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Abstract

Aiming at the requirements of high accuracy, lightweight and real-time per-
formance of the panoptic driving perception system, this paper proposes an
efficient multi-task network(YOLOMH). The network uses a shared encoder and
three independent decoding heads to simultaneously complete the three major
panoptic driving perception tasks of traffic object detection, road drivable area
segmentation and road lane segmentation. Thanks to our innovative design of
the YOLOMH network structure: first, we design an appropriate information
input structure based on the differences information requirements between dif-
ferent tasks, and secondly, we propose a Hybrid Deep Atrous Spatial Pyramid
Pooling(HDASPP) module to efficiently complete the feature fusion work of the
neck network, and finally effective approaches such as anchor-free detection head
and Depthwise Separable Convolution(DCN) are introduced into the network,
making the network more efficient while being lightweight. Experimental results
show that our model achieves competitive results in both accuracy and speed on
the challenging BDD100K dataset, especially in terms of inference speed, The
model’s inference speed on NVIDIA TESLA V100 is as high as 107 Frames Per
Second(FPS), far exceeding the 49 FPS of the YOLOP network under the same
experimental settings. The final visualization shows that YOLOMH can excel-
lently complete the panoptic driving perception tasks, which is conducive to the
safe and reliable autonomous driving of autonomous vehicles.

Keywords: Panoptic Driving Perception, Multi-Task Network, HDASPP, YOLOMH
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Fig. 1 Speed and accuracy comparison between YOLOMH and other advanced multi-task networks

1 Introduction

In recent years, people have been trying to build a powerful panoptic driving percep-
tion system to serve autonomous driving. The tasks of the panoptic driving perception
system include object detection, drivable area segmentation and lane line segmenta-
tion. It primarily utilizes onboard sensors to gather information regarding the size and
location of obstacles surrounding the vehicle, the drivable area of the road, as well as
the length and location of road lanes. These environmental cues provide essential foun-
dational support for higher-level tasks such as decision planning and behavioral control
in autonomous driving, ensuring safe and reliable autonomous driving of autonomous
vehicles on the road [1]. Different from other application scenarios, the environment
perception system plays a very important role in the field of autonomous driving.
In addition to accuracy, low-cost, high-efficiency and lightweight models are also the
goals pursued by researchers.

Currently, the main onboard sensors applied to environmental perception systems
in the field of autonomous driving include cameras, lidar, etc. [2]. Compared to cam-
eras, lidar is insensitive to color and light, but is expensive. On the contrary, the RGB
image captured by the camera has rich texture and color information, which is suit-
able for object detection and segmentation tasks. In addition, cameras also have the
characteristics of low cost and easy on-board installation [3]. Therefore, using images
captured by cameras as input and combining with deep learning models to achieve
a panoptic driving perception system is currently a competitive solution for low-cost
Advanced Driver Assistance Systems(ADAS), as it can meet the requirements for high
efficiency and low cost in autonomous driving [2].

2



In deep learning-based object detection, there are two mainstream approaches. The
first one is two-stage approach, represented by the RCNN series of algorithms [5–7].
These two-stage approaches prioritize detection accuracy, usually extracting high-
quality candidate frames first, and then complete the classification and detection tasks.
This approach often sacrifices computational efficiency as a prerequisite, which is not
conducive to the practical deployment of perception models on vehicles. Single-stage
detectors are increasingly popular in the industry due to their efficient performance
on embedded devices [4]. The You Only Look Once(YOLO) series of algorithms [8–12]
are typical representatives. It completes the detection tasks of three types of objects
(large, medium, and small) through a multi-scale approach. Due to its good balance
between speed and accuracy, it has become the most popular detection framework
in practical applications [13]. The recently proposed YOLOv8 network achieves the
best balance between speed and accuracy, but each model can only perform a single
task, making it difficult to meet the real-time operational requirements of multi-task
panoptic driving perception systems. In the field of low-cost ADAS, multi-task detec-
tion networks based on a single model are considered to be an efficient solution for
panoptic driving perception systems. Of course, segmentation models have also devel-
oped rapidly in recent years. In the fields of road drivable area segmentation and lane
line segmentation, the mainstream algorithms include UNet [14], SegNet [15], PSPNet
[16], SCNN [17] and ENet-SAD [18] etc.

Unfortunately, although the above approaches have achieved good results in solv-
ing their respective tasks, in actual autonomous driving systems, especially low-cost
ADAS, in addition to focusing on accuracy, limited computational resources and cost
issues are also typically considered. Therefore, it is usually unrealistic to run a sepa-
rate model for each individual task in an actual autonomous driving system, because
this requires the on-board computing platform of the intelligent driving vehicle to have
high computing power, which is not only detrimental to network deployment but also
fails to meet the low-cost requirement [1].

Against this background, this paper considers using low-cost camera sensors com-
bined with multi-task networks based on deep learning to efficiently solve the above
problems. The YOLOMH structure proposed in this paper is an encoder-decoder
mode, which uses three task heads to simultaneously complete the tasks of object
detection, drivable area segmentation and lane line segmentation in the panoptic driv-
ing perception system. We designed the corresponding detection and segmentation
task heads in a decoupled manner so that they can share the image feature informa-
tion extracted by the encoder, thereby avoiding the time and cost overheads associated
with using single-task networks separately. Figure 2 shows the inference results of
YOLOMH, where the red boxes indicate the model’s predicted road vehicle obstacle
information, the green area represents the safe drivable area, and the blue lines denote
the road lane information.

In the practical application of panoptic driving perception systems, real-time per-
formance is a crucial factor, faster response speed increases the possibility of avoiding
accidents and ensuring personnel survival. A key metric for real-time is inference
time or FPS [2]. This paper evaluates the proposed YOLOMH on the BDD100K [19]
dataset. The results show that the proposed network exhibits competitive results in
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Fig. 2 The inference results of YOLOMH

both accuracy and speed. Specifically, the mAP50 value for object detection is 81.3%,
the mIoU value for drivable area segmentation is 92.7%, and the IoU value for lane line
segmentation is 29.4%. In terms of inference speed, our model can reach an amazing
107 FPS on V100 GPU, which is far higher than the 49 FPS of the YOLOP [1] model
under the same experimental settings. Figure 1 shows a comparison of the proposed
multi-task network and other advanced multi-task networks in terms of average accu-
racy (average accuracy of traffic object detection, drivable area segmentation and lane
line segmentation tasks, shown on the vertical axis) and inference time (shown on the
horizontal axis). It can be observed that the proposed YOLOMH achieves an opti-
mal fusion of accuracy and speed, effectively meeting the requirements of autonomous
driving vehicles for high-accuracy and low-latency systems.

In summary, the main contributions of this paper are: (1) Within the field of
autonomous driving, we innovatively design an efficient perceptual multi-task network
(YOLOMH), The network can simultaneously complete the three major panoptic driv-
ing perception tasks of traffic object detection, road drivable area segmentation and
road lane line segmentation, and It has excellent real-time conditions. (2) The proposed
HDASPP module not only replaces the original FPN [20] structure for efficient neck
network feature fusion, but also has high adaptability, which can take into account
the receptive field information of different scales by adjusting the number and dilation
rate of Hybrid Dilated Convolutions(HDC) [21]. (3) We introduce the anchor-free idea
into the object detection head to avoid complex Non-Maximum Suppression(NMS)
operations, and combining the HDASPP and DCN [22] modules to make the network
more efficient while realizing lightweight. We will verify the effectiveness of the pro-
posed network in subsequent experiments. Especially in terms of visualization, the
model shows impressive results.
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2 Related Work

This section will review some classic network models in panoptic driving perception
systems, including object detection in single-task areas, road drivable area segmen-
tation, road lane segmentation and panoptic driving perception multi-task network
models. We focus on deep learning-based approaches.

2.1 Object Detection

In the field of object detection, mainstream detection algorithms can be divided into
two-stage detection approaches and one-stage detection approaches. Representative
works of the two-stage detection approaches include RCNN [5], Fast-RCNN [6] and
Faster-RCNN [7], which complete the detection task in two steps: firstly, obtaining the
Regions of Interest(RoI), and then using the features in the region suggestion to classify
and localize the object [4]. As autonomous driving systems have increasing require-
ments for object detection speed, single-stage detectors have received more and more
attention from the industry because of their fast and efficient performance on embed-
ded devices. The YOLO series of algorithms are typical representatives of single-stage
detectors. It accomplishes object detection at three different scales, large, medium and
small, by dividing the feature map grid with different resolutions, and then considers
object detection as a regression problem for end-to-end training and inference. Due to
its good balance between speed and accuracy, it has become the most popular detec-
tion framework in practical applications [13]. The early representative work of the
YOLO series is YOLOv3 [9], which opened up a new path for first-level detectors by
introducing a multi-scale detection head. Subsequently, YOLOv4 [10] reorganized the
detection framework into several independent parts (backbone, neck, and head), and
verified bag-of-freebies and bag-of-specials at the time to design a framework suitable
for training on a single GPU. YOLOX [11] introduces decoupled heads and anchor-free
approaches, which greatly simplifies the network training and decoding stages. As we
can see, efficiency has always been a goal sought by researchers in the object recog-
nition task of autonomous driving. With the continuous development of the YOLO
series, currently YOLOv5-v8 are competing candidates for efficient detector deploy-
ment. Although the YOLO algorithm is so excellent, it can only complete one task at
a time, and most of them use a anchor-base detection mechanism, which cannot be
regarded as a true end-to-end detection algorithm [2, 14]. It can become a potential
risk in terms of latency when deployed at the in-vehicle device side.

2.2 Drivable Area And Lane Line Segmentation

In the field of autonomous driving, semantic segmentation networks can be used to
effectively divide the road drivable area and road lane line information. FCN [23]
ignited the flame of the first fully convolutional segmentation network, which improved
the recognition rate by 20% on the Pascal VOC2012 [24] dataset compared with the
traditional approaches. However, it only focuses on local information and does not
consider global information, resulting in rough segmentation results. In the field of
drivable area segmentation, UNet uses the classical encoder-decoder structure. PSP-
Net further introduces pyramid pooling to extract features at different levels, thereby
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effectively dividing drivable areas. However, it still has certain limitations when deal-
ing with multi-scale features. SSN [25] adds conditional random field units in the
post-processing stage to improve its segmentation performance, but its higher mem-
ory consumption is not conducive to practical drivable area segmentation tasks. In
the field of lane line segmentation, SCNN replaces the traditional layer-by-layer con-
volution with the slice-by-slice convolution within the feature map, which aggregates
the information of the slices of different dimensions. The message passing mechanism
is utilized to capture the strong spatial associations between lanes, which significantly
improves the lane detection performance, but the approach has a large delay in real-
time applications. Subsequently ENet-SAD created self-attention distillation to help
low-level feature mappings learn knowledge from high-level feature mappings. This
approach improves the performance of the model while keeping the model lightweight,
but the distillation operation will increase the training time of the model. and com-
plexity. CurveLane-NAS [26] uses a neural architectural search technique to obtain a
network with better performance, which is beneficial for the detection of curved lanes.
However, NAS is computationally expensive and requires a lot of GPU time for search-
ing. Although the results in drivable area segmentation and lane line segmentation
have been better, for example, ENet-SAD is able to achieve lightweight while guaran-
teeing the performance of the model, it is still only able to perform a single task and
cannot meet the needs of multi-task detection in panoptic driving perception.

2.3 Multi-Task Approaches

In order to ensure that the panoptic driving perception system can still operate effi-
ciently on low-cost ADAS devices with limited computational resources, some scholars
have attempted to integrate these perception networks into a single model. This inte-
gration approach saves computational resources and satisfies the real-time requirement
[2]. The purpose of multi-task network is to learn better representations by shar-
ing information between multiple tasks, especially the CNN-based multi-task learning
approach also enables convolutional sharing of network structure, which is benefi-
cial for better expression of feature information among different tasks [1]. MASK
R-CNN [28] extends the Faster R-CNN by adding a branch that predicts the object
masks, which combines the instance segmentation and object detection tasks effec-
tively together to parallelize the object detection and instance segmentation tasks.
Subsequently, YOLOP adopts an encoder-decoder structure and introduces two addi-
tional segmentation heads based on YOLOv5, effectively combining the three major
tasks of traffic object detection, drivable area segmentation and lane line segmentation
for the first time. However, two redundant segmentation heads in YOLOP leaves some
room for optimization. subsequently, HyBridNets [29] considered from the perspective
of feature information extraction and fusion, and introduced the BiFPN [30] in the
neck layer to further improved the network performance. Shortly after, YOLOPv2 [27]
optimizes for the redundancy problem that exists in the two segmentation task heads
of YOLOP, and uses the E-ELAN [12] module to further lightweight the network. The
approach outperforms previous similar multi-task network approaches by achieving the
current optimal fusion of accuracy and speed on the BDD100K dataset. However, it
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Fig. 3 The architecture of YOLOMH, end-to-end encoder-decoder architecture

does not further address the information differences between heads with different dif-
ficulty tasks, and the design of the detection head based on the sight frame still leaves
room for time-consuming optimization, which is difficult to meet the time-consuming
needs of environmental perception in low-cost ADAS.

3 PROPOSED METHODOLOGY

In this section, we introduce the proposed YOLOMH network in detail. Discuss how
to implement an efficient multi-task network to simultaneously accomplish the three
major panoptic driving perception tasks of traffic object detection, drivable area seg-
mentation and lane line segmentation. Figure 3 shows the structure of our proposed
multi-task network. In general, YOLOMH follows the mainstream structure of multi-
task networks: the encoder-decoder structure. However, unlike YOLOP, we use a more
lightweight module to perform feature extraction operations on the input images.
Moreover, in further experiments, we found that different tasks have different feature
information requirements due to their completely different detection characteristics,
as the drivable area usually covers a large area while the lane lines tend to be elon-
gated in shape. It is not reasonable for the previous multitask network to use the
deepest feature information of the neck uniformly, so we design three independent
decoders to perform the three major detection and segmentation tasks one by one.
Finally, we apply the idea of anchor-free to the traffic object detection task, which
helps improve the network detection speed and ensures the efficiency of the model in
practical applications.

7



3.1 Encoder

The YOLOMH encoder structure is shown in Figure 3, including the backbone net-
work for image feature extraction and the neck feature fusion network. As the shared
backbone of multi-task models, the importance of feature extraction is self-evident.
An excellent backbone network can help multi-task networks achieve excellent perfor-
mance in all tasks [29]. The recently proposed YOLOv8 absorbs the excellent ideas of
ELAN [13] in yolov7 in the backbone network, and replaces the C3 structure with the
gradient-rich C2F structure to achieve further lightweighting [4]. These improvements
have enabled yolov8 to show strong strength in object detection tasks. Therefore,
we use YOLOv8s backbone network to efficiently accomplish the encoder’s feature
extraction. It is worth mentioning that, in order to achieve anchor-free and end-to-end
networks, we did not copy the previous work of multi-task networks, but utilized the
proposed HDASPP to perform multi-scale fusion work.

The HDASPP structure is shown in Figure 4. The module utilizes three different
sizes of HDC to obtain different sizes of receptive field information, and then con-
catenates with 1x1 convolution and pooling layer to achieve multi-scale feature fusion
information. The DCN module helps to further reduce the computational burden on
the network. The reason for this design is that we found that the FPN based approach
does not consider the differences between multi-task and is not friendly to computa-
tional resources, which is not conducive to the wide application of panoptic driving
perception systems. In subsequent experiments, we found that for the drivable area
segmentation task, using deeper features not only failed to improve the model pre-
diction performance, but also increases the difficulty of model convergence during the
training. Therefore, we use the HDASPP 1 structure(partial HDASPP) to accomplish
this task. For the lane line segmentation task, we found that a larger receptive field is
unnecessary, so we did not use the deeper layers(HDC, r=18) in the HDASPP struc-
ture. For the object detection task, it requires both rich deep and shallow feature
information in the network [37]. Therefore, we concatenate HDASPP to the L3 layer
of the backbone network to obtain the receptive field information required by traffic
objects at different scales, so as to effectively accomplish the object detection task.

3.2 Decoders

As shown in Fig 3, we design different feature information sources and decoder struc-
tures for these three tasks of different difficulty. Inspired by DeepLabv3 [31] and
CenterNet [32] network structures, we innovatively use HDASPP and anchor-free
approach to efficiently accomplish the decoding of YOLOMH.

3.2.1 Drivable Area And Lane Line Segmentation Heads

YOLOP designs the same decoder for drivable area segmentation and lane line seg-
mentation tasks, and uses the same feature information source. This approach, which
does not distinguish the differences between tasks, cannot lead to good performance
to drivable area segmentation task. We concatenate the deepest layer of the back-
bone network with HDASPP 1 to obtain the feature information required for drivable
area segmentation. For lane line segmentation, we found that in the input image, lane
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Fig. 4 Proposed structure of HDASPP, use different dilation rates to obtain rich receptive field
information in the network

lines usually have a small area but are difficult to detect. This means that this task
usually does not require large receptive field information and pays more attention to
local contextual feature information. Therefore, we abandon the work of using the
module(HDC, r=18) that contains large receptive field to support this task. Finally,
YOLOMH’s two segmentation tasks classify the pixel level and restore the original
image feature map of (H, W, 2) after a series of deconvolutions. Each feature point
represents the drivable area or lane at the pixel level, with 1 representing the object
and 0 representing the background.

3.2.2 Traffic Object Detection Head

In order to achieve optimal detection performance, anchor-base needs to cluster specific
datasets before training and perform complex post-processing operations after infer-
ence. It has a series of shortcomings such as low generalization and complex detection
heads. Anchor-free detectors have developed rapidly in the past few years. While hav-
ing performance comparable to anchor mechanism detectors, they significantly reduce
the number of design parameters, such as Anchor Clustering [9] and Grid Sensitivity
[35]. Accelerating up the training and decoding stages of the detector [32]. The pro-
posed YOLOMH uses an anchor-free approach based on center point prediction on the
detection task, thereby avoiding complicated NMS operations on the prediction box
and achieving a true end-to-end network structure. Specifically, we concatenate the
HDASPP structure to the high-resolution feature layer(L3) of the backbone network
to obtain contextual feature information containing different scales to simultaneously
complete the detection task of traffic objects of different sizes. The network performs
a series of convolution operations on the 1/8 downsampled feature map to obtain a
feature map of (80, 80, 4(2)(2)) dimensions, where 4, 2, 2 respectively represent the
category, center point, and width and height prediction information.
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3.3 Loss Function

The proposed multi-task network loss consists of the sum of the individual task losses.
Formula(1) shows our loss function:

LMul-all = α1Ldet + α2Lda-seg + α3Lll-seg (1)

where Ldet is the traffic object loss, Lda−seg and Lll−seg are the drivable area segmen-
tation loss and lane line segmentation loss respectively. And each task is considered
equally important, that is, α1 = α2 = α3. In the Lda−seg approach, we used cross-
entropy loss to minimize the classification result between GT bounding box and
predicted pixel values, and for the more difficult Ldet and Lll−seg, we introduced Focal
Loss [33] to deal with traffic objects and lane lines that are difficult to classify, so as
to bring out the best performance of the network.

In traffic object detection, we introduce Gaussian kernel to determine positive and
negative samples to obtain more positive samples for regression training. Specifically, if
the prediction point falls within the Gaussian circle, it is marked as a positive sample.
In order to enable the prediction point close to the ground truth(GT) bounding box
center to learn better information, we allocate different losses according to the distance
between the prediction point and the kernel center. The closer the distance, the better
the prediction performance and the greater the weight. The maximum weight is 1.
The centerness [32] loss is shown in formula(2):

centerness =

√

min (l, r)

max (l, r)
×

min (t, b)

max (t, b)
(2)

where t, b, l, r is used to predict the position of the box. It can be found that when
the center of the regression box is closer to the real box, the centerness value is closer
to 1. The traffic object detection loss is further represented as shown in formula(3):

Ldet = γ1FLheatmap + γ2Loffset + γ3Lbox (3)

where γ1, γ2 are adjustable weight parameters and γ3 is the centerness loss. For each
location the network predicts the output of (C+4) results, (C) denotes the probability
that the location is the center point of each type of object, which partially uses the
Focal Loss to balance the learning of difficult and easy samples. (+4) denotes the width
and height of the contained object(Lbox), and the offset of the object center(Loffset).
We use L1 Loss [34] to calculate the predicted center point offset, and use LCIoU [36]
to calculate the object prediction box loss. The CIoU loss comprehensively considers
factors such as overlap, distance, and aspect ratio between the two boxes, allowing for
more precise object shape localization.
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4 Experiments

This section describes the dataset and parameter configuration for our experiments.
All experiments in this paper were conducted in the configuration environment of
NVIDIA TESLA V100 graphics card and torch 1.10.

4.1 Experimental Data And Configuration

In the field of visual multitasking networks, the BDK100 dataset has received a lot of
attention within the field of automated driving because of its features such as large
data volume(10W frames), wide coverage of scenarios(weather conditions, geographic
location, lighting conditions, etc.) and full range of tasks (more than ten tasks, such as
detection and segmentation, etc.) Therefore, it can be easily migrated to new environ-
ments. The BDD100K dataset consists of three parts , a training set of 70K images,
a validation set of 10K images, and a test set of 20K images, but the test set is not
yet fully public, so we consider evaluating the performance of our network on the
validation set. Part of the data display of BDD100K is shown in Figure 5.

Fig. 5 The partial data and annotation of BDD100K dataset

The total number of training times for the network is 300 epochs. We adjusted the
image size from 1280×720 to 640×640 for training, and then adjusted it to 640×384
for operation during the evaluation phase. This is beneficial to the training cycle and
inference time of the multi-task network. We introduce cosine annealing [11] approach
to adjust the learning rate. This approach has been beneficial in many neural network
tasks. Similarly, we set the initial learning rate to 0.01, and trigger warm up after the
2nd epoch to set the momentum and weight decay to 0.937 and 0.005, respectively.
In addition, we also set a training steep slope for the learning rate, that is, linearly
reducing the learning rate to 1/10 of the original value at epoch 100, 200, and 270 to
prevent missing the best performance of training. In order to improve the performance
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Fig. 6 YOLOMH can capture rich receptive field information at different scales. The red, white and
yellow circles in the figure represent large, medium and small traffic object information respectively

of the model, we tried to perform data augmentation on the input data. In addition
to standard approaches such as random brightness, contrast, flipping and cropping of
images, we also used random Mosaic [9] data augmentation operations, and in the last
20 epochs of training Mosiac enhancement operation was turned off, which proved to
be effective in subsequent experiments.

4.1.1 Cost Computation Performance

Faster inference speed has always been one of the goals pursued by deep learning. Espe-
cially in autonomous driving tasks, the network needs to be installed and deployed
on onboard devices with limited computing resources, so inference time is particularly
important. Table 1 shows the time-consuming comparison between several excellent
multi-task models and our model. We conducted comparative tests using the same
experimental settings and evaluation metrics. The results show that compared with
YOLOPv2 and HybridNets multi-task network models, our model has fewer param-
eters and inference delays. In terms of inference speed, YOLOMH is 58 FPS faster
than the mainstream YOLOP and 20 FPS faster than the current best YOLOPv2.

Table 1 Network parameters and inference time results, batch size is 32.

Mul-Nteworks Size(Pixel) Parameters(M) Speed(FPS)

YOLOP 640 7.9 49
HybridNets 640 12.83 33
YOLOPv2 640 38.9 87
YOLOMH 640 11.91 107

4.1.2 Traffic Object Detection Performance

Table 2 shows the comparison between several commonly used object detection models
and our model . Since multi-task networks such as YOLOP are only concerned with the
four vehicle categories(car, bus, truck and train) in the BDD100K dataset for traffic
object detection, we will compare and analyze the results of these vehicle detections.
Same as YOLOP, we use mAP50 and Recall as evaluation metrics. The results show
that our network performance outperforms mainstream multi-task networks such as
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YOLOP and HybridNets in both precision and recall, because of the excellent receptive
field fusion work of the proposed HDASPP. YOLOMH can better detect objects of
different sizes, even small objects of 5 to15 pixels (shown by the yellow circle in Fig
6), which is favorable to the reliability of panoptic sensing systems.

Table 2 Traffic object detection evaluation results.

Network mAP50(%) Recall(%)

YOLOV5s 77.2 86.8
YOLOP 76.5 88.2

HybridNets 77.3 89.7
YOLOMH 81.3 91.6

4.1.3 Drivable Area Segmentation Performance

Table 3 shows the evaluation results of drivable area segmentation, using mIoU to eval-
uate the segmentation performance of different models. Our model achieved an effect
of 92.7%, which is 2.2% and 1.2% higher than HybridNets and YOLOP respectively.
This is amazing in the subsequent visualization results.

Table 3 Drivable area segmentation evaluation results.

Network mIoU(%)

MultiNet 71.6
PSPNet 89.6
YOLOP 91.5

HybridNets 90.5
YOLOMH 92.7

4.1.4 Lane Line Segmentation Performance

Table 4 shows the evaluation results of lane line segmentation, and Figure 5 shows the
visualization results of lane labels. Since the lane lines in the BDD100K dataset are
marked with two lines, the annotation information needs to be converted. We use the
lane center as the origin and draw an 8-pixel lane mask for training. The lane width of
the test set remains 2 pixels. We use pixel-level accuracy and lane IoU as our evaluation
metrics. In terms of accuracy performance: Our model has achieved the best results,
with a stunning accuracy improvement compared to the YOLOP network. In terms of
IOU performance: Compared with the best-performing HybridNets, our model does
not suffer much loss. Compared with the currently popular YOLOP network, our
model improves by 3.2%.

4.2 Visualization Performance And Analysis

Fig 7, Fig 8 and Fig 9 show the visualized comparison results between the proposed
network and YOLOP network on the BDD100K dataset. In order to illustrate the
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Table 4 Lane line segmentation evaluation results.

Network Acc(%) IoU(%)

ENet 34.12 14.64
SCNN 35.79 15.84

ENet-SAD 36.56 16.02
YOLOP 70.50 26.20

HybridNets 85.40 36.60
YOLOMH 87.72 29.40

effectiveness of the improvement, we compare them under several scenarios such as
daytime, dusk, night, rainstorm and backlight.

Figure 7 shows the results in the daytime scene. Scene 1 shows large false negatives
in the drivable area. It missed the drivable area ahead of the road and misidentified one
vehicle object on the left side of the image as two vehicle objects. Scene 2 shows false
detections and omissions on the traffic object task, and the detection results for lane
lines are not continuous. Scene 3 has some false negatives on the drivable area and lane
line detection, it misses to detect part of the drivable area and lane line information,
and misses to detect the black vehicle object on the left side of the picture.

Figure 8 shows the effect of the night scene. Scene 1 has false positives on the traffic
object task, which falsely detects one vehicle as two, and has lane line miss-detection.
Scene 2 has the omission of vehicles with lights on on the left side of the picture, and
the model omits some lane line information. Scene 3 has a large-scale traffic vehicle
and lane line omission detection problem, and it can be inferred that the YOLOP
network has not learned effective feature information of traffic vehicles and road lanes
in the dark night scene.

Figure 9 shows the effect in dusk, rainstorm and backlight scene. Scene 1 is dusk,
and the model has traffic object and lane line leakage detection problem. Scene 2
is a rainstorm, which is a good example of the drawbacks of YOLOP, as the model
misses relatively fuzzy information about vehicle objects and lane lines, and there is
also a misdetection problem in the drivable area task. Scene 3 is a dark backlight
environment, YOLOP misdetects distant traffic objects and handles the segmentation
task imperfectly.

Fig. 7 The day-time results
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Fig. 8 The night-time results

Fig. 9 The dusk, rainstorm and backlight results

After visual analysis, it is not difficult to find that when the YOLOP network
performs panoptic driving perception tasks, there are misdetections, missed detections
and inaccurate prediction boxes of road objects, missed detection and disconnection of
road lane lines, over and under detection of drivable areas on the road, etc. question.
On the contrary, the proposed YOLOMH can well improve the above problems and
achieve excellent detection results in various complex scenes such as dusk, heavy rain
and backlight. As shown in the second picture in Figure 7 and Figure 9, the model
can accurately identify the vehicle objects transported on the car and better complete
the panoptic perception task in the blurred environment of heavy rain. In contrast,
YOLOP fails to achieve this, which indicates that the proposed model provides better
performance in various scenes.

4.3 Ablation Studies

We designed some experiments to verify the effectiveness of our work, including
the effectiveness of data enhancement and structural improvement. All experimental
configurations and indicators are consistent with the previous ones.

4.3.1 Origin VS Mosaic

As shown in Table 5, we introduced random Mosaic data augmentation in the exper-
iment to improve the accuracy and generalization ability of YOLOMH. Origin is
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standard configuration and uses image enhancement approaches such as random
brightness and contrast, and more. Taking the traffic object detection task as an exam-
ple, after the model was enhanced with Mosaic data, the accuracy increased by 1.1%
and the recall increased by 3.1%. This experiments show that using data enhancement
approaches is beneficial to the learning of multi-task networks.

Table 5 Mosaic data enhanced ablation experiments.

Origin Mosaic mAP50(%) Recall(%)

✓ 80.2 88.5
✓ ✓ 81.3(+1.1) 91.6(+3.1)

4.3.2 Origin VS HDASPP&Anchor-free

To highlight the effectiveness of our network, we compare the Origin(FPN&anchor-
base) approach with the newly proposed approach(HDASPP&anchor-free), and both
experiments use yolov8s as the feature extraction network. Since the improvements are
mainly focused on traffic object detection, we perform the comparison on the traffic
object detection task. Table 6 shows the results of our ablation experiments. It can
be found that HDASPP can obtain receptive fields with different scales required for
different objects (as shown in Fig 6), and the combination of the anchor-free detection
idea allows the network to have a better recall, to find more positive examples of
detection, and to reduce the leakage of detection in the detection task. The model
also has further improvement in inference speed, which is favorable to the practical
application of panoptic driving network.

Table 6 HDASPP&anchor-free ablation experiments.

Origin HDASPPAnchor-free mAP50(%) Recall(%) speed(FPS)

✓ 80.9 87.1 875
✓ 81.3(+0.4) 91.6(+4.5) 921(+46)

5 Conclusion

In the field of autonomous driving, this paper optimizes the problems existing in the
current YOLOP network and proposes an efficient end-to-end multi-task perception
network YOLOMH. It uses a shared encoder and three independent and simultaneous
decoding heads to complete the three major sensing tasks of traffic object detection,
drivable area segmentation and lane detection in panoptic driving perception. Through
experiments, this paper first considers the lightweight and practicality of the multi-
task model, uses yolov8s as the backbone network to complete the image feature
extraction work, uses the proposed HDASPP module to efficiently complete the feature
fusion work of the neck network, and uses anchor-free idea to avoid redundant NMS
to further lightweight the network. Secondly, this paper reveals that in the process of
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multi-task network learning, there are differences in the feature information required
for different perception tasks, which usually requires experimental adjustments to
obtain the optimal structure. More importantly, the network proposed in this paper
has lower latency than previous multi-task network models, which greatly improves
the possibility of using panoptic driving networks in autonomous driving scenes.
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[32] Zhou X, Wang D, Krähenbühl P. Objects as points[J]. ar**v preprint
ar**v:1904.07850, 2019.

[33] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detec-
tion[C]//Proceedings of the IEEE international conference on computer vision.
2017: 2980-2988.

[34] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural
networks[J]. IEEE Transactions on computational imaging, 2016, 3(1): 47-57.

[35] Huang X, Wang X, Lv W, et al. PP-YOLOv2: A practical object detector[J].
ar**v preprint ar**v:2104.10419, 2021.

[36] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for
bounding box regression[C]//Proceedings of the AAAI conference on artificial
intelligence. 2020, 34(07): 12993-13000.

19



[37] Li J, Chen J, Sheng B, et al. Automatic detection and classification system of
domestic waste via multimodel cascaded convolutional neural network[J]. IEEE
transactions on industrial informatics, 2021, 18(1): 163-173.

Liu Fang received the B.S. and Ph.D. degrees from Northeastern University,
Shenyang, China, in 2006 and 2012, respectively. She is currently an Associate Pro-
fessor with the Tianjin Key Laboratory of Autonomous Intelligent Technology and
System, Tiangong University, Tianjin, China. Her research interests include computer
vision, intelligent-assisted driving, modeling of complex systems, identification, and
optimization.

Miao Jianxi received the bachelor’s degree in engineering from the Wannan Univer-
sity of Technology, Anhui, China, in 2021. He is currently pursuing the master’s degree
in software engineeringwith the Tianjin Key Laboratory of Autonomous Intelligent
Technology and System, Tiangong University, Tianjin, China. He research interests
include autonomous driving, visual perception system.

Sun Bowen received the bachelor’s degree in engineering from the Shenyang Uni-
versity of Technology, Liaoning, China, in 2023. He is currently pursuing the master’s
degree in software engineering with the Tianjin Key Laboratory of Autonomous Intel-
ligent Technology and System, Tiangong University, Tianjin, China. He research
interests include autonomous driving, visual perception system.

20



Su Weixing received the B.S. and M.S. degrees from Northeastern University,
Shenyang, China, in 2003 and 2006, respectively, and the Ph.D. degree from the
University of Chinese Academy of Sciences, Beijing, China, in 2014. He is currently
a Professor with the Tianjin Key Laboratory of Autonomous Intelligent Technol-
ogy and System, Tiangong University, Tianjin, China. His research interests include
autonomous driving, intelligent-assisted driving, and smart manufacturing technology.

21


	Introduction
	Related Work
	Object Detection
	Drivable Area And Lane Line Segmentation 
	Multi-Task Approaches

	PROPOSED METHODOLOGY
	Encoder
	Decoders
	Drivable Area And Lane Line Segmentation Heads
	Traffic Object Detection Head

	Loss Function

	Experiments
	Experimental Data And Configuration
	Cost Computation Performance
	Traffic Object Detection Performance
	Drivable Area Segmentation Performance
	Lane Line Segmentation Performance

	Visualization Performance And Analysis
	Ablation Studies
	Origin VS Mosaic
	Origin VS HDASPP&Anchor-free 


	Conclusion

