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Abstract

Visual database systems require efficient indexing to enable fast access to the images and video. In
addition. the large memory capacity and channel bandwidth requirements for the storage and
transmission of visual data necessitate the use of compression techniques. Future multimedia
applications are likely to increasingly store and transmit the visual information in compressed form.
Hence indexing the visual content in compressed domain is expected to result in significant savings in
computational complexity. Vector quantization (VQ) is an efficient technique for low bit rate image
and video compression. In addition, the lower complexity of the decoder makes VQ attractive for low
power systems and applications which require fast decoding. Most importantly, VQ is naturally an
indexing technique, where a block of pixels is compactly represented using an index (label) which
corresponds to a codebook.

In this thesis. we propose the novel concept of using VQ for joint compression and indexing
of images and video. The images/image frames are compressed using VQ and the labels and
codewords are employed in indexing the visual content. First, we present a review of image/video
compression and indexing. We then propose two techniques in the VQ compressed domain for image
indexing. In the first technique, the histogram of codewords weighted by the number of labels is used
as teature vector for indexing. [n the second technique. the histogram of the labels. which are used to
represent an image. is used as an index. We also propose a new technique based on adaptive wavelet
VQ. which provides an improvement in coding and retrieval performance. Here. the images are
decomposed using wavelet transform followed by VQ of the transform coetticients. A usage map of
codewords is generated for each image and is stored along with the image. In the retrieval process. the
usage map of the query image (VQ encoded) is compared with the corresponding usage maps of the
target images in the database.

Since video has both spatial and temporal dimensions. a straightforward extension of the
image indexing techniques for video indexing is inefficient. We propose to employ both the spatial
and temporal features for efficient indexing of video clips. The video sequence is partitioned into
shots using the label maps of the individual frames and the camera operations and motion within each
shot are then determined by further processing the label maps. Each shot is then represented using a
spatio-temporal index. The spatial index represents the content of the key frame (image) of a shot.
while the temporal index represents the motion and camera operations within the shot. Detailed
simulations have been carried out using a large database of images and video sequences. Simulation
results demonstrate the excellent retrieval performance of the proposed techniques at a significantly

reduced computational complexity.
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Introduction

Multimedia Information Systems are becoming increasingly important with the advent of
broadband networks. high-powered workstations and compression technologies. There are
several applications including distance learning, telemedicine. interactive television. digital
libraries. multimedia news and geographical information systems which are already
dominated and are expected to be increasingly populated by visual (images and video)
information. Since. visual media involves large amounts of memory and computing power
for storage and processing, the problems of tlexible acquisition. processing and access have
become more important.

[t can be seen from the experience of textual media based information retrieval. for
example over the World-Wide Web (WW W), that content-based indexing play a crucial role
in the location and retrieval of the required information. The success of visual media search
engines will therefore rely on the development of sophisticated tools and techniques for

content-based indexing.

1.1 Problem Definition

Previous approaches to indexing of visual media have taken two directions. The first

direction is a straightforward extension of textual databases. In this approach, the visual
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contents are represented in textual form using keywords and attributes such as scene
description, actor’s name. director’s name. etc. The keywords and attributes serve as indices
to access the associated visual data. The Aggregate Data Manager (ADM) which is an
interactive database system is an example of the extension of conventional databases to
handle images [1]. ADM is based on a relational database model and uses the Structured
English Query Language (SEQUEL) to query the stored images. This approach has the
advantage that visual databases can be accessed using standard query languages such as SQL
(Structured Query Language). However this entails extra storage and needs a large amount of
manual processing. A more serious consideration from the point of view of reliability is that
the descriptive data (i) do not conform to a standard language. (ii) are inconsistent. and (iii)
might not capture the image/video content. Thus the retrieval results may not be satisfactory
since the query is based on features that have been inadequately represented. The second
approach to indexing visual data is to apply image analysis/understanding techniques. Image
pattern recognition techniques are first used to classity an image/video into one of several
categories. Interpretation to each class is then provided using knowledge bases. For example.
the shape features in a scene may be mapped into symbols which represent elementary shapes
such as circles. rectangles, etc. Semantics of the scene is developed by interpreting the
collection of symbols. The interpretation is accomplished by using visual models and rules
that imitate the human understanding. The Multi-sensor Image Database System (MIDAS) of
Carnegie-Mellon University is a good example of this approach [2]. Two file types are
distinguished in MIDAS: data files and description files. The data files contain the images
while the description files (text files) contain a hierarchical symbolic representation of a

scene. In addition, the description files contain relational tables which describe the
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interrelations between the text files. This approach has two disadvantages: (i) the use of pre-
defined categories limits the application of the database system and (ii) this is a
computationally intense and complex task. As a result., there has been a new focus on
developing image/video indexing techniques which (i) have the capability to retrieve visual
data based on their contents. (ii) are domain independent. and (iii) can be automated.

The storage of uncompressed visual data requires considerable capacity. For example,
the data rate for a 704x576 full motion video at 24 bits/pixel and a frame rate of 30
trames/second (4 Common Intermediate Format) is 276 Megabits/second. This implies that a
DVD-ROM (write once. read many Digital Versatile Disc) with a storage capacity of 17
gigabytes can only store 8.4 minutes of video. Similarly, the transmission of uncompressed
image/video data over digital networks requires a high bandwidth. For example. the
transmission of one second of video over FDDI (Fiber Distributed Data Interchange) at a rate
of 100 Megabits/second and 20% throughput rate for a shared network involves 13 seconds.
Hence. it is necessary to use etficient image/video compression techniques to provide cost-
eftective solutions for the storage and transmission of visual data.

Many compression algorithms have been reported in the literature to reduce the
storage and transmission requirements in image/video applications [3]-[27]. The International
Standards Organization (ISO) has proposed the Joint Photographic Experts Group (JPEG)
and the Moving Pictures Experts Group (MPEG) standards for image and video compression.
respectively [23]-[25]. Recently. the Moving Pictures Experts Group has developed an
audiovisual compression standard. referred to as MPEG-4. to support access and processing
of audiovisual data at very low bit rates [26]-[27]. The scope of MPEG-4 is future delivery

and storage systems allowing for high compression (10-64 kbits/sec), interactivity, scalability
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of video and audio content, and support of natural and synthetic audio and video content.
Recently, MPEG has initiated a new standard, called Multimedia Content Description
Interface (MPEG-7). MPEG-7 will specify a standard set of descriptors that can be used to
describe various types of multimedia information. This description will be associated with
the content itself, to allow fast and efficient scarching of visual data.

Typically indexing and compression has been pursued independently as shown in
Figure 1.1. Compression algorithms are concerned mainly with the optimization of distortion.
bit rate and complexity without focusing on content accessibility. On the other hand, indexing
techniques are usually designed ignoring the fact that it is very likely that images and video
may be stored in the compressed form. Image and video indexing in the uncompressed
domain (Figure 1.1) has the following disadvantages: First., processing of the uncompressed
data is time consuming since image/video data are voluminous. Second, there is an auxiliary
storage requirement to storc the decompressed data. This reduces the overall system
performance and storage efficiency.

To climinate the problems of indexing in the uncompressed domain. it is necessary to
combine imagc/video indexing and compression as shown in Figure 1.2. Image and video
indexing in the compressed domain has two advantages. First, there is a reduction in
computational cost as image/video are represented in the compressed form. Second, we note
that many compressed bit streams typically contain information. such as motion vectors.
which can help in dertving content-based indices.

Research in the arca of combined image/video indexing and compression can be
pursued in two directions: (i) to generate content-based indices in the compressed domain for

existing compression techniques, and (ii) to develop novel compression techniques that are



optimized not only in terms of signal distortion, bit rate and complexity but also provide the

feature of indexing.
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Figure 1.1: Indexing in the uncompressed domain.
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Figure 1.2: Indexing in the compressed domain.




1.2 Investigated Approach

Vector quantization (VQ) is an efficient technique for very low bit rate image and video
compression [7]-[13]. Recently. VQ has been used to simplify image processing algorithms.
such as enhancement. edge detection and reconstruction. by performing them simultaneously

with the compression [18]. In VQ [7]. the image to be compressed is decomposed into L-

dimensional vectors. Using a nearest neighbor rule, each input vector is mapped onto the

label of the closest codeword. The labels of the codewords are used to represent the input
image. Image reconstruction is implemented by a simple table look-up procedure. where the
label is used as an address to a table containing the codewords. [n other words. VQ is
naturally an indexing technique. where each subimage (vector) is mapped into an index

(label). In addition. VQ has the following advantages:

e Fast decoding which makes it attractive tor systems based on sottware only playback of
video such as Intel’s Indeo. Apple’s QuickTime and Microsoft's Video.

e Reduced hardware requirements due to the simplicity of the decoder which makes it
attractive for low power applications such as portable video-on-demand in wireless
communications [13].[28].

Hence. VQ is a promising approach for combining compression with indexing.

[n this thesis. we propose novel algorithms based on VQ to index images and video in
the compressed domain. The proposed techniques combine compression and indexing. and

provide excellent performance at both high and low compression ratios.



1.3 Summary of Contributions

The fundamental contribution of this thesis is the proposal ot VQ as an efficient technique for
joint compression and indexing of images and video. Following is a list of the individual
contributions:

. Acritical survey of existing image and video indexing techniques [131]-[132].

(1]

Two new algorithms for the indexing of compressed images using vector quantization

[134].

|US]

. Algorithm for the integration of indexing and compression of vector quantized images
using VQ and wavelet VQ [155].

4. Algorithm for the segmentation of video sequences in VQ domain..

wn

Algorithm for the detection of camera operations in the VQ domain [136].

6. Spatio-temporal indexing of video sequences [157].

1.4 Thesis OQutline

The thesis is organized as follows. Chapter 2 presents a review of image and video indexing
techniques. Chapter 3 follows with a review of content-based image and video indexing
techniques in the compressed domain.

In chapter 4. we propose two novel techniques for indexing images using VQ. In the
first technique. for each codeword in the codebook. a histogram is generated and stored along
with the codeword. We note that the superposition of the histograms ot the codewords. which

are used to represent an image. is a close approximation of the histogram of the image. This



histogram is used as an index to store and retrieve the image. In the second technique, the
histogram of the labels of an image is used as an index to access the image.

[n chapter 5. we propose a new technique based on adaptive vector quantization
which integrates the index of an image within the compressed bit stream. Here. the index is
generated at compression time and hence the proposed technique eliminates the need for a
separate structure to store the indices. The performance of this technique is investigated in the
spatial and transform domains.

In chapter 6. we propose an algorithm for video indexing using a spatio-temporal
index. The spatial index represents the spatial content of the representative frame of a shot,
while the temporal index represents the temporal content of the shot. The spatial index is
based on the codewords used to compress the representative frame. while the temporal index
is based on motion and camera operations within the shot. We present two algorithms for the
detection of shot boundaries and camera operations. respectively. The proposed techniques
are executed entirely in the compressed domain. This entails significant savings in
computational and storage costs resulting in faster execution.

Finally. the summary and tuture research directions are presented in chapter 7

followed by the references.



2
Review of Image and Video

Compression

Image and video data are voluminous: compression is essential for storage and
transmission. The goal of image/video data compression is to reduce the number of bits
required to represent an image/video signal while maintaining an acceptable fidelity [3]-[4].
Image/video compression is essentially a redundancy removal process. Efficient compression
is achieved by exploiting the spatial. temporal and psychovisual redundancies. Spatial
redundancy reters to the dependency between the pixel values in a local region of an image.
Spatial redundancy is typically removed by employing intratrame coding techniques such as
predictive coding. transform coding. etc. Temporal redundancy refers to the correlation
between the successive frames in a video sequence and is usually removed by employing
interframe compression techniques such as motion estimation/compensation. frame
replenishment. etc. Most image/video frames contain psychovisual redundancies: that is.
some information may be removed without sacrificing the subjective image quality. For

example. two properties of the human visual system that may be exploited to a great



advantage are (i) lower sensitivity to faster moving objects and (ii) lesser perception of
distortion at higher spatial frequencies.

In this section we present a review of image and video compression techniques. First.
the concepts of lossless image/video data compression are presented in section 2.1. This is
followed in section 2.2 by an overview of lossy compression techniques. In section 2.3. we
present a review of vector quantization techniques. This is followed in section 2.4 by a
review of wavelet transform. The JPEG. MPEG. and MPEG-4 standards are then discussed in
sections 2.5. 2.6. and 2.7, respectively. We note that emphasis is placed on the review of
vector quantization (VQ) methods as the focus of this thesis is essentially based on VQ. The

summary is presented in section 2.8.

2.1 Lossless Compression

Lossless compression is concerned with minimizing the average number of bits per pixel
without any loss in image quality: i.e. the decoder should reconstruct the exact input image
trom the encoded image. Information theory states that the source can be exactly encoded
with A bits/pixel. where H is the source entropy. For a source with 2° possible independent

symbols with probabilities p,. i=1.2. ... 2°. the zeroth-order entropy is given by:

H= —Z p, log, p, (2.1)

1=

This results in a variable length code (VLC) where shorter codewords are assigned to more
trequent pixel values and longer codewords are assigned to infrequent pixel values. Huffman
and Arithmetic coding are the most popular approaches for lossless coding. Arithmetic

coding achieves higher compression ratios than Huffman coding, but it is more difficult to
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implement. Another technique for lossless coding is run length coding [3] in which a
reduction in the bit rate is achieved by sequentially transmitting or storing the pixel values
(run) followed by the number of its repetitions (length). Significant compression is possible if

the input image is characterized by long runs.

2.2 Lossy Compression

Lossy or minimum distortion compression results in a reconstruction that is not identical to
original (uncompressed) image. The purpose of lossy compression is to minimize the bit rate
tor a given average distortion or equivalently. to minimize the average distortion for a given
bit rate. For an image source. the average distortion D is defined as
D = Etd(A.1)! (2.2)

where d(4.4) is a distortion measure between the source A and its reproduction . Clearly.
the design of such an encoding scheme depends on the statistics of -{ and the characteristics
d(A.4). Rate distortion theory [5] provides the theoretical lower bound on the bit rate of any
quantizer. For the source A with a probability function p (). the rate distortion function is

defined as
R(D") = min{/(A.4)} (2.3)
where the minimum is taken over all the encoding schemes which result in average distortion

D less than some value D*. and /(4..{) is the average mutual information between A and A

defined as
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A A p. (a/ a)
(A.4H)=)> p.a)p. (ala) log—ﬂMT— (2.4)
a (; o p(a
A

where p.41_4(,»1‘/.~1) is the conditional probability for A given A. This definition of the rate
distortion function indicates that for a given average distortion D. the minimum transmission
rate is R(D). Shannon's coding theorem states that it is possible to design an encoding system
which achieves the average distortion D at a transmission rate arbitrarily close to R(D).

Although the theory does not detail the design of such an encoding system. it is
valuable in comparing the performance of different encoding schemes.

The techniques for lossless image/video compression can be classified into predictive.
transform. wavelet/subband. vector quantization. fractal. and model-based coding. We now
present a brief overview of each technique. Detailed description ot the techniques can be
found in [3]-[29].

Predictive Coding: Predictive compression exploits the mutual redundancy between
neighboring pixels. Rather than encoding the pixel intensity directly. its value is first
predicted from the previously encoded pixels. The predicted pixel value is then subtracted
from the actual pixel value and the difference (prediction error) is quantized and coded for

transmission. The quantized prediction error is used at the receiver to reconstruct the image.

Transform Coding: The basic concept in transform coding is to concentrate the
important information in a tew transtorm coetticients. which are then quantized. coded and
transmitted. For still images. the input image is first divided into non-overlapping blocks
Xmr.m2 Of MyxM: pixels. In order to decorrelate the image data. a two dimensional transform

is then applied to X,/ .2 as shown in The transformation maps X2 into a two dimensional



array @, . of transform coefficients with the same dimension. Mathematically this operation is

given by:

AL M,

— - f’ -
Qu,\' - Z Z‘X mlvml‘.{um,ml_ml (""D)

mi=0m2=0
where A4, vmim> is the transtorm kernel. The resulting coefficients Q,,. u=12.... .M,
v=1,2....,M> are then quantized, coded and transmitted. At the receiver. an inverse transtorm

operation is applied to the quantized coefficients }’,, to reconstruct the image:

M, M,

Zml.ml = Z Z K:.\'Au—.l\',ml.ml (26)

u=0 v=i
A wvmil.m2 18 the inverse transform kernel.

An optimum transform should result in statistically independent coetticients.
Karhunen-Loeve transform is an optimum transform in terms of both the mean square error
and subjective quality. However, it requires a large number of operations to compute: and is
hence usually replaced by sub-optimal transforms such as Fourier transtform. discrete cosine
transtorm (DCT). or Hadamard transtorm. Although there are many transform techniques.
DCT is widely used in practice because of its simplicity and it is performance which is close
to the optimal Karhunen-Loeve transtorm [33]. DCT has been adopted in image and video
coding standards. such as JPEG. MPEG and H.261.

Subband Coding: In subband coding, the input signal is filtered to create a set of
subimages or subbands. each of which contains a limited range of spatial frequencies. The
resulting subbands are downsampled to preserve the data rate. The subbands are then

separately quantized. with attention being paid to bit allocation. Decompression is performed



by upsampling the decoded subbands, applying appropriate filters and adding the
reconstructed subbands together.

Fractal Coding: A fractal is a geometric form where irregular details recur at different
scales and angles which can be described by a transformations (e.g. an affine transformation).
Fractal image compression is the inverse of fractal image generation. ie. instead of
generating an image from a given formula. fractal image compression searches for sets of
fractals in a digitized image which describe and represent the entire image. Once the
appropriate sets of fractals are determined. they are reduced to very compact fractal transform
codes or formulas. In block fractal coding, an image is partitioned into a collection of non-
overlapping regions known as range blocks. For each range block. a domain block and an
associated transtormation are chosen so that the domain block best approximates the range.
These transtormations are known as fractal codes. While the pixel data contained in the
range and domain blocks are used to determine the code. they are not part of the code.
resulting in a high compression ratio

Model-Based Coding: Model-based coding can be classitied into 2-D and 3-D model-
based coding. In 2-D model-based compression. the input image is segmented into regions
exhibiting common features. For example. an image might be partitioned homogeneous
regions and encodes their shapes and intensities. In 3-D model based compression are based
on structural model of scenes. There are two approaches to 3-D model based compression.
The first makes use of surfaces of the object modeled by general geometric models such as
planes or smooth surfaces. Here. information such as surface structure and motion
information is estimated from image sequences and utilized in compression. The second

approach utilizes parameterized model of the object such as parameterized facial models.
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Here, the parameterized models are usually given in advance. Model-based compression have
achieved some of the highest compression ratios, however. they have high computational
complexity.

Vector Quantization (VQ): Details of VQ are presented in section 2.3.

Wavelets: Details of wavelet coding will be presented in section 2.4,

These categories of compression techniques often overlap, combined (hybrid

techniques) and they are often combined with lossless compression.

2.3 Vector Quantization

In VQ [10]. a training set of representative images is decomposed into L-dimensional vectors.
An iterative clustering algorithm such as the LBG algorithm is used to generate a codebook.
{UnUs. ... .Uy}, where N is the number of codewords in the codebook and U={u,;. u,. ... .
;. The codebook is then made available at both the transmitter and the receiver. In the
encoding process. the image to be compressed is decomposed into L-dimensional vectors.
Each vector F':={v,. v,>. ... v} is mapped into another vector U,. The mapping process is
based on a minimum distortion or nearest neighbor rule: Compression is achieved by
transmitting the label j corresponding to U,. Image reconstruction is implemented by a table
look-up, where the label j is used as an address to a table containing the codewords.

The steps involved in VQ as applied to image/video compression are vector

formation. codebook design. and quantization.
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2.3.1 Vector Formation

The first step in VQ is to decompose the input image into vectors. The image is partitioned
into two dimensional blocks of equal or variable sizes. The features or values are extracted
from the blocks and then rearranged into vectors. Various vector formation schemes have
been proposed [7]-[10]. For example. the vectors can be formed from the original pixel
values of the blocks; the transform coefficients of a block of pixels: the prediction error of a
block; the pixel values of a block normalized by the average and the color components of a

pixel.

2.3.2 Codebook Design

Linde er al. [8] have presented an algorithm for codebook design based on the two conditions
for optimality. referred to as the generalized Lloyd or the LBG (Linde. Buzzo. and Gray)
algorithm. The LBG algorithm is a variant of the K-means (C-means) clustering algorithm. In
this algorithm. given an initial codebook. each training vector is assigned to its nearest
neighbor codeword. Each codeword is then modified to minimize its distortion relative to the
vectors assigned to it. This process continues iteratively until the change in distortion
between two successive iterations is within a threshold of acceptance. The algorithm is
described as follows:

[. Given an initial codebook. Cy={I,i=1.2 .. N}, a threshold €20 and a training set

(V=12 ... K}.setmtoOand D to .

]

Assign each input vector to its nearest neighbor codeword:

qV)=w,, if dW.w,)<dWV.W,) for all j=k (2.7)
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3. Find Cp., by computing the centroids of the training vectors assigned to each codeword:

LI oS P=12...N (2.8)

;p:,mvl ."/[ !

m Vel ,

where M, ,, is the number of vectors assigned to W) .

4. Compute the average distortion:

&
D, =— DV W) (2.9
.-u ./V Z ;

Wed,
if D, relative to D,,.; is less than €, then stop: otherwise. go to step 2.

To obtain the initial codebook C, one possible approach is to select the first. or the
evenly spaced N vectors as an initial codebook. Alternatively. one might use the splitting
algorithm [8]. where the centroids of the training set is calculated and split into two
codewords. The LBG algorithm is applied to vield a codebook of two codewords. Each
codeword is then split into two codevectors to vield a codebook of four codewords. This
procedure is repeated until an N-level codebook is constructed.

Note that the LBG algorithm may converge to a local minimum. Furthermore. the
solution is not unique and depends upon the initial codebook. Simulated annealing is a
procedure which introduces randomness in each iteration of the LBG algorithm can be used
to avoid the local minima. However, this procedure is computationally intensive. Recently.
techniques based on neural networks and the pairwise nearest neighbor (PNN) algorithm has
been reported as alternatives for codebook design [7]. In the neural network approach. the
weights (which represent the codewords) between the neurons are adaptively adjusted after
the presentation of each vector. The main advantage of neural network is that it converges to

an asymptotic value faster than the LBG algorithm. In the PNN approach, each of the K
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training vectors is considered as a separate cluster. Welstart with the K clusters and merge
together the two clusters which result in the minimum increase in average distortion. This
yields K-1 clusters. The merging process continues until only N clusters remain. PNN is
faster than the LBG algorithm, however the LBG algorithm results in a codebook that
satisfies the two conditions for optimality. In addition. it has been shown that for a practical
codebook size and training set, the computational etficiency of the LBG algorithm is higher

than the PNN algorithm [9].

2.3.3 Vector Quantization using an Universal Codebook

Vector quantization techniques can be broadly classified. with respect to training and
codebook generation. as universal and adaptive. In this section. image coding using universal
VQ is reviewed. while adaptive VQ is discussed in the next section. Universal VQ employs a
fixed codebook generated using a large set of training vectors selected from different types of
images. To ensure good image tidelity the codebook must be large. which in turn increases
both the bit rate and the coding complexity. The codebook size can be reduced using
techniques which exploit the local image statistics. Examples include classitied VQ.
predictive VQ. finite state VQ. multi-stage VQ, fast search VQ, address VQ. and fast search

VQ.
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Figure 2.1: Vector quantization

2.3.4 Vector Quantization using an Adaptive Codebook

In adaptive VQ. the codebook is adapted in order to match the local image statistics. For
example. a new codebook can be generated using the vectors of the input image as a training
set. The new codebook is transmitted. followed by the labels corresponding to the vectors of
the image. Goldberg et al. [13]| have presented an adaptive VQ scheme for coding
monochrome and color images. In their scheme, the image is partitioned into non-
overlapping sub-images. and for each sub-image a separate 16-64 level codebook is created.
These codebooks better match the local image statistics. however. the improvement in coding
performance is achieved at the expense of the overhead incurred for transmitting the new
codebooks. An alternative scheme. which reduces the overhead. is to update or replenish part

of the codebook. For example, Gersho [14] have proposed a technique where the distortion of
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each input vector is monitored, and if it is larger than a predetermined threshold. the
codeword with the “largest time since use™ is replaced by the input vector.
We note that in the above techniques. the major drawback is that the improvement in

image quality is achieved at the expense of increasing the computational complexity.

2.4 Wavelets

Wavelet transform decomposes a signal into a weighted sum of basis functions called
wavelets [23]. The unique feature of the wavelet transform is that the wavelets are all dilated
and translated versions of a single function. the so called “mother wavelet”. Mathematically.
this is expressed as follows (one dimension):

-5

s {
wl ) =lal” w(—5) (2.10)

and by discretizing the values for @™ and f=nfha,". we obtain the following discrete
wavelet decomposition for a function g(.):

€= ¢, (8W,,, 21

r-m Dy

where w,.(t1=ay wiay™t-fy. The usual choice is ay=2 and £,=/. which results into
dyadic grid. Because of the orthonormality of w,,,, we get
Cun(8)=<V¥,,.8> (2.12)
The wavelet coefticients can be calculated iteratively using a two channel filterbank
[23]. A 2-D wavelet transtorm is implemented using a separable approach.

. - .. - . I .o e
Figure 2.2 shows a 3-level wavelet decomposition of an image S” of size .Yx} pixels.

In the first level of decomposition, one low pass sub-image S’ and three orientation selective
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high pass sub-images (W'", W', W'%) are created. In the second level, the low pass sub-
image is further decomposed into one low pass and three high pass sub-images (W*", >,
W), This process is repeated on the lowpass subimage to form a higher level wavelet
decomposition. The inverse wavelet transform is calculated recursively. where the higher

resolution images are generated starting from the lower resolution sub-images.

/8 s W
' ,’v_‘ h

A . ~
/8 W W
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X4 W e

v Original image §' 1

v2

Figure 2.2: Representation of 2-dimensional wavelet transtorm.

2.5 JPEG Compression Standard

Recently. the International Standards Organization (ISQ) has proposed a standard for image
compression known as JPEG (Joint Picture Experts Group) [25]. JPEG provides a framework
for compression of gray level and color images for a wide rage of applications. The JPEG

standard has four modes of operations:



o Baseline sequential: each image is compressed in a single left-to-right, top-to bottom;

¢ Progressive coding: the image is encoded in rultiple scans for applications in which
transmission time is long and the user prefers to view the image building up in multiple
coarse-to-clear passes.

e Hierarchical coding: the image is encoded at multiple resolutions. so that lower resolution
versions may be accessed without the need to decompress the full resolution image.

¢ Lossless compression: the image is encoded using DPCM-based losless approach.

The baseline sequential is a DCT-based algorithm. The progressive and hierarchical
modes use a modified version of the baseline algorithm. The DPCM-based lossless algorithm
is independent of the DCT. We now present a briet description of the baseline sequential
mode.

In the baseline mode. image compression is carried out in three steps: DCT
computation. quantization and variable length coding. The image to be coded is first
partitioned into non-overlapping blocks of size §x8 pixels as shown in Figure 2.3. In order to
decrease the average energy of the image pixels. each pixel is level-shitted by 2", where n is
the number of bits required to represent each pixel value (for example. # is equal to 8 for
images with 256 gray levels). Each block then undergoes a 2-dimensional DCT. The DCT
coefficients are quantized using a visually adapted quantization table. The DC coefficients
are differentially encoded. while the AC coefficients are scanned along the zigzag lines
shown in Figure 2.4 and encoded using an entropy encoder. The decoder is simply the inverse

of the encoder.
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Figure 2.3: Bascline JPEG encoder.
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Figure 2.4: Zigzag scanning of the DCT coefficients

2.6 MPEG Compression Standards

Recently. the International Standards Organization (ISO) have proposed standards for video
compression known as MPEG (Moving Picture Experts Group [26]. In addition. the
Consultative  Committee on International Telephony and Telegraphy (CCITT) has
recommended a standard for videotelephony called the H.261 at px64 Kbits/s [27]. In this
section we review the MPEG video compression algorithm.

In the MPEG video compression standard, a block based motion

estimation/compensation is employed to remove the interframe correlation and discrete
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cosine transform (DCT) for the removal of the intraframe correlation. Block diagrams of the
MPEG encoder is shown in Figure 2.5. Here. a group of pictures approach is used instead of
the frame by frame coding. A group of pictures is typically a combination of one or two intra-
pictures (I). predicted picture (P). and the rest of bi-directional pictures (B) as shown in
Figure 2.6. The [-frames provide random access points and are also used as a reference for P-
frames. The I-frames are coded using DCT on 8x8 blocks. The DC coefficient is
differentially encoded using variable length codes (VLC). The AC coefficients are zigzag
scanned as shown in Figure 2.4 and ordered into {RUNLENGTH. AMPLITUDE} pairs. A
variable length coder (VLC) is used to encode each pair. The P- and B-frames are
decomposed into 16x 16 blocks and the motion vector for each block is calculated. The
motion vectors are also variable length coded and transmitted. The motion compensated
ditference frame is partitioned into 8x 8 blocks which then undergo a 2-dimensional DCT.

The DC and AC coefficients are quantized. ordered along the zigzag scan line into

{RUNLENGTH. AMPLITUDE} pairs and coded using a VLC.

Input

! Frame Inverse 4 De-
frames memory DCT quantizer
A
v v
Mquon' >'I'cmpor'al » Forward » Quantizer <
estimation predection DCT
\/
Motion vectors " i
> VLC » Bufter: ,B'[
Stream
MUX

Figure 2.5: MPEG video coder
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Figure 2.6: Example of a group of pictures used in MPEG.

2.7 MPEG-4

In MPEG-1 and MPEG-2 the video information is assumed to be rectangular of tixed
size displayed at fixed interval. In MPEG-4 the concept of Video Object (VO). Video Object
Layer (VOL) and Video Object Plane (VOP) have been introduced. A VO can be viewed as
the MPEG-4 equivalent of a GOP in the MPEG-! and -2 standards. VOP represents
instances of a given VO. The VOP can have arbitrary shape. For example. the video trame
shown in Figure 2.7a. can be segmented into two VOP's: VOP, for the background and
VOP; for the foreground. as shown in Figure 2.7a and 2.7b. respectively. At the encoder side.
together with the VOP. composition information is sent to indicate where and when each
VOP is to be displayed. At the decoder side the user may be allowed to change the
composition of the scene displayed by interacting on the composition information. The shape.
motion and texture information of the VOP's belonging to the same VO is encoded into a

separate video object layer (VOL).
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Figure 2.7: Example of VOP. (a) One frame from a scene. (b) VOP,. and (¢) VOP-.

For each VO. the shape. motion. and texture information of VOP's are coded. The
shape information is referred to as alpha planes. The techniques to be adopted by the MPEG-
4 will provide lossless coding of alpha planes and lossy coding of shapes and transparency
information: thus. allowing for tradeoffs between bit rate and accuracy of shape
representation. Furthermore. intra-and inter-shape coding functionalities employing motion
compensated shape prediction is envisioned so as to allow efficient and random access
operations as well as efticient compression of shape and transparency information for diverse
applications.

Temporal redundancies between video content in separate VOP’s within a VO are
exploited using block based motion estimation and compensation. The intra VOP’s as well
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as errors after motion compensated prediction, are coded using DCT on 8x8 blocks, in a
manner similar to hat employed in MPEG. The compressed alpha plane. motion vectors. and
DCT coded information are muitiplexed into a VOL bit stream by coding the shape

information followed by motion and texture coded data.

2.8 Summary

In this chapter we have presented a review of image and video compression techniques. First.
we have explained the concepts of lossless image/video data compression. We have then
presented an overview of lossy compression techniques including predictive coding [3]-[5].
transform coding [6]. subband coding, fractal coding [18]-[19]. and model-based
compression techniques [17]. We have emphasized the review of vector quantization (VQ)
[7]-[15] and wavelet [20]-[24] methods as the focus of this thesis is essentially based on VQ
and wavelet-VQ. Finally. we have presented a review of JPEG. MPEG. and MPEG-4

compression standards [25]-[30].



3

Review of Image/Video

Indexing

We recall from chapter | that. one of the key features required in a visual database is efficient
indexing to enable fast access to the images/video in the database. In order to overcome the
limitations of keyword based systems and classification/interpretation techniques. indexing
techniques based on automatic feature extraction have been reported in the literature.
Typically. indices based on feature vectors derived from images and video are used as indices
to search and retrieve the image(s)/video of interest. In this chapter we present a detailed
review of image and video indexing techniques in the uncompressed domain [1351].

This chapter is organized as follows. An overview of a visual storage and retrieval
system is presented in section 3.1. Image and video indexing in pixel (uncompressed) domain
are reviewed in sections 3.2 and 3.3. respectively. Compressed domain image and video
indexing techniques are reviewed in sections 3.4 and 3.5. respectively. This is followed by a

review of MPEG-7 standards in section 3.6. Finally. the summary is presented in section 3.7.



3.1 Visual Storage and Retrieval System

Visual database access has two main components: storage and retrieval. In the storage
process, images and video are processed to extract features which describe their semantics.
The extracted features are then represented. organized and stored in the database. In the
retrieval process, the system analyzes a query, extracts the appropriate feature vector and a
search process is performed. The search process is carried out by computing the “similarity”
between the feature vector of the query and those of the candidate images and video stored in
the database. The retrieved images and video are presented to the user in the descending order
of the similarity to the query.

Several image and video database systems have been proposed in the literature [34]-

[37]. An architecture of a generic image/video database system is shown in Figure 3.1. It

consists of the user interface, content-based retrieval. organization. and database management

modules. A functional description of each module is presented below.

l. User Interface: In visual information systems. user interaction plays an important role in
almost all of its functions (e.g.. semi-automatic and manual feature extraction. navigation.
selection, and refinement). The user intertace consists of a query processor and a browser
to provide the interactive graphical tools and mechanisms for querying and browsing the
database. respectively. The query processor provides the means to retrieve images and
video using a variety of methods and interfaces. A query can range from a simple
keyword-based query to a complex one where the user specifies a sketch or an object
track. In contrast to textual database systems. image and video databases are required to

evaluate properties of the data specified in a query. For example, to retrieve all images



similar to an image based on color, the color attributes (e.g., color histogram) of the input
image has to be calculated. After retrieving all similar images/video. the browser is used
to display the results. The browser allows users to navigate through the database visually

and to further retine the search.
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Figure 3.1: Storage and retrieval of images and video.
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1. Content-based Retrieval Module: As shown in Figure 3.2, the content-based retrieval

module consists of the following:

Image
Pre-processing

Scene Change

Detection
Camgra ‘ Key Frame :
Operation + Extraction
Object Motion :
Camer; Object Color Shape Spat@l
Operations Relations
Object Sketch Texture Keywords
Motion

Feature Extraction and Representatlon‘

Figure 3.2: Content-Based Retrieval Module

o Scene Chuange Detection: Prior to storage in a database. a video sequence is first
segmented into elemental scenes called shots. A shot is a sequence of frames generated
during a continuous operation and therefore represents a continuous action in time or
space [127]. The purpose of the segmentation process is to partition the video stream into
a set of meaningful and manageable segments which then serve as basic units for

indexing. Once a video sequence is segmented into shots, a set of key frames is then



selected to represent the shot [111],[112]. Each shot is represented using spatial or
temporal features. The spatial features refer to the spatial content of the key frames of a
shot. while the temporal features refer the temporal content of the shot. The key frames
of a shot are fed to the image pre-processing stage in order to generate the spatial features

of the shot. while the shots are analyzed in order to extract the temporal features.

Image Pre-processing: The image is first processed in order to extract the features which
describe its contents. The processing might involve decompression. enhancement.
filtering. normalization. segmentation. and object identification. If the input image is in
the compressed form. decompression is required to facilitate execution of the pixel
domain algorithms. The output of the image pre-processing stage is typically a collection

of objects and regions of interest.

Feature Extraction and Representation: In this stage. the semantics of image/video
content are extracted and represented. The basic philosophy is the transtormation of the
data-rich pixel representation of image and video space to compact and semantic-rich
representation of visual characteristics (color. texture. .... etc.) in feature space. Features
(of the objects. regions, and/or the whole image) such as texture. color. etc. are used to
describe the content of a still image. For video. the spatial features are generated using
still image techniques [111]-[112], while the temporal features are extracted based on
motion and/or camera operations within the shot [122]. Image and video features can be
classified into primitive and logical features [39]. Primitive features such as color. shape
centroids. etc. are quantitative in nature and can be extracted automatically or semi-

automatically. Logical features are qualitative in nature and provide abstract
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representations of visual data at various levels of detail. Typically, logical features are
extracted manually. One or more features can be used in a specific application. For
example, in a satellite information system, the texture features arc important. while shape
and color features are more important in trademark registration systems. Once the
features have been extracted. the textual, numerical. alphanumerical. ete.. index keys are
derived.

Organization: Efficient query processing necessitates the organization of image/video
indices such that efficient search strategies can be used. We note that image/video indices
are approximately represented. may have inter-related multiple attributes and may not
have an embedded order [125]. Therefore. conventional indexing structures like B-tree.
hashing, etc., cannot be used for the organization of image/video indices. Flexible data
structures should be used in order to facilitate storage/retrieval in visual information
systems. Structures such as R-tree family [128]. R -tree [129]. quad-tree [130] and grid
file [131] arc commonly used. Each structure has its advantages and disadvantages: some
have limited domains and some can be used concurrently with others. Niu er al. [33]
have discussed some issues concerning novel indexing structures for image retrieval.
Ahanger et al. [36] have also presented a review of indexing structures for video.
Database Management Module: The database management module provides internal
level physical storage structurc and access path to the database. The databasc
management module has the following characteristics: (i) provides insulation between
programs and data. (ii) provides users with a conceptual representation of the data, (jii)

supports multiple vicws of the data, and (iv) ensures data consistency.
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3.2 Image Indexing In Pixel Domain

Recently. image indexing techniques based on color. texture, sketch, shape and spatial
relationships have been reported in the literature [40]-[45]. Color. texture and shape allow
users to retrieve images that contain objects which have similar attributes. Sketch allows
images 1o be retrieved based on a rough outline of the object(s) in a query image. Spatial
relationships facilitate retrievals based on features such as adjacency. overlap. and
containment among the objects in a scene. We now present a review of image indexing

techniques.

3.2.1 Color

Color is an important attribute for image representation. The color distribution of an image is
typically represented using the image histogram. The histogram of an image f, is an V-
dimensional vector | H(f,i): i=1. 2. ... . V). where V is the number of colors (bins) and H(/,. i)
is the number of pixels having color /. Histograms are invariant to image rotation. translation
and viewing axis [41]. In image indexing using histogram [40]-[43]. the histograms are the
feature vectors used as image indices. We note that a similarity measure is used in the
histogram space to measure the similarity ot two images.

Given a pair of images. f, and f,,. the similarity between the two images may be

measured using the normalized intersection of their histograms

> ming H(fy.0). H( f,-0)

Y H(f,.i)
=1



It has been shown that this metric eq. (3.1) is fairly insensitive to changes in image
resolution. histogram size, occlusion. depth and view point [40]. However. histogram
intersection does not consider the perceptual similarity between the different bins. A metric

which takes into account the similarity between the bins is defined as follows :

iiuu[m Jue) = HO L D HC = HOE, ) (3.2)
.
where the weight a, denotes the cross correlation between the colors corresponding to bins i
and j. We note that the metric in eq. (3.2) has a higher computational complexity than the
histogram intersection (eq. (3.1)). However. it is closer to human judgment of color
similarity.

The color histogram requires additional storage space and a large amount of
processing. For an image of size .Yx }". the histogram calculation requires Or.\7) additions and
O(XY) increments. [n addition. rN) operations are required to compare a pair of histograms.
To decrease the computational complexity. the number of bins should be reduced. The first
approach to reduce the number of bins is to represent the red (R). green (G) and blue (B)

components using the RG. BY. and H'B color axes as tollows [40]:

RG=R-C
BY=2xB-R-G (3.3)
WB=R+G+B

This representation allows the intensity (}/B) to be more coarsely quantized than RG and BY.
A histogram ot 2048 bins is obtained it RG and BY are divided into 16 sections. while IF'B is
divided into § sections.

The second approach to reducing the number of bins is based on the

observation that a small number of bins capture the majority of pixel counts in a histogram.
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wn



Therefore. only the bins with the largest counts are compared. Experiments have shown that
this approach results in a marginal degradation in performance [41.42].

An alternative approach to reducing the computational complexity in color indexing.
is to use the dominant features of a histogram. A color distribution of an image is interpreted
as a probability distribution which can be characterized by its moments [44]. If the first three
moments of each color component are used. only 9 floating point numbers are required to
represent each index. The similarity metric is a weighted sum of the absolute differences
between the corresponding moments. This approach outperforms the approaches based on
reducing the number of bins in terms of storage requirements. retrieval speed and robustness
[44]. However. the use of low order moments is sensitive to changes in illumination.

Another approach to reduce the computational complexity is to use a lower
dimensional histogram or a lower complexity metric to filter a large fraction of the database.
A higher-dimensional histogram or a higher complexity metric can then be applied to the
small set of retrieved images. Vellaikal er al. [48] have proposed to represent the color
histogram at different resolutions. Here. the histogram is decomposed using the three-
dimensional Haar wavelet basis functions. In the search process. the top I wavelet
coefficients of the histogram of the query image are compared. Hafner er al. [53] have
proposed the use of a lower dimensional and computationally simple distance measure based
on (3.2). This technique not only reduces the complexity of the search process. but can also
be implemented in a hierarchical manner. where a finer match can be obtained by increasing
the number of coetticients employed in the search process.

We note that in the previous techniques a histogram describes the entire image

content, without taking into account the location of the colors. This may result in
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unsatisfactory retrievals (e. g., false positives). For example, an image with a white car on the
left might be matched to an image with white birds on the right. This problem can be
eliminated by incorporating spatial information in the content representation. Gong et ul. [42]
have proposed the use of local histograms. Here. an image is partitioned into 9 (3x3) sub-
images. For each sub-image. the color histogram is generated. The content of the image is
represented by the histogram of entire image and the histograms of the sub-images. This
technique captures the locality of colors in an image. Stricker er «/. [49] have proposed a
technique where the image is partitioned into 5 overlapping fuzzy regions. The histogram for
each region is calculated and is represented by the first 3 moments. The 15 moments are used
to represent the image. The fuzziness of the regions makes the feature vector insensitive to
small rotations of an image. In addition. a similarity function which exploits the spatial
arrangement of the 3 regions is employed resulting in invariance of retrieval results with
respect to rotations of 90 degrees around the center of an image.

[ncluding spatial information in the color representation of an image will not only
improve the retrieval rate but also allow user queries based on the color of a sub-image. For
example. queries such as “retrieve all images with white birds on the right” could be
answered. However. this technique requires the use of efficient segmentation and

representation of the sub-images.

3.2.2 Texture

Texture is an important feature of a visible surtace where repetition or quasi-repetition of
fundamental pattern occurs. Texture features such as contrast, uniformity, coarseness.

roughness, regularity, frequency, density and directionality provide significant information
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for scene interpretation and image classification [54]. Texture modeling and classification
techniques can be grouped into structural. statistical and spectral methods. In this section. a
survey of texture modeling and classification techniques that have been employed in image
databases is presented.

Picard er al. {59] have presented a technique based on Wold decomposition. [f an
image is assumed to be a homogeneous and regular 2-D random field. then the 2-D Wold like
decomposition is a superposition of three orthogonal components: a purely-indeterministic
field u(n.m), a generalized evanescent field vin,m) and a harmonic field w(n.m). This model
provides a description of textures in terms of periodicity. directionality and randomness. Fach
one of these attributes is associated with the prominence of a different component. The
conspicuous components in periodic. directional and less structured textures are w(n m).
v(n,m) and u(n.m). respectively [39]. Simulations on about a 1000 test images (cropped trom
12 Bordatz texture images [62]) have shown that the Wold-based parameters are closer to
human judgment of texture similarity than the principal components approach.

Tamura er al. [61] have proposed the use of coarseness. contrast and directionality as
texture features. Coarseness is a measure of the granularity of the texture. Contrast can be
measured based on the gray-level distribution. Directionality determines whether or not the
image has a certain direction. A modified set of the Tamura features has been used in the
QBIC project [43].

Zhang er ul. [66] have proposed a technique based on features derived from a
multiresolution representation of the texture image. Here. the image pattern is decomposed
into a set of different resolution sub-images using multiresolution simultaneous

autoregressive model (MR-SAR). The MR-SAR parameters associated with each sub-image



are used to construct the index. The combination of MR-SAR model with Tamura's
coarseness features and gray level histogram gives better performance than MR-SAR [66].
However. the improvement in retrieval rates is at the expense of increasing the size of the
teature vector which increases the complexity of indexing and searching.

Retrieval by texture is useful when the user is interested in retrieving texture images
which are similar to the query image. However. the use of texture features in a general visual
database system requires texture segmentation (which remains a challenging problem) and

the combination of texture features with spatial information.

3.2.3 Sketch

Another approach to describing the content of an image is by using a sketch. A sketch is an
abstract image which contains the outline of objects. In this technique. for each image to be
stored in the database. a sketch image is generated and stored. Typically. a sketch is created
by using edge detection. thinning and shrinking algorithms. The sketch is used as a key to
retrieve the desired images trom the database. The similarity of two images is measured by
using the similarity of their sketches.

A technique for sketch based image retrieval has been proposed by Kato er a/.[80] and
is implemented in the QBIC [43]. Each color image is converted into luminance and
chrominance components. An edge operator is applied to the luminance component to
compute the binary edge image. The edge image is reduced to 64x64 pixels and the reduced
image is thinned. Query processing is performed by matching the user drawn sketch to the

sketches stored in the database. The matching process between the query image and a



candidate image is executed as follows. The query sketch is first reduced to 64x64 pixels and
divided into blocks of 8x8 pixels. Each block in the query image is correlated with the blocks
within a search area in the candidate image. The size of the search area is 16x16 pixels and is
centered around the block.

The main disadvantage of this approach is that it is orientation and scale dependent.
Similar images with different orientation or scale will not be retrieved when compared with
the query image. This problem can be eliminated by using sophisticated edge representation

and matching algorithms.

3.2.4 Shape

The shape of an object refers to its profile and physical structure. Shape features arc
fundamental to systems such as medical image databases. where the color and textures of
objects are similar. In general. shape features can be represented using traditional shape
analysis such as invariant moments. Fourier descriptors. autoregressive models and geometry
attributes [69]- [71]. However. in image storage and retrieval applications. shape features can
be classitied into global and local features.

Global features are the properties derived from the entire shape. Examples of global
shape features are roundness or circularity. central moments. eccentricity and major axis
orientation. In general. global features are robust to distortion. however. they cannot handle
occluded shapes. Eakins er al. [78] have developed the ARTISAN shape retrieval svstem
(Automatic Retrieval of Trademark [mages by Shape Analysis). Edge detection techniques

are applied to the trade mark images to derive a set of region boundaries. The boundaries are

40



approximated as a sequence of straight line and circular arc segments. The boundaries are
then grouped into families using proximity and shape similarity criteria. Eight global features
are used. namely: circularity, aspect ratio. discontinuity angle irregularity. length irregularity.
complexity. right anglenness. sharpness. directedness.

Locul features are those derived by partial processing of a shape and do not depend on
the entire shape. Examples of local features are size and orientation of consecutive boundary
segments [76]. points of curvature. corners and turning angle. Gary et al. [75] have presented
a shape similarity technique based on local boundary features encoded as multi-dimensional
points. Although local features can be used for occluded shapes. they are noise sensitive. Ang
et ul. [79] have presented multidimensional feature measures of object shapes and feature
blobs for retrieval of ceramic artifacts. Object shape is represented by boundary eceentricity
and region compactness. moment and convexity. High detailed regions are represented by
number of blobs. dispersion of blobs. and central moment of blobs. and total blob size.

Retrieval by shape similarity is a difficult problem because of the lack of
mathematically exact definition of shape similarity which accounts for the various semantic
qualities that humans assign to shapes. The majority of such techniques have been aimed at
retrieving simple 2-D image objects capable of being represented by a single shape boundary.
Recently. Scassellati ef al. [74] have studied shape similarity using algebraic moments. spline
curve distances. cumulative turning angle. sign of curvature and Hausdroff distance and
compared it to human perception. It has been shown [74] that turning angle. sign of curvature

and algebraic moments most closely match human judgment.
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3.2.5 Spatial Relationships

[n this technique. objects and the spatial relationships among objects in an image are used to
represent the content of an image. First. each image is converted into a symbolic picture. The
symbolic pictures are then encoded typically using 2-D strings which are stored in the
database [81]-[87]. Queries are expressed in the same 2-D string notation. The problem of
image retrieval thus becomes a problem of 2-D sequence matching.

The basic algorithm for image indexing using spatial relationships was presented by
Chang er ul. [81]. To start with, the objects in an image are segmented and recognized. The
image is converted into a symbolic picture. where the objects are represented using a set of
symbols S. The position of an object in the symbolic picture is determined by the object’s
centroid. For example. the symbolic picture corresponding to the image in Figure 3.3a is
shown Figure 3.3b. The relationships among the objects in an image are expressed using the
set of operators A={<.=.:}. The symbol “<" denotes the left-right or below-above spatial
relationship. The =" stands for “at the same spatial location as™ and the symbol =™ denotes
the relation ~in the same set as™ A 2-D string over S is defined as

-

X X x = (3.4)

(xl-lel—vl“'xn—‘ ol ):l' plZ):Z"" pumy=n

ne
where x/xx; ... X, is a 1-D string over S (720 and x,€S). p(.) is a permutation over ! 1. ...n}.
Yivavs ... vpand zyzaz;z Lz, are 1-D strings over A. For example., in Figure 3.3a. « and b are to
the left of ¢. ¢ is above b and 4 is above a. the image can be represented using the 2-D string

Ca=h~ ¢ oah< ¢l



a)

b)
Figure 3.3: Example of image representation using 2-D string. a) An image containing 3 main

objects. b) Symbolic picture which represents the image (a).

Matching 2-D strings is based on a ranking scheme for the object symbols in the
strings. The matching algorithm is simple. however. for images with large number of objects.
(i) the 2-D string representation is complex. and (ii) the spatial operators (4=!<.=.:!} are not

sufficient to give a complete description of the spatial relationships among the objects.



3.3 Video Indexing in Pixel Domain

A video sequence is a series of images sequentially ordered in time. Prior to storage in a
database. a video stream is segmented into elementary units (shots) to be identified and
indexed. Since video data consists of still images (frames). all the techniques presented in
section 2.2 are applicable to the individual frames of a video sequence (spatial teatures). In
addition. video has temporal properties such as motion, camera operations. sequential
composition and interframe relationships. In this section. we present a review of video

segmentation methods tollowed by video indexing using spatial and temporal teatures.

3.3.1 Scene Change Detection

A number of algorithms for scene change detection in both the uncompressed and
compressed domains have been reported in the literature [94]-[115]. The different algorithms
in the uncompressed domain can be broadly classitied into five categories: template

matching. histogram-based. block-based. twin-comparison. and model-based techniques.

3.3.1.1 Intensity/Color Template Matching

Scene change can be detected by emphasizing the spatial similarity between two frames [94]-
[46]. The simplest way to measure the spatial similarity between two frames f,, and /, is using
template matching. where each pixel at the spatial location (ij) in f,, is compared with the
pixel at the same location in £,. Typically. the ditterence magnitude. D(f,,.f.i.j). of f,, and £, is

used for comparison where
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|P(f,0s 1,0, )= P( £, I i J) Jor gray level images

D( S 1B ) =1 (3.5)
D |Pf, Cui )= P(£,.C,.i D for color images
I=|

where P(fn 1,i.j) is the intensity of the pixel at (i) and P(f,, C1.ij). P(fon Ciji. PtfinCsij) are
the color components C;. Cs. and C; of the pixel (i) respectively. For example. in case of
using the RGB color coordinate system, C';. (> and C; are equal to R, G and B. respectively.

Nagasaka ef al. [46] have proposed the use of the sum of the difference magnitude

X

.
S )= 2D DSy fond ) (3.6)

=l =

A scene change is declared whenever S (/... /) exceeds a prespecified threshold.

Zhang et al. [95] have presented an algorithm based on the number of changed pixels.
A pixel is changed if D(f,.f, i) is greater than a certain threshold. A cut is detected if the
percentage of the changed pixels is greater than a threshold.

We note that. using the previous metrics. it is difficult to distinguish between a small
change in a large area and a large change in a small area. Therefore. template matching
methods are sensitive to noise. object motion and camera operations (e.g. panning and

zooming) since they result in false detections.

3.3.1.2 Histogram Based Techniques

We recall tfrom section 2.1. that the intensity/color histogram of a gray/color image /is an V-
dimensional vector [ Hrfi): i=1.2. ... . V) where N is the number of levels/colors and Hiti)is
the number of pixels of level/color i in the image /. The rationale behind histogram based

approaches is that two frames that exhibit minor changes in the background and object
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content will also show insignificant variations in their intensity/color distributions. In
addition. histograms are invariant to image rotation and change slowly under the variations of
viewing angle. scale and occlusion [41]. Hence. this technique is less sensitive to camera
operations and object motion compared to template matching based techniques.

Tonomura [97] has proposed a technique based on the gray level histogram
difference. Let the histograms of frames f,, and f, be denoted by H/,.i) and H(f,i).

respectively. The sum of the histograms difference magnitude is defined as:

Az

Sy(fue )= 2L, D) = HUS, WD) (3.7
l

i=

A cut is declared if S(f,, /) is greater than a threshold.

Histogram based techniques tend to lose scene changes which have small variations in
their intensity distribution [98]. In addition. histogram comparisons may not reflect the
content difference [100]. Hence. histogram based techniques are not necessarily superior to

template matching approaches.

3.3.1.3 Block Based Techniques

We note that the techniques presented in sections 3.1.1.1 and 3.1.1.2 use global attributes of
images such as point by point ditferences. and intensity or color histograms. Block based
techniques [100]-[101] use local attributes to reduce the etfect of noise and camera flashes.
Here, each frame f, is partitioned into a set of r blocks. Rather than comparing a pair of
frames. every subframe in f, is compared with the corresponding subtrame in f,. The

similarity between f,, and f, is measured using
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S:(fus£)=2.C % S, (fire fo1) (3.8)

where (), is a predetermined weighting factor and Sp(fmJn i) is a partial match obtained by
comparing the ith region in £, and f,. Kasturi er al. [94] have presented a metric based on
statistical characteristics of the intensities of subimages. Corresponding blocks in two frames

are compared using a likelihood ratio.

, , 32
[:unm,: + :u;u_ + o-m.z - o-'”j

3 3 (3.9)

where u ,,, and o;,,,,, are the mean and variance, respectively. of block / in frame fin. 1 the
likelihood ratio is greater than a threshold. Splfmfu1) 18 set to 1. Otherwise. Sp(fmfn i) 1s set 10
0. A scene change is declared whenever the number of changed blocks is large enough (i.e..
whenever Sy(fu.f, ) is greater than a given threshold and C.. is 1 for all /). Compared to the
intensity/color template matching. this approach reduces the number of over detected
(incorrectly) camera breaks. This reduction is a result of the increased tolerance to slow
camera and object movements. However. cuts may be misdetected between two frames that
have similar pixel values. but different density functions.

Video segmentation is the identification of two types of segment boundaries (abrupt
changes and gradual transitions) which take place over a sequence of frames. The previous
techniques are based on a single threshold and lack the power of detecting gradual scene
changes. since the frame to frame difference in a gradual transition is smaller than the
threshold. Lowering the threshold results in both talse detections and misdetections. We now

review a technique for the detection of gradual scene changes.
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Figure 3.4: Twin-comparison.

3.3.14 Twin-Comparison

Twin-comparison [95] has been proposed for the detection of gradual scene changes using a
dual threshold. In the first pass, a high threshold T, is employed to detect abrupt scene
changes. In the second pass. a reduced threshold T, is used to identity the potential starting
frame f; of a transition as shown in Figure 3.4. Once f, is identified. it is compared with
subsequent frames. measuring the accumulated difference instead of the frame to frame
difference. The end frame £, of the transition is detected when the difference between

successive frames decreases to less than T, while the accumulated difference becomes larger
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than 7. If the consecutive frame difference falls below T before the accumulated difference
exceeds T¢, then the potential starting point f; is dropped, and the search continues for other
gradual transitions. Although the twin-comparison approach is effective in detecting gradual

scene changes, however the type of scene change (fade, wipe, ... etc.) cannot be identitied.

3.3.15 Model-Based Segmentation

In a video sequence. gradual transition from a scene to another is the result of the editing
process. Editing has direct influence on how the viewers respond to the video material. their
interpretation. and their emotional reaction. Film editing is to be considered as not only the
glue between shots. but also an essential contribution to the meaning conveyed by the video.
Hence. it is not only important to identify the transition position. but also the type of the
transition.

In model-based techniques, the problem of video segmentation is viewed as the
process of locating the edit boundaries within the video sequence. Here. different edit types.
such as cuts. translate. wipes. fades and dissolves are modeled by mathematical functions.
Hampapur er al. [114] have presented a model for the video edit. Let S ix.v.t) and Sx(x.v.t) be
two shots that are being edited, and S(x,y.) the edited shot. All the chromatic processes can

be described as a linear pixel intensity manipulation:
! !
S(x. oy, 1) =S (x. y.0)(1 —[—)+S3(x.y.t)(l—) (3.10)
! 2
where /;. [> are the length (in number of frames) for which the scaling of each of the two

shots lasts. This technique is efficient for detecting chromatic edits which results from scaling

the color space. However. it cannot be used in detecting cther types of chromatic translations,
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rotation, etc. Aigrain et al. [113] have presented a technique for the detection of scene
boundaries based on a differential model of motion picture. The algorithm is based on an
estimation of the density function for the difference between two frames.

After the segmentation of a video stream. features within each shot such as content.
length and camera operations are used for indexing proposes. Two approaches for video
representation are distinguished. The first approach is based on image indexing techniques
while the second is based on temporal features. We now present video indexing techniques

based on spatial features. Temporal-based indexing techniques are presented in section 2.3.3.

3.3.2 Spatial Features

A set of representative (reference) frames is selected to represent each shot to be stored in the
database. Image indexing techniques (section 2.1) are then applied on the reference trame.
Arman ef al. [111] have proposed a technique where each video shot is represented using the
shape and color features of a reference frame. The reference frame is the 10¢4 frame in the
shot. The shape and color properties are represented using moments (the mass and the
moments of inertia around the horizontal and vertical axes) and color histogram. respectively.
Zhang er al. [112] have presented an algorithm where the reference frame(s) is first
segmented based on prominent color. In addition. the reference frame is partitioned into 9
subtrames (3x3). Each frame is indexed using the size. color. shape. and location of the
segmented regions and the color histograms of the frame and the 9 subframes.

The major drawback of spatial-based video indexing techniques is that video

sequences are treated as still images, thus the semantics contained in a sequence are lost. This



results in restricting the user queries. Temporal features allow the user to specify queries that

involve the exact positions and trajectories of the objects in a shot.

3.3.3 Temporal Features

The apparent motion in a video sequence can be attributed to camera or object motion. In this
section. we present a review of video indexing techniques using motion information and

camera operations.

3.3.3.1 Motion

Here. image sequences are indexed based on the motion properties of objects within the
sequence. The goal of the system is to be able to retrieve a ranked set of sequences which
have object motions similar to that specified by the query.

[oka et al. [120] have presented a method for retrieving sequences using motion
information as a key. To start with. each frame is partitioned into rectangular blocks. Motion
vectors are derived from the image sequences using block matching. These vectors are
mapped into spatio-temporal space and the motion of each block is then represented as a
single vector in the feature space. The vectors are clustered and a representative trajectory is
generated for each group of vectors. A representative trajectory of a cluster is the closest to
the mean vector of the cluster and has the longest life time. The representative trajectories are
stored in the database. Queries can be specified using an interactive query specitication
mechanism which allows the user to enter a motion trajectory. The specitied trajectory is

matched with the trajectories of the sequences in the database using a distance measure and



the sequences with the smallest distance are retrieved. Although this technique does not
address the problem of correspondence of trajectories. it can be incorporated as a low level
tool into a complete video data management system for raw feature-based retrieval.

Lee er al. [121] have presented a video indexing technique based on the motion
representation for the track of a moving object (using optical flow for motion extraction).
Object motion is represented using a combination of the following 16 primitive motion types:

L. Translation: North, north east, east. south east, south, south west, west. north west.

[0S

- Translation in depth: close to the camera. away from the camera.

. Rotation: clockwise. counterclockwise.

LI

=

- Rotation in depth: rotate to left. rotate to right, rotate upward. rotate downward.

3.3.3.2 Camera Operations

The seven basic camera operations are: fixed. panning (horizontal rotation). tracking
(horizontal transverse movement). tilting (vertical rotation). booming (vertical transverse
movement). zooming (varying the focusing distance) and dollying (horizontal lateral
movement) as shown in Figure 3.5. Camera operations include the basic operations and all
the different possible combinations [115].

Akutsu er al. [115] have used motion vectors and their Hough transforms to identify
the seven basic camera operations. The motion vectors pattern is characterized physically and

spatially by 1) the magnitude of the motion vectors. ii) the divergence/convergence point. For

example. in case of a simple zoom in. pan right and tilt up at a constant speed. the motion
vectors are shown in Figure 3.6a, Figure 3.6b, and Figure 3.6c¢, respectively. The algorithm

has two stages. The first stage employs block matching to determine the motion vectors
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between successive frames. In the second stage the motion vectors are transformed to the
Hough space. The Hough transform of a line in the spatial domain is just a point in the

Hough space. A group of lines in the spatial domain are represented by:

Panning “
v <
Dollying
Zooming
< .
L 4
A .
Tracking
-
Tilting
v
Booming
Figure 3.5: Basic camera operations.
4« 4 4 4 4«
4 M > v VvV v v vy
4 4 4« < 4«
« v > v VvV Vv v vy
4 €« € 4 4«
> > « < vy v v v vy
4« 4 4 4 <
“« & v Y v VY VY vy
4 < « 4
< A v v v v v A 4
« 4 <

(a) (b) (¢)

Figure 3.6: Motion vectors. zoom sequence, (b) pan sequence, and (c) tilt sequence
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P =X, Cos(@) + y, sin(p) (3.11)
in the Hough space, where (xs,0) is the point of divergence/convergence. The least squares
method is used to fit the transformed motion vectors to the curve represented by eq. (3.11)
Seven categories of camera operations have been estimated: pan, zoom., tilt. pan and tilt, pan
and zoom, tilt. zoom and pan. We note this technique based on motion vectors is noise
sensitive and has a high computational complexity.

Camera operations can be detected by examining what are known as the X-ray images
[116]. An cdge detection is first performed on all the frames within a shot. A horizontal X-
ray image is then obtained by taking a weighted integral of the edge trames in the horizontal
direction. Similarly, a vertical X-ray image is obtained by taking a weighted integral of the
edge frames in the vertical direction. Camera operations are obtained by approximating the
spatial distribution of the edge angles of the horizontal and vertical X-ray images. We note
that performing edge detection on all frames in the sequence is time consuming,.

We note that in all the previous techniques . only a subset of the camera operations
arc extracted. In addition. it is not possible to distinguish tracking from panning, and
booming from tilting. Recently, Srinivasan er al. [117] have proposed a technique based on
optical flow in order to distinguish tracking from panning, and booming from tilting. This
technique is based on the idea that if the components of the optical flow due to camera
rotation and zoom are subtracted from the optical flow, the residual flow will be parallel.

We note that in all these techniques for the detection of camera operations. it is
assumed that there is no large moving object dominating the visual ficld in the video
sequences. In case of the presence of a large moving object dominating the visual field, false

detection of a camera operation may occur.
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We recall from chapters | and 2 that image and video data are voluminous, hence, the
visual data in future multimedia databases is expected to be stored in the compressed form. In
order to avoid the unnecessary decompression operation in the searching process. it is
etficient to index the image and video in the compressed form. Recently. compressed domain
image and video indexing techniques based on compression parameters have been reported in
the literature [88]-[149]. In sections 3.4 and 3.5 we present a review of image and video

indexing in the compressed domain, respectively.

3.4 Image Indexing in the Compressed Domain

Compressed domain image indexing techniques are generally transform domain techniques
and can be classitied into four categories: discrete Fourier transtorm (DFT). Karhunen-Loeve
transform (KLT). discrete cosine transform (DCT), and multiresolution-based techniques
such as subbands and wavelets. We now present a review of compressed domain tmage

indexing techniques.

3.4.1 Discrete Fourier Transform (DFT)

Fourier transform is very important in image and signal processing. DFT employs complex
exponential basis functions and provides a good coding performance since it has good energy
compaction property. We note that DFT has the following properties which are usetul in

indexing: (i) the magnitude of the DFT coefficients are translation invariant. and (ii) the
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spatial domain correlation can be efficiently computed using DFT coefficients. We now

present a review of Fourier domain indexing techniques.

Stone ef al. [135] have proposed an image retrieval algorithm in Fourier domain. The
algorithm has two thresholds that allow the user to independently adjust the closeness of a
match. One threshold controls an intensity match while the other controls a texture match.
The thresholds are correlation values that can be computed efficiently using the Fourier
coefticients and are particularly efficient when the Fourier coefficients are mostly zero.
Augustejin ef al. [136] have studied the retrieval performance of satellite images based on the
radial and angular distribution of Fourier coefficients. We note that the radial distribution is
sensitive 1o texture coarseness whereas the angular distribution is sensitive to directionality of
textures. [t was observed that the radial and angular measures provide a good performance
when a few dominant frequencies are present. The statistical measures provide a satisfactory
performance in the absence of dominant frequencies. Celantano er al. [137] have evaluated
the performance of angular distribution of Fourier coetficients in image indexing. Here. the
images are first pre-processed with a lowpass filter and the FFT is calculated. The FFT
spectra is then scanned by a revolving vector exploring 180" range. The angular histogram is
calculated by computing the sum of image components contribution for each angle. While
calculating the sum. only the middle frequency range is considered as they represent visually
important image components. The angular histogram is used as the feature vector for
indexing. The feature vector is independent of translation in spatial domain while the rotation

in spatial domain corresponds to a circular shift in the histogram.



3.4.2 Karhunen-Loeve Transform (KLT)

Karhunen-Loeve transform or principal component analysis. is based on the statistical
properties of an image. Here, the basis functions are the eigenvectors of the autocorrelation
matrix of the image. KLT provides maximum energy compaction and is statistically the

optimum transform.

A technique based on the principal components analysis combined with DFT has been
applied in the Photobook [60]. Let x;. i=1.2,...V be the vector representing the DFT
magnitude of the ith image in a training set of M images. The covariance matrix. C, of the
training set is estimated. Each principal component is an eigenvector of the covariance. The
computational complexity is reduced by noting that C can have at most M eigenvectors. The
KLT coetficients of the images to be stored in the database. are obtained using the M
eigenvectors. The transform coefficients are the features used for comparing textures. KLT
has two advantages. First. vector components are decorrelated and second. components are
compressed into a small number of coefficients. In addition. the use of DFT magnitudes
makes the transtorm coetticients invariant to spatial translation. However. the performance

may be degraded for images outside the training set.

The projection to Karhunen-Loeve space extracts the Most Expressive Features
(MEF’s) of an image. However. an eigenfeature may represent aspects of the imaging
process. such as illumination direction. which are unrelated to recognition. An increase in the
number of eigenfeartures does not necessarily lead to an improved success rate. To address
this issue, Swets er al. [138] have proposed a Discriminant Karhunen-Loeve (DKL)

projection where KLT is followed by a discriminant analysis to produce a set of Most
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Discriminating Features (MDF's). In DKL projection, between-class scatter is maximized,
while the within-class scatter is minimized. The authors have reported an improvement of 10-

30% using DKL technique (over KLT) on a typical database.

KLT has been studied extensively for image compression applications [4]. Although
KLT is optimal. it is not widely used due to its high computational complexity. We note that
KLT is employed in analyzing and encoding multispectral images {22] and has therefore a

potential for indexing in remote sensing applications.

3.4.3 Discrete Cosine Transform (DCT)

The DCT employs real sinusoidal basis tunctions [4] and has energy compaction
efficiency close to the optimal KLT. As a result. the international image and video
compression standards. such as JPEG. MPEG, H.261. and H.263, are based on DCT. We
now present a review of the DCT-based indexing techniques that have appeared in the

literature.

Chang et al. [88] have proposed a texture based indexing technique in the
DCT/Mandala domain. The energies of the subbands are used to define the texture feature
sets. For an VxN DCT/Mandala transform. N° bands are obtained. In order to reduce the
search complexity. Fisher Discriminant analysis is used to reduce the texture feature vector.
We note that Fisher Discriminant analysis generates a family of linear composites from the
original feature vectors that provide for maximum average separation among training classes.

The transform domain feature elements of the input image are mapped to a set of
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eigenvectors with the maximum reparability significance. The Mahalanobis distance in the

transformed feature space is used to measure the similarity between two images.

Shneier er al. [89] have proposed a technique for image based on the mutual
relationship between the DCT coefficients of unconnected regions in both the query image
and target image. Here. a set of 2m windows is selected. The windows are randomly paired.
with the constraint that each window has only one partner. For cach pair of windows, a bit is
allocated in the m bit index. For each window the average of each DCT coefficient is
computed resulting a 64-dimensional feature vector. For each feature value and each window
pair. the index is computed by comparing the values of the first window with those of the
second window. If the difference is greater than a threshold the corresponding bit is set to 1
otherwise it is reset to 0. The similarity between two images is measured by computing the
similarity between their keys. In contrast to the technique proposed by Chang er al. [88]

which is based on texture similarity. the similarity in this technique has no semantic meaning.

Smith er al. [42] have proposed a DCT based method where the image is divided into
4x4 blocks and the DCT is computed for each block resulting in 16 coefficients. The variance
and the mean absolute values of each of these coeflicients are calculated over the entire
image. The texture of the entire image is then represented by this 32 component feature
vector. Reeves er al. [43] have proposed a DCT-based texture discrimination technique
which is similar to that of Smith er a/ [42]. Here. the image is divided into 8x8 blocks. A
teature vector is formed with the variance of the first 8 AC coetficients. The technique does
not employ the mean absolute value of the DCT coefficients, as in [42]. The technique

assumes that the first AC coefficients have the most discriminating features, and thus avoids



discriminant analysis used in [42]. The run-time complexity of this technique is smaller than

that of [42], since the length of the feature vector is small.

3.4.4 Multiresolution-Based Techniques

Recently, techniques based on image decomposition into a set of different resolution
subimages using subbands. wavelets and Gabor have become popular in image coding and
indexing applications [23]-[24]. Here, an image is passed through a set of lowpass and
highpass filters. recursively, and the filter outputs are decimated in order to maintain the
same data rate resulting in a multiresolution representation. Subband coding is generally
implemented using quadrature mirror tilters (QMFs) in order to reduce the aliasing effects
arising out ot decimation. In wavelet transform, the lowpass output is recursively filtered.
Gabor transform is similar to wavelet transform, where the basis functions are Gaussian in
nature and hence Gabor Transform is optimal in time-frequency localization. Since most of
the energy in the subband domain is represented by a tew lowpass coetficients. high
compression ratio is achieved by discarding the high trequency coetticients. We note that the
entire data is passed through the filters, and there is no blocking of data as in JPEG. Image
decomposition has several advantages in coding - i) multiresolution capability. ii) better
adaptation to nonstationary signals. iii) high decorrelation and energy compaction efticiency.

and 1v) reduced blocking artifacts and mosquito noise.

Chang efr al. [139] have proposed a texture analysis scheme using irregular tree
decomposition where the middle resolution subband coefficients are used for texture

matching. In this scheme. a J dimensional feature vector is generated consisting of the energy
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of J most important subbands. Indexing is done by matching the feature vector of the query
image with those of the target images in a database. For texture classification, superior
performance can be obtained by training the algorithm. Here, for each class of textures, the
most important subbands and their average energy are found by the training process. A query
image can then be categorized in one of the texture classes. by matching the feature vector

with those of the representative classes.

Jacobs er al. [145] have proposed an indexing technique based on direct comparison
of wavelet coefficients. Here, all images are rescaled to 128x128 pixels followed by a
wavelet decomposition. The average color, the sign (positive and negative) and indices of M
(a value of 40-60) largest magnitude transform coefficients of each image are calculated. The
indices for all of the database images are then organized into a single data structure for fast
image retrieval. A good indexing performance has been reported in the paper. However. the
index is dependent on the location of transform coetficients. Hence. the target images which
are translated and rotated versions of the query image. may not be retrieved using this

technique.

Wang er al. [146] have proposed a technique which is similar to that of Jacob er al
[145]. Here, all images are rescaled to 128x128 pixels followed by a four stage wavelet
decomposition. Let the four lowest resolution subimages. which are of size 8x8. be denoted
by S; (lowpass). Sy (horizontal band). Si- (vertical band). and Sp (diagonal band). Image
matching is then performed using a three step procedure. In the first stage. 20% of the images
are retrieved based on the variance of' S; band. In the second stage, a fewer number of images

will be selected based on the difference of S; coefficients of query and target images. Finally,
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the images will be retrieved based on the difference of Sy, Sy, Si-and Sp coefficients of query
and target images. For color images, this procedure will be repeated on all three color
channels. The complexity of this technique is small due to hierarchical matching. The authors
have reported an improvement of performance over Jacob’s technique [145]. However. as in

Jacob’s technique. the indexing performance is not robust to translation and rotation.

Mandal er al. [141] have proposed to compare the histograms of directional subbands
to find a match with the query image. It has been shown that the histograms of wavelet bands
of similar images. with limited camera operations. are similar. The complexity of direct
comparison of the histograms of all the subbands is reduced by matching the distribution
parameters of the subbands. The pdfs (or histograms) of highpass wavelet subbands can be
modeled using generalized Gaussian density (GGD) function [142] which is expressed in
terms of two parameters o (standard deviation) and v (shape parameter). Hence. the
dissimilarity between a target and query image can be expressed in terms of the difference of
the band parameters. The images which have minimum distance are retrieved from the

database.

Mandal er al. [143] have proposed a histogram-based technique in the wavelet
domain which is robust to changes in illumination. In this technique. the change in the
illumination level is estimated using scale invariant moments of the histogram. The subband
parameters ¢ and y of each subband of the target image are then changed appropriately to

counter the eftect of illumination change.

An indexing technique using Gabor wavelets was proposed by Manjunath er al. [144].

Here. each image is decomposed into four scales and six orientations. A feature vector. of
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dimension 48, is then formed using the mean (i) and standard deviation (g) of each subband.
The similarity of the query image and a target image is determined by the similarity of their
teature vectors. In this technique. the number of orientations are more. i.e.. six. compared to
three orientations (horizontal, vertical and diagonal) in the wavelet domain. Hence. better
directional discrimination is achieved with this technique. However. the Gabor wavelets are

computationally expensive compared to dyadic wavelets.

3.5 Video Indexing in the Compressed Domain

3.5.1 Scene Change Detection

Recently. several algorithms for video segmentation in the compressed domain have been
reported [102]-[109]. According to the type of information used. the algorithms for video
segmentation in the compressed domain are divided into four classes, namely. segmentation

using DCT coetticients. motion vectors. motion/DCT and subband decomposition.

3.5.2 DCT Coefficients

The standards for image and video compression (JPEG. MPEG and H.261) are DCT-based
techniques [25]-[27]. The transform coefficients in the frequency domain are related to the
spatial domain. Therefore. the DCT coefficients can be used for scene change detection in
compressed video sequences.

Arman ¢t al. [102}-[103] have proposed a technique for scene change detection in
motion JPEG using DCT coefficients. For each compressed frame f,’ B blocks are first

chosen apriori from R connected regions in f;,. A set of randomly distributed coefficients {co
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Cy €z .-} is selected from each block where c, is the xth coefficient. A vector Vf,,'={c), ¢, ¢,
...} is tformed by concatenating the sets of coefficients selected from the individual blocks in
R. The vector V' represents f,’ in the transform domain. The normalized inner product is

used as a metric to judge the similarity of frame f;,’ to frame 1!

MR

=] (3.12)

e

A scene transition is detected if ¥ is greater than a threshold. In case of false positives. which
result from camera and object motion. f;,’ and /' are decompressed and their color histograms
are compared to detect camera breaks [103]. Zhang er al. [104]-[105] have presented a pair-
wise comparison technique in the transform domain similar to template matching techniques
in the uncompressed domain. Here. the pair wise normalized absolute difference

Dt 1l i jyof the (ij)block in two frames S and £/ is determined using

oA oSk )= S ki)
DU iy = 3 e kD el kg
6453 max(c( f, . k.i. f).c( f,) k.0 )

(3.13)

where c(/,’,,'.ﬁ,'. i..k) is the kth coefficient of block (i) in £, If the difference Dy il i) is
larger than a threshold. the block (i) is considered to be changed. If the number of changed
blocks exceeds certain threshold. a scene change in the video sequence from frame f;, to
frame f;' is declared. Compared to the technique by Arman er al. [102]. the processing time of
this technique is less. however. it is more sensitive to gradual changes [103].

We note that the previous two algorithms are applied on video sequences compressed
using motion JPEG. In case of MPEG video. only [-frames are compressed with DCT
coetficients and hence the previous two techniques cannot be directly applied to the B- and P-

frames. In addition, the techniques based on I[-frames may result in false positives. To
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overcome these problems, Yeo er al. [106] have proposed a unified approach for scene
change detection in motion JPEG and MPEG. This algorithm is based on the use of only the
DC coefficients. To start with, a DC frame f,,°° is constructed for every frame in the
sequence. The DC coefficients in JPEG and I-frames in MPEG are obtained directly from
each block. For B- and P-frames in MPEG video the DC coefficients are estimated. The sum
of the difference magnitude of the DC frames f,,”C and £,° is used as a measure of similarity

between two frames. i.e..

/8 ¥/8

S S = Y PO i)~ P L) (3.14)

t

-]

1]

j=1

where P(/,',,DC. Li,j) is the DC coefficient of block (i,/). A scene change from f,, to f, is declared
if: (i) Ss(/u”. £,°¢) is the maximum within a symmetric sliding window and (ii) Ss(,,"*. £,™)
is 2-3 times the second largest maximum in the window. Although this technique is fast. cuts
may be misdetected between two frames which have similar pixel values but different density
functions. A metric for gradual transition has also been proposed [106] based on temporal
subsampling where one in every 20 frames is tested rather than successive frames. This
technique is sensitive to camera flashes and variations in scene that typically occur betore

scene changes.

3.5.3 Motion Vectors

The apparent motion in a video sequence can be attributed to camera or object motion.
Motion estimation/compensation plays an important role in video compression. The objective
is to reduce the bit rate by taking advantage of the temporal redundancies between adjacent

frames in a video sequence. Typically, this is accomplished by estimating the displacement
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(motion vectors) of uniformly sized blocks between two consecutive frames. [n general,
motion vectors exhibit relatively continuous changes within a single camera shot. while this
continuity will be disrupted between frames across ditterent shots .

In MPEG, B- and P-frames contain the DCT coefficients of the error signal and
motion vectors. Liu et al. [108] have presented a technique based on the error signal and the
number of motion vectors. A scene cut between a P-frame £, and a past reference P-frame
17 increases the error energy. Hence. the error energy provides a measure of similarity
between f;,” and the motion compensated frame £,

> E
S fo s 11 V= (3.

F

g

[UF]
—
]
—

where £, is the error energy of macroblock i and F), is the number of forward predicted
macroblocks. For the detection of scene changes based on B-frames. the ditference between
the number of forward predicted macroblocks F), and backward predicted B, is used. A scene
change between a B-frame and its past reference B-frame will decrease £, and increase B,. A
scene change is declared if the difference between F, and B, changes from positive to
negative.

Zhang et al. [104] have proposed a technique for cut detection using motion vectors
in MPEG. This approach is based on the number of motion vectors M. In P-frames. M is the
number of motion vectors. In B-frame. M is the smaller of the counts of the forward and
backward non-zero motion. Then M < T will be an effective indicator of a camera boundary
betore or after the B- and P-frame, where 7 is a threshold value close to zero. However. this

method yields false detection when there is no motion. This is improved by applying the
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normalized inner product metric (eq. (3.12)) to the two I-frames on the sides of the B-frame

where a break has been detected.

3.5.4 Hybrid Motion/DCT

Meng er al. [109] have presented a segmentation algorithm based on motion information and
the DC coefficients of the luminance component. To start with, the DC coefficients in the P-
frames are reconstructed. The variance of the DC coefticients IAcl| tor the [- and P-frames is
then computed. Three ratios are computed, namely:

_ _ Number of intra compressed macroblocks
Number of blocks with motion compensation

fd

_ Number of backward motion vectors

h - .
Number of forward motion vectors

A two pass algorithm is applied. In the first pass. suspected scene change frames are
marked. A P-frame and B-frame are suspected frames it R, and R,. peaks. respectively. An [-
frame is a suspected frame if |Ac?| peaks and Ry of the B-frames in front of them peaks. In the
second pass. all suspected frames which fall in a dissolve region are unmarked. All the
marked frames are then examined. If the difference between the current marked frame and the

last scene change exceeds a threshold. then the current marked frame is a true scene change.
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3.5.5 Segmentation Using Subband Decomposition

Lee er al. [110] have presented a scene detection algorithm where the temporal segmentation
is applied on the lowest subband in subband compressed video. Four metrics have been
investigated. namely:

* Difference of histograms: measures the absolute sum of the histograms ot f,," and £,’:

S-S f)= S |HOE D - HOEE D) (3.16)

1=l
This metric is insensitive to object motion, however. it is sensitive to camera operations such
as panning and zooming.
* Histogram of difference frame: is the histogram of the pixel to pixel difterence frame and
measures the change between two frames f,, and /,. The degree of change between f;, and

Juis large if there are more pixels distributed away from the origin.

> H(f,) = f10)
S(f,. f,) = Eordoaal (3.17)

D H(fy =1

“=.
where a is a threshold for determining the closeness to zero. The histogram of the difference
frame (Eq. 24) is more sensitive to object motion than the difference of histograms (Eq. 23)
[110].

o Block histogram difference: the lowest subband is divided into R blocks and the sum of

the absolute difterences of the blocks detined as

R ;

N
Sillue 1) = 2 DN H i )= H L) i) (3.18)

=l =l

is used as a metric for scene change detection. This metric is sensitive to local object motion.
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e Block variance difference: instead of using the histogram. the variance of the block is

used. i.e.
R N
Swlfuf)= X 2| Sk d Y= (S0 )) (3.19)
=t =l
This metric is block-based and hence it is sensitive to local object motion.
After the segmentation of a video stream, features within each shot such as content.
length and camera operations are used for indexing proposes. Two approaches for video
representation are distinguished. The first approach is based on image indexing techniques

while the second is based on temporal features. We now present video indexing techniques

based on spatial features. Temporal-based indexing techniques are presented in section 3.3.2.

3.5.6 Video Indexing Using Motion

Dimitrova er al. [122] have proposed a technique based on the motion compensation
component of the MPEG video encoder. The trajectory of a macroblock is computed from the
torward and backward motion vectors that belong to the macroblock. The position of a
macroblock in a P-frame is computed using block coordinates and forward motion vectors.
The position of a macroblock in a B-frame is computed by averaging the positions obtained
from (i) the next predicted block coordinates and the backward motion vector and (ii) the
previous block coordinates and forward motion vector. Each trajectory can be thought of as
an n-tuple of motion vectors. The macroblock trajectories are the feature vectors used for

indexing.
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3.6 MPEG-7

We recall that MPEG compression standards have addressed primarily the storage and
transmission aspects of audiovisual materials. MPEG-4 will extend the tunctionality of the
underlying data representations and will also maintain some backward compatibility with
MPEG-1 and MPEG-2. Recently, MPEG proposed to specify a new standard. called
Multimedia Content Description Interface and referred to as MPEG-7. MPEG-7 will specity
a standard set of descriptors that can be used to describe various types of multimedia
information. This description will be associated with the content itself. to allow fast and
efficient searching for audiovisual material. In addition to having a description of the content,
the MPEG-7 description may include other types ot information about multimedia. such as
coding scheme used. conditions for accessing the material. classitication and links to other
relevant material.

We note that MPEG-7 descriptions do not depend on how the described content is
coded or stored. For example, visual information could be compressed using MPEG-4. JPEG.
or VQ. MPEG-7 will allow different granularity in its descriptions. offering the possibility to
have different levels of discrimination. This implies that the same material can be described
using different types of features. tuned to the area of application. For example. in visual
material. a lower abstraction level might be a description of shape. texture. color. and/or
motion. while for audio. mood. tempo. and tempo changes might be used.

There are many potential applications that will benefit from the MPEG-7 standard.

Examples include digital libraries, multimedia directory services. broadcast media selection.
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and multimedia editing. It is anticipated that the MPEG-7 will become an international

standard by the end of the year 2000.

3.7 Summary

[n this chapter we have presented a review of image and video indexing techniques in both
the compressed and uncompressed domains. First. we have presented an overview of a visual
storage and retrieval system. This was followed by a review of image and video indexing
techniques in the uncompressed (pixel) domain. A summary of the reviewed techniques is
shown in Table 3.1.

The advent of compression techniques has led to the introduction of compressed
domain indexing techniques based on compression parameters such as transform coetticients.
motion vectors. etc. [n this chapter we have presented a review of compressed domain image
and video indexing techniques. A summary of the ditferent techniques is shown in Table 3.2.
We note that it is difficult to compare the performance of various indexing techniques. KLT.
although statistically optimal. is computationally intensive. [n addition. the basis images need
to be stored, which reduces the compression efficiency. The block DCT in JPEG provides a
good coding and indexing performance. However. the block structure was not originally
intended for indexing. It has been shown in [42] that the wavelet transform outperforms the
DCT/Mandala transtorm in image classitication.

[n conclusion. it is efticient to index image/video (visual data) in compressed form for
the following reasons: (i) the advent of visual compression standards is expected to result in

visual data being increasingly stored in compressed form [3]-[30], (ii) indexing in the
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compressed domain eliminates the need to decompress the visual data and apply pixel-
domain indexing techniques. (iii) many compressed bit streams contain information, such as
motion vectors, which can be used in deriving content-based indices [102]-[106].[122]. and
(iv) in compressed domain there is a reduction in computational cost as the visual data is
compactly represented {153]-[157].

In the next chapters we present novel techniques for combined image/video indexing

and compression in the VQ compressed domain.

Problems Methodologies References
Image Indexing Color [40]-[53]
Texture (43 ].[34]-[39].[61]-[66]
Sketch [43].[80]
Shape [(69]-[71]-[79]
Spatial Relationships (81]-[87]

Detection of Scene
Change

[ntensity/Color Template Matching

Histogram-based Techniques
Block-Based Techniques
Twin Comparison

Model-Based Segmentation

[46].[94].[95]
[97]1.[98].[100]
[94].[100].[101]
95]

1131.[114]

Video indexing

Spatial features of key frames

Motion

120].[121]

Detection of Camera
Operations

Motion vectors

X-ray images

5]

[
[
(1T1].[112]
[
[
[116].[117]

Table 3.1: Summary of image/video indexing techniques in the pixel domain.




Problem Methodology References

Image Indexing Discrete Fourier Transtorm (DFT) [135]-[137]
Karhunen-Loeve Transform (KLT) | [22],[60].[138]
Discrete Cosine Transform (DCT) [88] (89]
Multiresolution-Based Techniques 23 [139]-[146]

Scene Change Detection DCT Coetfficients [102]-[106]
Motion Vectors [104].[108]
Hybrid Motion/DCT [109]
Subband Decomposition [110]

Video indexing Motion Vectors [122]

Table 3.2: Summary of the image and video indexing techniques in the compressed domain.




4
Image Indexing Using Vector

Quantization

4.1. Introduction

We recall from chapter 2, that several algorithms for image indexing have been reported in the
literature. However. these techniques require a large amount of processing and additional storage
space to compute and store the indices, respectively. A more serious problem is that these
algorithms may not be applicable to images stored in the compressed form. We also recall from
chapter 3. that several image compression algorithms have been reported in the literature to
reduce the storage and transmission requirements in image applications. The International
Standards Organization has proposed the JPEG [23] and MPEG [24] standards for image and
video compression. respectively. Compressed domain image and video indexing techniques
based on compression parameters such as DCT coefficients. subband coefficients. motion
vectors, etc. have been reported in the literature [112]. We note that. at low bit rates, DCT based
techniques sutter trom both blocking effects and mosquito noise. Mosquito noise results from the

quantization error of the high frequency components, which exist at the edge of an object but

spans across the block in transform domain [20].

74



Vector quantization (VQ) is an efficient technique for low bit rate image and video
compression [7]. In addition. VQ has the following advantages (i) fast decoding which makes it
attractive for systems based on software only playback of video such as Intel's Indeo. Apple’s
QuickTime and Microsoft’s Video. and (ii) reduced hardware requirements due to the simplicity
of the decoder which makes it attractive for low power applications such as portable video-on-
demand in wireless communications [106]. More importantly. VQ is naturally an indexing
technique [155]. where each subimage (vector) is mapped into an index (label). Hence. V Qisa
promising approach for combining compression with indexing.

In this chapter, we propose two efficient techniques based on VQ that provide fast access
to the images a database at a lower computational complexity. Most importantly. these
techniques combine image compression and indexing. The proposed techniques provide fast
access to the images in the database and have lower storage requirements.

This chapter is organized as follows. In section 4.2, we explain why VQ can be used to
combine compression and indexing of images and video. Indexing using the histogram of
codewords weighted by the number of labels and the histogram of the labels are presented in
sections 4.3 and 4.4. respectively. Simulation results are reported in section 4.5. followed by the

summary in section 4.6.

4.2. Indexing Using VQ

In VQ [10]. a training set of representative images is decomposed into L-dimensional vectors. An
iterative clustering algorithm such as the LBG algorithm is used to generate a codebook.

C={W,W,, ... Wy}. where N is the number of codewords in the codebook and W={w;, wp, ...,
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wi }. The codebook is then made available at both the transmitter and the receiver. In the
encoding process, the image to be compressed is decomposed into L-dimensional vectors. Each
vector V={vy, v, ... ,vi.} is mapped into another L-dimensional vector W,

qV—> w 4.1)
where I, eC. In other words. vector quantization involves the partitioning of the L-dimensional
space into .V decision regions {p,i=1, 2. ... , N}. each containing one of the N reproduction
vectors or codewords I¥,. The vector V; is quantized as I, if it is in the region{p,}. that is

eV —Ww if Vep 4.2)

which implies that the mapping is completely characterized by the partition p.. Here. the
selection rule is a minimum distortion or nearest neighbor rule; i.e. :
gy =W, iff d WY <dV. W) for all k (4.3)

where ¢(.) is the quantization operation and (¥, W,) is a distortion measure which represents the
error when /' is reproduced by W,

Thus. VQ involves a clustering and mapping operations. The two operations make VQ a
natural indexing technique due to the following:
e The clustering process involved in the generation of the codebook. implies that vectors

having “similar” properties are grouped together.
 Input vectors which generally have much in common. are likely to have to the same label.

A visual illustration of encoding and decoding processes is shown in Figures 4.1 and 4.2
using a codebook of size 16 codewords and 16x16-dimensional vectors. [t can be seen that the
codewords, which can be regarded as a set of subimages. can be used to derive content-based

features. We also note from Figures 4.1 and 4.2 that similar vectors map to similar codewords.
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We conclude from the above discussion that features derived from codewords, which
represent an image, have the potential to be content-based indices. In order to provide fast and
efficient retrieval in a database system environment, these features have to satisfy several
requirements including: (a) simple to derive and represent. (b) can be compared using a similarity
measure which involves low computational complexity. and (c) provide excellent retrieval rate.
We have selected two features: (a) the histogram of codewords weighted by the number of labels
and (b) the histogram of the labels. Simulations demonstrated that the two features provide fast
access to the images in a database with lower computational complexity compared to other

techniques.
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Figure 4.1: VQ encoding.
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Figure 4.2: VQ decoding.

4.3. Histogram Of The Codewords Weighted By The

Frequency Of The Labels

The histogram of the pixels of an image refers to the probability density function of the image
intensities. For color images the histogram refers to the joint probability distribution of the three
color channels. In image indexing using histogram. the images are scaled to the same number of
pixels, and the histograms are the feature vectors which are used as image indices. A distance
measure is used in the histogram space to measure the similarity of two images. We refer to this
technique as the direct histogram of the pixels technique (H-PX).

The advantage of H-PX is that it is invariant to image rotation. translation and viewing
axis [20]. However, it requires a large amount of processing and additional storage space. For an
image of size X'xY, the calculation of the histogram of each color channel requires O(XY)
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additions and O(XY) increments. In addition, O(P) operations are required to compare a pair of
histograms. where P is the number of bins in the histogram. The total number of operations
required to calculate the histogram for images of various sizes are tabulated in column II of Table
4.1. Hence. the use of H-PX on compressed image has the following disadvantages: (a) requires
decompression before feature extraction which entails large storage. and (b) has high
computational complexity. We now present an algorithm for the indexing of compressed images
using VQ which has the advantages of H-PX at lower storage and computational requirements.

The histogram of the codewords weighted by the trequency of the labels is calculated as
follows. To start with. for each codeword. j, in the codebook. the histogram of the pixels. {w,s
i=1.2. ... P}. is generated and stored along with the corresponding codeword. Let m;. mo. ... my
be the frequency of the labels /;. /5, .... /y. respectively. The summation of the histograms of the
codewords weighted by the frequency of the labels is a close approximation of the histogram of
the image as illustrated in Figure 4.3. In other words, the histogram of an image {H(f;,i) ; i=1, 2.
.... P} 1s approximated by

N
H(f,.h= X mjxw,, (4.4)
J=1
for i=1, 2, ..., P. We refer to this approach by H-CL. For example, the histograms of pixels of
the Lena image (Figure 4.4) calculated using H-PX and H-CL (V =512. L =16) are shown in

Figure 4.5. The histogram of the codewords weighted by the frequency of labels is used as an

index to store and retrieve the image.
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Figure 4.3: Calculation of histogram of the codewords weighted by the frequency of labels

For an image of size .Vx}" pixels. the calculation of the histogram of the pixels in H-CL
requires the same number of additions and comparisons as the H-PX algorithm. however it
reduces the number of increments to O(XY/L) operations. Comparing columns II and III of Table
4.1. it can be seen that for L=16. the number of operations required in H-CL is approximately

50% of that in H-PX which results in a faster execution.

Figure 4.4: Lena image.
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Figure 4.5: The histograms of pixels of the Lena image.

4.4. Histogram Of The Labels

VQ is a mapping from a vector in L-dimensional space into a finite set (codebook) of
reproduction vectors (codewords). We note that the information conveyed by a set of quantized
vectors. is also encoded in the set of codeword labels. To illustrate this. consider the example
shown in Figure 4.6. Here. the luminance component (1) of a sequence of 5 images with various
camera operations are shown in Figure 4.6a-Figure 4.6e. The images are compressed using VQ at
a compression ratio of 16:1 (.V=256.L=16)). The codebook is arranged in the ascending order of
the average and standard deviation ot the codewords. By ordering the codebook, similar vectors
map to neighboring labels and hence the label map of an image produces a scaled version of the
image as shown in Figure 4.6f-Figure 4.6j. This suggests the use of feature vectors derived from
the labels as indices for the database. Here. the histogram of the labels of an image f,, is a K-
dimensional vector {H(f,.i) ; i=1, 2, ..., K. where H(f,,i) is the number of labels i in the

compressed image and K is the number of codewords in the codebook. The histograms of the
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labels are the feature vectors used as image indices. We refer to this algorithm as the direct

histogram of the labels (H-LB).

b) Rotation to the right g)

¢) Rotation to the left h)
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¢) Zoom out J)

Figure 4.6: Five images and their label maps.

For an image of size .XxY pixels. H-LB requires O(.XY/L) additions. O(XY/L) increments
and O(N) operations for comparing a pair of histograms. We note that for L=16. H-LB requires

only 6.25% ot the number of operations required by H-PX as can be seen from Table 4.1.



I II ITI v
Image size (H-PX) (H-CL) (H-LB)

256x256 4.0x10° 2.0x10° 2.5x10*

352x288 6.1x10° 3.2x10° 3.8x10*

2x512 1.6x10° 8.4x10° 9.8x10*

w
—

720x376 2.5x10° 1.3x10° 1.6x10°

Table 4.1: The number of operations required to calculate the histogram of the pixels (H-PX).

histogram of the codewords weighted by the number of labels (H-CL). and the histogram of

labels (H-LB).
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Figure 4.7: Block diagram of the compression algorithm.

4.5. Simulation Results

We recall from chapter 3 that several VQ algorithms for the compression of still image have been
reported in the literature [7]. In our simulations. we have adopted the configuration shown in
Figure 4.7. Here. the color image is first transformed from RGB to the YCrCh format. The ¥

component represents the luminance of a color pixel, while the Cr and Cb represent the two
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chrominance components. The chrominance components have a lower signal energy, and hence
they can be spatially subsampled without degrading the overall coding performance. The Cr and
Cbh components are subsampled by a factor of two in both the horizontal and vertical directions.
Each of the three components (Y, Cb and Cr) is compressed separately using VQ through the
same process for monochrome pictures. Several Y. Ch and Cr codebooks were pre-generated
separately using the LBG algorithm as described in section 3.1.3. We note that the codebooks are
generated using the same training set. These codebooks are used to compress the test images used
in the simulations presented in the rest of this sections. Let Ny. N, and Ve, be the sizes of the Y.
Cb and Cr codebooks. respectively. The bit rate in bits/pixel is calculated as follows:

log, N, . log, .V, . log, V,

L (+.5)
L 4L 4L

r (]
where Ly. Les. and L, are the vector dimensions of the Y. C'h and Cr components. respectively.
The use of vectors of uniform dimension otters good matching for hardware
implementation. hence. in our experiments. we have used Vy=V4.=N=V and Ly=L+.=L=L.
The VQ parameters (values of .V an L) and the corresponding compression ratios are tabulated in
Table 4.2.
Image retrieval is performed as follows. First. the index of the query image is determined.
The index of the query is then compared with the indices of the images in the database. The
comparison process is the computation of the “similarity”™ between the two images. The images

whose histograms are closer to that of the querv image are then retrieved. This process is

illustrated in Figure 4.8.
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Figure 4.8: Image retrieval.
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We use the retrieval results of H-PX as a baseline for comparison. For each image three
histograms (one for each color channel () are obtained. Given a query image f,.. and an image f,
in the database, the similarity between the two images is measured using the distance between
their histograms. In our experiments two distance measures are used. The first is the sum of the

intersections of the corresponding histograms (INTR):

,
S min(H,( f,.i). H.( £,.0)

> (4.6)

-
: Y Ho(f,0)
=1

where C={C,,C.C;} is the three color channels. For example. in case of using the RGB color
coordinate system. (. C» and C; are equal to R. G and B. respectively. The second distance
measure which is used to evaluate the similarity between two images is the sum of the Euclidean

distances between the corresponding histograms (EUCL):

P 2
S S |Hots, 0= Ho S0 (4.7)
!
For each query. let M be the number of similar images in the database. Let T be the
number the retrieved images (the number of relevant and non-relevant images retrieved in

response to a query). We detine the retrieval rate of a query image /. R, . as:

M OMST
R = (4.8)
r /T M>T
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where r, is the number relevant images retrieved. The retrieval rate, R. is the average of the query

retrieval rates over the total number of queries. i.e..

R=—>R (4.9)

where V, is the total number of queries.

To evaluate the retrieval performance of H-PX. we have performed simulations using
approximately 1000 images each of size 248x256 pixels. The images are taken from various
image classes including people, natural scenes. buildings. animals. etc. The images are stored in
the YCbCr coordinate system. We refer to this database (of the uncompressed images) as UC.

Five sets of experiments were performed. In the first set. the histogram of the ¥ channel is
used as an index (H-PX-G). The retrieval rates of H-PX-G are graphed in Figure 4.9a. For
example at 7=10. the retrieval rate of H-PX-G using the histogram intersection (INTR) and
Euclidean (EUCL) are 95.27% and 86.41%. respectively. This means that on the average.
95.27% of the similar images are present in the retrieved images using INTR. The corresponding
rate for EUCL is 86.41%. In the second set of experiments. the histograms of the three color
channels are used as an index (H-PX-C). The retrieval rates of H-PX-C are graphed in Figure
4.9b. It can be seen from Figure 4.9a and Figure 4.9b that INTR has higher retrieval rate than that
of EUCL. For H-PX-G, INTR outperforms EUCL by [%-4%. while for H-PX-C. INTR
outperforms EUCL by 4%0-6%. This is because. in EUCL. the large error components dominate
the small error components resulting in a lower performance. By comparing Figure 4.9a and
Figure 4.9b. it can be seen that H-PX-C out performs H-PX-G by 3%-8% and 6%-11% using

INTR and EUCL, respectively. However, the complexity of H-PX-G is 1/3 of H-PX-C.
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The test images were compressed at different compression ratios as shown in Table 4.2.
We refer to each database (of compressed images) by VQ(compression ratio). For example.
VQ(32:1) refers to the image database where the images are compressed at 32:1 using the

codebook with N=256 and L=16 as shown in the fifth entry of Table 4.2.

Retnieval rate (R)

—e— H-PX-G.UC.INTR
—a& - H-PX-G.UC EUCL
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(b)
Figure 4.9: Retrieval rate as a function of T using H-PX on UC: (a) Histogram of Y and (b)

Histograms of Y. Cr and Cb.
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[n the third set of experiments. simulations were carried out using H-CL on the databases
VQ(32:1) and VQ(28:1),VQ(128:1), and VQ(114:1). the performance of H-CL using the ¥
channel only (H-CL-G) and using the three color channels (H-CL-G) are evaluated in the
databases VQ(32:1) and VQ(28:1). Retrieval rates of H-CL-G and H-CL-C are graphed in Figure
4.10a and Figure 4.10b. respectively. It can be seen from Figure 4.10 that the retrieval rate
decreases as compression ratio increases (bit rate decreases). This is due to the fact that a
histogram computed using eq. (4.4) approaches the original histogram at lower compression
ratios. For example, for T=25 using INTR. at compression ratios ot 32:1 and 28:1. the retrieval
rates are 85.45% and 89.66%. respectively. The corresponding rates using EUCL are 71.70% and
74.77%. respectively. It can also be seen from Figure 4.10. that retrieval rates using INTR are
higher than the rates of EUCL. Comparing Figure 4.10a and Figure 4.10b. it can be seen that H-
CL-C outpertorms H-CL-G by 7%-15% and 13%-25% using INTR and EUCL. respectively. We
note that all the test images are outside the training set and theretore turther improvements in
retrieval performance can be expected for images inside the training set.

To investigate the effect of using a larger vector dimension retrieval rates of H-CL-G and
H-CL-C on VQ(128:1) and VQ(114:1) are determined. Retrieval results are graphed in Figure
4.11. It can be seen trom Figure 4.11 that by increasing the vector dimension trom 16 to 64 the
retrieval rate ot H-CL-G decreases by 2%-6% and 3%-3% for codebooks of size 256 and 312
codewords. respectively. It can also be seen from Figure 4.11 that the corresponding decrease in
retrieval rates for H-CL-C are 3%-4% and 2.5%-3%, respectively. Similar decrease in retrieval

rates have been observed using EUCL. Using codebooks of sizes 256 and 512, increasing the
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vector dimension from 16 to 64, for H-CL-G the retrieval rates decrease by 7%-8% and 1%-3%.,
respectively. The corresponding decrease for H-CL-C are 3%-6% and 4%-3%. respectively. This
is because the distance between a histogram computed using eq. (4.4) using a larger vector
dimension while keeping the codebook size and the histogram of the original will increase. The
effect of using a larger vector dimension can be decreased by increasing the codebook size

Retrieval rates were obtained using H-LB on VQ(64:1), VQ(51:1), VQ(43:1). VQ(37:1)
VQ(32:1) and VQ(28:1). The rates are graphed in Figure 4.12. It can be seen from Figure 4.12a.
that using INTR the retrieval rate increases as the bit rate increases (compression ratio decreases).
[t can be seen from Figure 4.12b that using EUCL the retrieval rate increases as the compression
ratio decreases from 64:1 to 32:1. However. using EUCL the retrieval rate at a compression ratio
of 28:1 is less than that at a compression ratio of 32:1. This is because the number of empty bins
in the histogram of labels increases with increasing codebook size (not all the codewords are
used in the compression). This results in large error components which dominate smaller errors
and hence reducing the retrieval rate. It can be seen from Figure 4.12 that H-LB outperforms H-
PX tor VQ(37:1). VQ(32:1). and VQ(28:1) by 0.1%-3%. 1%-3% and 1%-3%. For VQ(43:1).
VQ@31:1). and VQ(64:1). H-PX outperforms H-LB by 0-1% and 1%-4%. Comparing Figure
4.12a and Figure 4.12b. it can be seen that INTR outperforms EUCL. therefore. only the results
using INTR are reported in subsequent experiments.

To investigate the effect of using larger vector dimension. the test images are
compressed using a vector dimension of 64 (8x8 block). Retrieval rates of H-LB-G on
VQ(256:1). VQ(205:1). VQ(I71:1). VQ(146:1). VQ(128:1). and VQ(114:1) were obtained. The
results are shown in Figure 4.14. It can be seen from Figure 4.14, that increasing the vector

dimension from 16 to 64 (reducing the bit rate by a factor of 4) using a codebook of size 16
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codewords reduces the retrieval rate by 0%-1.5%. However. for using a larger codebook size (32.
64. 128. 256 and 512). the retrieval rates using a vector dimension of 64 are slightly higher than
the corresponding rates using a vector dimension of 16.

In the last set of experiments. the performance of the proposed H-LB technique is
compared with a technique based on the histogram of the DC coefficients. Here. the test images
are also compressed using JPEG to form two databases: JPEG(32:1) and JPEG(64:1). The
JPEG(32:1) and JPEG(64:1) images are compressed using JPEG at a compression ratio of
approximately 32:1 and 64:1. respectively. The histogram of the DC coefficients (H-DC) is used
as a feature vector to access the images in the databases. Retrieval rates are graphed in Figure
4.15. It can be seen from Figure 4.15. that at compression ratios of 32:1 and 64:1. H-LB
outperforms H-DC by 3%-6% and 20%-30%. respectively.

From the retrieval results presented in this section. it can be seen that H-LB outperforms
H-LC at both high and low compression ratios. however. form the visual retrieval results (see
Figures 4.16 and 4.17).We notice that H-CL out performs H-LB in retrieving rotated or translated

images using the original image as a query.
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Figure 4.16: (a) Query image. First three retrieved images (b) H-CL-C (c) H-LB-C
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(c)

Figure 4.17: (a) Query image. First three retrieved images (b) H-CL-C (c) H-LB-C
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4.6. Summary

In this chapter, we have demonstrated that VQ is an efficient technique for joint image
compression and indexing. We have presented novel.algorithms for the indexing compressed
image using VQ. In the first technique (H-CL). the histogram of the codewords weighted by the
number of labels is used as an index to store and retrieve an image. In the second technique (H-
LB), the histogram of the labels of an image is used as an index. Simulation results demonstrate
that H-CL has a similar pertormance to H-PX at a compression ratio of 32:1, while H-LB
outperforms H-CL and H-PX at high as well as low compression ratios. In addition. H-CL is best
suited for retrieving rotated or translated images using the original image as a query. In terms of
computational complexity. H-CL and H-LB require only 50% and 6.23% of the number of
operations required by H-PX. The performance of H-LB was also compared with the histogram
of the DC coefficients in JPEG compressed images (H-DC). At a compression ratio of 32:1 and
64:1. H-LB outpertorms H-DC by 3%-6% and 20%-30%. respectively.

We note that H-CL can be applied to adaptive VQ compression techniques which are
based on codebook replenishment, while H-LB can not be applied directly to those techniques. In
chapter 5. we propose an indexing techniques for adaptive VQ based n the usage map in the

spatial and wavelet domains.
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5
Image Indexing Using

Adaptive VQ

5.1. Introduction

In chapter 4. we have presented two image indexing technique based on VQ. In these
techniques, the indices are derived from compressed images which eliminates the need for
decompression and hence reduces the computational and storage requirements. However. the
index is associated with the corresponding compressed bit stream. thereby reducing the
storage efficiency. In this chapter. we propose a technique based on adaptive vector
quantization which integrates the index of an image within the compressed bit stream. This
integration has two advantages. First. the index is generated automatically at compression
time. which avoids the unnecessary decompression and/or processing operations. Secondly. it
does not require additional memory for storing the indices.

This chapter is organized as follows. The employed compression technique for
adaptive wavelet VQ is detailed in section 5.2. The indexing algorithm is presented in section

5.3. Simulations are presented in section 5.4. Finally. the summary is presented in section 5.4.
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5.2. Image Compression Using Wavelet Vector

Quantization

It has been shown that wavelet transform based coding outperforms DCT-based coding. since
it is free from both blocking effects and mosquito noise. We recall from chapter 3. that
wavelet transform provides a tool for decomposing a signal into a weighted sum of basis
functions called wavelets. For image applications. wavelet transform decomposes an image
into a set of different resolution subimages cormresponding to the various frequency
components of the original image. resulting in a multiresolution representation.

The wavelet coefficients can be quantized and encoded using a variety of techniques.
The combination of wavelet transform and VQ has been shown to be very efficient for very
low bit rate image coding [16]-[17].

Here. the image to be compressed is tirst decomposed using wavelet transtorm. To
start with 64-D vectors (v-vs) are formed by combining the corresponding blocks in the 10
subimages as shown in Figure 5.1. The vector vy corresponds to the lowpass subimage, while
(vi-v3), (v4-v15) and (vi¢-ve3) correspond to the subimages at levels 3. 2, and 1. respectively. A

73~m

block of size (m=1, 2.3) is used for each horizontal. vertical and diagonal orientation
subimages at the mth level. In other words. the sizes of the blocks are scaled corresponding to
the level of the wavelet pyramid. With this structure. the number of blocks in the subimages
is constant and hence there is a one to one correspondence between a block at one resolution

level in the wavelet pyramid and a block at the same position at a different resolution level.

Hence, there is significant amount of redundancies among the various subimages.
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Figure 5.1: Vector formation.

To exploit the correlation among the various subimages. the 64-D vectors are encoded
using nonlinear interpolative VQ (NIVQ). Here. 16-D feature vectors (vy-v5) are generated
by taking the first 16 elements from lower resolution subimages within the corresponding 64-
D vectors (vy-ve3) as shown in Figure 5.1. VQ is pertormed on the 16-D vectors. We note that

the codebook at the encoder (16-D codebook) differs from that at the decoder (64-D
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codebook). The codebooks are designed by partitioning the 16-D and 64-D vector spaces into
corresponding subspaces. The 16-D codebook is first generated by clustering the 16-D vector
space into subspaces. The 64-D codebook is then generated by projecting the resultant
subspaces in the 16-D vector space into the 64-D vector space. The projection between the
16-D and 64-D vectors is a one to one mapping operation.

This technique reduces the computational complexity in the conventional VQ process.
[n addition. it preserves the high frequency subimages even at high compression ratios (very
low bit rate). This results in a superior coding performance. Good quality reconstructed
images can be obtained at compression ratios of 40:1 for gray-level images and 100:1 for
color images.

We recall from chapter 3. that VQ a large codebook must be used in order to ensure a
good image fidelity. which in turn increases both the bit rate and the coding complexity.
Typically. adaptive VQ is employed to eliminate the need for a large universal codebook. In
adaptive VQ. the codebook or part of it is moditied in order to match the local image
statistics resulting in higher fidelity. We note that the improvement in image quality is
achieved at the expense of increasing the computational complexity.

In the following section we present a codebook adaptation and indexing technique

which results in lower bit rate for label encoding and provide indexing features.

5.3. Indexing using adaptive wavelet VQ

In the proposed technique. a large universal codebook of size V codewords is first generated

oft-line as described in section 5.2. The codebook is generated using a set of representative



images. For each image to be stored in the database, the image is decomposed using wavelet
transform. The transform coefficients are then encoded using NIVQ. A usage map {u(fmj); 0
<j < K-I}. where u(f,.j)e{0.1} is generated to indicate the used codewords as shown in
Figure 5.2. The used codewords constitute a reduced codebook of size M codewords. where
M < N. The labels corresponding to the reduced codebook and the usage map are stored in
the database. We note that the reduced codebook corresponding to an image reflects the
content of the image and similar images have similar reduced codebooks. The usage map
corresponding to an image constitutes a feature vector which is used as an index to store and
retrieve the image.

The similarity between two images f, and f, is measured using the following

equation:

N-1

S £i) =D (utf, DD U £, 1)) (5.1)

=0

where @ is the XOR operation. Using this metric. the comparison of two indices requires
O(N) bit operations. where .V is the codebook size. The number of bits required to store an
index is O(N) bits. This technique doesn’t require any additional operations to calculate the
indices as the usage map is generated during compression of the images. We refer to this
technique as indexing using the usage map (IUM). The proposed technique provides fast
access to the compressed images in the database and has lower storage requirements. In
addition. the lowest resolution subimages resulting from the wavelet decomposition can be

used as visual icons for browsing purposes.
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Figure 5.2: Usage map generation.

5.4. Simulation Results

Simulations were carried out using a database containing 300 gray level images, each of size
512x312 pixels. The database contains images of ditterent classes based on textures. natural
scenes. buildings. animals. etc. The images are first decomposed using a bi-orthogonal
wavelet transform with 3/5 taps [16]. The corresponding coefficients of the wavelet filter
bank are shown in Table 1. The transtform coefficients are compressed using NIVQ as
described in sections 5.2 and 5.3. Each image is represented by a usage map and a set of
labels. We note that codebook of size 4096 codewords is generated using a training set ot 20

images. The hierarchical indexing approach is used as a baseline for comparison .
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In hierarchical indexing technique [107], a multiresolution indexing technique based
on subband decomposition. The images are decomposed using m subband filters and the
histogram of each subimage is generated. The histogram of a subimage is an n-D vector {Hi)
;=1 2. ..., n}, where n is the number of gray levels and H(i) is the number of pixels of gray
level 7 in the image and serves as the index of the image. The histograms (indices) are
compared at different resolutions in a hierarchical manner. To start with. the histogram of the
lowest subimage is used as an index for image retrieval. If the retrieval result is not
satisfactory. the histogram of the next higher resolution subimage is used as an index. The
process is repeated until the images of interest are retrieved. We refer to this method as the
hierarchical indexing approach (HIA). We note that HIA is computationally intensive
procedure.

Retrieval rates of the proposed technique are evaluated using the query by example
approach. Here. a sample image (query) is given and the task of the system is to retrieve
images which are “similar™ to the sample image. For this purpose. the system extracts the
usage map (index) of the query image and matches it against all the usage maps (indices) of
images stored in the database. The matching process is carried out by computing the
“similarity” between the index of the query and those of the images in the database. The
similarity between two images f,, and /, is measured using equation 2. The retrieved images

are arranged in the order of increasing value of the similarity metric.
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Analysis Synthesis
Lowpass Highpass Lowpass Highpass
n=-3 0.0 0.0 0.0 0.0
n=-2 -0.125 0.0 0.0 0.0
n=-1 0.25 0.0 0.25 0.125
n=0 0.75 0.25 0.5 0.25
n=1 0.25 -0.5 0.25 -0.75
n=2 -0.125 0.25 0.0 0.25
n=3 0.0 0.0 0.0 0.125

Table 5.1: Coefticients ot bi-orthogonal wavelets.

For each query. let 7 be the number the retrieved images (the number of relevant and
non-relevant images retrieved in response to a query). Let S be the number of similar images

in the database We define the retrieval rate of a query image /. R, . as:

R =

!

r/S S<T
(3.2)

r!T S>T
where r; is the number relevant images retrieved. The retrieval rate. R. is the average of the

query retrieval rates over the total number of queries. i.c..

R= —V‘—Z R (5.3)

{ q 1=1

where V, is the total number of queries.
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The retrieval rates are shown in Figure 5.3. It can be seen from F igure 5.3, that the
rank of the similar image is among the first 5 (1% of the total database population) retrieved
images at a rate of 87.2%. For example. the first three retrieved images in response to the
queries shown in Figures Figure 5.4a and Figure 5.6a are shown in Figure 5.4b and Figure
5.6b. respectively.

The same queries were performed on the database using HIA. Here. index matching is
a hierarchical approach. where the histograms of the subimages are compared at ditterent
resolutions. Retrieval results are shown in Figure 5.3. [t can be seen from Figure 3.3 that
using [UM and HIA. the rank of the retrieved images where among the first 15 images at a
rate of 93.2% and 92%. respectively. It can also be seen that using IUM and HIA. the rank of
the retrieved images where among the first 25 images at a rate of 94.5% and 94.4%.
respectively. Hence. HIA and IUM perform comparably. However. the computational

complexity of [UM is much less than that of HIA which results in faster execution.

—o—HIA
—m— UM

Retrieval Rate

82— — — —

5 10 15 20 25

Number of Retrieved Images (T)

Figure 5.3: Retrieval rate as a function of the number of retrieved images.
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(b)

Figure 5.4: (a) Query image. (b) Retrieval results.

The number of operations and the number of bits required to calculate and store a
single index in HIA and IUM for some typical image sizes are shown in Table 5.2 and Table
5.3. respectively. It can be seen from Table 5.2 and Table 5.3. that [UM has much lower
computational and storage requirements. [UM requires only 32%-38% of the number of bits
required to store a single index using HIA. A more serious consideration from
implementation point of view is the computational complexity involved in calculating and

comparing the indices. It can be seen from Table 5.2, that [UM requires 0.3%-2.5% of the

111



number of operations required by HIA. In addition, for index matching, HIA involves
arithmetic operations (bytewise operations which includes additions and multiplications)
while IUM involves only bitwise operations. Hence, the proposed technique integrates image
compression and image indexing at a significantly reduced cost for computing, storing and

comparing the indices making possible real time implementation.

(b)

Figure 5.6: (a) Query image. (b) Retrieval results.



Image size HIA UM
256 x 256 | 1.7x10° 4096
352x288 | 2.7x10° 4096
512x 3512 | 69x10° 4096
720 x 576 1.1 x10° 4096

Table 5.2: The number of operations/index

Image size | HIA [UM
255 x 255 10752 4096
352 x 288 11236 4096
512 x 512 12288 4096
720 x 576 12796 4096

Table 3.3: Number of bits/index.

5.5. Summary

[n this chapter. we have presented a technique which combines image compression and
indexing using adaptive vector quantization. The images are first decomposed using wavelet
transtorm followed by VQ of the transform coetticients. We note that similar images map to
similar labels. Hence. the labels corresponding to an image constitute a feature vector which

is used as an index to store and retrieve the image.
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Simulation results have shown that the proposed technique performs comparably to
the hierarchical indexing approach in terms of retrieval rates. Comparing the proposed
technique to the histogram of the code words weighted by the frequency of labels (H-CL) and
the histogram of labels (H-LB). it can be seen that the proposed technique integrates the
index within the compressed bit stream and employs a similarity metric which only involves
bitwise operations. Hence the proposed indexing technique has following advantages: (i)
indices are generated at compression time. (ii) does not require additional memory for storing

the indices, and (iii) provides fast access to the images stored in the database.
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6
Spatio-Temporal Video

Indexing

6.1 Introduction

In this chapter. we present an indexing technique for compressed video using vector
quantization. Here. a video sequence is tirst compressed using VQ. Each frame is represented
by an usage map. a set of VQ labels and a set of motion vectors. The video sequence is
partitioned into shots and the various camera operations and motion within each shot are then
determined by processing the VQ label maps. Each shot is indexed using a spatio-temporal
index. The spatial index refers to the spatial content of the representative frame of a shot.
while the temporal index represents the temporal content of the shot. The spatial index is
based on the codewords used to compress the representative frame. while the temporal index
is based on motion and camera operations within the shot. The proposed indexing technique
is executed entirely in the compressed domain. This entails significant savings in
computational and storage costs resulting in faster execution.

This chapter is organized as follows. First, the requirement of the proposed spatio-

temporal indexing are detailed in section 6.2. The proposed algorithm for video compression
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using VQ is then presented in section 6.3. The scene change detection algorithm and the
generation of the spatial index are presented in sections 6.4 and 6.5, respectively. This
follows in section 6.6. with the details of the proposed algorithm for the generation of the
temporal index (object motion and camera operations). Finally. a summary is presented in

section 6.7.

6.2 Spatio-temporal Video Indexing

Video indexing has numerous applications each with different goals. For example. in a movie
industry, a film editor essentially looks for footage of a particular type of scene and/or
specific camera operations trom a database populated with similar shots. On the other hand. a
producer in a television station interested in protiling a celebrity may require access to all the
significant video clips relating to that specific celebrity. In a distance learning application. a
student is interested in a specific lecture video or associated material. while in a telemedicine
application a medical practitioner may be interested in the past investigations of a patient or
particular examples of a disease. This points to the need for a video indexing scheme which
is flexible and adaptable to the wide variety of queries in different application domains. In
other words, a good video index must integrate both temporal and spatial structure of the
video sequence.

We present an indexing technique for compressed video using vector quantization.
Here. a video sequence is first compressed using VQ. Each frame is represented by a usage
map (which indicates the subset of codewords in the codebook that were used in compressing

the frame), a set of labels and a set of motion vectors as shown in Figure 6.1. The video
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sequence is then partitioned into shots using a metric based on the histogram of the label.
Each shot is indexed using a spatio-temporal index as shown in Figure 6.2. The spatial index
represents the spatial content of the representative frame of a shot. We propose to employ the
usage map corresponding to a representative frame of a shot as the spatial index. The
temporal activity within a shot is represented by the temporal index which is essentially the
motion information and camera operations within the shot as shown in Figure 6.2. In this
chapter, the motion activity is detected by tracking the trajectories of the motion vectors of
the labels, while camera operations are detected by analyzing the directionality of the spatio-
temporal patterns of the label maps. We note that the proposed spatio-temporal index is
generated entirely in the VQ compressed domain. This entails significant savings in
computational and storage costs for decompression and recompression resulting in faster

execution.
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Figure 6.1: Block diagram of the proposed video indexing technique
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Figure 6.2: Block diagram of the proposed video indexing technique

6.3 Video Compression using VQ

[n our approach. we extend the image compression algorithm. which was described in section
2.3. to video compression by exploiting the temporal redundancy in the labels of successive
trames. To start with. the trame f,, to be compressed is decomposed into L-dimensional
vectors. For each vector. v, in the current frame f,, the label of the nearest codeword w, 1s first
determined using the universal codebook. The usage map {u(f.j): 0 <j < K-1 } where

u(fmj)€{0.1} is updated to indicate that codeword w; is used. The label w, corresponding to v,
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in the current frame f,, is compared with the label at the same spatial location in the previous
trame f,..;. If they match. a flag Sy is transmitted to the receiver. Otherwise. a match is sought
within a search area in f,..;. If a match within the search area is obtained. a tflag S,, followed
by the displacement (motion) vector of w, are transmitted. However. if a match is not
obtained even within the search area. the label corresponding to w, in the reduced codebook is
used to encode the input vector . The algorithm can be expressed in pseudo code as follows:
Begin
Decompose the input frame f,, into L-dimensional vectors:
For each vector Do

w; = the label of the nearest vector in the universal codebook:

update the usage map:

wm = the label corresponding to the vector at the same spatial location of the input
vector:

if (v, matches 1)) then send a tlag S,

else

wy, = the nearest label within a search area:
if (w, matches w,) then send S,, followed by the motion vector:
else
send a flag S; followed by the label corresponding to w. in the reduced
codebook:
End ftor

End.



We note that the codebook is arranged in the ascending order of the average and standard
deviation of the codewords. By ordering the codebook. similar vectors map to neighboring labels
and hence the label map of an image produces a scaled version of the image. For example. the
label map of the Lena image using non-ordered and ordered codebooks are shown in Figure 6.3.
The ordering of the codebook has two advantages: (i) the labels can be coded to further reduce
the bit rate and, (ii) the label maps of a video sequence is used to extract the camera operations as
will be discussed in section 6.3.

Computer simulations were carried out on the Miss America sequence with a trame
size of 288x360 pixels and 8 bits/pixel. The sequence is obtained form
“ttp:/fip.ipl.rpi.edwimage/sequence/”. The coding performance of the proposed algorithm is
evaluated using rate distortion criterion. For an image of size V,x.V> and a maximum pixel

value of 253, the Peak Signal to Noise Ratio (PSNR) of the reconstructed image is calculated

by:
255
PSNR = 10log [ — ] (6.1)
!/ T2 5
DR TATEE W
ViNs sz Y

where .Y, and I, are the intensity of the pixel (i) in the original and the reconstructed image.
respectively. The total bit rate is calculated by:

K+(og, K+I)xN +2x N, +5x N,
N, x N,

(6.2)

where A, V.. V; and V,, are the codebook size. the number of labels. the number exact matches
(S tlags), and the number of motion vectors. respectively. [n our experiments. the values of the

flags S;. S; and S, are={0}, {10}, {11}.



(a) (b)

Figure 6.3: Label map of the Lena image. (a) Non-ordered codebook, (b) Ordered codebook.

The bit rate and the PSNR per frame which result from applying the compression
technique on every other 4tA frame of the Miss America sequence arc shown in Figurc 6.4
and Figure 6.5, respectively. Note that the intermediate frames are skipped to allow for larger
changes between successive frames. The average bit rate and PSNR are 0.3 bpp and 33.3 dB.
respectively. It can be scen from Figure 6.4. that when there arc significant changes between
the frames (e.g., frames 79 to 91) the bit rate increases. It can be scen from Figure 6.3, that
the proposed compression technique maintains a relatively constant quality throughout the
sequence. The overhead for storing the usage map is 0.0025 bit per pixel. It can be seen from
Figure 6.4. that the overhead is ranges from 0.7% to 1% of the total bit rate. The overhead of

the usage map as a function of codebook size for some typical images is shown in Figure 6.6.
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Figure 6.4: The total bit rate as a function of frame number.
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Figure 6.5: The PSNR as a function of frame number
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Figure 6.6: Usage map overhead in bits per pixel as a function of codebook size form some

typical image sizes.

6.4 Video Segmentation

The structure within a video stems from the fact that video streams are formed by editing
different video segments known as shots. A shot is a sequence of frames generated during a
continuous operation and it represents continuous action in time and space [127]. Shots can
be joined together in either an abrupt transition mode. in which two shots are simply
concatenated. or through gradual transitions. in which additional frames may be introduced
using editing operations such as dissolve, fade-in. fade-out and wipe. Furthermore. each shot
might contain several clips where each clip is defined by a homogenous camera operation
(e.g.. zoom. tilt. ... etc.).

The purpose of the segmentation process is to partition a video stream into a set of
meaningful and manageable clips as shown in Figure 6.7, which then serve as the basic units

for indexing. The segmentation process can be performed in two stages as shown in Figure
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6.8. We now present the algorithm for scene change detection. The algorithm for the

detection of camera operations is detailed in the next section.

Cuts
Video
4
Shot 1 Shot N
< > : >« |
Clip Clip Clip Clip Clip
4 >« ) >« >« >
Figure 6.7: Video segment in terms of shots and clips.
Video Shot Detection of C Clip
» Scene Change Detection » etection of Gamera >

Operations

Figure 6.8: Block diagram for video segmentation.



6.4.1 Scene Change Detection

Video has both spatial and temporal dimensions. and hence a good video index should
capture the spatio-temporal content of the scene. We recall that. in order to achieve this. a
video is first segmented into elemental scenes called shots. Shots can be joined together in
either an abrupt transition mode in which two shots are simply concatenated. or through
gradual transitions. in which additional frames may be introduced using editing operations
such as dissolve fade-in, fade-out and wipe. In general. video segmentation is achieved by
employing a difference metric to measure the changes between two frames. A scene change is
declared if the difference between the two tframes exceeds certain threshold.

The histogram of the labels of a frame f,, is the K-dimensional vector [Hfn D) i1, 2,
.. K. where H(f,,,i) is the number of labels / in the compressed frame and A is the number
of codewords in the codebook. The difference between two trames /m and 7, 1s measured

using the 7 -metric :

& - D)
[ ) - Jom " - 6.3
¢ (,/m ./n) ;(1_[(./'11'1)-*. H(_/,,l)) ( )

A large value of d(f,, /) indicates that f,, and f, belong to different scenes. An abrupt
scene change is declared if the difference between two successive frames exceeds a threshold.
A gradual transition is detected if the difference between the current frame and the tirst frame
of the present shot is larger than a threshold.

Simulations were executed using three music video sequences. We refer to the video
sequences as “S17, “S2” and “S3”. Each sequence has a frame size of 120 x 160 pixels. The

first sequence. S1. has 201 frames and contains 7 abrupt scene changes. The second sequence

126



S2 has 201 frames and contains 21 cuts and has many special effects. The third sequence, S3
has 500 frames and contains a total of 13 gradual scene changes with very smooth transitions.

[n the first experiment. the video sequences were compressed as described in section
2. using a codebook of 256 codewords and 16-D vectors corresponding to a compression
ratio of 16:1. Segmentation results are tabulated in Table 6.1. We note that N Nyand V,are
the number of detected, missed and false cuts, respectively. It can be seen from Table 6.1 that
one cut is missed and there are some expected false alarms. We note that the largest number
of false alarms is for the sequence S2. This due to the fact that S2 is characterized by a large

number of special effects and camera operations.

Sequence Ny N Ny
S1 7 0 l
S2 21 0 4
S3 12 l 2

Table 6.1: Scene change detection results using VQ at a compression ratio of 16:1.

[n the second experiment, the video sequences were compressed using VQ (section 3)
at a compression ratio of 64:1 using a codebook of size 236 and 64-D vectors. Detection
results are tabulated in Table 6.2. Comparing Table 6.1 and Table 6.2. it can be seen that at a

compression ratio ot 64:1. there are few misses and the number of false alarms increases.



Sequence Ny Np, Ny

S1 7 0 2
S2 19 2 6
S3 11 2 5

Table 6.2: Scene change detection results using VQ at a compression ratio of 64:1.

However. false cuts do not cause problems as the frames within such segments satisty
the requirements of a shot. Hence. the proposed algorithm has an excellent performance at
both low and high compression ratios.

In the third experiment. the sequences were compressed using motion JPEG at a
compression ratios of approximately 16:1 and 27:1. The  -metric applied to the histogram of
the DC coetticients is used for scene change detection. The detection results at a compression
ratio of 16:1 and 27:1 are tabulated in Table 6.3 and Table 6.4. respectively. The number of
missed cuts increases from 10% at a compression ratio ot 16:1 to 24% at a compression ratio
of 27:1. while the number of false cuts increases from 36% to 61%.

[t can be seen from Table 6.1 and Table 6.3. that scene changes were detected at a rate
of 90% in sequences compressed using VQ at a high compression ratio of 64:1. while cuts
were detected only at rate of 75% in sequences compressed using motion JPEG at a lower
compression ratio of 27:1. Hence. segmentation of compressed video sequences using VQ is
cfficient at both high and low compression ratios. However. the performance of the

segmentation algorithm degrades using motion JPEG at low bit rates.



Sequence Ny No, Ny
S1 7 0 !
S2 19 2 8
S3 1 2 6

Table 6.3: Detection results using the DC coefficients at a compression ratio of 16:1,

Sequence Ny Non Ny
Sl 6 ! 5
S2 16 h) 12
S3 9 4 10

Table 6.4: Detection results using the DC coefticients at a compression ratio ot 27:1.

6.5 Spatial Index

We recall from section 6.2. that after a video sequence has been partitioned into shots. a
representative frame for each shot is selected and image indexing techniques are then applied
to the reference frame. VQ is a mapping from a vector in L-dimensional space into a finite set
(codebook) of reproduction vectors (codewords). We note that the information conveved by a
set of quantized vectors. is also encoded in the set of codeword labels. Hence. similar images
map to similar codewords. We propose to employ the usage map as feature vector to index

the representative frame of a shot. We recall from section 3 that during the compression of a
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frame, a usage map is generated to indicate the used codewords. We recall from chapter 5,
that the reduced codebook corresponding to an image reflects the contents of the image and.
The usage map corresponding to an image constitutes a feature vector which is used as an

index to store and retrieve the image.

The similarity between two images f,, and Jn is measured using the following equation:
N-1
SUe )= 2 (4 £, D@ (1)
1=0

where @ is the XOR operation. Using this metric, the comparison of two indices requires
O(N) bit operations. The number of bits required to store an index is OrN) bits. This
technique doesn’t require any additional operations to calculate the indices as the usage map
is generated during the compression stage. Hence. the proposed technique provides fast
access to the compressed images in the database and has lower storage requirements

Simulation were performed using approximately 500 representative images cach of
size 256x256 pixels. The images are compressed to torm 2 databases namely: B2 and B3.
The images in B2 and B3 are compressed using adaptive VQ (section 6.3) at compression
ratios of 15.9:1 and 62:1. respectively.

Retrieval results are shown in Table 6.5. We note that BO and Bl refer to the
databases in which the images are indexed using the histogram of the pixels (uncompressed
domain). The images in B0 are indexed using the histogram of pixels with 256 bins. while in
Bl each histogram is quantized to 64 bins. Using the usage map as a spatial index at

compression ratios of 15.9:1 and 62:1. the retrieval rates were 91.3% and 90.2%.



respectively. Using the histogram of the pixels as an index the images were retrieved at a rate

of 88.6%.

Database Retrieval rate
BO 88.6
Bl 89.4
B2 91.3
B3 90.2

Table 6.5: Retrieval rates using histogram of pixels. and usage map on the databases BO. B1l.

B2 and B3. respectively.

Image size No. of operations No. of bits
256 x 256 1.3 x 10° 4096
352 x 288 2.0x 10° 4258
512 x 512 5.3 % 10° 4608
720 x 576 8.3 x 10° 4777

Table 6.6: Computational and storage requirements.

The number of operations and the number of bits required to calculate and store the

histogram of pixels for some typical image sizes are shown in Table 6.6. For a codebook of
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size 256 with 16-dimensional vectors, the number of operations required to calculate a single
index in each database is 256. It can be seen that the proposed technique has very low
computational and storage requirements. It is important to note that indexing using the
histogram of pixels requires arithmetic operations (additions and multiplications). while

indexing using the usage map involves only bitwise operations.

6.6 Temporal Index

We recall from section 6.2. that the temporal index consists of two parts: the first represents
motion activity while the second represents camera operations within a shot. [n this section.

the generation of the temporal index is detailed.

6.6.1 Motion

We recall from section 6.3. that during the compression of a video sequence motion
estimation on each label has been performed. This information can be exploited to describe
the motion within each shot. To start with. the motion vectors are used to track each label.
Each track can be thought of as an n-tuple of motion vectors. The tracking operation is
performed as follows: Given (x,,y,). the coordinate of a label in frame f;. and the motion
vector (Ax. Ay) between f; and /5. the coordinate of the label in frame S21s (A +AY), I
during the tracking procedure the initial label moves out of its position. then we have to
generate a new track for the new label whose position coincides with the coordinates of the

initial label. The track of a label is represented by



{(xl’yl)’(xbyl)? e (X Vo s fon 12} 4)

where {(x;p/).(x202). ... (Xa¥n)}. fs and £, are a set of points representing the absolute frame
coordinates. number of the first frame in which the track started. number of the last frame in

which the track ended.

6.6.2 Detection of Camera Operations

We recall from section 2.5, that the basic camera operations are: fixed. panning (horizontal
rotation). tracking (horizontal transverse movement). tilting (vertical rotation). booming
(vertical transverse movement). zooming (varying the focusing distance) and dollying
(horizontal lateral movement) as shown in Figure 2.6. Camera operations include the basic
operations and all the ditferent possible combinations. Several techniques for camera motion
estimation have been reported in the literature. However. we note that these techniques are
generally affected by noise and have high computational complexity.

For indexing purposes it is not essential to know exactly how much pan or zoom
occurred (quantitative camera parameters); the important requirement is to recognize which
camera operations have occurred in a given shot. Therefore. the purpose of the proposed
technique is to extract qualitative camera operations. In this section. we present a technique
for the detection of camera operations. The proposed technique is less sensitive to noise and
has a lower computational complexity. We start by presenting a camera model for the basic

camera operations.



6.6.2.1 Camera model

A video camera projects the 3-D space onto the 2-D image plane. Using the notation in
Figure 6.9. the point at coordinates (X, Y,Z) in the 3-D space is mapped onto (x.}) in the image

plane. The coordinates (.Y, Z) and (x,y) are related by the perspective transformation
Y=—. y= LLs (6.4)

where F'is the focal length.

<

Image plane

F »
o(XY)
Y,
% o (X,Y.Z2)
v
Z,z



6.6.2.1.1 Zoom:

A zoom is the change of the camera focal length and results in a change which manifests
ttself as a radial motion towards (zoom out) or away (zoom in) from the center of the image.
Let (x,y;) denote the image plane coordinates of the point (X, }.2Z) with a focal length of F,.
and (x».)-) is the image plane coordinates of the same point with a tocal length F- (after the

zoom). Using equation 6.4, the following relation is derived:

=4 (6.5)

We note (x2,)>) is independent of the distance between the camera and the object (the depth

2).

6.62.1.2 Pan

A pan is a rotation of the camera around the Y-axis by an angle 3. Let (x,,3,) and (x2)5) be
the image plane coordinates of a point (.Y, ¥, 2) betore panning and after panning. respectively.
The relation between (x,.1,) and (x>.2) can be expressed as follows:

_x,cosf+ Fsinf

X .
—~Lsinf+cos
Fl,B cos [

X, v, = < (6.6)

X, .
- =sin [ +cos
Fsinf+cosf

Assuming the value of B is small and x,/F << 1. equation 6.6 reduces to:

X=X+ Fp o v.=yy (6.7)

Hence a pan operation results in a shift by a constant amount.
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6.6.2.1.3 Tracking

A tracking operation along the horizontal axis results in a horizontal shift of the image. The
shift depends on the distance of the objects from the camera (depth). However. for the
purpose of indexing. the tracking effect can be approximately considered to be identical to

that of the pan operation.

6.6.2.14 Tilt

A tilt is a rotation of the camera around the X-axis by an angle a. Let (x,,y;) and (x5,y-) be the
image plane coordinates of a point (. Y,Z) before tilting and after tilting, respectively. The
relation between (x;.y,) and (x»,v1) can be expressed as follows:

X, ycosa + Fsina

X, = V.= (6'8)

: v
-“lsing + cosa -
F F

-—

sina + cosa
Assuming a small value of a and y/F << 1. equation 6.8 reduces to:

xn=x yv.=yv +Fa (6.9)

Hence a tilt operation results in a vertical shift bv Fa

6.6.2.1.5 Booming

A booming operation along the vertical axis results in a vertical shift of the image. The shift
depends on the distance of the objects from the camera (depth). However. to obtain
qualitative information for indexing the booming eftect can be approximately considered to

be identical to that of the tilt operation.



Based on the previous camera model, the qualitative camera operations in a shot can
be determined by analyzing the spatio-temporal patterns which is discussed in the following

section.

Central pattem

Bottom pattem

Left pattern Central pattem Right pattern

Figure 6.10: Image block.

6.6.2.2 Generation of Spatio-temporal Patterns

The proposed technique for the extraction of camera operations is based on analyzing the
direction of spatio-temporal patterns. Here, a set of frames are stacked in time one after
another to form a an image block as shown in Figure 6.10. A spatio-temporal pattern is a slice
of the image block as shown Figure 6.10. Two types of spatio-temporal patterns are
distinguished: vertical and horizontal. A vertical spatio-temporal pattern of size xxy' pixels at

location (m.n) is generated by first selecting from each label map the subimage of size xx1 at



(m.n). The subimages are then placed next to each other from left to right as shown in Figure
6.11. This can be expressed as follows:

VST (i. j) = lj (m+i.n) (6.10)

where F'ST(i,j) is the (i,j) pixel of a vertical spatio-temporal pattern and /, is the jth label map.

A horizontal spatio-temporal pattern of size yxx pixels at location (m.n) is generated
by first selecting from each label map the subimage ot size Ixx at (m.n). The subimages are
then placed next to each other from top to bottom as shown in Figure 6.12. This can be
expressed as tfollows:

VST ) =1 (m+i.n) (6.11)

where FST(ij) is the (i,j) pixel of a horizontal spatio-temporal pattern.

6.6.3  Analysis of Spatio-temporal patterns

Camera operations within a sequence can be detected by analyzing the directionality of a set
of spatio-temporal patterns. Three vertical spatio-temporal patterns are selected. The first at
the left side (left pattern). the second at the center (center pattern) and the third is at the right
side (right pattern). Similarly, three horizontal spatio-temporal patterns (top pattern. central
pattern and bottom pattern) are selected as shown in Figure 6.13. A spatio-temporal pattern
can be viewed as a texture image and hence camera operations can be estimated by estimating
the directionality of a set of spatio-temporal images. The directionality of a spatio-temporal
pattern. can be estimated from the power spectrum of the pattern. If the directionality of a
pattern is 6. then the energy is concentrated in the direction perpendicular to 6. Figure 6.14

shows a spatio-temporal pattern and its power spectrum.
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Figure 6.11: Generation of a vertical spatio-temporal pattern.



(m,n)

.‘I'

Figure 6.12: Generation of a horizontal spatio-temporal pattern.
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Top pattern

Central pattern

Bottom pattern

left central right
pattern pattern pattern

Figure 6.13: The location of horizontal and vertical patterns.

(@) (b)

Figure 6.14: Fourier spectrum of a spatio-temporal pattern. (a) pattern; (b) spectrum.

Let ;. 02. and 63 be the directionality of the top, central and bottom horizontal spatio-

temporal patterns. respectively. Let v, y2, and y; be the directionality of the left. central and
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right vertical spatio-temporal patterns, respectively. From our simulations, fixed, pan, tilt and
zoom camera operations can be detected from the directionalities of the spatio-temporal

patterns as shown in Tables 6.7 and 6.8. We now illustrate how pan and tilt operations are

determined.

Camera operation 8, 0~ 0,
Fixed =90° =90° =90°
Pan right 0, <90 0, <90 8, <90
Pan left 9, > 90°. 6, > 90°. 0; > 90°.
Tilt up Not defined | Not defined | Not defined
Tilt down Not defined | Notdetined | Not detined
Zoom in 8,>90° =90° 0,<90°
Zoom out 0, <90° =90° 8;>90°

Table 6.7: Detection of fixed. pan and zoom camera operations.
Consider the sequence which involves a pan to the right operation as shown in Figure 6.13.
The sequence is compressed as described in section 6.2. Three spatio-temporal patterns of the
label maps are shown in Figure 6.16. The top, central and bottom horizontal spatio-temporal
patterns are generated at (6.1). (18.1) and (30.1). respectively. It can be seen from Figure
6.16. that the directionality of the three patterns are approximately the same. i.c. 8,20,=0;
and 8 is less than 90°. In case of a pan to the left we note that 8,=0,=0; and 6, is larger than

90°.
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Camera operation T Y2 13
Fixed =0° =0° =0°
Pan right Not defined Not defined | Not defined
Pan left Not defined | Not defined | Not detined
Tilt up > 90°. > 90°. > 90°.
Tilt down <90°. <90°. <90°.
Zoom in 0;>90 =90° 6, <90
Zoom out 0,<90 =90° 0,>90

Table 6.8: Detection of fixed. tilt and zoom camera operations.

Figure 6.16: :Left, central and right horizontal spatio-temporal patterns of the sequence

shown in Figure 6.15

143



Consider the sequence shown in Figure 6.17 which involves a tilt up camera operation. The
lett, center and right vertical spatio-temporal patterns are shown in Figure 6.18. It can be seen
from Figure 6.18 that the directionality of the three patterns are approximately the same. i.c.
71=Y>=y; and v, is larger than 90°. In case of a tilt down we note that y,=y>=y; and v, is less

than 90°.

Figure 6.17: Frames 5,10 and 15 of a sequence which involves a tilt up camera operations.

Figure 6.18: The left. central and right vertical spatio-temporal patterns corresponding to the

sequence shown in Figure 6.17.

To illustrate how a zoom camera operation is detected, consider the zoom in sequence
shown in Figure 6.17. The corresponding horizontal spatio-temporal patterns are shown in
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Figure 6.18. It can be seen from Figure 6.18 that the first half of each parttern has a
directionality less than 90°. while the second half has a directionality greater than 90°. In case
of a zoom out camera operation the first half of each pattern has a directionality greater than

90°. while the second half has a directionality less than 90°.

Figure 6.20: Top. central and bottom horizontal spatio-temporal patterns corresponding to the

sequence shown in Figure 6.19.
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The directionality of a subpattern is determined is estimated from the 2-D power
spectrum.as follows. Let a spatio-temporal pattern and its DFT be represented by f{x.v) and
F(u.v). The power spectrum of the transform. which gives the energy of the frequency (u.v).
is defined as:P(u,v)=.|F(u.v)]* The amount of energy in direction « is given by X, P(r.a,
where P(r.a). is P(u.v) expressed in polar coordinates. If the of ¥, P(r.a) has a peak at .
then spatio-temporal pattern has a directionality perpendicular to v.

Simulations performed on four video sequences S.umeras. Scameras Seameras ANA Seameras.
The sequences Scamerar. Scamerazs Scameras and Seameras composed of 10, 16. 20 and 22 camera
operations. respectively. In addition. Scameras. Scamera2- and Scumeras do not have large moving
objects that dominate the scene. The sequences are compressed using a codebook of size 2356
codewords and a 16-dimensional vectors.

Detection results are shown in Table 6.9. It can be seen from Table 6.9. that for the
sequences Scumerars Scamera2- and Scamere; the all camera operations in the sequences are
detected. while for S.merq only 2 operations are missed. [t can be also seen from Table 6.9
that number of false detections ranges from 12.5%-60%. We note that is high in sequences
which contain moving objects. Hence. the proposed algorithm has an excellent pertormance.
We recall that here camera operations are detected from label maps which results in low
computational complexity. In addition, the proposed technique is less sensitive to camera
vibration and flash noise. since the detection process is based on a set of frames rather than

individual frames.
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Sequence Ny N Ny
Scameral 10 0 3
Scamera2 16 0 2
Scamera3 20 0 12
Scameras 22 2 5

Table 6.9: Number of detected (V). missed. (.V,,) and talse detected (:Vy) camera operations.

6.7 Summary

In this chapter. we have presented an indexing technique for compressed video using vector
quantization. The video sequence is partitioned into shots using a metric based on the
histogram of the label maps. Each shot is indexed using a spatio-temporal index. The spatial
index is the usage map corresponding to a representative frame of the shot. The temporal
activity within a shot is essentially the motion information and camera operations within the
shot.. The motion activity is detected by tracking the trajectories of the motion vectors ot the
labels. while camera operations are detected by analyzing the directionality of the spatio-
temporal patterns of the label maps. The spatio-temporal index provide an efficient
representation of the content of a video shot. In addition. it is generated entirely in the VQ

compressed domain which results in significant savings in computational and storage costs.
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7
Summary and Future

Research Directions

1. Summary

Visual media indexing is crucial in several applications for efficient retrieval of image and video
information. With the progress of multimedia technology. large amounts of visual data will be
widely accessible and thus will become one of the primary sources of information. much as text
is today. Whether the application is distance learning. digital libraries. interactive television.
multimedia news or banking. large volumes of video data will be required to be accessed
precisely and etficiently.

One of the key features for efficient. economic storage and retrieval required in a
database system is efficient indexing to enable fast access to the stored data. While indexing
techniques for textual data are well established to the extent that a considerable number of
database systems are commercially available. there is an impending need to develop content-

based indexing techniques to facilitate retrieval from a visual database.
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We recall from chapter 1, that research in image and video indexing take one of two
directions. The first direction is to develop indexing techniques for compressed images and
video. The second direction is to develop compression algorithms that are optimized not only
in coding performance (bit rate vs. quality) but also in terms of retrieval efficiency (joint
compression and indexing). In this thesis. we have addressed the problem of image and video
indexing using vector quantization (VQ).

In chapters 2 and 3.we have presented a comprehensive review of image and video
indexing techniques in the uncompressed and compressed domains, respectively. In chapter
4. we have presented two techniques for indexing of vector quantized images. In the first
technique. for each codeword in the codebook. a histogram is generated and stored along with
the codeword. The summation of the histograms of the codewords weighted by the number of
labels is used as an index to store and retrieve the image. In the second technique. the
histogram of the labels of an image is used as an index to access the image. We have shown
that the proposed techniques provide fast access to the images in a database. have lower
storage requirements and combines image compression with image indexing.

In chapter 5. we have proposed a new technique for the storage and retrieval of
compressed images. The proposed algorithm is applied in the wavelet transtorm domain. In
this technique. the images are first decomposed using wavelet transform followed by adaptive
vector quantization of the transform coefficients. The usage map of the codebook is used as
an index for image retrieval. We have shown that the proposed technique provide fast access
to the stored images and has a lower cost tor computing and storing the indices compared to

other techniques reported in the literature.
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In chapter 6, we have presented an indexing technique for VQ compressed video.
Here. the video sequence is partitioned into shots using a metric based on the histogram of
the label maps. Each shot is indexed using a spatio-temporal index. The spatial index is the
usage map corresponding to a representative frame of the shot. The temporal activity within a
shot is essentially the motion information and camera operations within the shot. The motion
activity is detected by tracking the trajectories of the motion vectors of the labels. while
camera operations are detected by analyzing the directionality of the spatio-temporal patterns
of the label maps. The spatial and temporal indices are generated entirely in the VQ
compressed domain. which entails significant savings in computational and storage costs for

decompression. resulting in faster execution.

2. Future Research Directions

Future research work in the area of image and video indexing using VQ can be carried out

along the tollowing directions:

* A natural level for representing visual content would be the object level (e.g.. a horse. or
a racing car). This will provide a hierarchical representation where image/video objects
can be indexed at different levels. An important research issue is to develop techniques
for object segmentation and tracking in the VQ compressed domain. We recall from
chapters 4 and 6 that the label map of an image can be viewed as a scaled version of the
original image. Hence. object extraction algorithms can be applied directly to the label
maps. while object tracking can be implemented using motion parameters computed from
label maps. We note that object segmentation and tracking are executed in the VQ

domain, which eliminate the need for decompression.



In a generic visual database system, it is impossible to foresee all possible queries a
priori. For example, a news producer in a television station interested in profiling the
leader of a country may require access to all video clips relating to that specific person.
On the other hand. a film editor essentially looks for shots of a particular type of scene. [t
is impractical to have an attribute for each possible query (e.g.. color. camera motion.
etc.). Hence, he development of a generic index structure is of great interest. A generic
index enables us to derive a dominant feature to perform the search operation based on
the specific input query.

The simulations for the proposed algorithm for the detection of camera operations using
spatio-temporal patterns of label maps. have demonstrated that the technique is feasible
and useful. We note that it is not possible to distinguish tracking from panning. and
booming from tilting. Optical flow analysis ot the label maps can be used in order to
distinguish tracking from panning. and booming from tilting. This technique is based on
the idea that it the components of the optical flow due to camera rotation and zoom are
subtracted from the optical tlow. the residual tlow will be parallel [103].

In the proposed techniques. we have used full-search VQ. For K input vectors. the
encoding complexity of a full search VQ is O(KLN) where L and N are the vector
dimension and codebook size, respectively. We recall from chapter 3. that vector
quantization algorithms which reduces the computational complexity have been reported.
We note that the extension of the proposed techniques to other VQ algorithms such as
tree-structured VQ. multi-stage VQ and classified VQ is useful and efficient. Here. it is
possible to generate an index which provide a mechanism for hierarchical image and

video retrieval.
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