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Abstract

This paper proposes a novel tracking strategy that can
robustly track a person or other object within a fixed envi-
ronment using a pan, tilt, and zoom camera with the help
of a pre-recorded image database. We define a set called
the Minimum Camera Parameter Settings (MCPS) which
contains just enough camera states as required to survey
the environment for the target. This set of states is used to
facilitate tracking and segmentation. The idea is to store a
background image of the environment for every camera state
in MCPS, thus creating an image database. During tracking
camera movements are restricted to states in MCPS (or a
version of this set that is augmented to improve smoothness
of tracking). Scanning for the target and segmentation of the
target from the background are simplified as each current im-
age can be compared with the corresponding pre-recorded
background image.

1. Introduction

The task of visually tracking objects moving in three-
dimensions has received considerable attention in the com-
puter vision community over the past few years [3, 4, 6,
7, 8, 9, 10, 11, 13, 14, 16, 19, 22, 23, 24]. The task is a
challenging one because it not only involves the difficulties
of segmenting the target from various backgrounds, but also
analysis and prediction of the target’s motion. Approaches
to this problem include the use of multiple cameras [6, 10],
two- and three-dimensional models of the target [6, 8] and
attempts to follow specific features of the moving target,

such as head or hands through the use of an active camera
[4]. The stability of these tracking methods is adversely
affected by the complexity of the environment. In this pa-
per we present a novel tracking strategy which can be used
effectively in tracking tasks where the identity of the mov-
ing target is not an issue. For example, it can be used in
visual surveillance to track an intruder moving about the en-
vironment. The method is based on active control of a pan,
tilt, and zoom camera and the use of a pre-recorded image
database of the environment.

Active control of the camera is a form of sensor planning
advocated in [2] and [1] and analyzed in [21]. The task
of sensor planning, while receiving little attention in the
past, is very important during tracking because the camera’s
state parameters determine the quality of the resulting image
and indeed whether the target will be within the image.
Demonstrations of the efficacy of planned camera motion
in object recognition and tracking can be found in [5] and
[15, 17, 18, 20], respectively.

Whereas segmentation is generally difficult and unstable,
we show that some problems can be alleviated through the
use of a pre-recorded image database and intelligent control
of the camera. We first select a set of camera states (i.e.,
pan, tilt, and zoom settings) such that wherever the target
may appear in the given environment, there exists at least
one camera state appropriate for target recognition. The
background images for these camera states are stored in an
image database. These same camera states are used during
tracking, so that the background images form references
to facilitate segmentation. This paper presents the tracking
algorithm and a simple experiment to illustrate the concepts.



2. Minimum set of camera states

We first would like to choose a set a camera states such
that wherever the target is in the given environment, at least
one of the camera states puts the target into the field of view
with good image quality. For a given recognition algorithm
and fixed camera viewing angle size hw; hi, the probability
of successfully recognizing a target appearing in an image is
high only when the distance l from the target to the camera
is within a certain range. This effective range is such that
the whole target is within the camera’s field of view and
the target features are represented with sufficient clarity. A
set of viewing angles hw0; h0i,hw1; h1i, : : :, hwn0; hn0i can
be selected such that their effective ranges divide the space
around the camera center into a layered sphere, covering the
depth D of the environment:
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where the biggest viewing angle for the camera is hw0; h0i,
and its effective range for the given aspect is [N0; F0]. The
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These equations are derived using geometric constraints and
the requirement that the area of the target patch in the image
remain constant from one layer to the next (see [25] for
details).

Each layer of the layered sphere can be successfully
scanned for the target using the corresponding angle size
hw; hi by sweeping the pan and tilt parameters hp; ti of the
camera. A single camera direction hp; ti produces a viewing
volume which is a rectangular pyramid, the intersection of
which with the spherical layer produces an effective viewing
volume for camera state hw; h; p; ti. A target appearing in
the effective volume will be detected with high probability
by the given recognition algorithm when the camera is in
the corresponding state. To examine the entire layer for the
target we need a set of camera directions, hp; ti, such that the
union of their effective volumes cover the whole layer with
little overlap. The following algorithm generates a set S of
viewing directions required for covering the whole sphere.
See [25] for details of derivation.

1. S = h0; 0i ; te  � �
2

2. while (te > �) do

Cover the two slices of spherical surface with tilt in the
range [tb; te] and [� � te; � � tb].
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2. Let t � te �
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2 .

3. Let �pan  � 2arctanf
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4. Use �pan to divide the range [0; 2�] for the
given slice into a series of intervals [pb; pe],
as follows: [0;�pan], [�pan; 2�pan], : : :,
[k�pan; 2�]. Note: the length of the last in-
terval may not be �pan.

5. For each interval, let p  � pb+pe
2 and S =

S
S
< p; t >

S
< p; � � t >.

6. te  � tb

The result is a set of camera states whose effective vol-
umes cover the entire sphere around the camera to some
depth D. Wherever the target may appear in this spherical
environment, there exists at least one camera state in this
set appropriate for high probability of target detection. If
the accuracy of the recognition algorithm is very sensitive
to the orientation (aspect) of the target relative to the cam-
era, then we may define a set of camera states for each of
several target aspects. In most situations, the target cannot
move about the entire sphere of radius equal to the depth
of the environment, but rather is physically restricted to a
subregion 
. The camera states of importance during track-
ing then are the subset whose effective volumes intersect 
.
This set becomes our Minimum Camera Parameter Settings
(MCPS), i.e., the minimum set of camera states needed to
track the target within the environment.

The MCPS is particularly useful for efficient scanning
of the environment in search of the target, since it defines
a minimum set of camera movements that suffice for effec-
tive surveillance. Smoothness of tracking, however, can be
improved by selecting additional camera states to supple-
ment the minimum set, thus creating the Camera Parameter
Settings for Tracking (CPST).

3. Segmentation

In order to detect and track a target, we must be able to
segment it from the background of the image. Generally
this is a very difficult task. Our strategy here is to alle-
viate the some of the difficulties of segmentation by using
the camera states of MCPS to create a database of images,
IDBMCPS , of the environment without the target present,
and then during tracking to use these camera states and
the corresponding background images for comparison when
segmenting for the target. This strategy should improve the
efficiency and accuracy of segmentation. We illustrate the
concept using the extremely simple segmentation strategy:
calculate the difference between the tracking image and the
corresponding database image, and interpret any significant
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Figure 1. Image Segmentation and Recognition Algorithm

difference as target. Presumably, more discriminating seg-
mentation routines could also benefit from sensor planning
and an image database.

Details of the difference calculation in this segmentation
method are described with reference to the example in Fig. 1.
Image (a) is from the image database, and image (b) is taken
with the same camera state, but during tracking, after the ap-
pearance of a person. Image (c) is the color difference image
(b-a) calculated as follows. The color intensity (r; g; b) of
a pixel at position (x; y) in (b) is compared with the inten-
sity (r0; g0; b0) at (x0; y0) in (a), where jx � x

0

j � n and
jy � y

0

j � n. The value of constant n (typically less than
6) is chosen to compensate for errors in camera movement
and depends on camera angle size. The pixel intensity in
the color difference image for the position (x; y) is defined
to be the triple (jr� r

0

j; jg� g
0

j; jb� b
0

j) whose 2-norm is
minimum.

Image (d) in Fig. 1 is the binary difference image obtained
by converting (r; g; b) intensities first to grey intensities in
the range 0 to 255, and then to black/white intensities of
0 or 255 according to a threshold (40 in this case). Some
small white areas are noise, and larger white areas are tar-
get. To reduce noise, we apply standard erosion and dilation
operations. Blobs are then detected as groups of connected
white pixels, and blobs of size mi > 1000 pixels are con-
sidered to be target. Image (e) is the same as (c), but with
hash marks superimposed marking the average (xi; yi) pixel
coordinates of target blobs. Here the algorithm found five
blobs of significant size, which are assumed to represent the
human. The features of the target are represented by the
total mass M = �mi and the mass-averaged position of the
blobs, given byX = �mixi=�xi; Y = �miyi=�yi, where
the summation is over the blobs of sufficient size.

This segmentation algorithm, although extremely simple,
can successfully detect the human body, because the colors
and shape of the hair, face, clothes, and other features of the
human, contrast well with most backgrounds. Unfortunately
the person’s shadow may also be interpreted as part of the
target, (cf. Fig. 1(g)), but generally this does not greatly
influence the calculated mass and position of the target. In
any case, a more sophisticated segmentation method can
easily be substituted in this framework of tracking with an

MCPS and IDB.

4. Tracking

Our tracking algorithm uses the set of camera states
MCPS and the corresponding Image Database IDBMCPS

while continuously iterating the following four steps:

1. Choose the next camera state hw; h; p; ti based on
information obtained from the previous image, such
as the target positionX;Y and mass M .

2. Take an image I�hw;h;p;ti.

3. Attempt to segment target from background in the
image I�hw;h;p;ti with reference to the corresponding
image Ihw;h;p;ti in IDBMCPS .

4. If the target is detected then calculate its position and
mass.

Step 1 is performed by the Where to Look Next routine.
When there is no information regarding the whereabouts of
the target, as is the case initially or later if tracking fails,
then the routine simply cycles through the states of MCPS.
If the target was recently in the field of view and has now
moved out, then the routine uses the last known position
and orientation to guess a set of next possible positions and
orientations.

Recall that the space around the camera is tessellated into
layers of wedge-shaped cells, each effectively covered by a
particular camera state. (This may also be done for several
significantly different target aspects). We assume that im-
ages can be processed quickly enough that the target stays
in any one cell long enough for the taking and processing of
several images. In this case, if the target moves out of view,
then it can be found in one of the adjacent cells, called the
surrounding region. Similarly, if the target aspect changes,
then the next aspect should be one adjacent to the current
aspect in a graph relating the various aspects (cf. [12]). In
this case the target’s new position should be in a cell de-
fined for the new aspect and which intersects a cell in the
surrounding region.
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Figure 2. (a) The Canon VCC1 MKII camera used in the experiments. (b) Sketch of top view of the
tracking environment. (c) Global view of the tracking environment.

The surrounding region for each cell and the neighbour-
hood of each aspect can be determined ahead of time, so
that for each target aspect and position we can plan a set
of camera states called the related camera settings, RCS
which permit relocating the target if it is last seen with this
aspect and position. Further, it may be possible to dynam-
ically order by preference choices in RCS according to the
target’s trajectory and rotation.

5. Example experiment

In this section we describe the tracking algorithm with
reference to an experiment in a fixed office environment.
The camera used in our experiment is a canon VC-C1 MKII
Communication Camera (Fig. 2). The pan, tilt, and zoom of
the camera are controlled by an SGI Indy machine through
an RS-232 port during the tracking process. The mechanical
errors are relatively small, which makes this a perfect device
for our tracking strategy. The image size taken with this
camera is 640� 480. The rotation angle for pan is limited
to Right-Left +/- 50 degrees, the rotation angle for tilt is
Up-Down +/- 20 degrees. The zoom range is 8 � power
zoom. To control the camera, pan can take values from 0
(leftmost) to1300 (rightmost). Each step of pan corresponds
to 0:0769 degree. The tilt can vary from 0 (lowermost)
through 289 (horizontal) to 578 (uppermost). Each step of
tilt corresponds to 0:0692 degree. The zoom can take values
from0 (largest camera angle) to128 (smallest camera angle).

The tracking environment is a normal office. Fig. 2(b)
shows the top view of the environment. RegionA is the most
distant part of the office visible from the camera. Fig. 2(c)
gives a global view of the environment, as constructed from
three camera images with pan = 0, 525 and 1050, and con-
stant tilt of 277 and zoom 0. These are states (a), (h), and
(p) of Table 1.. Since these three camera settings suffice
for a complete scan of the office environment, they form the
Minimum Camera Parameter Settings for tracking.

For smooth tracking, however, we increase the number
of camera states to form the Camera Parameter Settings for
Tracking, as listed in Table 1. The background images for

State p t z State p t z

a 0 277 0 i 600 277 0
b 75 277 0 j 600 199 55
c 150 277 0 k 675 277 0
d 225 277 0 l 750 277 0
e 300 277 0 m 825 277 0
f 375 277 0 n 900 277 0
g 450 277 0 o 975 277 0
h 525 277 0 p 1050 277 0

Table 1. Camera parameter settings for track-
ing: (p = pan, t = tilt, z = zoom)

these camera states are shown in Fig. 3. For this simple ex-
ample, the tilt and zoom parameters remain constant except
for one state (j) where they are adjusted to accommodate
for the distant Region A (cf. Fig. 2). For the other states,
the pan parameter is incremented in steps of 75, producing
a smooth sweep of images of the environment.

The inference engine which controls the movement of
the camera during tracking iterates the following steps:

1. Repeatedly scan the environment using camera states
(a), (h) and (p) of Table 1 since these comprise the
Minimum Set of Camera Parameters. If a target is
detected calculate its mass M and x-coordinate X,
and Goto (2).

2. If the current zoom is 0 then select the next pan,
tilt, and zoom using Method (a) below, otherwise use
Method (b).

(a) Select pan value: Let p1, p2, : : :, p15
represent the pan values 0, 75, : : :, 1050.
Let pi be the current pan value, and P =
fpi�3; pi�2; pi�1; pi; pi+1; pi+2; pi+3g. The
set P includes all of the pan values for which
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Figure 3. The image database for the Camera Parameter Settings for Tracking

the viewing directions are within the current im-
age. The x-coordinates of the intersection of
these viewing directions with the image plane
are: 81, 173, 233, 320, 407, 467, and 559, re-
spectively (the calculation is omitted). Select
the next pan direction pk from P such that the
corresponding x-coordinate xk of intersection
with the image plane is closest to X.
Select tilt and zoom values: If the next
pan pk = 600, and M < 10000, then se-
lect camera state (j) (< pan; tilt; zoom >=<
600; 199; 55 >) as the next action for tracking.
(The direction and low mass imply that the per-
son is within Region A, which being distant
from the camera requires a small angle size).
Otherwise the tilt and zoom remain unchanged.

(b) Select pan, tilt and zoom values: (The current
zoom is 55, i.e., camera state (j).) If M <
31; 100 then do not change the camera state.
(The direction and mass suggest that the person
is still in Region A.) Otherwise, select State h
(< pan; tilt; zoom >=< 525; 277; 0>) as the
person apparently just left the region.

3. Adjust the camera to the new state and take a picture,

4. Segment as described above, using n = 1 for zoom 0
or n = 5 for zoom 55. Calculate the new mass M and
x-coordinateX of the target if it is detected.

5. If the target was detected then go to Step 2, otherwise
go to Step 1.

The nine actions and image sets for this experiment are
shown in Fig.s 4 and 5. Each image set consists of five
images: the background image, the image with the target
present, the color difference image, the improved binary
difference image, and the color difference image overlaid
with a cross mark for each significant segmented blob. An
explanation of the action at each step follows. The sequence
begins with Action 1 in State p (pan = 1050, tilt = 277, zoom
= 0) where the human is first detected.

1. The coordinates x; y and mass m of each of the five
detected target blobs are: (x; y;m) = (309, 205,
16013), (332, 68, 13006), (318, 360, 5202), (422,
180, 5714), and (416, 33, 1612), yielding a total mass
of M = 41547 and a mass averaged x-coordinate of
X = 337. Since the zoom is 0, Rule (2a) of the in-
ference engine applies, and the next state selected is
p again.

2. One blob is detected: (x; y;m) = (125; 170; 29670).
The target is calculated to be at position X = 125,
and according to Rule (2a) the pan must be decreased
three units to 825 (State m).

3. Three blobs are detected: (289, 115, 5040), (331, 212,
13111), (283, 35, 2362). Thus, X = 315, implying
that the person is near the center again. The state does
not change.

4. Six blobs are detected: (79, 99, 4535), (50, 182,
1121), ( 169, 21, 5085), (109, 306, 3012), (123, 195,
1281), (175, 87, 1300). Thus, X = 128, implying
that the person is left of center. By Rule (2a), the pan
is decreased two units to 675 (State k).

5. Four blobs are detected: (279, 107, 8772), (221, 187,
1284), (291, 294, 2432), (299, 21, 3458). Thus, X =
280, implying that the person is near center again.
Hence no state change.

6. Three blobs are detected: (210, 236, 1054), (227, 101,
4536), (260, 17, 2834). Thus, X = 234, suggesting
a next pan value of 600. Since the calculated target
size M = 8234 is small (less than 10,000), Rule 2(a)
causes an increase in zoom to 55, i.e., State (j).

7. Five blobs are detected: (373 , 221 , 13438), (376 ,
50 , 7314), (368 , 364 , 2307), (485 , 82 , 6445), (503
, 10 , 1346). Thus, X = 402 and M = 30850. Since
the zoom is 55, Rule 2(b) is invoked. The mass is less
than 31,100, thus no change in state.

8. Four blobs are detected: (137 , 204, 21174), (180 ,
37, 8517), (129 , 387, 1262), (181 , 389, 1357). Thus,



1. State p :< p = 1050; t = 277; z = 0 >=) [X = 337;M = 41547].

2. State p :< p = 1050; t = 277; z = 0 >=) [X = 125;M = 29670].

3. State m :< p = 825; t = 277; z = 0 >=) [X = 315;M = 20513].

4. State m :< p = 825; t = 277; z = 0 >=) [X = 128;M = 18563].

5. State k :< p = 675; t = 277; z = 0 >=) [X = 280;M = 15946].

6. State k :< p = 675; t = 277; z = 0 >=) [X = 234;M = 8424].

Figure 4. A tracking experiment performed in our lab.



7. State i :< p = 600; t = 199; z = 55 >=) [X = 402;M = 30850].

8. State i :< p = 600; t = 199; z = 55 >=) [X = 149;M = 32310].

9. State h :< p = 525; t = 277; z = 0 >=) [X = 288;M = 12253].

Figure 5. A tracking experiment performed in our lab (continued).

X = 149 and M = 32310. The target mass is now
large enough that Rule 2(b) causes a switch to State
h.

9. Four blobs are detected: (258 , 204 , 4794), (282 ,
43 , 2607), (322 , 94 , 3821), and (323 , 216 , 1031).
At this point the experiment is terminated. Thus, the
person was successfully tracked during a walk about
the office.

6. Conclusion

This paper proposes a novel tracking strategy that can
robustly track a person, or other object within an environ-
ment by a pan, tilt, and zoom camera with the help of a
pre-recorded image database. We define a concept called
Minimum Camera Parameter Settings (MCPS) which gives
the minimum number of camera states required to detect
the target anywhere within a given region. For each cam-
era parameter setting in MCPS, we pre-record an image of
the environment, and this set of camera states is used dur-
ing tracking. When the target appears within an image, we
segment target from the background while using the corre-
sponding background image as a reference. This can greatly
simplify segmentation, and the main part of the person’s
body can be detected robustly. In order to guarantee smooth
tracking, we can increase the number of camera states in the
above process.

Since the camera is actively controlled during tracking,
and segmentation is based on comparison of images taken
with the same camera parameters, our method requires good
mechanical reproducibility. We tested our strategy with the
Canon VCC1 Camera, and the tracking results are satisfac-
tory. Complexity of the environment is not a problem in
segmentation, however the simple segmentation algorithm
which we use in this paper does depend on the constancy
of the background. More sophisticated segmentation meth-
ods can also be incorporated in the same overall strategy.
Our results show that through the use of a few pre-recorded
background images and active control of the camera, the
task of visual tracking can be simplified. This strategy may
find applications in many practical situations such as human
machine interaction and automated surveillance.
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