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Abstract
Recent studies on visual anomaly detection (AD) of industrial objects/textures have achieved quite good performance. They
consider an unsupervised setting, specifically the one-class setting, in which we assume the availability of a set of normal (i.e.,
anomaly-free) images for training. In this paper, we consider a more challenging scenario of unsupervised AD, in which we
detect anomalies in a given set of images that might contain both normal and anomalous samples. The setting does not assume
the availability of known normal data and thus is completely free from human annotation, which differs from the standard
AD considered in recent studies. For clarity, we call the setting blind anomaly detection (BAD). We show that BAD can be
converted into a local outlier detection problem and propose a novel method named PatchCluster that can accurately detect
image- and pixel-level anomalies. Experimental results show that PatchCluster shows a promising performance without the
knowledge of normal data, even comparable to the SOTA methods applied in the one-class setting needing it.

Keywords Anomaly detection · Anomaly localization · Unsupervised learning

1 Introduction

In this paper, we consider visual anomaly detection and local-
ization of industrial objects and textures. Anomaly detection
(AD) [1–3] is the task of detecting anomalous images or
patterns that are out of the distribution of normal images or
patterns. AD for industrial applications often requires distin-
guishing small differences between normal and anomalies
[4–6]; see examples from a standard benchmark dataset,
MVTec AD, in Fig. 1.

As anomalies can appear with countless types, and the
majority are usually the normal samples in a manufacturing
line, the one-class unsupervised setting has drawn the most
attention from the research community. This setting assumes
a set of anomaly-free images for training, which are selected
by human experts, and we detect anomalies at test time.

B Takayuki Okatani
okatani@vision.is.tohoku.ac.jp

Jie Zhang
jzhang@vision.is.tohoku.ac.jp

Masanori Suganuma
suganuma@vision.is.tohoku.ac.jp

1 Graduate School of Information Sciences, Tohoku University,
Sendai, Miyagi, Japan

2 RIKEN Center for AIP, Tokyo, Japan

Since the features from the standard pre-trained deepmod-
els were ‘rediscovered’ to be effective for the task [7], recent
studies employing them have achieved higher and higher per-
formances on existing public benchmarks. Those features are
proved to be representative enough for local image regions,
evenwithout any adaptation to the anomalydetectiondatasets
at hand [7, 8]. While visual unsupervised AD appears to be
a solved problem due to these successes, attention has also
been paid to more challenging problems, such as few-shot
AD [9, 10] and developing a unified model that can detect
anomalies for multiple different classes of objects/textures
[11]. However, these studies continue to consider the one-
class setting, assuming a perfect set of anomaly-free samples
to be available, which usually needs manual annotation by
manufacturing experts.

In this paper, we consider yet another scenario of unsu-
pervised AD, which does not need any human annotations.
Specifically, we consider the problemwhere we are not given
the knowledge of normal samples for training; we want to
detect anomalies in an input set of samples that might contain
both normal and anomalous samples. Note that traditional
machine learning often calls this setting ‘unsupervised AD’
and the above one ‘semi-supervised AD’ [12, 13], unlike
recent studies in computer vision. For clarity, we call the set-
ting blind anomaly detection (BAD) in this paper. The recent
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Fig. 1 Examples of industrial anomalies from the MVTec AD and the
detection results of PatchCluster-25% without using the training data

unsupervisedADmethodsmentioned above are not designed
for BAD and cannot directly be applied to the problem.

We then consider BAD a local patch outlier detection
problem and introduce PatchCluster, which does not require
human annotation and could automatically detect anomalies
under BAD settings. We make the assumption that nor-
mal local features follow dense distributions and have small
distances from each other in the feature space. Under this
assumption, we propose to use local patch features to implic-
itly estimate the local feature distribution and use the average
distance as the abnormality score. Unlike previous patch dis-
tributionmodeling-basedmethods that assume features in the
same spatial location follow the same distribution [14], we
cluster local patch features for the same contextual location
by distance-based nearest neighbor searching.

We show the effectiveness of PatchCluster and prove our
assumption through comprehensive experiments and analy-
sis. Reveling the strict restriction of spatial location-based
modeling, PatchCluster is robust to spatial translation and
rotation. PatchCluster achieves 95.7% and 95.9% average
image-level and pixel-level anomaly scores on MVTec AD
dataset without reaching any normal training data.

2 Related work

One-class anomaly detection, also known as one-class nov-
elty detection [15, 16], is a long-standing problem in com-
puter vision. Prior arts mainly focus on image-level outlier
detection where the anomalous samples follow distributions
of other semantic categories, e.g., detecting dog images for
the cat category. Representation learning-based methods that
could effectively learn the global contextual information are
employed to tackle this problem, ofwhich deep autoencoders
(AE) [4, 17] and generative adversarial networks (GANs)
[16, 18] are popular choices.

In industrial manufacturing scenarios, however, anoma-
lies will generally occur in confined areas on a specific kind

of product, making the anomalous samples very close to
the normal data distribution and the task more challeng-
ing. Recent one-class anomaly detection benchmarks [6,
19, 20] providing normal real-world industrial products for
training draw lots of research attention and lots of attempts
are paid to utilizing ImageNet [21] pre-trained models that
could extract representative features and conduct industrial
anomaly detection in a local patch feature-based manner.
PaDiM [14] explicitly models the feature distribution at each
spatial location. However, the assumption that patch features
at the same spatial location follow the same distribution is too
strict. SPADE [22] creates a feature memory bank from the
normal training data and assigns anomaly scores to test image
features by kNN search. The image-level anomaly scores are
still based on the global image distances. PatchCore [8] pro-
pose to use locally aware features to retain more contextual
information and further utilize the greedy search method to
reduce the size of the memory bank. There are also many
approaches based on top of the pre-trained features that try
to transfer the knowledge of normal features to a student net-
work [23–25] or estimate the distribution of normal features
by flow-based methods [26–28].

While recent SOTA methods have shown nearly perfect
anomaly detection performance on the public benchmark,
MVTec AD dataset [19], e.g., PatchCore-Ensemble achieves
a 99.6% image-level AUROC score on theMVTecAD, to the
best of our knowledge, no attention has been paid to explor-
ing achieving comparable performance without any human
annotations. The one-class unsupervised anomaly detection
setting requires specialists to annotate a set of normal images
for training, especially for various industrial products. Under
the BAD setting, most of the learning-based methods cannot
be utilized directly. It should be noted that although some
works have studied anomaly detection from noisy data [29,
30], i.e., anomaly-free training set contaminated by wrongly
labeled anomalous samples, they are still under the one-class
setting and need image labels from the human.

The methods most related to ours are PaDiM [14] and
PatchCore [8]. We estimate the local patch feature distri-
butions by kNN search, without explicitly modeling the
distribution and revealing the overly strict assumptions
of PaDiM. PatchCore only uses the nearest neighbor for
anomaly scoring, which is sensitive enough under the one-
class setting; however, we show that there may be several
candidates that are too close to the anomalous feature in the
memory bank and significantly decrease the anomaly detec-
tion sensitivity.

3 Blind anomaly detection (BAD)

We propose the task of blind anomaly detection (BAD),
which involves identifying anomalies from a set of unknown
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Table 1 Statistical overview of
the proposed blind anomaly
detection settings on the MVTec
AD. We report the mean value
over the 15 categories

Normal images Anomaly images % of normal images % of anomalous pixels

Mix 273 83 77 1.1

Test 31 83 27 3.3

Ano 0 83 0 4.7

Fig. 2 Overview of the proposed PatchCluster. Given a mixed set of
normal images and anomalous images, we use a pre-trained feature
extractor to extract features at multiple scales. The multi-scale features
for each image are then aggregated into one locally aware peach feature
map and added to the memory bank. An optional coreset subsampling

process could be utilized to reduce the size of the memory bank. During
inference, the K nearest neighbors for one patch feature are clustered
to estimate the local patch feature distribution. Without explicitly mod-
eling the distribution, the average distance to the K neighbors is used
as the anomaly score

images that may be either normal or anomalous. Given a set
of images S = I1, I2, . . . , In , the objective is to identify
anomalous images and localize the defective regions in each
image. In this task, we do not use any image- and pixel-level
annotations for training; we are not given any knowledge
of normal or abnormal samples. Thus, recent AD methods
cannot be applied directly to the BAD task.

As there is currently no comprehensive real-world dataset
that aligns with this task, we formulate several variations
of the BAD task using the existing unsupervised anomaly
detection benchmark, MVTec AD dataset. The MVTec AD
dataset [19] comprises 5 texture categories and 10 object
categories and is designed for one-class anomaly detection.
It includes 3629 normal images for training and 1725 nor-
mal and anomalous images for testing. We have formulated
three BAD settings: MVTec AD-Mix, MVTec AD-Test, and
MVTec AD-Ano. The MVTec AD-Mix setting merges the
training and test images for each category, while the MVTec

AD-Test setting is the original test dataset. The MVTec AD-
Ano setting is the most extreme case, in which it includes
only the anomalous images from the test dataset.

We present a statistical overview of the proposed BAD
settings in Table 1. Under the BAD scenarios, it is not neces-
sary to build separate training and testing splits, as opposed
to supervised learning and one-class unsupervised learning.
In the Ano setting, there are no normal images. Given this,
the question arises whether it is possible to not only clas-
sify the two classes of images but also determine which class
is normal, even though all images are anomalous. In other
words, is it possible to assign low anomaly scores to normal
images, even if they account for a small portion, and assign
high anomaly scores to anomalous images, even though all
the images contain anomalies?

Considering the specific scene, industrial manufacturing
lines, we could make use of the prior knowledge that most
anomalies of industrial products will occur in subtle areas,
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then for one anomaly image, it ismore likely that themajority
of the pixels are still normal.We also show themean percent-
age of anomalous pixels over 15 categories in Table 1. The
prior knowledge that the normal pixels will always account
for the majority makes it possible for blind anomaly detec-
tion.

4 Local outlier detection

We then introduce the proposed PatchCluster for BAD. It is
an extension of existing featurememory bank-basedmethods
and assigns anomaly scores to each patch feature by local
patch feature clustering, which makes it suitable for either
one-class setting or blind anomaly detection.

4.1 Revisitingmemory bank-basedmethods

Under the one-class setting, building a memory bank using
mid-scale features extracted by a deep pre-trained model
and then applying the simple nearest neighbor search for
anomaly scoring could achieve nearly perfect anomaly detec-
tion performance. We also build a feature memory bank first
as the extracted features have been shown to be representative
enough for anomaly detection.

Given an image Ii from the dataset S, the l-th layer of the
pre-trained model E extracts feature map Fl

i ∈ R
Wl×Hl×Cl

for the image. The feature vector f li (w, h) ∈ R
Cl

at spatial
location (w, h)(w = 1, ...,Wl , h = 1, ..., Hl) is employed
as the image patch representation. The pre-trained model
could effectively extract features from low levels to high
semantic levels. As the low-level features may be too
generic and the high-level features are source-domain biased,
the multi-scale features are concatenated along the channel
dimension in PatchCore to get one single feature representa-
tion ( fi (w, h)) at each location.

To increase the effective receptive field of the pre-trained
featureswhile avoiding introducing ImageNet-biased knowl-
edge, PatchCore further employs adaptive average pooling
to fuse the feature vector with its neighboring features in the
feature map.

The full feature memory bank M is then created for all
the images in the dataset S

M = { fi (w, h)},
i ∈ {1, 2, ..., n}, w ∈ {1, ...,Wl}, h ∈ {1, ..., Hl}. (1)

To reduce the size of the memory bank, SPADE creates a
memory bank for one test image using its nearest images in
the dataset, while PatchCore subsamples the memory bank
into a coreset by greedy subsampling.

4.2 Proposed PatchCluster method

We extend our method from the feature memory bank-based
arts. We first create a memory bankM following PatchCore.
SPADE and PatchCore score a patch feature by the distance
with its nearest neighbor feature from the memory bank. It
is effective enough, as there are only normal features in M.
However, in BAD where the memory bank contains both
normal and anomalous features especiallyM is built on top
of the datasetS itself, it may also be easy to find similar patch
features for the anomalous patches.

To address the above issue, we make the assumption that
1)features that follow the same distribution have smaller dis-
tances in the feature space and they could be used to estimate
the local feature distribution in a specific contextual loca-
tion; 2) anomalies are random events and the distribution of
each type of anomaly has larger variances compared to nor-
mal features. Under the above assumption, if we interpret the
creating process of memory bankM as a sampling problem,
it is possible to estimate the normal local distributions using
the local features as they are similar to each other and have
high probabilities to be sampled, while it is more difficult to
estimate the anomalous distributions as they have more vari-
ants and have less probability to be sampled. We then build
a local feature gallery Gi (h, w) by searching the correspond-
ing K nearest neighbors. Figure 2 gives an overview of the
proposed PatchCluster.

Then the anomaly detection for each patch feature is
converted to a local outlier detection problem. Under the
assumption, normal local distributions are in a dense fea-
ture space while anomalous local distributions are relatively
sparse.We then estimate the feature abnormality by themean
distance to its neighbors without explicitly modeling the dis-
tributions

aw,h = 1

K

K∑

j=1

dist( fi (w, h), f j )), j ∈ Gi (h, w). (2)

With a proper K , for normal patch features, it should be easy
to search for enough neighbors that follow the same dense
distribution. However, for an anomalous patch feature, on
the one hand, the neighbors tend to have larger distances
with it. On the other hand, it is also likely to fail to find
enough close neighbors fromM. Consequently, after scoring
all the patch features in an image, we get an anomaly score
map for it. As the features are down-sampled compared to
the input images, we up-sample the score map by bi-linear
interpolation. Following the popular choice, to remove local
noises, we apply a Gaussian filter with a kernel size of 4 to
get the final anomaly score map.

We could simply choose the maximum score a∗
i in a score

map to account for the image-level anomaly score. We find
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Fig. 3 Visualization examples from the toothbrush, cable, and hazelnut
categories

it still robust for BAD to increase the image anomaly score
if the nearest feature f ∗ in M of the corresponding patch
feature f ∗

i has a large anomaly score

ai =
(
1 − exp (a∗

i )∑
f ∈N ( f ∗) exp dist( f

∗
i , f )

)
· a∗

i , (3)

where N ( f ∗) is a set of nearest neighboring patch features
for f ∗. The image anomaly scoring function is the same as
PatchCore.

5 Experimental results and analyses

5.1 Experimental setup

5.1.1 Evaluating metrics

We use AUROC score and PRO score to evaluate the
pixel-wise anomaly detection results. The two metrics are
threshold-free and the PRO metric treats each anomalous
region equally. We also use AUROC score to evaluate the
image-level anomaly detection results except for the MVTec
AD-Ano, as there is only one kind of anomalous image in
this setting.

5.1.2 Implementation details

We resize the images into a 256 × 256 resolution and then
center crop the images into 224× 224 throughout our exper-
iments. For a fair comparison, we use the same ImageNet
pre-trained WideResNet-50 [31] as the feature extractor for
all evaluation methods. For PaDiM [14] and PatchCore [8],

Fig. 4 Visualization examples from the carpet, leather, and wood cat-
egories

we use the same experimental settings as in their papers.
We also use the intermediate features from the output of
the second and third residual stages of the feature extrac-
tor, which is the same as PatchCore. We also make SPADE
follow the same choice of layers to extract features, which
is different from the original SPADE that also uses the first
residual stage.Wefind this change significantly improved the
inference speed and yields better performance. As SPADE
first creates a memory bank for each image by image-level
nearest neighbor search, we exclude the image itself when
creating the memory bank to avoid including features with
high similarity for both normal and anomalous features from
the image itself. For PatchCore and PatchCluster especially
with memory bank subsampling, however, we aim to build
a unified memory bank for all test images and cannot avoid
confusing features from the image itself. We could compute
the anomaly score for a given patch feature using or starting
from its k-th nearest neighbor. However, the optimal k for a
set of images is highly dependent on the dataset size, the inner
distribution of the images, and post-processing approaches
on the memory bank such as coreset subsampling. To tackle
this issue, we simply set k to 2 to avoid searching the feature
itself as the nearest neighbor. We show that using a proper
K value which has a clear choosing criterion makes Patch-
Cluster robust to various BAD settings in 5.2 and 5.3.

We set the number of nearest neighbors K for patch fea-
ture anomaly scoring to 100 for PatchCluster-100%, which is
close to the average number of test images for each category.
For the coresets with subsampling ratios of 1%, 10%, and
25%, we simply reduce the K to 5, 10, and 25 without care-
ful tuning, respectively. It should be noted that as mentioned
above, we do not consider the feature itself as its neighboring
feature.

123



31 Page 6 of 10 J. Zhang

Table 2 Anomaly detection and localization performance under the blind anomaly detection settings on MVTec AD

Method PaDiM SPADE PatchCore PatchCore PatchCore PatchCore PatchCluster
-LoF 10% −25% −100% −25%

Mix Image 95.2 86.8 87.8 92.7 86.6 82.9 97.5

Pixel 97.0 92.9 88.2 84.8 85.7 87.9 98.2

Pro 91.0 89.4 66.3 65.7 65.1 75.3 91.0

Test Image 91.4 79.4 81.7 89.5 82.9 81 95.7

Pixel 93.7 90.9 83.4 81 82.4 85.7 95.9

Pro 89.5 88.5 64.4 61.8 61.9 73.7 89.5

Ano Pixel 92.0 88.6 80.7 78.1 81.0 84.5 94.3

Pro 88.5 87.6 63.2 59.6 61.0 72.9 88.3

Bold values indicate the best results within each experimental configuration

5.2 Blind anomaly detection onMVTec AD

We first give an overall comparison with PaDiM, SPADE,
PatchCore, and the proposed PatchCluster in Table 2. The
proposed PatchCluster uses the same memory bank as
PatchCore. Our proposed method outperforms all competi-
tors by a large margin under all BAD settings regarding
both image-level and pixel-level anomaly detection evalu-
ation metrics. PatchCluster-25% achieves 97.5% and 98.2%
AUROC scores for anomaly detection and localization for
Mix setting, which is comparable to several SOTA one-
class anomaly detection approaches. Without approaching
any training data under the Test setting, PatchCluster still pre-
serves high anomaly detection performance. Under the most
aggressive Ano setting, PatchCluster still achieves a 94.3%
AUROC score and a PRO score of 88.3% for pixel-wise
anomaly detection. As a comparison, the best image-level
and pixel-level AUROC scores are only 92.7% and 92.9%
under the Mix setting, at the influence of only 1.1% anoma-
lous pixels in the dataset. It should also be noted that even
for the Mix setting with the smallest portion of anomalous
pixels, there are still 23% anomalous images in the dataset,
which is a stringent BAD setting and practically impossible
for uniform sampling from industrial product lines.

As another patch feature memory bank-based method, the
modified SPADE shows better pixel-level anomaly detection
than PatchCore, demonstrating the influence of confusing
features from the test image itself.

PaDiM explicitly models the distributions for each fixed
patch feature location.Well-modeleddistributions are desired
for one-class anomaly detection; however, they conflict
against the performance under BAD settings as they also
cover the anomalous patch features.

We also extend the PatchCore with classical Local Outlier
Factor (LoF) [32] algorithm, a local-density-based anomaly
scoringmethod.Weuse the fullmemorybankwithout coreset
subsampling and calculate the relative local density for each
patch feature according to the distances with its neighbors

as the anomaly score. We found using 100 neighbors yield
better anomaly detection results, which is consistent with our
assumption.

We then report the detaileddetection results ofPatchCluster-
25% for each category under different BAD settings in Table
3. Some visualization examples under the Test setting for
objects and textures are shown in Fig. 3 and Fig. 4, respec-
tively. PatchCore fails to effectively assign high anomaly
scores to anomalous patch features which leads to too many
false-positive cases, i.e., normal patches could easily be
detected as anomalous. PatchCluster is robust to various
types of texture and object products under all BAD set-
tings. However, it shows slightly inferior performance for
categories that local spatial variations are relatively large for
normal patches such as the cable, and categories with too
fine-grained or large defects such as pill and transistor.

5.3 Effectiveness of local feature clustering

Wefirst report the performance of the proposed PatchCluster-
100% with different numbers of patches used for estimating
the distance for the test patch feature and the local patch dis-
tribution in Table 5. PatchCluster is stable for a wide range
of K . It should be noted that with K = 1, the PatchClus-
ter is identical to PatchCore-100%. The proper value of K
has a certain choosing criterion. From the global contextual
viewpoint, each image of a certain kind of product tends
to contain most kinds of local patches. Setting K near the
number of total images in S is likely to yield stable perfor-
mance. We set K fixed to 100 for PatchCluster-100% which
is approximately the average number of images for each cat-
egory under the Test setting. We visualize the local feature
clustering under the Test setting on two examples from one
object category and one texture category in Fig. 5. The nor-
mal feature and its neighboring features tend to compromise
a dense distribution, and they are close in distance to each
other. However, for anomalous features, there may exist sev-
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Table 5 Blind anomaly detection results of PatchCluster-100% using
different K values

K 1 10 50 100 150 200

Mix Image 82.9 92.7 97.3 97.3 97.1 96.9

Pixel 87.9 92.9 96.7 97.2 97.4 97.5

Pro 75.3 86.1 90.8 91.0 91.0 91.0

Test Image 81 89.8 95.6 95.3 94.6 93.9

Pixel 85.7 90.3 94.3 94.9 95.1 95.1

Pro 73.7 84.1 89.5 89.5 89.3 89.0

Ano Pixel 84.5 88.6 92.8 93.3 93.5 93.6

Pro 72.9 83.0 88.5 88.3 87.9 87.6

Bold values indicate the best results within each experimental configu-
ration

Table 6 Blind anomaly detection results of SPADE-Cluster using dif-
ferent K values

K 1 10 20 50 100 150

Mix Pixel 92.9 94.3 94.4 94.2 93.8 93.5

Pro 89.4 89.4 89.0 87.9 86.5 85.5

Test Pixel 90.9 92.4 92.4 92.1 91.8 91.4

Pro 88.5 88.3 87.7 86.4 84.9 83.9

Ano Pixel 88.6 89.9 89.9 90.2 90.0 89.7

Pro 87.6 87.2 86.5 85.1 83.6 82.6

Bold values indicate the best results within each experimental configu-
ration

Table 7 Anomaly detection results with different coreset subsampling
ratios

Ratio 1% 10% 25% 100%

Mix Image 90.5 97.2 97.5 97.3

Pixel 95.8 98.0 98.2 97.2

Pro 83.9 90.3 91.2 91.0

Test Image 76.1 94.3 95.7 95.3

Pixel 88.8 95.7 95.9 94.9

Pro 72.4 88.6 89.5 89.5

Ano Pixel 85.8 93.9 94.3 93.3

Pro 68.5 87.3 88.3 88.3

Bold values indicate the best results within each experimental configu-
ration

eral neighboring features, but most of the neighbors tend to
have large distances from them.

To further analyze the effectiveness of local feature
clustering,we extendSPADE intoSPADE-Cluster and exper-
imentally verify the performance. The results are shown in
Table 6. It is also obvious that with local feature cluster-
ing, the SPADE-Cluster also shows significant improvement
against SPADE. The performance of SPADE-Cluster drops
with K larger than50, which is the number of nearest images
used to create the memory bank for each test image.

Fig. 5 Visualization of local feature clustering by nearest neighbor
search

5.4 Effectiveness of memory bank subsampling

Table 7 shows the BAD performance of PatchCluster with
different coreset subsampling ratios using the same greedy
search method as PatchCore. We observe obvious perfor-
mance drops with too small subsampling ratios, regardless of
the significantmemory bank size reduction and improvement
of inference speed.A similar observation for PatchCore could
also be found in Table 2. We argue that the local patch-based
image-level anomaly scoring methods will become unreli-
able if the pixel-level anomaly detection ability is worse.
An underlying interpretation is the difficulty of covering not
only normal patch features but also anomalous patch features
that are relatively sparse in the feature space with small sub-
sampling ratios. PatchCluster-25% performs even better than
PatchCluster-100% as the subsampling process, to a certain
degree, plays a role of a noise feature filter.

5.5 One-class anomaly detection onMVTec AD

Table 4 shows the results of PatchCluster-25% and other
methods under the one-class setting on theMVTec AD.With
the patch features of the training data fully anomaly-free,
the greedy-searched coreset effectively reduced the size of
the memory bank while retaining strong anomaly detection
ability. However, as there are no anomalous patch features
in the memory bank and coreset, using a certain amount of
neighboring patch features for anomaly scoring reduces the
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detection sensitivity, leading to slightly inferior performance
compared to PatchCore.

6 Conclusion

We introduce the blind anomaly detection (BAD) problem
for industrial inspection, a task of finding fine-grained local
anomalies in a set of mixed normal and anomalous images
without using any human annotations. We formulate three
BAD settings, Mix, Test, and Ano based on the existing
industrial anomaly detection benchmarkMVTecAD dataset.

Based on the memory bank-based method, we convert
BAD as a local outlier detection problem and propose Patch-
Cluster, a method of measuring the local patch feature’s
distribution using the corresponding nearest neighbors in
the memory bank. The proposed approach could effectively
estimate the normal feature distribution, while it fails for
anomalies. PatchCluster is robust to various kinds of BAD
settings and shows comparable performance with current
one-class anomaly detection SOTAs.
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