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Abstract, We put forward a new method of constructing Fiat-Shamir-like signature 
schemes that yields better "exact security" than the original Fiat-Shamir method. (We 
also point out, however, that such tight security does not make our modified schemes 
always preferable to the original ones. Indeed, there exist particularly efficient Fiat- 
Shamir-like schemes that, though only enjoying "loose security," by using longer keys 
may provably provide more security at a lower computational cost than their "tight- 
security" counterparts.) 
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1. I n t r o d u c t i o n  

1.1. Exact Security of Signature Schemes 

Goldwasser  et al,'s [GMR] classical not ion of  securi ty for a digital  s ignature scheme is 
asymptot ic  in nature. In essence, a proof of  security amounts  to a reduct ion f rom forging 
a signature to solving a computat ional ly  hard problem: if a po lynomia l - t ime  forger exists, 
then we can use it to solve the hard problem in polynomial  time. 

It has been  often pointed out that this asymptot ic  approach, which uses not ions  such 
as "po lynomia l  t ime" and "sufficiently large," is too coarse for practical security recom- 
mendat ions .  Knowing  that no po lynomia l - t ime  adversary has a better than exponent ia l ly  
small  chance of  forgery for a sufficiently large security parameter  does not  provide one 
with an answer  to the practical problem of  f inding the appropriate security parameters  
to ensure security against  adversaries with certain concrete capabilit ies.  

* This material is based upon work supported in part under a National Science Foundation Graduate Fel- 
lowship. A preliminary extended abstract of this work appears in [MR]. A version with more complete proofs 
is available from http://theory.lcs.mit.edu/~reyzin. 
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Bellare and Rogaway [BR2] argue that, in order to be able to deduce concrete security 
recommendations, it is important to be precise in the reduction from a forger to the 
algorithm that solves the hard problem. For example, if one knows that factoring integers 
of length l is no more than 100 times harder than breaking a certain signature scheme 
with security parameter l, then one could pick l so that even 1% of the work required to 
factor integers of length l is considered infeasible. 

A reduction in which the difficulty of forging and the difficulty of solving the un- 
derlying hard problem are close is called tight; otherwise, it is called loose. (Naturally, 
"close," "tight," and "loose" are imprecise terms and make more sense when used in 
the comparative.) A scheme whose exact security is tightly related to the difficulty of 
factoring is also proposed in [BR2]. 

1.2. Loose Security of Fiat-Shamir-Like Signature Schemes 

A fruitful method for constructing signature schemes was introduced by Fiat and Shamir 
[FS]. Although claimed for a specific ID scheme, the method works with a general 
commit-challenge-respond ID scheme. The method consists of replacing the verifier's 
random challenge by a publicly known "random" function H computed on the prover's 
commitment and the message being signed. This removes interaction and adds the mes- 
sage into the picture, thus changing an ID scheme into a signature scheme. 

Many of such signature schemes have been proven secure when the "random" function 
is modeled as a random oracle ([BR1] provides a formal treatment of this model). 
However, the reductions in these proofs are quite loose, thus necessitating larger key 
sizes. Unless a tighter reduction has been overlooked, the only way to improve the 
security of such signature schemes is to modify them to allow for tighter reductions. 

t.3. Tightening the Security of Fiat-Shamir-Like Schemes 

This paper's main contribution is a modification to the factoring-based Fiat-Shamir- 
like schemes that makes their security very tightly related to the problem of integer 
factorization. Our modification is quite general and can be applied, in particular, to the 
schemes from [FS], [FFS], [OO1], [MS], lOS], [Ok], [Mi], [Sh], and [Sc2]. 

To exemplify our method and make the description concrete, we picked one of the 
simpler and more efficient schemes from the above list, the one in [Mi]. We henceforth 
call it "MSA" (for "Micali's signature algorithm"). We first present an exact analysis of 
the loose security of MSA, then propose the modification (called the "swap method") 
and present an exact analysis of the tight security of the modified scheme (called "MSA- 
swap"). Both MSA and MSA-swap are quite practical, with the performance comparable 
with that of the schemes currently used in practice. 

1.4. When to Use Tight Security? 

As Bellare and Rogaway explain in [BR2] using the schemes Full-Domain-Hash-RSA 
and PSS as examples, tighter exact security results in smaller security parameters and, 
hence, higher efficiency. Because Full-Domain-Hash-RSA and PSS have about the same 
running time for a given security parameter, PSS, with its tighter security, is better that 
Full-Domain-Hash-RSA. 
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Since then, folklore has often regarded schemes with tight security as superior to those 
with loose security, misunderstanding the examples in [BR2]. Indeed, an obvious (but 
often forgotten) observation is that 

a more efficient scheme with loose security may be better than a less efficient 
one with tight security, 

because the efficiency of the loosely secure scheme can compensate for the higher 
security parameter. 

To demonstrate this with a quantitative example, in Section 5 we analyze MSA against 
MSA-swap and PRab (a variant of PSS, also from [BR2], based on squaring rather than 
RSA). We find that the loosely secure but more efficient MSA sometimes delivers more 
security for less cost than tightly secure schemes MSA-swap and PRab. 

To our knowledge, despite the fact that our analysis is quite straightforward, no one 
has carried it out before (the paper [BR2] compares Full-Domain-Hash RSA and PSS, 
but the analysis is simpler because the two schemes have the same efficiency). The fact 
that a Fiat-Shamir-like scheme may be preferable to Rabin-based PRab for both security 
and efficiency reasons has not been pointed out before, either. 

Our technique can be used to choose from among several signature schemes for a 
particular application. In particular, it can help one decide whether to use a Fiat-Shamir- 
like scheme directly or to apply our modification. 

2. Definitions 

Notation. We denote by A ? a (probabilistic) oracle-calling algorithm; A ~ denotes the 
same algorithm making calls to the specific oracle O, where O : {0, 1}* --~ {0, 1}. 
Because oracles returning more than one bit per question, as well as multiple oracles, can 
all be easily simulated by a single oracle returning one bit per question, we slightly abuse 
this notation and speak of, for example, A 7,? and A a,n,  for some G : {0, 1}* ~ {0, 1} k 
and H : {0, 1 }* ~ {0, 1 }t. Additionally, in some cases we need to allow one probabilistic 
oracle algorithm A ? access to another probabilistic oracle algorithm B e with the oracle 
O; we denote it by A B~ Note that because B e is probabilistic, it is not, strictly speaking, 
an oracle; rather, this notation implies that, for each query, B ~ gives a single answer 
selected, with the appropriate probability, from the set of  all possible answers. When 
convenient and clear, we omit the superscript when speaking about A ? or A ~ 

We denote by x +-- A the fact that the probabilistic algorithm A output x. 

Signature schemes. Our definition of  a signature scheme follows the one found in 
[GMR] and refined in [BR1] to allow for random oracles. As is common, we decouple 
the notions of  a signature scheme and of  its security. 

Definition 1. A signature scheme with an oracle is a triple of  probabilistic oracle 
algorithms I7 ----- (Gen ?, Sign ?, Ver?). Gen is a key generation algorithm that, given the 
security parameter k, outputs a key pair (pk, sk). I Commonly, pk is called apublic key and 

t Usually, we are interested in the running time of Gen as a function of k rather than log k. Therefore, 
technically, we need to think of Gen as being given k in unary notation. This is denoted by 1 k. 
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sk a secret key (sk is sometimes also called a private key). Sign is a signing algorithm: 
given a message M and a secret key sk it returns a signature x. Ver is a verification 
algorithm: given a public key pk, a message M, and a purported signature x, it outputs 
"accept" or "reject." 

A signature x on a message M is called valid with respect to a public key pk and 
an oracle H if Ver H (pk, M, x) ="accept." The only required relationship between the 
three algorithms is that the algorithm Sign output valid signatures: that is, for any oracle 
H and message M, if (pk, sk) +-- GenH(1 k) and x +-- SignH(sk, M), then x is a valid 
signature on M with respect to pk and H. 

Signature schemes with more than one security parameter can be defined similarly. 
Note that in the above definition, we do not specify what the oracle H is or what it 

means for a signature scheme to be secure. This is discussed below. Our definition of 
security is a modified version of  that in [BR2], which is based on [BR1] and [GMR]. 
This definition concerns itself with exact, rather than asymptotic, security. 

Intuitively, we want to capture the following in our definition of  security: there is no 
algorithm (called "forger") that, for a random oracle H, is able to produce new valid 
signatures with reasonable probability in reasonable time without knowing sk. Moreover, 
we should assume that an attacker can coerce the signer into signing some number of  
messages of  the attacker's choice-- to  carry out the so-called "adaptive chosen-message 
attack" [GMR]. We model this by giving the forger oracle access to the oracle H and to 
the algorithm Sign 14 ( sk, .). 

Definition 2. A forger F ?'? is a probabilistic two-oracle algorithm that is given a 
security parameter k and a public key pk as input. The first oracle of  F is called a 
hashing oracle and the second oracle is called a signature oracle. Let H be a hashing 
oracle, and let (pk, sk) = Genn(1 k) for some k. We say that the forger succeeds if 
(M, x) 4-- F n.signn(sk,) (1 ~, pk) and x is a valid signature on M with respect to pk and 
H, and F did not query its signature oracle on M. 

We say that a forger (t, qsig, qhash, e, ~)-breaks the signature scheme if, for a security 
parameter k, the following hold: 

�9 its running time (plus the size of  its description) does not exceed t (k), 
�9 the number of  its queries to the signature oracle does not exceed qsig(k), 
�9 the number of  its queries to the hashing oracle does not exceed qha~h(k), 
�9 with probability at least 8 (k), Genn (1 k) generates such a key (pk, sk) that the prob- 

ability of  the forger's success on input (1 k, pk) is at least e(k) (here, the probability 
o f  the forger's success is taken over a random choice of the oracle H, the random 
tape of  the forger, the random tape of  the signer to whom the forger addresses the 
chosen-message queries, but not the choice of  pk). 

Finally, we say that a signature scheme is (t, qsig, qhash, e, 8)-secure if no forger (t, qsig, 
qha~h, e, 8)-breaks it. 

(As an aside for the reader familiar with the definition of  [BR2], we point out that if a 
scheme is (t, qsig, q~sh, e3)-secure in the sense of  the [BR2], then it is (t, qsig, qhash, e, 8)- 
secure in the sense of  the above definition. We simply separate the component of  the 
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probability that is due to the selection of  the public key. This separation allows us to 
correct some minor errors in the security analysis present in the prior literature. See the 
proof of  Theorem 1 for details.) 

Measur ing  signature scheme security. Now that we have defined what it means for a 
signature scheme to be secure, how do we actually prove anything about security? To 
do so, we relate the security of  a signature scheme to the difficulty of some problem; in 
our case, the difficulty of  factoring. 

Definition 3. Let Gen(1 t) be an algorithm generating/-bit  products of  two primes. 
We say that an algorithm A (t, e, ~)-factors integers generated by Gen if, for a given 
parameter l, 

�9 A's  running time (plus the size of  its description) does not exceed t ( l ) ,  
�9 with probability at least 3(I), Gen(1 t) generates such an integer n that A has at 

least e (l) probability (taken over only the random choices of  the algorithm, not the 
choice of  n) of  producing the correct factors of  n on input n. 

We say that factoring integers generated by Gen is (t, e, 6)-secure if no such A exists. 

Given this definition of  the difficulty of  a problem, we can then explain the security 
of  a signature scheme H in the following terms, as suggested in [BR2]: if some problem 
is (t', e', 3')-secure, then the H scheme is (t, qsig, qhash, e, 6)-secure. If  t is not much 
smaller than t '  and e and 3 are not much larger than e' and 3', even for a reasonably large 
qsig and qhash, then the reduction proving the security is called tight. 

3. Micali's Signature Algorithm (MSA) 

3.1. Signature and  Verification Algor i thms  

We describe the following ID and signature scheme from [Mi], with similarities to the 
Ong-Schnorr  [OS] and the Guillou-Quisquater [GQ] schemes. 

N u m b e r  theory. Let k and l be two security parameters. Let Pl = 3 (mod8) and 
P2 = 7 (rood 8) be two primes of  approximately equal size and let n = p t P2 be an/-bi t  
integer (such an n is called a Williams integer [Wi]). To simplify further computations, 
we assume not only that n > 2 l - l ,  but also that [Z~*[ = n - Pl - P2 + 1 > 2 l - l ,  and 
that Pl + P2 - 1 < 2 t/2+l . Let Q denote the set of  nonzero quadratic residues modulo 
n. Note that [QI > 21-3. Note also that for x ~ Q, exactly one of  its four square roots 
is also in Q (this follows from the fact that - I  is a nonsquare modulo pl and Pz and 
the Chinese remainder theorem). Thus, squaring is a permutation over Q. From now on, 
when we speak of "the square root of  x," we mean the single square root in Q; by x z-k 
we denote the single y ~ Q such that x = y 2k . Also note that 2 is a nonsquare modulo Pt 
and a square modulo P2 (because (2 /p)  = (-1)(P"-I)/8), so 1 ~ Q and - 1 ,  2, - 2  r Q. 
In general, for any x ~ Z*, exactly one of  x, - x ,  2x, - 2 x  is in Q. 

Following [GMR], define Fo(x)  = x 2 rood n, Ft (x) = 4x 2 mod n, and, for an m-bit 
binary string cr = bl " "  bin, define F~ : Q ~ Q as F~ ( x ) = Fb, ( . . .  ( Fb: ( Fb~ (x ) ) ) . . . )  
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= x2"4 cr mod n (note that 4 ~ is a slight abuse of  notation, because ~r is a binary string, 
rather than an integer; what is really meant here is 4 raised to the power of  the integer 
represented in binary by ~r). Because squaring is a permutation over Q and 4 ~ Q, Fo 
is a permutation over Q. 

Note that F~ (x) can be efficiently computed by anybody who knows n. Also, if one 
knows Pl and P2, one can efficiently compute x = Fd-l(y) (as shown by Goldreich in 

[Gol])  by computing s = 1/4 2-)'~ mod n and then letting x = y2-~~ mod n (these 
calculations can be done modulo Pl and p2 separately, and the results combined using 
the Chinese remainder theorem). However, if one does not know pl and P2, then FZ l is 
hard to compute, as shown in the lemma below. 

L e m m a  1. I f  one can compute, f o r  a given y ~ Q and two different strings cr and ~ o f  
equal length, xl  = F~ -1 (y) and x2 = F r  1 (y) ,  then one can fac to r  n. 

Proofi The proof is by induction on the length of  the strings a and r. 
I f  Icrl = Irl = 1, then assume, without loss of generality, that cr = 0 and r = 1. Then 

Fo(xl)  ----- FI (x2) --= y mod n, i.e., x~ ---- 4x 2 mod n, i.e., nl(xi  - 2x2)(xl + 2x2). Note 
that Xl, x2 ~ Q and 4-2 r Q, so 4-2x2 ~ Q, so xl ~ 4-2x2 (mod n), so n does not divide 
either Xl - 2x2 or Xl + 2x2. Thus, by computing the gcd o fx l  + 2x2 and n, we can get 
either pl or p2. 

For the inductive case, let a and z be two strings of length m + 1. Let a '  and r '  
be their m-bit prefixes, respectively. If  F~,(xl)  = F,,(x2) (modn),  we are done by the 
inductive hypothesis. Otherwise, the last bit of  a must be different from the last bit of  
r ,  so, without loss of  generality, assume the last bit of  ~r is 0 and the last bit of  r is 1. 
Then F0 (F~, (xl)) = F1 (F,, (x2)) (mod n ), and the same proof as for the base case works 
here. D 

The ID scheme. The above lemma naturally suggests the following ID scheme. A user 
has n as the public key and Pl, /)2 as the secret key. To prove his identity (i.e., that he 
knows pt and P2) to a verifier, he commits to random X ~ Q and sends it to the verifier. 
The verifier produces a random k-bit challenge cr and sends it to the prover (the user). 
The prover responds with z = F ~  t (X) (note that ~r here is prefixed with a single 0 bit, 
whose use will be explained shortly). The verifier checks that X = F0, (z) = F ,  (z 2) 
and that z ~ 0 (rood n). Informally, the security of  this protocol is based on the fact that 
if the prover is able to respond to two different challenges cr and r,  then, by Lemma 1, 
he knows pl  and P2. The 0 bit in front of  ~r is to save the verifier from having to check 
that the prover's response is in Q (which is a hard problem in itself)--instead, she just 
squares the prover's response and thus puts it in Q. 

We say no more about the security of this ID scheme because we are not concerned with 
it in this paper. We, however, point out an efficiency improvement for the prover. First, 
as part of  key generation, the prover computes, using the Chinese remainder theorem, 
s = 1/4 2-k-~ mod n. Then, when committing to a random X ~ Q, the prover randomly 
selects an x ~ Z~ and sets X = x 2~+' mod n (note that X gets selected with uniform 
distribution as long as x is selected thus). Now, to respond to a challenge (r, the prover 
simply computes z = xs  ~ mod n. 
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MSA. The standard way to change the above ID scheme into a signature scheme is to 
replace the verifier with a random function H : {0, 1 }* --+ {0, 1}k. The exact steps of the 
algorithms Gen, Sign, and Ver follow. 

Key Generation 

1. Generate two random primes Pl - -  3 (mod8)  and P2 --  7 (mod 8) and n : PlP2 
so that n < 2 l, n - Pl - -  P2 -t- 1 > 2 t + 1 and Pl + P2 - -  1 < 2 / / 2 + 1 .  

2. Generate coefficient c = p2 -1 mod Pl for use in the Chinese remainder theorem. 
3. Compute ui = ((Pi  -t- 1)/4) k+~ m o d ( p i  - 1) /2 for i = 1, 2 (note that ui is such 

that raising a square to the power ui modulo Pi will compute its 2 k+l root). 
4. Compute S i = ( (Pi  "}- 1)/4) u' mod Pi for i = 1, 2 (this computes 1/42-ck+t~ rood 

pi). 
5. Compute v = (sl - s2)c mod pl  and s = s2 + vpz to get s = 1/4 z-ck§ mod n. 
6. Output n as the public key and (n, s) as the secret key (to make signing more 

efficient, P l ,  P2, s l ,  s2 and c should be added to the secret key, in which case s is 
not needed and the previous step can be omitted). 

Signing 

1. Generate X by picking a random x ~ Z,~ and computing X = x 2k+~ m o d n  (note 
that this step can be done off-line, before the message is known). 

2. Compute ~r = H ( X , M ) ,  z = F ~ I ( X )  via t = s a m o d n  (this can be done 
via ti = s 7 mod Pi for i = 1, 2, v = (tl - t2)c rood Pl ,  t = t2 + vp2), and 
z = x t  mod n. 

3. Output (z, or). 

Verifying 

1. Verify that z ~ 0 (modn)  and compute X = F~(z 2) via tl = z 2k§ mod n, and 
t2 = 2 ~ mod n, and X = tit2 m o d n .  

2. Verify ifcr  = H ( X ,  M).  

3.2. Security o f  MSA 

T h e o r e m  1. I f  there exists a forger that (t, qsig, qhash, e, 3)-breaks MSA with security 
parameters l and k, such that e > 2-k+l(qhash + 1) + y,  then there exists an algorithm 
that (t', e', 3)-factors integers generated by Gen for  

t' = (2qha~h + 3)(t + qsigTl) +T2 ,  
e F 2-k+l(qhash + 1) 

e' = -1 1 - -  > 0 . 1 9 9 ,  
2 

where T1 is the time required to perform an MSA signature verification, Tz is the time 
required to factor n given the conditions o f  Lemma 1 (essentially, a gcd computation), 
and y = 2-l+3qsig(qhash H- 1 )  (no t e  that y is close to O for  a large enough l). 
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Proof.  Let F be a forger that (t, qsig, qhash, 6, 3)-breaks MSA. We will construct a 
factoring algorithm A that uses F to produce y, z ~ Z* and cr :/: r E {0, 1}k such that 
Fa (Z 2) = Fr (y2). This will allow A to factor n by using the method given in the proof 
of  Lemma 1. 

The main idea of  this proof is given by the "forking lemma" of  [PSI]. It is to allow 
F to run once to produce one forgery- -a  signature (z, ~r) on a message M such that 
cr = H ( X ,  M)  where X = F~(z2). Note that F had to ask a hashing-oracle query on 
(X, M)--o therwise  its probability of  success is at most 2 -k. Then run F the second time, 
giving the same answers to all the oracle queries before the query (X, M). For (X, M) 
give a new answer r. Then, if F again forges a signature (y, r)  using X and M, we will 
have achieved our goal. 

Assuming n is such that F has probability at least e of  success, the probability that A 
will factor n using this approach is roughly 82/qhash, because F needs to succeed twice 
and we have no guarantee that F will choose to use (X, M) for its second forgery and 
not any of  its other qhash oracle queries. 

To increase the probability of  success to a constant, we iterate A sufficiently many 
times, as suggested in [ 0 0 2 ]  and [PS2]. More specifically, A wilI run F about 1/e times 
the first time, to achieve a constant probability of  a successful forgery, and about 2qhash/e 
times the second time, to achieve a constant probability of  a successful forgery that uses 
the pair (X, M). 

We do not provide the details of  our construction or the probability analysis, because 
they are quite similar to those of [ 0 0 2 ]  and [PS2]. We wish to point out one crucial 
difference, however: both [002 ]  and [PS2] assume, in their probability analyses, that 
the 1/e first runs of F are entirely independent. This is incorrect, because the public key 
input to F is always the same. Indeed, if F is such that it never succeeds on a certain 
public key, then running it repeatedly will not increase the success probability. Therefore, 
it is necessary to separate the component of  the probability that is due to the selection 
of  the public key, as we do in our definition of  security. [] 

Corollary 1. 
MSA is (t, qsig, qhash, e, 8)-secure for  

l f  factoring l-bit integers generated by Gen is (t', O. 199, 8)-secure, then 

as long as 

( t '  - T2)e 
t = -- qsigTl 

4qhash + 6 

e >_ 2 (2-k+l(qhash + 1) + 2-t+3qsig(qhash + 1)). 

Proof.  Solving for t the equation for t '  of  Theorem 1, we obtain 

(t' - Tz)(e - y -- 2-k+l(qh~sh + 1)) 
t = -- qsigTl. 

2qh~sh + 3 

The condition on e ensures that e - y - 2-k+l(qhash + 1) > e/2. Observe that we are 
allowed to decrease t, as this will only weaken the result, so we are allowed to replace 

- Y - 2 -k+l (qhash + 1) by ~/2. 
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Note also that Theorem 1 requires that e > 2 -k+l (qhash + 1) + y, which is also assured 
here by the conditions on e. [] 

4. The Swap Method 

4.1. Motivation 

As exemplified by the proof of Theorem 1 above, all known results for the security of 
Fiat-Shamir-like signature schemes involve losing a factor of qhash (in either time or 
success probability) in the reduction from a forger to an algorithm that breaks the un- 
derlying hard problem (see, for example, [FS], [Sc2], [PS1], [Sh], [002] ,  and [PS2]). 
While no proof exists that the loss of this factor is necessary, the problem seems in- 
herent in the way signature schemes are constructed from ID schemes, as explained 
below. 

The security of an ID scheme usually relies on the fact that a prover would be unable to 
answer two different challenges for the same commitment without knowing the private 
key. Therefore, in the proof of security of the corresponding signature scheme, we need 
to use the forger to get two signatures on the same commitment, as we did in the proof of 
Theorem 1. The forger, however, has any of its qhash queries to pick for the commitment 
for the second signature hence, our loss of the factor of qh~h. We want to point out that 
qhash is a significant factor, and its loss definitely makes a reduction quite loose. This 
is because a reasonable bound on the number of possible hash queries of committed 
adversaries is about qhash = 280 (see Section 4.4). 

We therefore devise a new method of constructing signature schemes from ID 
schemes so that any one signature from the forger is enough to break the underlying 
hard problem. 

4.2. Method 

Recall that in Fiat-Shamir-like signature schemes, the signer comes up with the com- 
mitment and then uses H applied to the commitment and the message to produce the 
challenge. We propose that instead the signer first come up with the challenge and then 
use H applied to the challenge and the message to produce the commitment. In a way, 
we swap the challenge and the commitment. 

This method applies whenever the signer can compute the response given only the 
challenge and the commitment. It does not apply when information used during the 
generation of the commitment is necessary to compute the response. For example, it 
does not apply to discrete-logarithm-based ID schemes (such as the Schnorr scheme 
[Scl]) in which the prover needs to know the discrete logarithm of the commitment in 
order to provide the response. 

Additionally, in order to use this method, one needs to get around the problem that the 
commitment is selected from some structured set (such as Q in the case of MSA), while 
H returns a random binary string. This problem can usually be easily solved. The only 
case known to us when it seems to present a real obstacle is in the scheme of Ohta and 
Okamoto [002]  in the case when an exponent L is used such that gcd(L, (Pt - 1 ) (Pz - 1)) 
> 2 .  



10 S. Micali and L. Reyzin 

The key-generation algorithm and the private key may need to be modified slightly 
in order to provide the signer with the additional information needed to compute the 
response from a random commitment, rather than from a commitment that it generated. 
The verification algorithm remains vastly unchanged. 

In the next section we exemplify our proposed method and explain why it results in a 
tighter security reduction. 

4.3. M S A - s w a p  

4.3.1. D e s c r i p t i o n  

The scheme depends on two security parameters: k and l. Let H : {0, 1}* ~ {0, 1} l-1 
be a random function. 

Key Genera t ion.  The key generation is the same as in MSA, except for one additional 
step (step 6) and extra information in the private key: 

1. Generate two random primes pl ------ 3 (mod 8) and P2 ~ 7 (mod 8) and n ~- P I P 2  

so that n < 2/, n - Pl - P2 + 1 > 2 l + 1, and Pl + P2 - 1 < 2//2+1 . 
2. Generate coefficient c = p2 -1 mod Pl for use in the Chinese remainder theorem. 
3. Compute ui = ( (P i  + 1)/4) k+l mod(pi  - 1)/2 for i = 1, 2 (note that ui is such 

that raising a square to the power ui modulo Pi will compute its 2 k+l root). 
4. Compute si = ((Pi  + 1)/4)"' rood Pi  for i = 1, 2 (this computes 1 / 4  2-ck+~ m o d  

P i ) .  
5. Compute v = (sl  - s2)c  mod Pl and s = s2 + vp2 to get s = 1/4 2-~k+~) m o d n .  
6. I f  ui is odd, make it even by setting ui = ui + (p i  - 1)/2 for i = 1, 2 (note that 

now ui is such that raising a square or its negative to the power ui modulo Pi will 
compute its 2 k+l root). 

7. Output n as the public key and (n, s, ul, u2, Pl, P2, c) as the secret key. 

Signing 

1. Generate a random cr and compute t = s a mod n (note that this step can be done 
off-line, before the message is known). 

2. Compute X = H (or, M). If  X r Z~*, then try another ~r (the probability of  that is at 
most 2-t/2+2). If  the Jacobi symbol ( X / n )  = - 1, set X = 2X m o d n .  Now either 
X or n - X is in Q. Compute z = F o a - l ( 4 - X )  v i a x / =  Xu'  rood Pi for i = I, 2, 
v = (x l  - x2 )c  mod Pt, x = x2 + vp2,  and  z = x t  mod n. 

3. Output (z, a) .  

Verifying 

1. Verify that z ~ 0 (modn)  and compute X = F a ( z  2) via tl - :  Z 2~+1 mod n, t2 = 

2" mod n, and X = &t2 mod n (this step is the same as for MSA). 
2. Let X '  = H(tr, M). If  X - 4-X' (modn)  or X =-- : t :2X '  (modn),  accept the 

signature (this step differs slightly from MSA). 
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4.3.2. Security of MSA-Swap 

Proposi t ion  1. If  there exists a forger that (t, qsig, qlaash, e, 3)-breaks MSA-swap with 
secui'ity parameters l and k, then there exists an algorithm that (t', e', 3)-factors integers 
generated by Gen for 

t '  = t + 2(qsig + qhash + 1)7"1 + T2, 
6 t = ~ - - : y ,  

where T1 is the time required to perform an MSA-swap signature verification, T2 is the 
time required to factor n given the conditions of Lemma 1 (essentially, agcd computa- 
tion), and y = 2-kqsig(qhash + 1) + 2-1/2+/(qhash + qsig "~- 1) (note that t' is close to 0 
for large enough k and I). 

Proof. 

Main idea. Let F be a forger that (t, qsig, quash, e, 3)-breaks MSA-swap. Similarly to 
the proof of  Theorem I, we will construct an algorithm that, after interacting with F,  
will produce y, z 6 Z* and ~r r z ~ {0, 1} k such that Fo(z 2) = Fr(y2). 

The main idea is to answer each hash query on (~r, M) with an X computed via 
X = F~ (yZ) for a random y ~ Z* and arbitrary v that is different from G. Then if 
F forges a signature (z, ~r) on M, we will have Fo(z z) = F~(y 2) and will be able to 
factor n. 

Details. We assume that F performs the necessary bookkeeping and does not ask the 
same hash query twice. 2 Note that F may ask the same signature query twice, because 
the answers will most likely be different. We also modify F so that it will not output a 
signature (z, ~r) on a message M unless it knows that the signature is correct; in particular, 
that means that F first has to ask, in a hash query, for the value of H (or, M). This may 
increase the number of  hash queries by one and the running time of F by the cost of  one 
signature verification. 

A maintains two tables, for signature query answers and for hash query answers. To an- 
swer the j t h  signature query on a message Mj, A picks a random rj ~ {0, l }k and checks 
its signature query table to see if a signature query on Mj has already been asked and if 
rj was used in answering it. If  so, it returns the answer from the table. If not, it picks a 

I t t 2  p random yj ~ Q and a random/zj  ~ {1, - 1 ,  2, -2} ,  computes Xj = F~(yj )/lzj mod n, 
t 21-1. / r and checks if Xj < If  not, it restarts with new random yj and/~j.  The expected 

number of  trials is less than two, because Xj is a random element in Z,~ (because F~ (y~) 

is a random element in Q and/x} is also random) and I Z*l < n < 2 t. Once Xj satisfies 
the desired condition, a outputs (y~, rj) as the signature and records (j ,  y~, rj ,  Xj, Mj) 
in its signature query table. 

To answer the ith hash query on (Gi, Mi), A first checks if an entry (j ,  y~, rj ,  Xj, M~) 
such that ~ri = rj and Mi = Mj already exists in its signature table. If  so, it returns Xj. 

2 This may slightly increase the running time of F, but we ignore costs of simple table look-up for the 
purposes of this analysis. 
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Otherwise, it picks ri # ai, computes Yi, lzi, and X i in the same way as when answering 
a signature query, outputs Xi, and adds (i, Yi, ri, cri, m i )  to its hash query table. 

Assume F outputs a forgery (z, a )  on a message M. A then computes X = F~(z 2) 
and searches its hash query table for such an i that ai = cr and Mi = M.  (Such an 
i has to exist, because we modified F to verify the validity of  its forgery, so F had 
to ask a hash query on (a, M). Note that there would be no entry in the hash query 
table if the value of  H(a ,  M) was first obtained by a signature query; however, this is 
impossible, because F is prohibited from outputting a forgery on a message for which 
it asked a signature query.) Then Fa(z 2) = X = ] , s  = F~i(y2i), and cr # ri because 
of  the way r~ was picked, so A can easily factor n by the method given in the proof of 
Lemma i. 

Probability analysis. For this analysis, we assume that n is such that F has probability 
at least e of  success. By assumption, such an n is generated with probability at least 3. 

We need to compare the distribution o f  A 's  answers to F ' s  queries to the distribution 
of  answers given by the true oracles. The distributions differ as follows: if, for some 
signature query j ,  the hash value of  r~, Mj has already been defined through a previous 
hash query, then A will fail, whereas the true oracles would not. The probability of  
this event for a given signature query is at most (qhash + 1)2 -k, because rj is picked at 

random from {0, 1 ]k. Thus, the probability of  F ' s  success is reduced as a result of  this by 
at most qsig(qhash + 1)2 -k. Additionally, X in the answers to hash and signature queries 
is distributed uniformly over Z* (3 {0, 1} t-1 , thus excluding the multiples of  Pl and P2 
that a real hash function could possibly hit. Since there are at most Pl + p2 - 1 < 2 t/z+l 
such multiples in Z, ,  this will reduce the forger's probability of  success by at most 
(2//2+1) / (2 l -  I ) = 2-/ /2+2 per query. 

So the probability of successfully factoring n is 

6'  > e --  qsig(qhash q- 1)2 -k - (qhash %" qsig Jr" 1)2 -/ /2+2. [] 

Theorem 2. I f  there exists a forger that (t, qsig, qhash, 8, 3)-breaks MSA-swap with se- 
curity parameters l and k, such that e > F, then there exists an algorithm that ( / ,  e', 3)- 
factors integers generated by Gen fo r  

t + 2(qsig --{- qhash -1- 1)TI 
t t _~_ 

e - - y  

e = 1 -  >0 .632 ,  

+T2, 

where T1, T2, and F are as in Propositionl. 

Proof. Let 

0~=8-- F. 

By assumption, a > 0. So if we repeat the algorithm constructed in the proof of  Propo- 
sition 1 Theorem 1 up to 1/or times (except for the final gcd computation, which need 
only be done once), we get the desired e', similarly to the proof of Theorem 1. [] 
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Similarly to MSA, we have the following immediate corrollary. 

Corollary 2. I f  factoring I-bit integers generated by Gen is (t ' ,  0.632, 3)-secure, then 
MSA-swap is (t, qsig, qhash, e, 8)-secure for  

as long as 

(t' -- T2)e 

2 
- 2(qsig -k- qhash + 1)TI 

e > 2 (2-1/2+2(qhash -I- qsig -1" 1) + 2-kqsig(qhasta q- 1)). 

Proof.  The condition on e ensures that e - F > e/2.  The rest follows, similarly to the 
proof of Corollary 1, from solving the equations of Proposition 1 for t and e. [] 

4.4. Parameter Choice 

It is immediately clear from the formulas in Corollaries 1 and 2 that MSA-swap loses no 
factor  ofqh~h, neither in time nor in probability. This is a big advantage for MSA-swap 
because qhash can be quite big. 

A fuller comparison, provided in the next section, depends on the actual values of  the 
parameters qsig, qhash, k, and l. We deal here, however, with the preliminary problem of 
assigning reasonable values to these parameters. 

We believe it reasonable to set qsig = 230 and qh~h = 280 -- 1. This is so because 
signature queries have to be answered by the honest signer (who may not be willing or 
able to sign more than a billion messages), while hash queries can be computed by the 
adversary alone (who may be willing to invest extraordinary resources). Notice that we 
recommend a higher value for qha~h than suggested in [BR2]. 

We recommend setting k = 100 for MSA, and k = 130 for MSA-swap. For MSA, 
this is so because, from Corollary 2, we see that 2-k (qhash + 1) has to be small (the value 
of 2 -k (qh~sh + 1) is essentially the success probability of  the simple attack that relies on 
correctly guessing one hash value among qh~sh + 1 hash queries). Therefore, we need 
2 -k+8~ to be small, and by setting k = 100 we make it less than 10 -6. For MSA-swap,  
this is so because 2-~q~ig(qhash + 1) has to be small, as seen in Corollary 2. 

As for l, notice that both MSA and MSA-swap are immediately broken if the adversary 
succeeds in factoring the/-bit  modulus. Therefore, l ought to be at least 1000. Given the 
above choices for the other parameters, such a minimum value for I is large enough to 
make all the constraints involving I in Corollaries 1 and 2 satisfied (for any reasonable 
e in the case of  Corollary 2). Thus, the value of I depends on the presumed security of 
factoring, as discussed in the next section. 

5. Comparing Signature Schemes 

Having developed the swap method and demonstrated that it tightens the security of  
Fiat-Shamir-like signature schemes, we wish to determine precisely when the method 
should be used. It would be tempting to say "whenever tight security is desired" but this 
answer is meaningless. We submit that meaningful comparisons of  signature schemes 
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should take both security and efficiency into account, and that consideration of either 
factor alone is insufficient. 

We also use our methods to compare MSA with PRab from [BR2] and find, perhaps 
surprisingly, that the former may sometimes provide more security for less cost. 

5.1. The Costs of Security 

The desired level of security is usually dictated by the specific application. It is af- 
ter settling on the desired amount of security that choosing among the various secure 
schemes becomes crucial. Indeed, when choosing a signature scheme, the goal is to 
maintain the desired level of security at the lowest possible cost. In a sense, picking 
a signature scheme is similar to shopping for an insurance policy for the desired face 
value. 

The costs of a signature scheme, however, are quite varied. They may include the sizes 
of keys and signatures, the efficiencies of generating keys, signing and verifying, the 
amounts of  code required, and even "external" considerations--such as the availability 
of inexpensive implementations or off-the-shelf hardware components. In this paper 
we focus on the efficiencies of signing and verifying. These are particularly important 
when signing or verifying is performed by a low-power device, such as a smart card, 
or when signing or verifying needs to be performed in bulk quantities, as on a secure 
server. 

It is for these costs, then, that below we compare MSA and MSA-swap. We also 
provide a comparison of MSA with the PRab scheme from [BR2], arguably the most 
practical among those tightly related to factoring. (The reason for choosing PRab rather 
than its PSS variant is that the latter is tightly related to RSA, and thus potentially less 
secure than factoring.) 

5.2. Comparison of MSA and MSA-Swap 

The efficiency of signature verification in MSA is about the same as in MSA-swap. The 
security of MSA-swap is generally higher than the security of MSA for the same security 
parameters. Therefore, if the efficiency of verifying is the only significant component in 
the cost, MSA-swap will be able to provide the same amount of security for less cost 
than MSA. 

A more difficult case to analyze is the case when the efficiency of signing is of main 
concern. We limit our analysis to the case when we are only concerned with the on-line 
part of signing. In both cases, this involves mainly a modular exponentiation. Therefore, 
a variety of sophisticated algebraic methods can be used here, but these methods apply 
equally to MSA and MSA-swap. We thus find it simpler to compare the two under 
"standard" implementations using the Chinese remainder theorem (CRT). MSA then 
involves two exponentiations of a fixed//2-bit base to a k-bit power, modulo two//2-bi t  
primes. One modular multiplication of two//2-bi t  numbers takes about 12/4 steps; about 
3k such multiplications are required (1.5k for each of the primes), so the total amount of 
time required for on-line signing in MSA is about 3kl2/4. Similar analysis applies for 
MSA-swap, except that about 1.5l multiplications (1.5l/2 for each of the two primes) 
are required, so the total amount of time required for on-line signing in MSA-swap is 
about 3l 3/8, not counting the (relatively small) cost of computing the Jacohi symbol. (In 
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sum, on-line signing is I/(2k) times faster for MSA than for MSA-swap if one used the 
same value of l for both. 3) 

We now see how the security of the two schemes compares assuming the on-line 
signing costs are the same. Let lM and kM be the security parameters for MSA, and let 
/MS and kMs be the security parameters for MSA-swap. The on-line signing costs for 
MSA and MSA-swap are the same if 

IMS = (2kMl 2)  1/3. (1) 

The best known factoring algorithms take time about 

T(1) = C exp ((.~)1/3 ll/3(lnl)2/3 ) 

for some constant C ILL]. Therefore, we assume that factoring/-bit integers generated 
by Gen is (C'T(I), 0.199, 8)-secure for some 3 and some constant C ~. This means that, 
for a large enough e and small enough qsig, MSA is about 

( (C'T(IM--2)-T2(IM'kM))e --qsigTl(lM, kM),qsig, qhash, e, ')-secure 
4qhas h + 6 

and MSA-swap is about 

- TZ(IMs, kMS))6 (C'T(IMs) 2 

X 

2(qsig + qh,sh + 1)Tt (/MS, kMs), qsig, qhash, e, 3 ) -secure 

(by Corollaries 1 and 2). 
Keeping the signing costs equal, we now find out when MSA becomes more secure 

than MSA-swap, that is, when 

(C'T(lM) - T2(IM, kM))e 
4qhash + 6 -- qsigT1 (IM, kM) 

(C'T(IMs) - T2(IMs, kMS))e 
> 2 - 2(qsig + qhash + 1)7"1 (/MS, kMs). 

Given the discussion of  Section 4.4 and (1), we now plug in qsig = 230, qhash = 280 -- 1, 
kM = 100, kMS = 130, and/MS = (2kMl 2)  1/3 to  the above inequality. These values allow 
us to omit the terms in T1 and T2, noting that they decrease the security of  MSA-swap 
much more than they decrease the security of  MSA. Thus, we are now interested in when 

C'T(1M) C'T((20012) 1/3) 
282 + 2 2 

3 Moreover, an optimization available to MSA but not to MSA-swap is precomputing some powers of the 
fixed base; this requires additional memory, so we assume it is not implemented for the purposes of this 
analysis_ 
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After taking the natural logarithm of both sides, we are left with the inequality 

( 64,,1/311/3 /1_1 ~2/3 2 , T )  t M tin,M) -- ln(281 + 1) > (~)V3 (2001~),/9 (�89 ln200 + g lnlM) z/3 (2) 

which holds as long as long as 1M >_ 6109. 
Thus, at lM = 6109, /MS = 1954, kM = 100, kMS = 130, MSA and MSA-swap 

provide about the same security and the same performance for on-line signing. 
In sum. The on-line portion of the signing algorithm of MSA is so fast that 

Provable security and signing efficiency are the same when MSA uses 6109- 
bit moduli and MSA-swap 1954-bit moduli. 

In both cases, the security is that of factoring a 1954-bit integer generated by G en. (MS A 
may actually be even more secure, but we cannot prove it.) 

It just so happens that this computed level of security is currently considered adequate 
for many applications. (Therefore, for these applications MSA-swap is preferable: MSA- 
swap has faster verification for the same level of security, as well as shorter keys and, 
therefore, shorter signatures.) 

However, whenever the application calls for a higher level of security, and the dominant 
cost is that of signing, then it is the loosely secure MSA that becomes preferable. In fact, 
inequality (2) implies that the security gap between MSA and MSA-swap, given the 
same performance, increases exponentially. In essence, this is so because, in order to 

2/3 
guarantee the same performance, IMs is a fixed function of IM: i.e., by (1), lMs = O (l M ). 
Thus security for both MSA and MSA-swap is measured by inequality (2) in terms of 

11/3 for lM, and the dominant factor in the exponent of the adversary's running time is "M 
12/9 for MSA-swap. MSA and "M 

5.3. Comparison of  MSA with BeUare-Rogaway's PRab 

The security of  PRab is tightly related to that of modular square roots, rather than 
factoring. A factor of 2 in probability is lost (compared with MSA-swap) when one 
relates the security of PRab to that of factoring. PRab's performance for on-line signing is 
about the same as MSA-swap's (PRab requires a few more Jacobi symbol computations, 
but no separate modular multiplication).4 A vastly similar analysis leads to the following 
conclusion: 

Provable security and signing efficiency are the same when MSA uses 5989- 
bit moduli, and PRab 1929-bit moduli. 

Also here this is a "cross-over" point: the gap in security for the same performance 
increases exponentially in favor of MSA. As we can see, this cross-over point is just 
slightly more in favor of MSA than the cross-over point of MSA and MSA-swap. This 
is because of the factor of 2 difference in the security of MSA-swap and PRab. 

4 Unlike MSA-swap, however, PRab has no off-line component in signing. It also has very efficient 
verification. 
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