on the bottom-right (ST-GCN regressor)
clearly shows that the model does not fit properly on the data.
This could potentially be due to two reasons, (1) the insuf-
ficient temporal context and limited discriminative features
as the micro-movements under consideration span over less
than 10 frames or (2) insufficient data for training a regression
model with only two micro-movements.

When comparing these methods quantitatively, GMR per-
forms better, as evidenced by the average MSE displayed in
Table 1. GMR achieved a mean-squared error of 0.53, lower
than MLP, LightGBM, and ST-GCN.
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Fig. 8 The plots show the predicted weight versus the ground truth
weight. The dashed black line illustrates perfect correlation, and the
solid line is the least square fit of the data shown in color. The four
regressors evaluated are GMR (top-left), MLP (top-right), LightGBM
(bottom-left), and ST-GCN Regression (bottom-right). Each colored

curve corresponds to the result of an individual leave-one-out model.
Since there are several frames or clips for each micromovement in the
test set, the solid-colored curves represent the average of these predic-
tions, while the shading surrounding each curve indicates the range of
one standard deviation (color figure online)

In real scenarios, it is unlikely to have data from various
stages of deterioration to train a model. Instead, one would
have to use one of the generic regression models trained in
Sect. 6.3.2. Therefore, relying solely on MSE to quantify the
errormay seem to be complicated or not intuitive in a physical
sense and may not be the most appropriate metric for select-
ing the bestmodel. To address this, Table 2 presents the actual
error (each row estimated by 1

N ∗ ∑N
n=1(predicted − true)),

which indicates the average amount in kilograms that the
predictions are off. The table shows that the mean difference
for GMR is around 19gs, with the lowest standard deviation
of 0.233. On the other hand, ST-GCN has the lowest mean,
with a comparably high standard deviation.

The T-SNE visualization presented in Fig. 7 illustrates
that the data have multiple modes, and we anticipate more
distinguishable boundaries when considering 8 dimensions.
Intuitively,Gaussianmixture regression (GMR) excels in this
scenario by representing each mode with its own Gaussian
component and clustering data points, rather than attempting
to fit a single line or curve across all data. Consequently,
GMR demonstrates superior capability in modeling the
underlying distributions compared to alternative regression
methods.
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Table 1 Mean squared error for GMR, MLP, LightGBM and ST-GCN
as a result of Leave-one-out regression. The last row shows the average
of these errors. Lower values are better, and GMR has the best average
performance. Here, bold indicates the best performing approach for
each of the 27 models, and the average

S# GMR MLP LightGBM ST-GCN

0 0.977 0.680 0.658 1.540

1 0.691 1.856 0.724 1.274

2 0.189 1.369 0.845 1.160

3 0.805 1.010 1.382 1.210

4 0.592 1.363 0.669 0.705

5 0.404 1.269 0.859 0.961

6 0.643 0.939 0.396 0.663

7 0.291 0.581 0.618 0.708

8 0.613 0.519 1.674 1.299

9 0.398 1.190 0.760 1.069

10 0.931 1.235 1.229 0.872

11 0.597 0.787 0.738 0.703

12 0.635 1.275 0.544 0.975

13 0.629 0.833 0.420 1.172

14 0.788 0.627 0.345 0.961

15 0.760 0.884 1.279 0.750

16 0.288 0.432 0.433 1.034

17 0.598 0.631 0.629 0.910

18 0.599 0.463 0.383 1.290

19 0.140 0.313 0.127 0.967

20 0.327 0.887 0.329 0.989

21 0.586 1.260 0.442 0.814

22 0.284 0.371 0.177 0.685

23 0.328 0.395 0.452 1.120

24 0.645 1.467 0.810 1.327

25 0.337 0.538 0.852 1.041

26 0.267 0.834 0.258 0.872

Avg 0.531 0.889 0.668 1.003

7 Conclusion

In this paper, we presented an analysis of the eating behav-
ior of subjects that includes: modeling the actions involved
while eating as a state diagram and methods to quantify
performance/decay level. To quantify performance levels
while eating, two sets of experiments, i.e., with hand-
crafted features using uncertainty aware algorithm GMR,
with comparisons against MLP and LightGBM, and with
deep features-based regression using ST-GCN were con-
ducted.

The results show thatGMRperformed slightly better com-
pared to other regression models and thus can be used to
predict the degree of deterioration (i.e., weight level) of indi-

Table 2 Actual error for GMR, MLP, LightGBM and ST-GCN as a
result of Leave-one-out regression. The last row shows the mean of
these errors. Here, bold indicates the best performing approach for each
of the 27models, and the average. Lower values are better (Values closer
to zero are the best.)

S# G MR M LP LightGBM ST-GCN

0 − 0.256 − 0.186 − 0.164 − 0.912

1 0.470 0.641 0.464 1.019

2 0.179 0.898 0.755 0.746

3 − 0.391 0.144 − 0.017 0.055

4 − 0.259 − 0.296 − 0.064 − 0.064

5 0.125 0.127 0.072 0.005

6 − 0.346 − 0.233 − 0.009 0.142

7 − 0.153 − 0.328 − 0.093 − 0.009

8 − 0.422 − 0.337 − 0.240 0.817

9 − 0.345 − 0.496 − 0.612 − 0.801

10 0.187 − 0.516 − 0.183 − 0.222

11 − 0.180 − 0.082 − 0.542 0.399

12 − 0.246 − 0.497 0.049 − 0.181

13 − 0.053 − 0.356 − 0.256 − 0.124

14 − 0.185 − 0.193 − 0.023 0.411

15 0.031 − 0.234 0.044 − 0.137

16 0.146 − 0.244 − 0.224 − 0.087

17 0.402 − 0.137 0.526 − 0.001

18 0.215 − 0.192 0.261 − 0.113

19 0.141 0.051 0.027 0.101

20 − 0.039 − 0.600 − 0.488 − 0.094

21 0.009 − 0.460 0.254 − 0.200

22 0.200 − 0.038 − 0.049 − 0.141

23 0.134 − 0.183 − 0.225 − 0.120

24 0.091 − 0.405 0.295 0.011

25 − 0.003 − 0.483 − 0.374 − 0.230

26 0.031 − 0.444 0.092 − 0.199

Avg − 0.019 − 0.188 − 0.026 0.002

std 0.233 0.333 0.312 0.404

viduals based on a generically trained model (i.e., trained
with enough other subject data).

We also presented an extension of the EatSense dataset to
four weight levels. Ethical approval was obtained to allow
these experiments using healthy human volunteers. In an
ideal world, we would also collect long-term data from
elderly volunteers to validate the deterioration model; how-
ever, this would be highly unethical, as intervention should
occur at the first sign of deterioration.Hence, the experiments
presented here are limited to using weights with healthy vol-
unteers.

Open Access This article is licensed under a Creative Commons
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39. Pudil, P., Novovičová, J., Kittler, J.: Floating searchmethods in fea-
ture selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994).
https://doi.org/10.1016/0167-8655(94)90127-9

40. Raza, M.A., Chen, L., Li, N., et al.: EatSense: human centric,
action recognition and localization dataset for understanding eating
behaviors and quality of motion assessment. Image Vis. Com-
put. 137, 104762 (2023). https://doi.org/10.1016/j.imavis.2023.
104762

41. Redfoot, D., Feinberg, L., Houser, A.N.: The Aging of the Baby
Boom and the Growing Care Gap: A Look at Future Declines in the
Availability of Family Caregivers. AARP Public Policy Institute,
Washington, DC (2013)

42. Ren, Y., Lin, C., Zhou, Q., et al.: Effectiveness of virtual reality
games in improving physical function, balance and reducing falls
in balance-impaired older adults: a systematic review and meta-
analysis. Arch. Gerontol. Geriatr. 108, 104924 (2023)

43. Rolland, Y., Czerwinski, S., Van Kan, G.A., et al.: Sarcopenia:
its assessment, etiology, pathogenesis, consequences and future
perspectives. J. Nutr. Health Aging 12, 433–450 (2008)

44. Rosenberg, I.H.: Sarcopenia: origins and clinical relevance. J. Nutr.
127(5), 990S-991S (1997)

45. Rouast, P.V., Heydarian, H., Adam, M.T., et al.: OREBA: a dataset
for objectively recognizing eating behavior and associated intake.
IEEE Access 8, 181955–181963 (2020)

46. Shen,Y., Salley, J.,Muth,E., et al.:Assessing the accuracyof awrist
motion trackingmethod for counting bites across demographic and
food variables. IEEE J. Biomed. Health Inform. 21(3), 599–606
(2016)

47. Stulp, F., Sigaud, O.: Many regression algorithms, one unified
model: a review. Neural Netw. 69, 60–79 (2015)

48. Tufano, M., Lasschuijt, M., Chauhan, A., et al.: Capturing eat-
ing behavior from video analysis: a systematic review. Nutrients
14(22), 4847 (2022)

49. Vuckovic, G., Dezman, B., Pers, J., et al.: Motion analysis of the
international and national rank squash players. In: ISPA 2005. Pro-
ceedings of the 4th International Symposium on Image and Signal
Processing and Analysis, 2005, pp. 334–338. IEEE (2005)

50. Wang, J., Liu, Z., Wu, Y., et al.: Mining actionlet ensemble for
action recognition with depth cameras. In: 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1290–1297.
https://doi.org/10.1109/CVPR.2012.6247813 (2012)

51. Yadav,R.K.,Neogi, S.G., Semwal,V.B.:Acomputational approach
to identify normal and abnormal persons gait using variousmachine
learning and deep learning classifier. In: Machine Learning, Image
Processing, Network Security and Data Sciences: 4th International
Conference,MIND2022, Virtual Event, January 19–20, 2023, Pro-
ceedings, Part I, pp. 14–26. Springer (2023)

52. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional
networks for skeleton-based action recognition. In: Proceedings of
the AAAI Conference on Artificial Intelligence (2018)

53. Yang, C., Kerr, A., Stankovic, V., et al.: Human upper limb motion
analysis for post-stroke impairment assessment using video ana-
lytics. IEEE Access 4, 650–659 (2016)

54. Yang, Z.: An efficient automatic gait anomaly detection method
based on semisupervised clustering. Comput. Intell. Neurosci.
2021, 8840156 (2021)

55. Yordanova, K., Lüdtke, S., Whitehouse, S., et al.: Analysing cook-
ing behaviour in home settings: towards healthmonitoring. Sensors
19(3), 646 (2019)

56. Zoidi, O., Tefas, A., Pitas, I.: Exploiting the SVM constraints in
NMF with application in eating and drinking activity recognition.
In: 2013 IEEE International Conference on Image Processing, pp.
3765–3769. https://doi.org/10.1109/ICIP.2013.6738776(2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Muhammad Ahmed Raza received his BS (Electrical Engineering,
Pakistan Institute of Applied Sciences (PIEAS), 2016), MS (Elec-
trical Engineering, Air University Pakistan, 2018), and currently, he
is doctoral student in the School of Informatics, The University of
Edinburgh. He has worked as a research assistant at Air University
(2016-2019) and as a research associate in the Swarm Robotics lab-
oratory (University of Engineering and Technology, Pakistan, 2020-
2021). His research interests broadly include behavioral assessment
(AI for healthcare), object detection, and action recognition frame-
works.

Robert B. FisherFIAPR, FBMVA received a BS (Mathematics, Califor-
nia Institute of Technology, 1974), MS (Computer Science, Stanford,
1978) and a PhD (Edinburgh, 1987). Since then, Bob has been an
academic at Edinburgh University, including being College Dean of
Research. He has been the Education and Industrial Liaison Com-
mittee chairs for the Int. Association for Pattern Recognition, and is
currently the association Treasurer. His research covers topics mainly
in high-level computer vision and 3D and 3D video analysis, focusing
on reconstructing geometric models from existing examples, which
contributed to a spin-off company (DI4D). The research has led to
5 authored books and 300+ peer-reviewed scientific articles or book
chapters. He has developed several online computer vision resources,
with over 1 million hits. Most recently, he has been the coordinator of
EC projects 1) acquiring and analyzing video data of 1.4 billion fish
from over about 20 camera-years of undersea video of tropical coral
reefs and 2) developing a gardening robot (hedge-trimming and rose
pruning). He is a Fellow of the Int. Association for Pattern Recogni-
tion and the British Machine Vision Association.

123

https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/j.imavis.2023.104762
https://doi.org/10.1016/j.imavis.2023.104762
https://doi.org/10.1109/CVPR.2012.6247813
https://doi.org/10.1109/ICIP.2013.6738776

	Vision-based approach to assess performance levels while eating
	Abstract
	1 Introduction
	2 Literature review
	2.1 Decay assessment tests
	2.2 Behavior analysis
	2.3 Public datasets for healthcare

	3 EatSense
	3.1 EatSense collection and labeling
	3.2 EatSense properties
	3.3 EatSense feature extraction
	3.3.1 Hand-crafted features
	3.3.2 Deep features


	4 Eating behavioral model
	5 Decay simulation
	5.1 Balance assessment test
	5.2 Speed of motion test

	6 Generalized regression
	6.1 Hand-crafted features-based regression
	6.1.1 Feature selection
	6.1.2 Feature visualization
	6.1.3 Gaussian mixture regression
	6.1.4 Multilayer perceptron regression

	6.2 Deep features-based regression
	6.2.1 ST-GCN

	6.3 Experiments
	6.3.1 Hyperparameter tuning
	6.3.2 Estimating the weight level using regression 

	6.4 Discussion of results

	7 Conclusion
	References




