
J. Cryptology (2002) 15:1-18
DOI: 10.1007/s00145-001-0005-8

Journal of

ERYPTOLOGY
�9 2002 International Association for
Cryptologic Research

Improving the Exact Security
of Digital Signature Schemes*

Silvio Micali and Leonid Reyzin
MIT LCS, 545 Technology Square,

Cambridge, MA 02139, U.S.A.
reyzin @ theory.lcs.mit.edu

Communicated by Jaques Stern

Received September 1999 and revised September 2000
Online publication 9 April 2001

Abstract, We put forward a new method of constructing Fiat-Shamir-like signature
schemes that yields better "exact security" than the original Fiat-Shamir method. (We
also point out, however, that such tight security does not make our modified schemes
always preferable to the original ones. Indeed, there exist particularly efficient Fiat-
Shamir-like schemes that, though only enjoying "loose security," by using longer keys
may provably provide more security at a lower computational cost than their "tight-
security" counterparts.)

Key words, Digital signatures, ID schemes, Random oracles, Exact security.

1. I n t r o d u c t i o n

1.1. Exact Security of Signature Schemes

Goldwasser et al,'s [GMR] classical not ion of securi ty for a digital s ignature scheme is
asymptot ic in nature. In essence, a proof of security amounts to a reduct ion f rom forging
a signature to solving a computat ional ly hard problem: if a po lynomia l - t ime forger exists,
then we can use it to solve the hard problem in polynomial time.

It has been often pointed out that this asymptot ic approach, which uses not ions such
as "po lynomia l t ime" and "sufficiently large," is too coarse for practical security recom-
mendat ions . Knowing that no po lynomia l - t ime adversary has a better than exponent ia l ly
small chance of forgery for a sufficiently large security parameter does not provide one
with an answer to the practical problem of f inding the appropriate security parameters
to ensure security against adversaries with certain concrete capabilit ies.

* This material is based upon work supported in part under a National Science Foundation Graduate Fel-
lowship. A preliminary extended abstract of this work appears in [MR]. A version with more complete proofs
is available from http://theory.lcs.mit.edu/~reyzin.

2 s. Micali and L. Reyzin

Bellare and Rogaway [BR2] argue that, in order to be able to deduce concrete security
recommendations, it is important to be precise in the reduction from a forger to the
algorithm that solves the hard problem. For example, if one knows that factoring integers
of length l is no more than 100 times harder than breaking a certain signature scheme
with security parameter l, then one could pick l so that even 1% of the work required to
factor integers of length l is considered infeasible.

A reduction in which the difficulty of forging and the difficulty of solving the un-
derlying hard problem are close is called tight; otherwise, it is called loose. (Naturally,
"close," "tight," and "loose" are imprecise terms and make more sense when used in
the comparative.) A scheme whose exact security is tightly related to the difficulty of
factoring is also proposed in [BR2].

1.2. Loose Security of Fiat-Shamir-Like Signature Schemes

A fruitful method for constructing signature schemes was introduced by Fiat and Shamir
[FS]. Although claimed for a specific ID scheme, the method works with a general
commit-challenge-respond ID scheme. The method consists of replacing the verifier's
random challenge by a publicly known "random" function H computed on the prover's
commitment and the message being signed. This removes interaction and adds the mes-
sage into the picture, thus changing an ID scheme into a signature scheme.

Many of such signature schemes have been proven secure when the "random" function
is modeled as a random oracle ([BR1] provides a formal treatment of this model).
However, the reductions in these proofs are quite loose, thus necessitating larger key
sizes. Unless a tighter reduction has been overlooked, the only way to improve the
security of such signature schemes is to modify them to allow for tighter reductions.

t.3. Tightening the Security of Fiat-Shamir-Like Schemes

This paper's main contribution is a modification to the factoring-based Fiat-Shamir-
like schemes that makes their security very tightly related to the problem of integer
factorization. Our modification is quite general and can be applied, in particular, to the
schemes from [FS], [FFS], [OO1], [MS], lOS], [Ok], [Mi], [Sh], and [Sc2].

To exemplify our method and make the description concrete, we picked one of the
simpler and more efficient schemes from the above list, the one in [Mi]. We henceforth
call it "MSA" (for "Micali's signature algorithm"). We first present an exact analysis of
the loose security of MSA, then propose the modification (called the "swap method")
and present an exact analysis of the tight security of the modified scheme (called "MSA-
swap"). Both MSA and MSA-swap are quite practical, with the performance comparable
with that of the schemes currently used in practice.

1.4. When to Use Tight Security?

As Bellare and Rogaway explain in [BR2] using the schemes Full-Domain-Hash-RSA
and PSS as examples, tighter exact security results in smaller security parameters and,
hence, higher efficiency. Because Full-Domain-Hash-RSA and PSS have about the same
running time for a given security parameter, PSS, with its tighter security, is better that
Full-Domain-Hash-RSA.

Improving the Exact Security of Digital Signature Schemes

Since then, folklore has often regarded schemes with tight security as superior to those
with loose security, misunderstanding the examples in [BR2]. Indeed, an obvious (but
often forgotten) observation is that

a more efficient scheme with loose security may be better than a less efficient
one with tight security,

because the efficiency of the loosely secure scheme can compensate for the higher
security parameter.

To demonstrate this with a quantitative example, in Section 5 we analyze MSA against
MSA-swap and PRab (a variant of PSS, also from [BR2], based on squaring rather than
RSA). We find that the loosely secure but more efficient MSA sometimes delivers more
security for less cost than tightly secure schemes MSA-swap and PRab.

To our knowledge, despite the fact that our analysis is quite straightforward, no one
has carried it out before (the paper [BR2] compares Full-Domain-Hash RSA and PSS,
but the analysis is simpler because the two schemes have the same efficiency). The fact
that a Fiat-Shamir-like scheme may be preferable to Rabin-based PRab for both security
and efficiency reasons has not been pointed out before, either.

Our technique can be used to choose from among several signature schemes for a
particular application. In particular, it can help one decide whether to use a Fiat-Shamir-
like scheme directly or to apply our modification.

2. Definitions

Notation. We denote by A ? a (probabilistic) oracle-calling algorithm; A ~ denotes the
same algorithm making calls to the specific oracle O, where O : {0, 1}* --~ {0, 1}.
Because oracles returning more than one bit per question, as well as multiple oracles, can
all be easily simulated by a single oracle returning one bit per question, we slightly abuse
this notation and speak of, for example, A 7,? and A a,n, for some G : {0, 1}* ~ {0, 1} k
and H : {0, 1 }* ~ {0, 1 }t. Additionally, in some cases we need to allow one probabilistic
oracle algorithm A ? access to another probabilistic oracle algorithm B e with the oracle
O; we denote it by A B~ Note that because B e is probabilistic, it is not, strictly speaking,
an oracle; rather, this notation implies that, for each query, B ~ gives a single answer
selected, with the appropriate probability, from the set of all possible answers. When
convenient and clear, we omit the superscript when speaking about A ? or A ~

We denote by x +-- A the fact that the probabilistic algorithm A output x.

Signature schemes. Our definition of a signature scheme follows the one found in
[GMR] and refined in [BR1] to allow for random oracles. As is common, we decouple
the notions of a signature scheme and of its security.

Definition 1. A signature scheme with an oracle is a triple of probabilistic oracle
algorithms I7 ----- (Gen ?, Sign ?, Ver?). Gen is a key generation algorithm that, given the
security parameter k, outputs a key pair (pk, sk). I Commonly, pk is called apublic key and

t Usually, we are interested in the running time of Gen as a function of k rather than log k. Therefore,
technically, we need to think of Gen as being given k in unary notation. This is denoted by 1 k.

4 S. Micali and L. Reyzin

sk a secret key (sk is sometimes also called a private key). Sign is a signing algorithm:
given a message M and a secret key sk it returns a signature x. Ver is a verification
algorithm: given a public key pk, a message M, and a purported signature x, it outputs
"accept" or "reject."

A signature x on a message M is called valid with respect to a public key pk and
an oracle H if Ver H (pk, M, x) ="accept." The only required relationship between the
three algorithms is that the algorithm Sign output valid signatures: that is, for any oracle
H and message M, if (pk, sk) +-- GenH(1 k) and x +-- SignH(sk, M), then x is a valid
signature on M with respect to pk and H.

Signature schemes with more than one security parameter can be defined similarly.
Note that in the above definition, we do not specify what the oracle H is or what it

means for a signature scheme to be secure. This is discussed below. Our definition of
security is a modified version of that in [BR2], which is based on [BR1] and [GMR].
This definition concerns itself with exact, rather than asymptotic, security.

Intuitively, we want to capture the following in our definition of security: there is no
algorithm (called "forger") that, for a random oracle H, is able to produce new valid
signatures with reasonable probability in reasonable time without knowing sk. Moreover,
we should assume that an attacker can coerce the signer into signing some number of
messages of the attacker's choice-- to carry out the so-called "adaptive chosen-message
attack" [GMR]. We model this by giving the forger oracle access to the oracle H and to
the algorithm Sign 14 (sk, .).

Definition 2. A forger F ?'? is a probabilistic two-oracle algorithm that is given a
security parameter k and a public key pk as input. The first oracle of F is called a
hashing oracle and the second oracle is called a signature oracle. Let H be a hashing
oracle, and let (pk, sk) = Genn(1 k) for some k. We say that the forger succeeds if
(M, x) 4-- F n.signn(sk,) (1 ~, pk) and x is a valid signature on M with respect to pk and
H, and F did not query its signature oracle on M.

We say that a forger (t, qsig, qhash, e, ~)-breaks the signature scheme if, for a security
parameter k, the following hold:

�9 its running time (plus the size of its description) does not exceed t (k),
�9 the number of its queries to the signature oracle does not exceed qsig(k),
�9 the number of its queries to the hashing oracle does not exceed qha~h(k),
�9 with probability at least 8 (k), Genn (1 k) generates such a key (pk, sk) that the prob-

ability of the forger's success on input (1 k, pk) is at least e(k) (here, the probability
o f the forger's success is taken over a random choice of the oracle H, the random
tape of the forger, the random tape of the signer to whom the forger addresses the
chosen-message queries, but not the choice of pk).

Finally, we say that a signature scheme is (t, qsig, qhash, e, 8)-secure if no forger (t, qsig,
qha~h, e, 8)-breaks it.

(As an aside for the reader familiar with the definition of [BR2], we point out that if a
scheme is (t, qsig, q~sh, e3)-secure in the sense of the [BR2], then it is (t, qsig, qhash, e, 8)-
secure in the sense of the above definition. We simply separate the component of the

Improving the Exact Security of Digital Signature Schemes

probability that is due to the selection of the public key. This separation allows us to
correct some minor errors in the security analysis present in the prior literature. See the
proof of Theorem 1 for details.)

Measur ing signature scheme security. Now that we have defined what it means for a
signature scheme to be secure, how do we actually prove anything about security? To
do so, we relate the security of a signature scheme to the difficulty of some problem; in
our case, the difficulty of factoring.

Definition 3. Let Gen(1 t) be an algorithm generating/-bit products of two primes.
We say that an algorithm A (t, e, ~)-factors integers generated by Gen if, for a given
parameter l,

�9 A's running time (plus the size of its description) does not exceed t (l) ,
�9 with probability at least 3(I), Gen(1 t) generates such an integer n that A has at

least e (l) probability (taken over only the random choices of the algorithm, not the
choice of n) of producing the correct factors of n on input n.

We say that factoring integers generated by Gen is (t, e, 6)-secure if no such A exists.

Given this definition of the difficulty of a problem, we can then explain the security
of a signature scheme H in the following terms, as suggested in [BR2]: if some problem
is (t', e', 3')-secure, then the H scheme is (t, qsig, qhash, e, 6)-secure. If t is not much
smaller than t ' and e and 3 are not much larger than e' and 3', even for a reasonably large
qsig and qhash, then the reduction proving the security is called tight.

3. Micali's Signature Algorithm (MSA)

3.1. Signature and Verification Algor i thms

We describe the following ID and signature scheme from [Mi], with similarities to the
Ong-Schnorr [OS] and the Guillou-Quisquater [GQ] schemes.

N u m b e r theory. Let k and l be two security parameters. Let Pl = 3 (mod8) and
P2 = 7 (rood 8) be two primes of approximately equal size and let n = p t P2 be an/-bi t
integer (such an n is called a Williams integer [Wi]). To simplify further computations,
we assume not only that n > 2 l - l , but also that [Z~*[= n - Pl - P2 + 1 > 2 l - l , and
that Pl + P2 - 1 < 2 t/2+l . Let Q denote the set of nonzero quadratic residues modulo
n. Note that [QI > 21-3. Note also that for x ~ Q, exactly one of its four square roots
is also in Q (this follows from the fact that - I is a nonsquare modulo pl and Pz and
the Chinese remainder theorem). Thus, squaring is a permutation over Q. From now on,
when we speak of "the square root of x," we mean the single square root in Q; by x z-k
we denote the single y ~ Q such that x = y 2k . Also note that 2 is a nonsquare modulo Pt
and a square modulo P2 (because (2 /p) = (-1)(P"-I)/8), so 1 ~ Q and - 1 , 2, - 2 r Q.
In general, for any x ~ Z*, exactly one of x, - x , 2x, - 2 x is in Q.

Following [GMR], define Fo(x) = x 2 rood n, Ft (x) = 4x 2 mod n, and, for an m-bit
binary string cr = bl " " bin, define F~ : Q ~ Q as F~ (x) = Fb, (. . . (Fb: (Fb~ (x))) . . .)

6 s. Micali and L. Reyzin

= x2"4 cr mod n (note that 4 ~ is a slight abuse of notation, because ~r is a binary string,
rather than an integer; what is really meant here is 4 raised to the power of the integer
represented in binary by ~r). Because squaring is a permutation over Q and 4 ~ Q, Fo
is a permutation over Q.

Note that F~ (x) can be efficiently computed by anybody who knows n. Also, if one
knows Pl and P2, one can efficiently compute x = Fd-l(y) (as shown by Goldreich in

[Gol]) by computing s = 1/4 2-)'~ mod n and then letting x = y2-~~ mod n (these
calculations can be done modulo Pl and p2 separately, and the results combined using
the Chinese remainder theorem). However, if one does not know pl and P2, then FZ l is
hard to compute, as shown in the lemma below.

L e m m a 1. I f one can compute, f o r a given y ~ Q and two different strings cr and ~ o f
equal length, xl = F~ -1 (y) and x2 = F r 1 (y) , then one can fac to r n.

Proofi The proof is by induction on the length of the strings a and r.
I f Icrl = Irl = 1, then assume, without loss of generality, that cr = 0 and r = 1. Then

Fo(xl) ----- FI (x2) --= y mod n, i.e., x~ ---- 4x 2 mod n, i.e., nl(xi - 2x2)(xl + 2x2). Note
that Xl, x2 ~ Q and 4-2 r Q, so 4-2x2 ~ Q, so xl ~ 4-2x2 (mod n), so n does not divide
either Xl - 2x2 or Xl + 2x2. Thus, by computing the gcd o fx l + 2x2 and n, we can get
either pl or p2.

For the inductive case, let a and z be two strings of length m + 1. Let a ' and r '
be their m-bit prefixes, respectively. If F~,(xl) = F,,(x2) (modn), we are done by the
inductive hypothesis. Otherwise, the last bit of a must be different from the last bit of
r , so, without loss of generality, assume the last bit of ~r is 0 and the last bit of r is 1.
Then F0 (F~, (xl)) = F1 (F,, (x2)) (mod n), and the same proof as for the base case works
here. D

The ID scheme. The above lemma naturally suggests the following ID scheme. A user
has n as the public key and Pl, /)2 as the secret key. To prove his identity (i.e., that he
knows pt and P2) to a verifier, he commits to random X ~ Q and sends it to the verifier.
The verifier produces a random k-bit challenge cr and sends it to the prover (the user).
The prover responds with z = F ~ t (X) (note that ~r here is prefixed with a single 0 bit,
whose use will be explained shortly). The verifier checks that X = F0, (z) = F , (z 2)
and that z ~ 0 (rood n). Informally, the security of this protocol is based on the fact that
if the prover is able to respond to two different challenges cr and r, then, by Lemma 1,
he knows pl and P2. The 0 bit in front of ~r is to save the verifier from having to check
that the prover's response is in Q (which is a hard problem in itself)--instead, she just
squares the prover's response and thus puts it in Q.

We say no more about the security of this ID scheme because we are not concerned with
it in this paper. We, however, point out an efficiency improvement for the prover. First,
as part of key generation, the prover computes, using the Chinese remainder theorem,
s = 1/4 2-k-~ mod n. Then, when committing to a random X ~ Q, the prover randomly
selects an x ~ Z~ and sets X = x 2~+' mod n (note that X gets selected with uniform
distribution as long as x is selected thus). Now, to respond to a challenge (r, the prover
simply computes z = xs ~ mod n.

Improving the Exact Security of Digital Signature Schemes

MSA. The standard way to change the above ID scheme into a signature scheme is to
replace the verifier with a random function H : {0, 1 }* --+ {0, 1}k. The exact steps of the
algorithms Gen, Sign, and Ver follow.

Key Generation

1. Generate two random primes Pl - - 3 (mod8) and P2 -- 7 (mod 8) and n : PlP2
so that n < 2 l, n - Pl - - P2 -t- 1 > 2 t + 1 and Pl + P2 - - 1 < 2 / / 2 + 1 .

2. Generate coefficient c = p2 -1 mod Pl for use in the Chinese remainder theorem.
3. Compute ui = ((Pi -t- 1)/4) k+~ m o d (p i - 1) /2 for i = 1, 2 (note that ui is such

that raising a square to the power ui modulo Pi will compute its 2 k+l root).
4. Compute S i = ((Pi "}- 1)/4) u' mod Pi for i = 1, 2 (this computes 1/42-ck+t~ rood

pi).
5. Compute v = (sl - s2)c mod pl and s = s2 + vpz to get s = 1/4 z-ck§ mod n.
6. Output n as the public key and (n, s) as the secret key (to make signing more

efficient, P l , P2, s l , s2 and c should be added to the secret key, in which case s is
not needed and the previous step can be omitted).

Signing

1. Generate X by picking a random x ~ Z,~ and computing X = x 2k+~ m o d n (note
that this step can be done off-line, before the message is known).

2. Compute ~r = H (X , M) , z = F ~ I (X) via t = s a m o d n (this can be done
via ti = s 7 mod Pi for i = 1, 2, v = (tl - t2)c rood Pl , t = t2 + vp2), and
z = x t mod n.

3. Output (z, or).

Verifying

1. Verify that z ~ 0 (modn) and compute X = F~(z 2) via tl = z 2k§ mod n, and
t2 = 2 ~ mod n, and X = tit2 m o d n .

2. Verify ifcr = H (X , M).

3.2. Security o f MSA

T h e o r e m 1. I f there exists a forger that (t, qsig, qhash, e, 3)-breaks MSA with security
parameters l and k, such that e > 2-k+l(qhash + 1) + y, then there exists an algorithm
that (t', e', 3)-factors integers generated by Gen for

t' = (2qha~h + 3)(t + qsigTl) +T2 ,
e F 2-k+l(qhash + 1)

e' = -1 1 - - > 0 . 1 9 9 ,
2

where T1 is the time required to perform an MSA signature verification, Tz is the time
required to factor n given the conditions o f Lemma 1 (essentially, a gcd computation),
and y = 2-l+3qsig(qhash H- 1) (no t e that y is close to O for a large enough l).

8 s. Micali and L. Reyzin

Proof. Let F be a forger that (t, qsig, qhash, 6, 3)-breaks MSA. We will construct a
factoring algorithm A that uses F to produce y, z ~ Z* and cr :/: r E {0, 1}k such that
Fa (Z 2) = Fr (y2). This will allow A to factor n by using the method given in the proof
of Lemma 1.

The main idea of this proof is given by the "forking lemma" of [PSI]. It is to allow
F to run once to produce one forgery- -a signature (z, ~r) on a message M such that
cr = H (X , M) where X = F~(z2). Note that F had to ask a hashing-oracle query on
(X, M)--o therwise its probability of success is at most 2 -k. Then run F the second time,
giving the same answers to all the oracle queries before the query (X, M). For (X, M)
give a new answer r. Then, if F again forges a signature (y, r) using X and M, we will
have achieved our goal.

Assuming n is such that F has probability at least e of success, the probability that A
will factor n using this approach is roughly 82/qhash, because F needs to succeed twice
and we have no guarantee that F will choose to use (X, M) for its second forgery and
not any of its other qhash oracle queries.

To increase the probability of success to a constant, we iterate A sufficiently many
times, as suggested in [0 0 2] and [PS2]. More specifically, A wilI run F about 1/e times
the first time, to achieve a constant probability of a successful forgery, and about 2qhash/e
times the second time, to achieve a constant probability of a successful forgery that uses
the pair (X, M).

We do not provide the details of our construction or the probability analysis, because
they are quite similar to those of [0 0 2] and [PS2]. We wish to point out one crucial
difference, however: both [002] and [PS2] assume, in their probability analyses, that
the 1/e first runs of F are entirely independent. This is incorrect, because the public key
input to F is always the same. Indeed, if F is such that it never succeeds on a certain
public key, then running it repeatedly will not increase the success probability. Therefore,
it is necessary to separate the component of the probability that is due to the selection
of the public key, as we do in our definition of security. []

Corollary 1.
MSA is (t, qsig, qhash, e, 8)-secure for

l f factoring l-bit integers generated by Gen is (t', O. 199, 8)-secure, then

as long as

(t ' - T2)e
t = -- qsigTl

4qhash + 6

e >_ 2 (2-k+l(qhash + 1) + 2-t+3qsig(qhash + 1)).

Proof. Solving for t the equation for t ' of Theorem 1, we obtain

(t' - Tz)(e - y -- 2-k+l(qh~sh + 1))
t = -- qsigTl.

2qh~sh + 3

The condition on e ensures that e - y - 2-k+l(qhash + 1) > e/2. Observe that we are
allowed to decrease t, as this will only weaken the result, so we are allowed to replace

- Y - 2 -k+l (qhash + 1) by ~/2.

Improving the Exact Security of Digital Signature Schemes 9

Note also that Theorem 1 requires that e > 2 -k+l (qhash + 1) + y, which is also assured
here by the conditions on e. []

4. The Swap Method

4.1. Motivation

As exemplified by the proof of Theorem 1 above, all known results for the security of
Fiat-Shamir-like signature schemes involve losing a factor of qhash (in either time or
success probability) in the reduction from a forger to an algorithm that breaks the un-
derlying hard problem (see, for example, [FS], [Sc2], [PS1], [Sh], [002] , and [PS2]).
While no proof exists that the loss of this factor is necessary, the problem seems in-
herent in the way signature schemes are constructed from ID schemes, as explained
below.

The security of an ID scheme usually relies on the fact that a prover would be unable to
answer two different challenges for the same commitment without knowing the private
key. Therefore, in the proof of security of the corresponding signature scheme, we need
to use the forger to get two signatures on the same commitment, as we did in the proof of
Theorem 1. The forger, however, has any of its qhash queries to pick for the commitment
for the second signature hence, our loss of the factor of qh~h. We want to point out that
qhash is a significant factor, and its loss definitely makes a reduction quite loose. This
is because a reasonable bound on the number of possible hash queries of committed
adversaries is about qhash = 280 (see Section 4.4).

We therefore devise a new method of constructing signature schemes from ID
schemes so that any one signature from the forger is enough to break the underlying
hard problem.

4.2. Method

Recall that in Fiat-Shamir-like signature schemes, the signer comes up with the com-
mitment and then uses H applied to the commitment and the message to produce the
challenge. We propose that instead the signer first come up with the challenge and then
use H applied to the challenge and the message to produce the commitment. In a way,
we swap the challenge and the commitment.

This method applies whenever the signer can compute the response given only the
challenge and the commitment. It does not apply when information used during the
generation of the commitment is necessary to compute the response. For example, it
does not apply to discrete-logarithm-based ID schemes (such as the Schnorr scheme
[Scl]) in which the prover needs to know the discrete logarithm of the commitment in
order to provide the response.

Additionally, in order to use this method, one needs to get around the problem that the
commitment is selected from some structured set (such as Q in the case of MSA), while
H returns a random binary string. This problem can usually be easily solved. The only
case known to us when it seems to present a real obstacle is in the scheme of Ohta and
Okamoto [002] in the case when an exponent L is used such that gcd(L, (Pt - 1) (Pz - 1))
> 2 .

10 S. Micali and L. Reyzin

The key-generation algorithm and the private key may need to be modified slightly
in order to provide the signer with the additional information needed to compute the
response from a random commitment, rather than from a commitment that it generated.
The verification algorithm remains vastly unchanged.

In the next section we exemplify our proposed method and explain why it results in a
tighter security reduction.

4.3. M S A - s w a p

4.3.1. D e s c r i p t i o n

The scheme depends on two security parameters: k and l. Let H : {0, 1}* ~ {0, 1} l-1
be a random function.

Key Genera t ion. The key generation is the same as in MSA, except for one additional
step (step 6) and extra information in the private key:

1. Generate two random primes pl ------ 3 (mod 8) and P2 ~ 7 (mod 8) and n ~- P I P 2

so that n < 2/, n - Pl - P2 + 1 > 2 l + 1, and Pl + P2 - 1 < 2//2+1 .
2. Generate coefficient c = p2 -1 mod Pl for use in the Chinese remainder theorem.
3. Compute ui = ((P i + 1)/4) k+l mod(pi - 1)/2 for i = 1, 2 (note that ui is such

that raising a square to the power ui modulo Pi will compute its 2 k+l root).
4. Compute si = ((Pi + 1)/4)"' rood Pi for i = 1, 2 (this computes 1 / 4 2-ck+~ m o d

P i) .
5. Compute v = (sl - s2)c mod Pl and s = s2 + vp2 to get s = 1/4 2-~k+~) m o d n .
6. I f ui is odd, make it even by setting ui = ui + (p i - 1)/2 for i = 1, 2 (note that

now ui is such that raising a square or its negative to the power ui modulo Pi will
compute its 2 k+l root).

7. Output n as the public key and (n, s, ul, u2, Pl, P2, c) as the secret key.

Signing

1. Generate a random cr and compute t = s a mod n (note that this step can be done
off-line, before the message is known).

2. Compute X = H (or, M). If X r Z~*, then try another ~r (the probability of that is at
most 2-t/2+2). If the Jacobi symbol (X / n) = - 1, set X = 2X m o d n . Now either
X or n - X is in Q. Compute z = F o a - l (4 - X) v i a x / = Xu' rood Pi for i = I, 2,
v = (x l - x2)c mod Pt, x = x2 + vp2, and z = x t mod n.

3. Output (z, a) .

Verifying

1. Verify that z ~ 0 (modn) and compute X = F a (z 2) via tl - : Z 2~+1 mod n, t2 =

2" mod n, and X = &t2 mod n (this step is the same as for MSA).
2. Let X ' = H(tr, M). If X - 4-X' (modn) or X =-- : t :2X ' (modn), accept the

signature (this step differs slightly from MSA).

Improving the Exact Security of Digital Signature Schemes 11

4.3.2. Security of MSA-Swap

Proposi t ion 1. If there exists a forger that (t, qsig, qlaash, e, 3)-breaks MSA-swap with
secui'ity parameters l and k, then there exists an algorithm that (t', e', 3)-factors integers
generated by Gen for

t ' = t + 2(qsig + qhash + 1)7"1 + T2,
6 t = ~ - - : y ,

where T1 is the time required to perform an MSA-swap signature verification, T2 is the
time required to factor n given the conditions of Lemma 1 (essentially, agcd computa-
tion), and y = 2-kqsig(qhash + 1) + 2-1/2+/(qhash + qsig "~- 1) (note that t' is close to 0
for large enough k and I).

Proof.

Main idea. Let F be a forger that (t, qsig, quash, e, 3)-breaks MSA-swap. Similarly to
the proof of Theorem I, we will construct an algorithm that, after interacting with F,
will produce y, z 6 Z* and ~r r z ~ {0, 1} k such that Fo(z 2) = Fr(y2).

The main idea is to answer each hash query on (~r, M) with an X computed via
X = F~ (yZ) for a random y ~ Z* and arbitrary v that is different from G. Then if
F forges a signature (z, ~r) on M, we will have Fo(z z) = F~(y 2) and will be able to
factor n.

Details. We assume that F performs the necessary bookkeeping and does not ask the
same hash query twice. 2 Note that F may ask the same signature query twice, because
the answers will most likely be different. We also modify F so that it will not output a
signature (z, ~r) on a message M unless it knows that the signature is correct; in particular,
that means that F first has to ask, in a hash query, for the value of H (or, M). This may
increase the number of hash queries by one and the running time of F by the cost of one
signature verification.

A maintains two tables, for signature query answers and for hash query answers. To an-
swer the j t h signature query on a message Mj, A picks a random rj ~ {0, l }k and checks
its signature query table to see if a signature query on Mj has already been asked and if
rj was used in answering it. If so, it returns the answer from the table. If not, it picks a

I t t 2 p random yj ~ Q and a random/zj ~ {1, - 1 , 2, -2} , computes Xj = F~(yj)/lzj mod n,
t 21-1. / r and checks if Xj < If not, it restarts with new random yj and/~j. The expected

number of trials is less than two, because Xj is a random element in Z,~ (because F~ (y~)

is a random element in Q and/x} is also random) and I Z*l < n < 2 t. Once Xj satisfies
the desired condition, a outputs (y~, rj) as the signature and records (j , y~, rj , Xj, Mj)
in its signature query table.

To answer the ith hash query on (Gi, Mi), A first checks if an entry (j , y~, rj , Xj, M~)
such that ~ri = rj and Mi = Mj already exists in its signature table. If so, it returns Xj.

2 This may slightly increase the running time of F, but we ignore costs of simple table look-up for the
purposes of this analysis.

12 S. Micali and L. Reyzin

Otherwise, it picks ri # ai, computes Yi, lzi, and X i in the same way as when answering
a signature query, outputs Xi, and adds (i, Yi, ri, cri, m i) to its hash query table.

Assume F outputs a forgery (z, a) on a message M. A then computes X = F~(z 2)
and searches its hash query table for such an i that ai = cr and Mi = M. (Such an
i has to exist, because we modified F to verify the validity of its forgery, so F had
to ask a hash query on (a, M). Note that there would be no entry in the hash query
table if the value of H(a , M) was first obtained by a signature query; however, this is
impossible, because F is prohibited from outputting a forgery on a message for which
it asked a signature query.) Then Fa(z 2) = X =] , s = F~i(y2i), and cr # ri because
of the way r~ was picked, so A can easily factor n by the method given in the proof of
Lemma i.

Probability analysis. For this analysis, we assume that n is such that F has probability
at least e of success. By assumption, such an n is generated with probability at least 3.

We need to compare the distribution o f A 's answers to F ' s queries to the distribution
of answers given by the true oracles. The distributions differ as follows: if, for some
signature query j , the hash value of r~, Mj has already been defined through a previous
hash query, then A will fail, whereas the true oracles would not. The probability of
this event for a given signature query is at most (qhash + 1)2 -k, because rj is picked at

random from {0, 1]k. Thus, the probability of F ' s success is reduced as a result of this by
at most qsig(qhash + 1)2 -k. Additionally, X in the answers to hash and signature queries
is distributed uniformly over Z* (3 {0, 1} t-1 , thus excluding the multiples of Pl and P2
that a real hash function could possibly hit. Since there are at most Pl + p2 - 1 < 2 t/z+l
such multiples in Z, , this will reduce the forger's probability of success by at most
(2//2+1) / (2 l - I) = 2-/ /2+2 per query.

So the probability of successfully factoring n is

6' > e -- qsig(qhash q- 1)2 -k - (qhash %" qsig Jr" 1)2 -/ /2+2. []

Theorem 2. I f there exists a forger that (t, qsig, qhash, 8, 3)-breaks MSA-swap with se-
curity parameters l and k, such that e > F, then there exists an algorithm that (/ , e', 3)-
factors integers generated by Gen fo r

t + 2(qsig --{- qhash -1- 1)TI
t t _~_

e - - y

e = 1 - >0 .632 ,

+T2,

where T1, T2, and F are as in Propositionl.

Proof. Let

0~=8-- F.

By assumption, a > 0. So if we repeat the algorithm constructed in the proof of Propo-
sition 1 Theorem 1 up to 1/or times (except for the final gcd computation, which need
only be done once), we get the desired e', similarly to the proof of Theorem 1. []

Improving the Exact Security of Digital Signature Schemes 13

Similarly to MSA, we have the following immediate corrollary.

Corollary 2. I f factoring I-bit integers generated by Gen is (t ' , 0.632, 3)-secure, then
MSA-swap is (t, qsig, qhash, e, 8)-secure for

as long as

(t' -- T2)e

2
- 2(qsig -k- qhash + 1)TI

e > 2 (2-1/2+2(qhash -I- qsig -1" 1) + 2-kqsig(qhasta q- 1)).

Proof. The condition on e ensures that e - F > e/2. The rest follows, similarly to the
proof of Corollary 1, from solving the equations of Proposition 1 for t and e. []

4.4. Parameter Choice

It is immediately clear from the formulas in Corollaries 1 and 2 that MSA-swap loses no
factor ofqh~h, neither in time nor in probability. This is a big advantage for MSA-swap
because qhash can be quite big.

A fuller comparison, provided in the next section, depends on the actual values of the
parameters qsig, qhash, k, and l. We deal here, however, with the preliminary problem of
assigning reasonable values to these parameters.

We believe it reasonable to set qsig = 230 and qh~h = 280 -- 1. This is so because
signature queries have to be answered by the honest signer (who may not be willing or
able to sign more than a billion messages), while hash queries can be computed by the
adversary alone (who may be willing to invest extraordinary resources). Notice that we
recommend a higher value for qha~h than suggested in [BR2].

We recommend setting k = 100 for MSA, and k = 130 for MSA-swap. For MSA,
this is so because, from Corollary 2, we see that 2-k (qhash + 1) has to be small (the value
of 2 -k (qh~sh + 1) is essentially the success probability of the simple attack that relies on
correctly guessing one hash value among qh~sh + 1 hash queries). Therefore, we need
2 -k+8~ to be small, and by setting k = 100 we make it less than 10 -6. For MSA-swap,
this is so because 2-~q~ig(qhash + 1) has to be small, as seen in Corollary 2.

As for l, notice that both MSA and MSA-swap are immediately broken if the adversary
succeeds in factoring the/-bit modulus. Therefore, l ought to be at least 1000. Given the
above choices for the other parameters, such a minimum value for I is large enough to
make all the constraints involving I in Corollaries 1 and 2 satisfied (for any reasonable
e in the case of Corollary 2). Thus, the value of I depends on the presumed security of
factoring, as discussed in the next section.

5. Comparing Signature Schemes

Having developed the swap method and demonstrated that it tightens the security of
Fiat-Shamir-like signature schemes, we wish to determine precisely when the method
should be used. It would be tempting to say "whenever tight security is desired" but this
answer is meaningless. We submit that meaningful comparisons of signature schemes

14 S. Micali and L. Reyzin

should take both security and efficiency into account, and that consideration of either
factor alone is insufficient.

We also use our methods to compare MSA with PRab from [BR2] and find, perhaps
surprisingly, that the former may sometimes provide more security for less cost.

5.1. The Costs of Security

The desired level of security is usually dictated by the specific application. It is af-
ter settling on the desired amount of security that choosing among the various secure
schemes becomes crucial. Indeed, when choosing a signature scheme, the goal is to
maintain the desired level of security at the lowest possible cost. In a sense, picking
a signature scheme is similar to shopping for an insurance policy for the desired face
value.

The costs of a signature scheme, however, are quite varied. They may include the sizes
of keys and signatures, the efficiencies of generating keys, signing and verifying, the
amounts of code required, and even "external" considerations--such as the availability
of inexpensive implementations or off-the-shelf hardware components. In this paper
we focus on the efficiencies of signing and verifying. These are particularly important
when signing or verifying is performed by a low-power device, such as a smart card,
or when signing or verifying needs to be performed in bulk quantities, as on a secure
server.

It is for these costs, then, that below we compare MSA and MSA-swap. We also
provide a comparison of MSA with the PRab scheme from [BR2], arguably the most
practical among those tightly related to factoring. (The reason for choosing PRab rather
than its PSS variant is that the latter is tightly related to RSA, and thus potentially less
secure than factoring.)

5.2. Comparison of MSA and MSA-Swap

The efficiency of signature verification in MSA is about the same as in MSA-swap. The
security of MSA-swap is generally higher than the security of MSA for the same security
parameters. Therefore, if the efficiency of verifying is the only significant component in
the cost, MSA-swap will be able to provide the same amount of security for less cost
than MSA.

A more difficult case to analyze is the case when the efficiency of signing is of main
concern. We limit our analysis to the case when we are only concerned with the on-line
part of signing. In both cases, this involves mainly a modular exponentiation. Therefore,
a variety of sophisticated algebraic methods can be used here, but these methods apply
equally to MSA and MSA-swap. We thus find it simpler to compare the two under
"standard" implementations using the Chinese remainder theorem (CRT). MSA then
involves two exponentiations of a fixed//2-bit base to a k-bit power, modulo two//2-bi t
primes. One modular multiplication of two//2-bi t numbers takes about 12/4 steps; about
3k such multiplications are required (1.5k for each of the primes), so the total amount of
time required for on-line signing in MSA is about 3kl2/4. Similar analysis applies for
MSA-swap, except that about 1.5l multiplications (1.5l/2 for each of the two primes)
are required, so the total amount of time required for on-line signing in MSA-swap is
about 3l 3/8, not counting the (relatively small) cost of computing the Jacohi symbol. (In

Improving the Exact Security of Digital Signature Schemes 15

sum, on-line signing is I/(2k) times faster for MSA than for MSA-swap if one used the
same value of l for both. 3)

We now see how the security of the two schemes compares assuming the on-line
signing costs are the same. Let lM and kM be the security parameters for MSA, and let
/MS and kMs be the security parameters for MSA-swap. The on-line signing costs for
MSA and MSA-swap are the same if

IMS = (2kMl 2) 1/3. (1)

The best known factoring algorithms take time about

T(1) = C exp ((.~)1/3 ll/3(lnl)2/3)

for some constant C ILL]. Therefore, we assume that factoring/-bit integers generated
by Gen is (C'T(I), 0.199, 8)-secure for some 3 and some constant C ~. This means that,
for a large enough e and small enough qsig, MSA is about

((C'T(IM--2)-T2(IM'kM))e --qsigTl(lM, kM),qsig, qhash, e, ')-secure
4qhas h + 6

and MSA-swap is about

- TZ(IMs, kMS))6 (C'T(IMs) 2

X

2(qsig + qh,sh + 1)Tt (/MS, kMs), qsig, qhash, e, 3) -secure

(by Corollaries 1 and 2).
Keeping the signing costs equal, we now find out when MSA becomes more secure

than MSA-swap, that is, when

(C'T(lM) - T2(IM, kM))e
4qhash + 6 -- qsigT1 (IM, kM)

(C'T(IMs) - T2(IMs, kMS))e
> 2 - 2(qsig + qhash + 1)7"1 (/MS, kMs).

Given the discussion of Section 4.4 and (1), we now plug in qsig = 230, qhash = 280 -- 1,
kM = 100, kMS = 130, and/MS = (2kMl 2) 1/3 to the above inequality. These values allow
us to omit the terms in T1 and T2, noting that they decrease the security of MSA-swap
much more than they decrease the security of MSA. Thus, we are now interested in when

C'T(1M) C'T((20012) 1/3)
282 + 2 2

3 Moreover, an optimization available to MSA but not to MSA-swap is precomputing some powers of the
fixed base; this requires additional memory, so we assume it is not implemented for the purposes of this
analysis_

16 s. Micali and L. Reyzin

After taking the natural logarithm of both sides, we are left with the inequality

(64,,1/311/3 /1_1 ~2/3 2 , T) t M tin,M) -- ln(281 + 1) > (~)V3 (2001~),/9 (�89 ln200 + g lnlM) z/3 (2)

which holds as long as long as 1M >_ 6109.
Thus, at lM = 6109, /MS = 1954, kM = 100, kMS = 130, MSA and MSA-swap

provide about the same security and the same performance for on-line signing.
In sum. The on-line portion of the signing algorithm of MSA is so fast that

Provable security and signing efficiency are the same when MSA uses 6109-
bit moduli and MSA-swap 1954-bit moduli.

In both cases, the security is that of factoring a 1954-bit integer generated by G en. (MS A
may actually be even more secure, but we cannot prove it.)

It just so happens that this computed level of security is currently considered adequate
for many applications. (Therefore, for these applications MSA-swap is preferable: MSA-
swap has faster verification for the same level of security, as well as shorter keys and,
therefore, shorter signatures.)

However, whenever the application calls for a higher level of security, and the dominant
cost is that of signing, then it is the loosely secure MSA that becomes preferable. In fact,
inequality (2) implies that the security gap between MSA and MSA-swap, given the
same performance, increases exponentially. In essence, this is so because, in order to

2/3
guarantee the same performance, IMs is a fixed function of IM: i.e., by (1), lMs = O (l M).
Thus security for both MSA and MSA-swap is measured by inequality (2) in terms of

11/3 for lM, and the dominant factor in the exponent of the adversary's running time is "M
12/9 for MSA-swap. MSA and "M

5.3. Comparison of MSA with BeUare-Rogaway's PRab

The security of PRab is tightly related to that of modular square roots, rather than
factoring. A factor of 2 in probability is lost (compared with MSA-swap) when one
relates the security of PRab to that of factoring. PRab's performance for on-line signing is
about the same as MSA-swap's (PRab requires a few more Jacobi symbol computations,
but no separate modular multiplication).4 A vastly similar analysis leads to the following
conclusion:

Provable security and signing efficiency are the same when MSA uses 5989-
bit moduli, and PRab 1929-bit moduli.

Also here this is a "cross-over" point: the gap in security for the same performance
increases exponentially in favor of MSA. As we can see, this cross-over point is just
slightly more in favor of MSA than the cross-over point of MSA and MSA-swap. This
is because of the factor of 2 difference in the security of MSA-swap and PRab.

4 Unlike MSA-swap, however, PRab has no off-line component in signing. It also has very efficient
verification.

Improving the Exact Security of Digital Signature Schemes 17

Acknowledgments

We thank Salil Vadhan for pointing out an error in an earlier version of this work and
Mihir Bellare for discussions about the value of the parameter k for MSA.

[BR1]

[BR2]

[FFS]

[FS]

[GMR]

[Gol]

[Go2]

[GQ]

[LL]

[Ma]

[Mi]

[MR]

[MS]

[Od]

[Ok]

[OO1]

[002]

[os]

[PSI]
[PS2]

References

Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communication Security,
November 1993, pages 62-73. Revised version appears in http://www-cse.ucsd.edu/users/mihir/
papers/crypto-papers.html.
Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: how to sign
with RSA and Rabin. In [Ma], pages 399-416. Revised version appears in http://www-
cse.ucsd.edu/users/mihir/paperscrypto-papers.html.
Uriet Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77-94, 1988.
Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In [Od], pages t86-I94.
Shaft Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SlAM Journal on Computing, 17(2):281-308, April 1988.
Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In [Od],
pages 104-110.
Shaft Goldwasser, editor. Advances in Cryptology--CRYPTO "88, volume 403 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1990.
Louis Claude Guillou and Jean-Jacques Quisquater. A "paradoxical" indentity-based signature scheme
resulting from zero-knowledge. In [Go2], pages 216-231.
Arjen K. Lenstra and Hendrik W. Lenstra, editors. The Development of the Number Field Sieve,
volume 1554 of Lecture notes in Mathematics. Springer-Verlag, Berlin, 1993.
Ueli Maurer, editor. Advances in Cryptology--EUROCRYPT 96, volume 1070 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1996.
Silvio Micali. A secure and efficient digital signature algorithm. Technical Report MIT/LCS/TM-501,
Massachusetts Institute of Technology, Cambridge, MA, March 1994.
Silvio Micali and Leonid Reyzin. Improving the exact security of Fiat-Shamir signature schemes.
In R. Baumgart, editor, Secure Networking -- CQRE [Secure] '99, volume 1740 of Lecture Notes in
Computer Science, pages 167-182. Springer-Verlag, Berlin, 1999.
Silvio Micali and Adi Shamir. An improvement of the Fiat-Shamir identification and signature scheme.
In [Go2], pages 244--247.
Andrew M. Odlyzko, editor. Advances in Cryptology--CRYPTO '86, volume 263 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1987.
Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, Advances in Cryptology--CRYPTO '92, volume 740 of Lecture
Notes in Computer Science, pages 31-53. Springer-Verlag, Berlin, 1993.
Kazuo Ohta and Tatsuaki Okamoto. A modification of the Fiat-Shamir scheme. In [Go2], pages 232-
243.
Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from iden-
tification. In H. Krawczyk, editor, Advances in Cryptology--CRYPTO '98, volume 1462 of Lecture
Notes in Computer Science, pages 354-369. Springer-Verlag, Berlin, 1998.
H. Ong and Claus P. Schnorr. Fast signature generation with a Fiat-Shamir-like scheme. In I. B.
Damg~d, editor, Advances in Cryptology--EUROCRYPT 90, volume 473 of Lecture Notes in Com-
puter Science, pages 432--440. Springer-Verlag, Berlin, 1991.
David Pointcheval and Jacques Stem. Security proofs for signature schemes. In [Ma], pages 387-398.
David Pointcheval and Jacques Stem. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361-396, 2000.

18 S. Micali and L. Reyzin

[Scl] Claus E Schnorr. Efficient identification and signatures for smart cards. In J.-J. Quisquater and
J. Vandewalle, editors, Advances in Cryptology--EUROCRYPT 89, volume 434 of Lecture Notes
in Computer Science, pages 688-689. Springer-Verlag, Berlin, 1990.

[Sc2] Claus P. Schnorr. Security of 2t-root identification and signatures. In N. Koblitz, editor, Advances
in Cryptology--CRYPTO '96, volume 1109 of Lecture Notes in Computer Science, pages 143-156.
Springer-Verlag, Berlin, 1996.

[Sh] Victor Shoup. On the security of a practical identification scheme. In [Ma], pages 344-353.
[Wi] Hugh C. Williams. A modification of the RSA public-key encryption procedure. IEEE Transactions

on Information Theory, IT-26(6):726-729, November 1980.

