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Abstract. Given the algebraic expression of the composition of two mappings how
can one identify the two components? This is the problem of mapping decomposi-
tion, of which the usual function-decomposition problem [8] is a special case. It was
believed that this problem is intractable in general. Some public key cryptosystems
(PKC) are based on the difficulty of this mathematical problem. Two types of such
PKCs are FAPKC, proposed by Tao [16], and th&“@hemes,” proposed by Patarin
and Goubin [11], [12]. FAPKC is based on composing finite automata (FA), while the
“2 R-schemes” use quadratic functions as the components. In this paper the decompo-
sition problem for FA and for quadratic functions is investigated. Several methods for
FA decomposing and one for quadratic functions are discovered. It is demonstrated
that FA composition often exposes essential information about the components and
that the full expression of composition of quadratic functions should not be given in
2R-schemes.

Key words. Finite automaton, Quadratic function, Algebraic expression, Composi-
tion, Decomposition, Public key cryptosystem.
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1. Introduction

One approach to construct public key cryptosystems (PKC) makes use of mapping
compositions, here mapping means any method to change inputs into outputs. The basic
idea is as follows: a user chooses several easily invertible mappings which he keeps
secret, computes the algebraic expression of their composition and makes it public; then
anyone can do encryption or verify signatures using the public key, but will face a set
of complicated algebraic equations when he tries to decrypt cipher texts or to forge
signatures. Both FAPKC and R2schemes” make use of this idea, but the mappings
(finite automata, FA) in FAPKC are sequential while those in thR-8hemes” are
blockwise. An obvious advantage of these PKCs is that the encrypting and signing can
be made very efficient and be implemented with very simple hardware, this is very
attractive for small detached devices such as smart cards.

FAPKC was proposed by Tao [16], [17], based on the so-called “weak invertibility
theory of finite automata”. In early designs of FAPKC, the public key is expressed by
algebraic equations, and all published (in China) examples are broken [4], [1], [14]. In
later work [15], [3] the public and private keys are only described in very coarse concepts
without giving any explicit construction. Yet the scheme is broken because the suggested
sizes of some parameters related to security are too small [7]. The attack given in [7] is
a combination of message attack and a kind of trapdoor attack, it can be defended if the
said parameter sizes are increased. Currently designs and implementations of FAPKCs
are still under way, though no details of the construction have been made public. Our
contribution in this work is that we give several methods for decomposing composed
FAs which should be taken into account in designing new FAPKCs. These methods
exploit some properties of FA composition which usual function composition does not
have.

The 2R-schemes [11], [12] use composition of quadratic functions as public keys,
based on the difficulty of the usual function-decomposition problem [8]. Biham gave
an attack [2] if the components are constructed using S-boxes. Our attack, which was
reported at CRYPTO '99 [18], treated the components as random quadratic functions.
However, the formulation in [18] needp > 5 which we now show is not essential.

We give more evidences of the feasibility of the attack. We also discuss the potential
of the approach when complete equations are not given. However, no efficient algo-
rithm is found when we are given less thanr- 1 components of the composition. This
means that the R-schemes might be secure when some additional techniques [13] are
exploited.

The rest of this paper is organized as follows: Section 2 defines the problem of mapping
decomposition. Section 3 contains some preliminaries on FAs. Sections 4—6 describe the
methods for decomposing FAs. Section 7 gives an example to illustrate FA decomposing
methods. Section 8 is devoted to decomposition of quadratic functions.

2. The Problem of Mapping Decomposition

Unlike the problem of integer factorization, the problem of mapping decomposition
is not even a well-defined mathematical problem. There are some ambiguities with a
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general mention of the problem. This is because, for mappings, there are no analogies of
“prime” and “uniqueness of decomposition”. On the other hand, for a specific scheme of
asymmetric cryptography based on mapping composition, this problem is usually well
defined. In order to make our statements unequivocal, we need to define some terms.

Definition 1. A component model, or simply a model, is a 4dtof mappings, together
with a probability distribution.

In this paper a component model should be understood as the set of all possible outputs
of some process in generating private keys in a PKC based on mapping composition.
Component models can be composed as follows:

Definition 2. Given two component model$ty, Mo, let
My x My ={f ogQ: f € M1,9 e My}.
The problem of mapping decomposition can be stated as follows:

Problem 1. Let M;, M, be two component models. Assume all mappings are ex-
pressed in some algebraic form. Given an elerhentM; x Mo, find f € M1,9 € M;
suchthah = f o g.

3. Preliminaries on FAs

In this paper all FAs are the so-called input memory FAs which can be identified with
functions of the following form:
f=f(tn tihes, ..., to): X" = X,
where we fixX = Fclr thel-dimensional vector space over a finite fi€lg and thet_;’s
are intermediate variables taking values frimWe call the subscripts of ;’s temporal
indexes. Note that for FAPK®X is very small & 28 elements).
The function f of this form defines a mapping from sequences to sequences of the

same length as follows. Supposgx; - - - X, is the input, then the output &Yy - - - Yn,
where

Vi = F(Xizh, Xi—hit, oo os Xi)
andx_nhXi_p11 - - - X_1 is the initial state. Corresponding to the composition of mappings,
the composition rule for such functions is as follows. Het= f(t_p,...,t0),9 =

g(t_y, ..., to) be two FAs. Define the composition éfandg to be

fog=f(Qt_n_t,...,t_n), ..., gl pn,...,t)). D

An FA f = f(t_p, tohta, ..., to) is called linear iff is an Fy-linear function; it is
calledz-weakly invertible ¢ > 0 is an integer) if, given output sequengs; - - - Y. and
the initial statex_nXj _n,1 - - - X_1, Xo can be uniquely determined.
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Next, we introduce algebraic expressions of FAs. We denotdhyR) the set of all
kx| matrices over arin®, by My, (R) the set of x| matrices with nonzero determinant,
and byG L, (R) the set of x | invertible matrices, and we uséto denote the set of all
FAs.

We denote byF | the set of functions = f (t_p, ..., to): X+l Fq, forallh > 0,
where the_;’s are variables taking value frodd = FL'q. For anyf e 1 we can write

f=) ct? )

wherea runs through all subsets ¢f—i, j,k): 0 <i <h,1<j <1,0<k <q},

Ca € Fq, and
a k
= [T
(—i.j.kea

wheret_; ; is the jth coordinate component tf; .

Equation (2) is called the algebraic expressionfoie define the start index of a
monomialt2 (or a), denoted ag.(t2) (or u(a)), to be midi: (—i, j, k) € a}.

From now on, we leR = F4[Z], the polynomial ring of one variablg overFg, Z is
actually the delay operator. We malkg, into an R-module by defining

ZMLQ — Lg(*ﬂ)’

wherea™" = {(—i — pu, j,K): (—i, j, k) € a}. We can rewrite (2) a$ = CT, where
C € M1,(R), T is the transpose of a vectofy, ..., T,), sometimes used as a set in
this paper, and th&’'s are monomials withw(T;) = 0. This kind of expression is called
compact, and we call the structure vector of .

Similarly, any f € F can be written a§ = C; T with T being of the same form as
above, an®Cs € M, n(R). Linear FAs can be written as

fo,1

to,2
L=C.| . |,

to,

with C_ € M, (R). Itis easily seenthatforanfy=C;T € F,Lo f =C_C;T.Sowe
can identifyL with C_ . A linear FAL is weakly invertible if and only if d&C, ) # 0.
Following is some notation used in this paper:

e For any matrixA over R, define the degree oA, denoted by de@), to be the
maximal degree of its entries; matrices o¥grare called constant matrices.

e For any f € Fi,, let ndedf) denote the nonlinear degree &f which is the
maximal value among the degrees of the monomials appearing in the algebraic
expression off . For f € F, nded f) is the maximal value among the nonlinear
degrees of its components.

e Foreachmonomidl = t2, define its memory orderas(T) = max(i: (—i, j, k) €
a}, define its span ax(T) = m(T) — u(T).
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e Foranyf e Fi, letm(f) denote its memory order, which is the maximal value
among the memory orders of the monomials appearing in the algebraic expression
of f.

Next, we mention the general constructing methods of FAs whose weak inverse can be
routinely formulatedz -weakly invertible linear FAs and 0-weakly invertible FAs are the
only known two basic classes of FAs whose structure is clear. A process for constructing
T-weakly invertible FAs may take the following measures:

e Primitives: constructing-weakly invertible linear FAs or 0-weakly invertible FAs
using methods in [7].

e Composition: the composition ofa-weakly invertible FA and a,-weakly invert-
ible FAis a 1 + 12)-weakly invertible FA.

e Summing: if f is z-weakly invertible, then so i§ + Z¥**g for anyg.

Now we consider the models for the decomposition problem of FAs. There are two
basic types of models: a linear model which consists of only linear FAs and a 0-model
which consists of nonlinear O-weakly invertible FAs. In this paper we consider only
the compositions of these two kinds of models; we do not take into consideration the
summing method for constructing FAs. So the models considered in this paper are prod-
ucts in which linear models and 0-models appear alternatively. We make the following
conventions. All models are stable under linear automorphism, thatfisgitM, then
foranyG e GL,(Fy), we havef o G e M andGo f € M. We also writef ~ h, if
h=foGorh=Go f forsomeG e GL,(Fq); similar notation applies for matrices.
Another convention is that all elements in a model should have the same type of alge-
braic form. Thus, when we say we are given a motlel it means that we are given a
structure vectoll and a parameter doma@(M) C M, ,(R), such that the elements of
M are exacth{CT: C € C(M)}. Some properties d€ (M) may also be assumed to
be known, for example, we may assume that the distribution of degrees at each column
is known.

4. Decomposing from Outside

In this section we demonstrate how to attack the decomposition problem for model types
“LN” and “PM". Here “L" stands for linear, “N” stands for nonlinear, “P” stands for
permutation, and “M” stands for a general model. In other words, a composed model
M x M5 is said to be of type “LN” ifM is linear andM 5, is nonlinear; the type “PM”
should be interpreted similarly.

4.1. Decomposing “LN”

In this subsection we are given a composed mddel A/, whereL is linear andV is
nonlinear. We assum¥’ satisfies: for a randoN € \, it is very likely that there is no
non-constant matrijd such thatAo N € V.

Given the algebraic expression of an elemént Bo N € £ x N, whereN has the
property stated above, we wish to fiBd ¢ £ andN’ € A/, such thatf = B’o N’. Such
B’, N’ are unique in the sense that~ B’ andN ~ N’. Let f = C; T be the algebraic
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expression. We must haé = CT, andC; = BC, for someC € M, ,(R). Translated
to matrix terminology, our problem can be stated as follows:

Problem 2. Given a parameter domal®(N) c M, ,(R) and aC € C(N), with the
property that

{Ae M (K): ACe CWN)} S M, (Fy,
whereK is the fraction field oR; and giverCt = BCwith B € M (R), findaB’ ~ B.

This problem can be solved by the following approach: Firstly chboskimns ofC
such that they form a submatrixof C; with det(A) # 0. ComputeC’ = A~1C;, which
is a matrix over4(Z), the fraction field ofR. Let A" be the corresponding submatrix of
C; we haveC’ = A~1C, soC’ is irrelevant toB. Next try to solve the matrix equation:

AC e C\V), ©)]

where A, € M (R) is the unknown matrix. Suppose we can find a soluéqrof (3),
then we can see th#&A, 1 ~ B and we are done.

However, the conditioné¢ C(N)" in (3) can hardly be expressed in linear or algebraic
form in practice. To circumvent this we can replace it with weaker conditions under
which the solution of (3) remains unchanged. Such weaker conditions may vary with
specific construction of/. In many cases, we believe that considering only the degrees
of columns ofC(N) is enough. Suppose thth column ofC(N) has expected degree
d;, then we can expect that the linear space generated by rows of a solution of (3) is the
solution space of the following system of linear equations:

xB € R and degxp) <d, %)

wherex is the unknown taking value frofdly | (R), andgi, 1 < i < n, is theith column
of C'.
We outline the procedures in solving Problem 2 as follows:

Stepl. Choosd columns ofC; such that they form a submatrig of C; with
det(A) # 0 and the correspondirdy’s are as small as possible.

Step2. ComputeC’ = A~!Cy, which is a matrix oveF,(2), the fractional field of
R.

Step3. Solve (4). LeV be the solution space. W has dimension exceedihgeturn
to Step 1 and proceed with other choices of the columns.

Step4. Choose any basis &f to form a matrixA”, thenB’ = AA’~! is what we
want.

Remarkl. Equation (4) can be translated into a system of linear equationsFgyer
with the number of unknowns equal t@ + d)| whered is the maximal value among
thed;’s chosen in Step 1.

4.2. Decomposing “PM”

Now we are given a composed mod@ek M of type “PM”, and the algebraic expression
of an instancef = P o M of this model, whereP is a nonlinear permutation on the
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input spaceX. SupposeP ! = T,Q whereT, is a translation and) is a permutation
which maps @o 0. Our task is to find &’ ~ Q. This is the same as determinidgQ),
the linear space generated by coordinate componers of

For any functionr: Fi" — qu’, let T (o) denote the set of monomials appearing in
the algebraic expression ef Our method is based on the following observation. Let
o FC;“ — F(; be a random function with ndég) < k, wherem > |, k << m(q — 1).
Then in most cases, if: F(: — Fq makesT (A o o) C T(0), theni must be an affine
function, i.e. “a linear functin + a constant”.

LetTO = (T2, 1.2, ..., Tq(lolz) (recall thatq' is small) be all monomials ove

except the two trivial ones: 1 arfq, ; tg’i_l. Then there existé € M, g _»(Fg) such
thatQ = AT©. For our purpose, it fsénough to find the lin€égrspacel(A). Suppose
TOf = CT, whereC = (C1,Cy,...,Cp) € Mg _2n(Fg) andT = T(TOf) =
(T1, T2, ..., Tn). Define a linear subspadéin My q_»(Fy) as

V ={xe Mg oF)XxC;=0,T, ¢ T(M), 1< j <n}.

Itis clear thatC(A) C V. By the observation made in the previous paragraph, we may
expect in most cases thatA) = V.

In orderto finaV, itis enough to find' —2—I C;’s which are linearly independent and
the corresponding; are notinT (M). Letk = ndegT;), then the number of monomials
dividing 'f, is bounded by 2 A multiplication of two polynomials with ®terms needs
at mostO(2%) operations irFy. To compute on€;, at mosty' such multiplications are
needed. To determing, we need to comput®(q') suchC;’s. So the total computational
complexity for determiningy/ is bounded byO((q'2X)?), no matter how complex is,
whereK = maXuych {ndeg{'fj)} (K = ndegM) + 1 is often enough).

5. Decomposing from Inside

When decomposing from inside, the objective is to determine the linear space generated
by the components of the inner mapping (FA or usual function). In general, it is not easy
to obtain this linear space directly, but some space related to it can be obtained using
the techniques described in subsequent sections. Under certain circumstances, the linear
space we wanted can be derived from this related space. To get such a space, formal
partial differentials are useful tools, so we start with a brief introduction to formal partial
differentials.

5.1. Formal Partial Differentials

LetK beanyring, andlety, X, . .., X, benindependent variables. Define partial differ-
entials of the first ordef/ox;,i = 1, 2,..., nas follows:a/9%;: K[X1, X2, ..., Xa] =
K[X1, X2, ..., Xn] IS @K][Xq, ..., X, ..., Xs]-module homomorphism satisfying

axf k—1

i B

0X; %

where the “hat” stands for “omitted”. It is not hard to verify that, as operators on
K[X1, X2, ..., Xn], the d/0x;’s commute with each other. Now for any mononﬁlxi'jj
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with degreek = ) k;, define inductively

9 2 )
aTTx 9% \ aTx)/x,

The most important property of partial differentials is the following:

ofg  of ¢ ag

X a X X

Using this, and by induction ok it is not hard to prove

Lemmal. Letly, Lo, ..., Lk be k linear expressionket T be any monomial of degree
k—1,then(@d]] Li)/aT is a K-linear combination of {, Lo, ..., L.

5.2. Decomposing “NL”

In this subsection we are given a composed mddek £, where£ is linear and\
is nonlinear. Given the algebraic expression of an elenfieat N o B € A x L, our
objective is to find B’ ~ B, i.e. to find the vector spad®B) generated by rows ds.
Let L& = Py 4 Z'L(B).

Lemma 2. Letk= ndegN) = nded f), suppose allmonomials of degree k appearing
in the algebraic expression of N have spans no larger thafileéen for any monomial

T = t2 of degree k- 1, we havedf; /T € £K), where f is a coordinate component of
f, k' = d + w(T) and the constant term is neglected

Proof.  fi canbewritten asthe forjn’ [, ., Z" L; +lower terms, wheré; € L(B),
Ny <Nz <--- < ng. We know thatny —n; < d. Aterm[[,_;_, Z"L; can contribute

to df; /0T only if ny < wu(T). Thus

il Z 9Ty 2L
aT

ny<u(T)

and the lemma follows from Lemma 1. O

LetV, denote the linear space generated by 819 T's as in the above lemma with
w(T) < u. By addingV;_; to V; we get a sequence of vector spaces

VocViCVoCoey VL0,

Given such a sequence of vector spaed®) might be recovered in many cases with
various methods. The following gives one such method.

Suppose for some> 0 we haveV, = Vi1 N LD andV;, N Z+9+My (R) = 0,
then we have/, , ;N Z'+9+1My | (R) € Z'+9+1£(B) and thus we get a subspacefdB).
In this way £(B) could hopefully be recovered.
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In general, let
U~ ZML (RN LY U = Vien 0 ZHEM (R)
- X(; Zi+1 ’ b Zi+d+1 ’

(=

then we havaV = ", U; € U + £(B). Note that in most cases diih) is small and
L(B) € W, thus we get a small superspacefdB). It is possible to fixC(B) further
by other considerations.

5.3. Decomposing “MP”

Given a composed modeU x P, whereP is a permutation model, and given the
algebraic expression of an elemént= M o P, our objective is to find the vector space
L(P) generated by coordinate component$ofThis turns out to be an easy problem,
and we can solve it even without knowledge of the component models.

Letn = ndeq f), ng = ndegM), n; = ndegP). Let S be the set of monomials
appearing in the algebraic expressionRflLet f = CT be the compact algebraic
expression off . The following describes how to obtaig, ny, Ssolely fromT.

Each elemenT; of T can be uniquely written &§[, Z" T,”, wheren; < ny < -,

eachTi(O) e T©, the set of monomials containing only componentofVe say these
T,?’s belong toT;, written asT,'” L T;, and we denote the number of théseasn(T, ).
Let TO = {T; € T: ndegT) = n}, = {T? € T@: TO LT, for someT; € TO}.
It is easy to understand that in usual cases, we have min{ndegT,?): T© € S},
No = n/ng. Now letT* = {T; € T: n(Tj) = ng}, then in most cases we have

S={T? e TO: TOLT, for someT; e T*}.

Let C* be the submatrix o€ corresponding ta'*, and letf* = C*T*, f be a
coordinate component of*. For any monomiall of the formT = [];_;_,_, Z"T;,
where ndegT;) = n; for all i, andng < nj < ---. Then we must have:

Lemma 3. Notation as abovdet
fi = TC(f, T) + terms not divisible byf .
Then QfY, T) € Py Z'L(P).

Proof. Itis easily seen thafy can be written as the for_ [],_;, Z" Li, where
Li € L(P),ny <nz--- < ng. Aterm[ ], Z"™L; can contribute t&(f/, T) if and

only if there exists 1< j < k, such thating, ..., fj, ..., Ny,) = (N3, ..., Ny ) and
eachT; is a term of the correspondirlg., in which case it contributes a scalar multiple
of ZMi Lj . O

Given any element o} ;.o L(P), its coefficient of eacl?' liesin £(P). Thus some
elements oL (P) can be easily obtained in this way, very likely they will genei&te).
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6. Decomposing “MM”

In this section we are given a composed mable] x M in which the two component
models are general. Given an elemént M; o M, of this model, our objective is to find
the linear spac&€(M,), the linear space generated by component§lafThis can be
done ifMq has certain properties with respecte which are described below. For ease
of description, we assume nddd;) = 2, though the method is generally applicable.

Let f = C;T, My, = C'T’ be the compact algebraic expressionsfoand Mo,
respectively. Lem = m(My). Let T* = |, Z'T’. For any'f' € T*, define

E(T)={T' eT* 3Ty, T, € T*suchthafl, T, = TT'}.
Similar to Lemma 3, we have

Lemma 4. Notation as abovdor anyT e T*, let
f = T(C(fx, T) + some terms notin M + terms not divisible byl ,

where Q fy, f)~has only terms in T. Then there exists a linear combinati@mnror of
elements in ET), such that

C(fy, T)— Errore V = @ Z'L(My),
0<i<m(My)

where f is a coordinate component of. f

The above lemma says that, up to some error terms, we can obtain elenménisodé
that the temporal indexes of elements5(T ) are in the range(T) — m, m(T) + m].
Assume that all non-zero elements£fM;) have memory ordem (which is true in
most cases), then under suitable conditions described b&ldy) can be recovered.

The first method: LeV’ be the linear space generated byGylfi, T)’s in the above
lemma withu(T) < u for some fixedx, and by neglecting all terms with memory order
no less thanw — m. If m(M;) >> 2m and there are enough termsif of span> m,
then for suitable: >> 2m, we can expect that the subspac&6tonsisting of elements
with memory order not exceedimgis exactlyL (M) with very high probability. Again,
this subspace can be obtained by Gaussian elimination.

The second method: L&t” be the linear space generated byQilf,, T) — Errors
in above lemma. Suppose we can obtain a subsgécef V” such thatC(M;) c V",
thenL(M) can be obtained by Gaussian elimination. One could obtain sM¢hfeom
theC(fy, T)’s by repairing the error terms using linear algebra.

7. An Example

Up to now, the most sophisticated publicly known examples of FAPKC are “quadratic
form FAPKC's [3]. There are two forms: one is of type “LPL” and the other of type
“LPLP”, where the permutation s a fixed exponentiation in the finite figlaf algebraic
degree 2. For the toy examples of these two schemes given in [3], we have decomposed
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the public keys by hand computing. One example of “LPLfis= C; T, whereCs =
(C1, Cy),

2 1+7 14z 0 2 z
C, = 1 2 1 0 z+22 2 |,
1+ 14z z+72%2 z+72 722 247
0 O 1 0 0 1I+z 0 O z
C;=10 0 y4 00 1 0 0 1+2z},
z 0 14z z z O 0 z 142z

TO
- (T2).

where TY = (to1, to2, to 3, to.1to.2, to.1to .3, to2to3)! and T@ = (to1t_1.1, to 1t 1.2,

to1t-1.3, toot-1,1, toot—1.2, to2t_13, toat—11, to.st_1.2, tost_1,3)".
Corresponding to the ternit 1t_1.1, to.1t-13, to 2t_1.3), we get a submatrix ofx,

and

0 1 1+2z
A=1]0 z 1 , det(A) # 0,
z 1+z 0

C’ = A1Cs equals

14z 14z 14z 14z 1 0 1 0 0 1 1 0 0 1
1 1+z O 0O z z0O01O0O0O0OP O
142z z 1 0 z0O0OOOOOTZ11O00

It is actually in the “PL" model, and the rest of the “LN" decomposing method is not
needed.

Next we decompos€'T using either the “PM” or the “NL” method. Th€;’s as
in the “PM” method corresponding to the terms 1t_1,t_11t_13,t_1t 13 formthe
following matrix,
t

0O 0O
1 0 1 0],
0 1 1
which has rank 3. Solving the equatig@; = 0 we getP—*:

(ty + to + t3 + tots, to + tit3, tr + t3 + t1tr).

To see how the “NL” method works, note that “P” has span 0, the inner linear FA is
simply obtained by the partial derivatives of the first compone@’af with respect to

to,1, fo,2, To,3:

z 11
14z z O
1 z O
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8. Quadratic Function Decomposition

Let f, g: F§ — F§ be two quadratic functions. Lét= f o g and leth;, fi, g denote
components of, f, g, respectively. Given the algebraic expressiorhpf.e. eachh;

is given as a polynomial irfFg[X1, X2, . .., Xn], we wish to find f’, g’ so that there

exists an affine permutatioA such thatf’ = f A=, g’ = Ag. This is equivalent to
finding the vector space generated by components together with 1. The difficult

part is to determine the terms of degree 2, because the linear and constant terms can
easily be determined by solving linear equations after the degree 2 terfrisgifare
determined.

From now on we assumé, g to be homogeneous, i.€;, g are quadratic forms.
The decomposition problem is the same as decidi(@, the linear space generatgd
1 <i < n.Whenq < 4, the components df = f o g as reduced polynomials (the
degree of any variable is ) may not be homogeneous. We ignore all terms of lower
degree in this case. Moreover, we make a convention: all terms of lower degree in the
reduced form of the result of a polynomial operation will be ignored.

Let £ denote the linear space of linear forms, {¢tdenote the linear space of all
quadratic forms, and l&¢ (9) = >, ., Xi£(9). For any subspacg’ of £ and any
linear spac&V of homogeneous polynomials of degree 3, define

W: )€ e ro cwy.
When/£’ has dimension 1, say, generatedfbywe also write(W : £) as(W : F).

Let £(g) = (V(g) : £), andfi = dim(£(g)). Obviously, we havel(g) € £(g). By
our method in the following, we can only gétg), so we need the equality to hold to get
L(g). It should be noted that this is not necessary in decompogigchemes, though
it is often satisfied. As long as we can g&ig), we can get a decompositibn= f o §
wheref: Fn — Fg. 00 Ff — Fn The techniques for attacking one round schemes in

[12] might be applied tt:)c~ org to identify f, g further, whem — n is small.
Now letV denote the vector space generatedhy/dX;, for all i, j.

Lemmab5. V C V(g).

Proof. We can writehj in the form>_ ax gk according to our convention, so we have

oy = 2 (Wq + ﬂgk) € V(9.

which completes the proof. O

If V = V(g), we can obtainf(g) by computing(V : L£). Otherwise, if§ =
dim(V(g)) — dim(V) < i, we might recovel (g) as follows.
An algorithm to recover V (g):

Stepl. Compute(V : F) for sufficiently many randonf € £, and choose on&é
such that dindV : F) is minimal.
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Step2. ReplaceV with V + (V : F)£, and return to Step 1.
Step3. If the operation in Step 2 cannot enlaigdor many times, then outpM.

Algorithm End

At the start of the algorithm we have(V : F) =V N FQ D V N F£(g) and thus
dim((V : F)) > dim(V) + dim(F£(g)) — dim(V(g)) = i — .

The equality holds with non-negligible probability by assumig(g) is a random
subspace 0¥ (g) of dimensiom. Thus the selectel as in Step 1 satisfies this equality.
This equality impliesF(V : F) = V N F£(g), i.e.,(V : F) € £(g), and hence the
updatedV in Step 2 is still contained iV (g). If V # V(g), the operation in Step 2 will
enlargeV with non-negligible probability, so the output of Step 3 shouldAtg). This
proves the correctness of the above algorithm.

The conditions < f is not so serious since it holds with probability approximately
1- q*(ﬁ*b2 if the partial derivatives are regarded as random and independent. So the
decomposition problem of quadratic functions is not hard as long gs= £(g). We
conjecture this holds for the majority gfwhenn > 3.

These observations indicate th&-8chemes are dangerous if full expressioh ef
f o g is made public. One can circumvent the above attack by exploiting additional
techniques, as in [13]. One variation iR2, which does not publish the full expression
of h. If we are givenn — 1 components oh, thenV has expected degree close to
n(n — 1), and(V : F) is non-trivial with probability greater thag—1-n"-D+dim(),
Since(V : F) C E(g) with nontrivial probability, the scheme is still vulnerable. This
suggests we should delete at least two componertsmPR~. When given less than
n — 1 components ofh, our method will fail since the probability thaly : F) is
non-trivial is negligible.

9. Conclusion

We have given some trapdoor attacks on two public key schemes based on the idea of
composing mappings: FAPKC andR2For 2R, our attack is effective if and only if at
leastn — 1 equations of the composition mapping are exposed in the public key. It can be
easily defeated by techniques of [13]. For FAPKC, our attacks are effective with respect
to all publicly known examples and some conceivable constructions. It is a challenging
problem to design FAPKC algorithms which are both practical and secure against the
attacks in this paper and [7].
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