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Abstract. We show that analogues of popular public key cryptosystems based on
Drinfeld modules are insecure by providing polynomial time algorithms to solve the
Drinfeld module versions of the inversion and discrete logarithm problems.
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1. Introduction

Koblitz [3] and Miller [5] substituted computations on elliptic curves for multiplication in
some public key cryptosystems obtaining (presumably) more secure systems. Since they
made the leap from ordinary multiplication to elliptic curve addition, other authors have
suggested other analogous cryptosystems based on other finite mathematical structures.

Drinfeld christened the structures that bear his name as “elliptic modules” to emphasize
the tight connection between the theories of elliptic curves and of Drinfeld modules. In
the ensuing years, work on the arithmetic of Drinfeld modules has borne out Drinfeld’s
insight into the the correspondence between elliptic curves and Drinfeld modules [2].
With these analogies in mind one might reasonably hope (as did the author of the current
note) that cryptosystems based on Drinfeld modules should, at least, share the properties
of their elliptic curve based cousins. Unfortunately, we dash this hope by showing that
Drinfeld module based cryptosystems are insecure.

We define precisely what we mean by “Drinfeld module” and the various “Drinfeld
module versions” of cryptosystems and problems in the next section. Roughly, a Drinfeld
module is a nonlinear, commutative subring of the ring of regular endomorphisms of
the additive group of a field. For example, ifk is a field of characteristicp > 0, then
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the ring generated under addition and composition by the functionf : k → k given
by f (x) = xp − x is a Drinfeld module. Usually, the Drinfeld module version of a
group based cryptosystem is given by replacing the underlying group by the additive
group of a finite field and multiplication by integers (or exponentiation) by the action
of the Drinfeld module. Since every Drinfeld module contains nonlinear elements, such
cryptosystems may very well be secure. Because the underlying group is an additive
group, these cryptosystems should be relatively easy to implement. However, the latter
property points to the fundamental flaw in the heuristics behind the former property:
while a Drinfeld module is generically nonlinear, when considered on a fixed finite field
it may be regarded as a linear object. In this note we translate this observation into a
proof that any cryptosystem based on the supposed infeasibility of solving the Drinfeld
module versions of the discrete logarithm or inversion problems is insecure.

The proofs of the main results of this note are not difficult at all. It would surprise me
to learn that similar ideas have not flashed through the heads of other people acquainted
with Drinfeld modules and elliptic curve public key cryptosystems. In fact, I have been
told that the idea of cryptosystems based on Drinfeld modules has been proposed before,
but I was unable to locate a published reference. I hope that if anyone else is smitten
with the notion that Drinfeld modules have anything to do with encryption, this note will
serve to help them avoid wasted effort in this direction.

2. Definitions and Notation

In this section we fix our notation and define our terms precisely.
Denote bypa fixed prime number andq a fixed power ofp. We denote byFp the field of

p elements andFq the field ofq elements. Letk be a field of characteristicp. The Frobe-
nius endomorphism ofk is the functionF : k→ k defined byF(x) := xp. The ring of
twisted polynomials inF overk is k{F} := {∑n

i=0 ai Fi : n ∈ N,ai ∈ k} where addition
is defined coordinatewise and multiplication is defined by the usual convolution formula
with the commutation ruleFa = apF . We may regard an element3 = ∑n

i=0 λi F i of
k{F} as an additive homomorphism ofk by the formulax 7→ ∑n

i=0 λi x pi
. We denote

this homomorphism assigning to a polynomial inF its corresponding additive map by
ι: k{F} → Hom(k,+). If 3 =∑n

i=0 λi F i is a nonzero element ofk{F}, then we define
the degree of3 to be deg(3) := max{i : λi 6= 0}.

Definition. A Drinfeld module (for the ringFp[t ]) is a ring homomorphismϕ: Fp[t ] →
k{F} for which deg(ϕ(t)) > 0.

In the literature, Drinfeld modules for slightly more complicated rings are considered
on occasion. Since we aim to dismiss all Drinfeld modules as candidates as bases for
cryptosystems, we include the definition of the more general Drinfeld modules, but the
reader would lose very little by ignoring this generalization. LetC be an absolutely
irreducible, smooth, projective curve overFq and let∞ ∈ C be a closed point. LetA
be the ring of regular functions onC\{∞}. The fieldFq is called the field of constants
of A.
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Definition. A Drinfeld module forA is a ring homomorphismϕ: A→ k{F} for which
there is somea ∈ A with deg(ϕ(a)) > 0.

Take q = p, C = P1, and∞ = [0: 1] to recover the definition of a Drinfeld
module forFp[t ]. As mentioned in the Introduction, a Drinfeld module is just the
choice of a nonlinear commutative (normal) subring ofk{F} given together with a
presentation.

It is always possible to find two elementss, t ∈ A so thatA is generated as a ring by
s, t , and the field of constants ofA,Fq. Moreover, ifq = pr , A has field of constantsFq,
andϕ: A→ k{F} is a Drinfeld module, then the image ofϕ lies in the subringk{Fr }.

Definition. By the discrete logarithm problem for a Drinfeld module we mean: given a
finite fieldk of characteristicp, Drinfeld moduleϕ: A→ k{F}, and elementsx, y ∈ k,
find a ∈ A (if it exists) so thatϕ(a)(x) = y.

Definition. By the inversion problem for a Drinfeld module we mean: given a finite
field k of characteristicp, Drinfeld moduleϕ: A → k{F}, and a ∈ A for which
ϕ(a): k→ k is a bijection, findb ∈ A so thatϕ(b): k→ k is the inverse ofϕ(a).

Public key cryptosystems based on the supposed intractibility of the discrete loga-
rithm problem for certain groups (e.g., Diffie–Hellman, Massey–Omura, ElGamal) have
natural Drinfeld module analogues. Likewise, cryptosystems based on the difficulty of
inverting certain group automorphisms (e.g., RSA) have Drinfeld module versions. Since
none of these systems is secure, we do not describe them in detail, but to fix ideas we
sketch the Drinfeld module version of the Diffie–Hellman cryptosystem.

Cryptosystem(Drinfeld Module Version of Diffie–Hellman). Fixp a prime andq a
power ofp. Setk := Fq. Fix also a Drinfeld moduleϕ: A→ k{F} and an elementζ ∈ k.
All these data are assumed to be public knowledge. I and II chooseaI (respectively,aII )
in A. I transmitsϕ(aI)(ζ ) to II while II transmitsϕ(aII )(ζ ) to I. The common private key
is ϕ(aII )(ϕ(aI)(ζ )) = ϕ(aII aI)(ζ ) = ϕ(aIaII )(ζ ) = ϕ(aI)(ϕ(aII )(ζ )).

3. Attacks

We attack the cryptosystems introduced in the last section by observing that the ring
of functions induced by a Drinfeld module on a finite field is equal to a ring of linear
functions, properly interpreted. Linear algebra provides our picks.

The proofs of the propositions below involve regarding the finite fieldk as a vector
space over a smaller finite field and then performing certain matrix computations. In
order to perform these matrix computations we need to fix a basis fork and a method for
expressing elements ofk with respect to this basis. In most practical implementations of
the encryption schemes described in the previous section,k is already expressed thus. If
one perversely chose to work with a coordinate-freek, we could putk in the required form
very quickly (see Proposition 1), anyhow. So, in all the statements following Proposition 1
we regard the choice of a basis fork as being cost-free.
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Proposition 1. There is a probabilistic polynomial time algorithm which given a finite
field k of characteristic p produces a basis of k overFp and a polynomial time procedure
to express any element of k in terms of that basis.

Proof. Let d := [k: Fp] = logp|k|. Randomly choose(e1, . . . ,ed) ∈ kd. Set B :=
{e1, . . . ,ed}. With probability

∏d−1
i=0 (1− p−i ) it is a basis. Repeating this step roughly

− logp ε times we can guarantee that we have found at least one basis with probability
1− ε.

We now define by recursion some elementsbi ∈ k and additive operatorsψi : k→ k
for 1≤ i ≤ d. Setb1 := e1 andψ1 := idk. For i + 1, setψi+1 := bp

i (F − 1)b−1
i ψi and

bi+1 := ψi+1(ei+1).
B is a basis if and only if all of thebi ’s are nonzero. If this choice ofB fails to be a

basis, then repeat the above steps.
Givena ∈ k written asa =∑d

i=1 ai · ei with ai ∈ Fp we have the following recursive
(starting withi = d and working backwards) formula forai :

ai = b−1
i ψi

(
a−

∑
j>i

aj ej

)
.

If one counts the taking of multiplicative inverses and the application ofF as no more
costly than multiplication, then the above formula requiresO(d2) operations to imple-
ment. If one insists upon counting only addition and multiplication as basic operations,
then the cost estimate rises toO(d3) as one may computeb−1 = bpd−1 for b ∈ k. If one
wishes to make the estimate uniform inp, then the right bound isO(log(p)d3).

In what follows, the real numberω is a constant for which the problem of multiplying
two m×m matrices over the fieldK may be solved withO(mω) ring operations inK .
The standard approach to matrix multiplication givesω ≤ 3, but there are algorithms to
achieveω < 2.376 [1].

Proposition 2. There are real numbers C1 and r1 and an algorithm to find, for any
prime p, finite field k of characteristic p, Drinfeld moduleϕ: A→ k{F}, and a∈ A
with ϕ(a) inducing a bijection of k, an inverse toϕ(a) using at most C1(logp|k|)r1 field
operations inFp.

Proof. Let A := ι ◦ ϕ(A) ⊆ Hom(k,+). The elements ofA are additive homo-
morphisms, but they are most likely notk-linear maps. However, they areFp-linear
maps. After fixing a basis0 for k overFp (as given by Proposition 1) we may identify
Hom(k,+) with the matrix ringMm(Fp) wherem = dimFp(k) = logp(|k|). Under this
identification,A is a ring ofm×m matrices overFp. Givena ∈ A for which ι◦ϕ(a) is a
unit, we can find the inverse toι ◦ ϕ(a) simply by inverting the corresponding matrix to
obtainβ ∈ A. Even without taking into account extra information abouta, this inversion
requires at the worstO(mω) field operations.

Thus, cryptosystems based on the supposed intractibility of inverting the action of a
Drinfeld module (for example, the Drinfeld module version of RSA) are insecure.
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One might imagine that in some systems knowing the inverse toι ◦ ϕ(a) is not
enough. However, without much additional effort we can recover someb ∈ A for which
ι ◦ ϕ(b) = (ι ◦ ϕ(a))−1.

Proposition 3. There is a polynomial time algorithm for solving the inversion problem
for Drinfeld modules.

More precisely, there are real numbers C2 and r2 and an algorithm which, given a
prime p, finite field k of characteristic p, Drinfeld moduleϕ: A→ k{F}, and a∈ A for
whichϕ(a) induces a bijection of k, finds b∈ A for whichϕ(b) is the inverse toϕ(a) on
k requiring fewer than C2(logp|k|)r2 field operations inFp.

Proof. Let s, t ∈ A generateA over its field of constants,Fpr . As above, letA :=
ι ◦ ϕ(A). For now, let0 be a basis fork overFpr as given by Proposition 1. Letm :=
dimFpr (k). AsA is a commutative subalgebra ofMm(Fpr ), dimFpr (A) ≤ m. Compute
the vectorsS := {ι ◦ ϕ(si t j ): 0≤ i, j < m}. Assuming that we have already computed
ι ◦ϕ(s) andι ◦ϕ(t) as matrices relative to0, this requiresm2 matrix multiplications and
can be accomplished withO(m2+ω) field operations inFpr . We can extract a basisB for
A from Swith O(mω+1) field operations inFpr using the algorithm of Problem 2.2.10a
of [1]. So, we have a setI ⊆ {(i, j ): 0 ≤ i, j < m} so that{ϕ(si t j ): (i, j ) ∈ I } is a
basis ofA overFpr .

Let β = (ι ◦ ϕ(a))−1 be the inverse toι ◦ ϕ(a) computed in the previous proposition.
From the basis0 of k, we obtain a standard basis0′ for Hom(k,+). We know thatβ ∈ A.
We are given the vectorsβ andb for b ∈ B in terms of the basis0′ of Hom(k,+). Say,
C0′ = (β, ϕ(1), ϕ(a), . . . , ϕ(at−1)) for appropriateC ∈ M(|B|+1)×m2(Fp). To find the
expression forβ as a linear combination of the elements ofB, we find the kernel ofC
(which we can accomplish in timeO(m1+ω) [1, Problem 2.2.3b]) and then scale. So,
we have an expressionβ = ∑(i, j )∈I µ(i, j )ϕ(s

i t j ) for appropriateµ(i, j ) ∈ Fpr . We take
b =∑(i, j )∈I µ(i, j )s

i t j .
Converting the field operations inFpr into operations inFp costs a factor ofO(r logr ),

but we should replacem by dimFp(k) = rm. Thus, the estimate ofO(logp(|k|)1+ω) for
the number of field operations used inFp remains valid.

The techniques of the last proposition extend to the discrete logarithm problem for
Drinfeld modules.

Proposition 4. There is a polynomial time algorithm to solve the discrete logarithm
problem for Drinfeld modules.

That is, there are real numbers C3 and r3 and an algorithm which, given a prime p,
finite field k of characteristic p, Drinfeld moduleϕ: A → k{F}, and elementsζ and
y of k, computes an a∈ A with ϕ(a)(ζ ) = y (if such an a exists) using fewer than
C3(logp|k|)r3 field operations inFp.

Proof. Let M := ϕ(A) · ζ be theA-module generated byζ . Let A := ι ◦ ϕ(A) ⊆
Hom(k,+). Let Fpr be the field of constants ofA. Let m := dimFpr (k). As above, thin
the set of{ϕ(si t j )(ζ ): 0≤ i, j < m} to a basisB for M whereA is generated bys andt
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overFpr . The method described in the proof of the previous proposition requires at most
O(m1+ω) field operations inFpr .

If y ∈ M , that isy = ϕ(a)(ζ ) for somea ∈ A, then as in the previous paragraph we
need only expressy in termsB. Following the algorithm already outlined in the previous
proposition, we carry out this computation in timeO(m1+ω).

Thus, no public key cryptosystem based on the apparent infeasibility of solving the
discrete logarithm problem for Drinfeld modules (such as the Drinfeld module versions
of Diffie–Hellman, Massey–Osmura, and ElGamal) is secure.
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