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Abstract. We show that analogues of popular public key cryptosystems based on
Drinfeld modules are insecure by providing polynomial time algorithms to solve the
Drinfeld module versions of the inversion and discrete logarithm problems.
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1. Introduction

Koblitz [3] and Miller [5] substituted computations on elliptic curves for multiplication in
some public key cryptosystems obtaining (presumably) more secure systems. Since they
made the leap from ordinary multiplication to elliptic curve addition, other authors have
suggested other analogous cryptosystems based on other finite mathematical structures.

Drinfeld christened the structures that bear his name as “elliptic modules” to emphasize
the tight connection between the theories of elliptic curves and of Drinfeld modules. In
the ensuing years, work on the arithmetic of Drinfeld modules has borne out Drinfeld’s
insight into the the correspondence between elliptic curves and Drinfeld modules [2].
With these analogies in mind one might reasonably hope (as did the author of the current
note) that cryptosystems based on Drinfeld modules should, at least, share the properties
of their elliptic curve based cousins. Unfortunately, we dash this hope by showing that
Drinfeld module based cryptosystems are insecure.

We define precisely what we mean by “Drinfeld module” and the various “Drinfeld
module versions” of cryptosystems and problems in the next section. Roughly, a Drinfeld
module is a nonlinear, commutative subring of the ring of regular endomorphisms of
the additive group of a field. For example kifis a field of characteristip > 0, then
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the ring generated under addition and composition by the fundtiok — k given
by f(x) = xP — x is a Drinfeld module. Usually, the Drinfeld module version of a
group based cryptosystem is given by replacing the underlying group by the additive
group of a finite field and multiplication by integers (or exponentiation) by the action
of the Drinfeld module. Since every Drinfeld module contains nonlinear elements, such
cryptosystems may very well be secure. Because the underlying group is an additive
group, these cryptosystems should be relatively easy to implement. However, the latter
property points to the fundamental flaw in the heuristics behind the former property:
while a Drinfeld module is generically nonlinear, when considered on a fixed finite field
it may be regarded as a linear object. In this note we translate this observation into a
proof that any cryptosystem based on the supposed infeasibility of solving the Drinfeld
module versions of the discrete logarithm or inversion problems is insecure.

The proofs of the main results of this note are not difficult at all. It would surprise me
to learn that similar ideas have not flashed through the heads of other people acquainted
with Drinfeld modules and elliptic curve public key cryptosystems. In fact, | have been
told that the idea of cryptosystems based on Drinfeld modules has been proposed before,
but | was unable to locate a published reference. | hope that if anyone else is smitten
with the notion that Drinfeld modules have anything to do with encryption, this note will
serve to help them avoid wasted effort in this direction.

2. Definitions and Notation

In this section we fix our notation and define our terms precisely.

Denote byp afixed prime number argga fixed power op. We denote b{F , the field of
p elements andl the field ofg elements. Lek be a field of characteristip. The Frobe-
nius endomorphism df is the functionF: k — k defined byF (x) := xP. The ring of
twisted polynomials irF overk isk{F} := {Zi“:oai F': neN, g e k} where addition
is defined coordinatewise and multiplication is defined by the usual convolution formula
with the commutation ruléa = aPF. We may regard an element = Y ' /A F' of
k{F} as an additive homomorphism kfby the formulax — Y , 1 xP'. We denote
this homomorphism assigning to a polynomialHrits corresponding additive map by
i k{F} — Hom(k, +). If A = 3" ;A F'is a nonzero element &{ F}, then we define
the degree o to be deg@A) := max{(i: A; # 0}.

Definition. A Drinfeld module (for the rindF,[t]) is aring homomorphism: Fp[t] —
k{F} for which dedg(t)) > 0.

In the literature, Drinfeld modules for slightly more complicated rings are considered
on occasion. Since we aim to dismiss all Drinfeld modules as candidates as bases for
cryptosystems, we include the definition of the more general Drinfeld modules, but the
reader would lose very little by ignoring this generalization. Cebe an absolutely
irreducible, smooth, projective curve oVg§ and letoo € C be a closed point. Lef
be the ring of regular functions dd\{oc}. The fieldF is called the field of constants
of A.
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Definition. A Drinfeld module forAis a ring homomorphism: A — k{F}forwhich
there is soma € A with degp(a)) > 0.

Takeq = p, C = P!, andoo = [0: 1] to recover the definition of a Drinfeld
module forF,[t]. As mentioned in the Introduction, a Drinfeld module is just the
choice of a nonlinear commutative (normal) subringk¢F} given together with a
presentation.

It is always possible to find two elemergs € A so thatA is generated as a ring by
s, t, and the field of constants &, Fy. Moreover, ifg = p', A has field of constani&,
andg: A — k{F} is a Drinfeld module, then the image @flies in the subring{F'}.

Definition. By the discrete logarithm problem for a Drinfeld module we mean: given a
finite fieldk of characteristiq, Drinfeld modulep: A — k{F}, and elements, y € k,
finda e A (if it exists) so thatp(a)(x) = .

Definition. By the inversion problem for a Drinfeld module we mean: given a finite
field k of characteristicp, Drinfeld moduley: A — k{F}, anda € A for which
¢(a): k — kis abijection, findb € A so thatp(b): k — ks the inverse op(a).

Public key cryptosystems based on the supposed intractibility of the discrete loga-
rithm problem for certain groups (e.g., Diffie—Hellman, Massey—Omura, EIGamal) have
natural Drinfeld module analogues. Likewise, cryptosystems based on the difficulty of
inverting certain group automorphisms (e.g., RSA) have Drinfeld module versions. Since
none of these systems is secure, we do not describe them in detail, but to fix ideas we
sketch the Drinfeld module version of the Diffie—Hellman cryptosystem.

Cryptosystem (Drinfeld Module Version of Diffie—Hellman). Fip a prime andy a
power ofp. Setk := Fq. Fix also a Drinfeld module: A — k{F}andan elemert € k.
All these data are assumed to be public knowledge. | and Il crepyagespectivelyay )
in A. | transmitsp(a)(¢) to Il while 1l transmitsg (ay)(¢) to I. The common private key

is (@) (p@) () = g@aa) @) = e@an ) = e@)(@@)©)).

3. Attacks

We attack the cryptosystems introduced in the last section by observing that the ring
of functions induced by a Drinfeld module on a finite field is equal to a ring of linear
functions, properly interpreted. Linear algebra provides our picks.

The proofs of the propositions below involve regarding the finite fieks a vector
space over a smaller finite field and then performing certain matrix computations. In
order to perform these matrix computations we need to fix a badisaiod a method for
expressing elements kiwith respect to this basis. In most practical implementations of
the encryption schemes described in the previous sedtisralready expressed thus. If
one perversely chose to work with a coordinate-kege could puk in the required form
very quickly (see Proposition 1), anyhow. So, in all the statements following Proposition 1
we regard the choice of a basis foas being cost-free.
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Proposition 1. There is a probabilistic polynomial time algorithm which given a finite
field k of characteristic p produces a basis of k oFfgrand a polynomial time procedure
to express any element of k in terms of that hasis

Proof. Letd := [k: Fp] = Iogp|k|. Randomly chooséey, ..., eq) € k9. SetB =
{er, ..., eq}. With probability]_[idz_ol(l — p7') itis a basis. Repeating this step roughly
—log, ¢ times we can guarantee that we have found at least one basis with probability
1—-e.

We now define by recursion some elemdntg k and additive operatong;: k — k
for1 <i <d. Seth; := e; andy := idk. Fori + 1, setyi 1 := bP(F — 1)b~*y; and
biy1 = Yita(640).

B is a basis if and only if all of thé;’s are nonzero. If this choice @ fails to be a
basis, then repeat the above steps.

Givena € k written asa = Zi":l a - g with & € F, we have the following recursive
(starting withi = d and working backwards) formula fay:

a =b 'y (a— Za;e,> .
j>i
If one counts the taking of multiplicative inverses and the applicatidh a$ no more
costly than multiplication, then the above formula requiea@?) operations to imple-
ment. If one insists upon counting only addition and multiplication as basic operations,
then the cost estimate rises@id?) as one may compute! = bP"~1 for b € k. If one
wishes to make the estimate uniformpnthen the right bound i© (log(p)d3). O

In what follows, the real numbes is a constant for which the problem of multiplying
two m x m matrices over the fiell may be solved withtO(m®) ring operations irk.
The standard approach to matrix multiplication giwes: 3, but there are algorithms to
achievew < 2.376 [1].

Proposition 2. There are real numbers Cand r; and an algorithm to findfor any
prime p finite field k of characteristic pDrinfeld modulep: A — k{F},andaec A
with ¢(a) inducing a bijection of kan inverse tap(a) using at most log,|k|)" field
operations ink.

Proof. Let A := 1o ¢(A) € Hom(k, +). The elements of4 are additive homo-
morphisms, but they are most likely nkilinear maps. However, they ai®&,-linear
maps. After fixing a basik for k overlF, (as given by Proposition 1) we may identify
Hom(k, +) with the matrix ringMm(Fp) wherem = dimg, (k) = log,(|k|). Under this
identification,A is a ring ofm x m matrices oveF,. Givena € Afor whichiogp(a)isa
unit, we can find the inverse t@ ¢(a) simply by inverting the corresponding matrix to
obtaing € A. Even without taking into account extra information abaythis inversion
requires at the worgd(m®) field operations. |

Thus, cryptosystems based on the supposed intractibility of inverting the action of a
Drinfeld module (for example, the Drinfeld module version of RSA) are insecure.
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One might imagine that in some systems knowing the inverseot@(a) is not
enough. However, without much additional effort we can recover dome for which

tog(b) = (Log@)™

Proposition 3. There is a polynomial time algorithm for solving the inversion problem
for Drinfeld modules

More preciselythere are real numbers £and r, and an algorithm whichgiven a
prime p finite field k of characteristic fDrinfeld modulep: A — k{F},andae A for
whichg(a) induces a bijection of Kinds be A for whiche(b) is the inverse tg(a) on
k requiring fewer than @(log, |k|)? field operations irf,.

Proof. Lets,t € A generateA over its field of constantdf;. As above, letd =

to @(A). For now, letl" be a basis fok overF as given by Proposition 1. Let :=
dimg, (k). As A is a commutative subalgebra by, (Fy ), dimg, (A) < m. Compute
the vectorsS:= {t o p(s't!): 0 < i, j < m}. Assuming that we have already computed
Lo @(S) and: o (t) as matrices relative tB, this requiresn® matrix multiplications and
can be accomplished with (m?+®) field operations iy . We can extract a basifor

A from Swith O(m®*?) field operations iffy using the algorithm of Problem 2.2.10a
of [1]. So, we have a sdt C {(i, j): 0 <i, ] < m} so that{p(s't)): (i,j) e l}isa
basis ofA overFy.

Let 8 = (1o p(a))~* be the inverse too ¢(a) computed in the previous proposition.
From the basi§ of k, we obtain a standard basisfor Hom(k, +). We know thapg € A.
We are given the vectogg andb for b € B in terms of the basi§’ of Hom(k, +). Say,
CI" = (B,9(1), ¢(@), ..., p@1)) for appropriateC e Mg+ xm2(Fp). To find the
expression fopB as a linear combination of the elementsBfwe find the kernel o€
(which we can accomplish in tim®(m*®) [1, Problem 2.2.3b]) and then scale. So,
we have an expressigh= Z(i.j)el u(i,j>cp(s‘ti) for appropriate., j, € Fyr. We take
b=2> e mipnst.

Converting the field operationsi)y into operations iff, costs a factor 0O (r logr),
but we should replace by dimg, (k) = rm. Thus, the estimate dD(Iogp(|k|)1+‘“) for
the number of field operations usedkp remains valid. O

The techniques of the last proposition extend to the discrete logarithm problem for
Drinfeld modules.

Proposition 4. There is a polynomial time algorithm to solve the discrete logarithm
problem for Drinfeld modules

That is there are real numbers £and r; and an algorithm whichgiven a prime p
finite field k of characteristic pDrinfeld modulep: A — k{F}, and elementg and
y of k, computes an a&e A with ¢(a)(¢) = y (if such an a exisjsusing fewer than
Ca(log,|k|)"™ field operations irFp.

Proof. Let M := ¢(A) - ¢ be the A-module generated by. Let A := 1t 0 p(A) C
Hom(k, +). LetFyy be the field of constants dk. Let m := dimg, (k). As above, thin
the setoffp(s't!)(¢): 0 <i, ] < m}toabasisB for M whereA is generated by andt
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over[F . The method described in the proof of the previous proposition requires at most
O(m**) field operations ifFy .

If y e M, thatisy = ¢(a)(¢) for somea € A, then as in the previous paragraph we
need only expresgin termsB. Following the algorithm already outlined in the previous
proposition, we carry out this computation in tir@gm+®), O

Thus, no public key cryptosystem based on the apparent infeasibility of solving the
discrete logarithm problem for Drinfeld modules (such as the Drinfeld module versions
of Diffie-Hellman, Massey—Osmura, and ElIGamal) is secure.
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