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Abstract. An almostk-wise independent sample space is a small subset ofm bit
sequences in which anyk bits are “almost independent”. We show that this idea has
close relationships with useful cryptologic notions such as multiple authentication codes
(multipleA-codes), almost strongly universal hash families, almostk-resilient functions,
almost correlation-immune functions, indistinguishable random variables andk-wise
decorrelation bias of block ciphers.

We use almostk-wise independent sample spaces to construct new efficient multiple
A-codes such that the number of key bits grows linearly as a function ofk (wherek is
the number of messages to be authenticated with a single key). This improves on the
construction of Atici and Stinson [2], in which the number of key bits isÄ(k2).

We introduce the concepts ofε-almostk-resilient functions and almost correlation-
immune functions, and give a construction for almostk-resilient functions that has
parameters superior tok-resilient functions. We also point out the connection between
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almostk-wise independent sample spaces and pseudorandom functions that can be
distinguished from truly random functions, by a distinguisher limited tok oracle queries,
with only a small probability. Vaudenay [32] has shown that such functions can be used
to construct block ciphers with a small decorrelation bias.

Finally, new bounds (necessary conditions) are derived for almostk-wise independent
sample spaces, multipleA-codes and balancedε-almostk-resilient functions.

Key words. Independent sample space, Resilient function, Universal hash family,
Authentication code.

1. Introduction

An almost k-wise independent sample spaceis a probability space onm-bit sequences
such that anyk bits are almost independent. Anε-biased sample spaceis a space in
which any (boolean) linear combination of them bits takes the value 1 with probability
close to 1/2. These notions were introduced by Naor and Naor [23] and further studied
in [1] due to their applications to algorithms and complexity theory. However, there
are also cryptographic applications: Krawczyk appliedε-biased sample spaces to the
construction of authentication codes [19].

In this paper we investigate several new relationships between almostk-wise indepen-
dent sample spaces and useful cryptologic notions such as multiple authentication codes
(multiple A-codes) [33], [21], [2];k-resilient and correlation-immune functions [15],
[3], [16], [29], [4], [5], [11]–[13], [17], [25]; and indistinguishable random variables and
their application tok-wise decorrelation bias of block ciphers [32]. We begin our study
with a summary of basic definitions and results on almostk-wise independent sample
spaces in Section 1.1.

In Section 2 we study multipleA-codes. In a multipleA-code,k ≥ 2 messages are
authenticated with the same key. (In “usual”A-codes, just one message is authenticated
with a given key.) Recently, Atici and Stinson [2] defined some new classes of almost
strongly universal hash families which allowed the construction of multipleA-codes.
Here, we prove that almostk-wise independent sample spaces are equivalent to multiple
A-codes. This allows us to obtain a more efficient construction of multipleA-codes from
the almostk-wise independent sample spaces of [1].

In Section 3 we present a lower bound on the size of the keyspace in a multipleA-
code. Numerical examples show that the multipleA-codes we construct are quite close
to this bound. Further, from the above equivalence, a lower bound on the size of almost
k-wise independent sample spaces is obtained for free. (While a lower bound on the size
of ε-biased sample spaces was given in [1], no lower bound was known for the size of
almostk-wise independent sample spaces.)

In Section 4 we generalize the idea of resilient functions. A functionϕ: {0,1}m →
{0,1}l is calledk-resilientif every possible outputl -tuple is equally likely to occur when
the values ofk arbitrary inputs are fixed by an opponent and the remainingm− k input
bits are chosen at random. This is a useful tool for achieving key renewal: anm-bit secret
key(x1, . . . , xm) can be renewed to a newl -bit secret keyϕ(x1, . . . , xm) about which an
opponent has no information if the opponent knows at mostk bits of (x1, . . . , xm). We
show thatk can be made larger if the definition of a resilient function is slightly relaxed.
Thus, we define anε-almostk-resilient function as a functionϕ such that every possible
output l -tuple is almost equally likely to occur when the values ofk arbitrary inputs
are fixed by an opponent. (The statistical difference between the output distribution of
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a k-resilient function and anε-almostk-resilient function is bounded above byε.) We
prove that a large set of almostk-wise independent sample spaces is equivalent to a
balancedε-almostk-resilient function, generalizing a result of [29]. (A similar result is
shown for correlation-immune functions.) From this equivalence, we are able to obtain
both efficient constructions and bounds for balancedε-almostk-resilient functions.

Finally, in Section 5, we point out the connection between almostk-wise independent
sample spaces and pseudorandom functions that can be distinguished from truly random
functions, by a distinguisher limited tok oracle queries, with only a small probability.
Vaudenay [32] has shown that such functions can be used to construct block ciphers with
a small decorrelation bias. Thus almostk-wise independent sample spaces potentially
can be used as round functions for Feistel type ciphers.

1.1. Almost k-Wise Independent Sample Spaces

In this paper asample spaceis a set of binarym-tuplesSm ⊆ {0,1}m. A sample space is
linear if it is a subspace of the vector space{0,1}m. If Sm ⊆ {0,1}m is a sample space,
we let X = x1 · · · xm be the random variable obtained by choosing eachm-tuple from
Sm with the same probability 1/|Sm|.

Definition 1.1 [1]. A sample spaceSm ⊆ {0,1}m is (ε, k)-independentif, for any k
positionsi1 < i2 < · · · < i k and anyk-bit stringα, it holds that

|Pr[xi1xi2 · · · xik = α] − 2−k| ≤ ε. (1)

A (0, k)-independent sample space is said to bek-independent.

k-Independent sample spaces are also known asperfect local randomizers. These
objects were introduced by Schnorr [26] and further studied in [22] and [24]. They are
in fact equivalent to certain combinatorial structures which we define now.

Definition 1.2. An orthogonal array O Aλ(t,m, v) is aλvt by m array onv symbols,
sayM , such that, within anyt columns ofM , everyt-tuple occurs in exactlyλ rows.

The following observation is due to Maurer and Massey [22].

Theorem 1.1. A k-independent sample space Sm ⊆ {0,1}m is equivalent to an orthog-
onal array OAλ(k,m,2), whereλ = |Sm|/2k.

It is well known thatk-independent sample spaces are “large”. For example, the
classical Rao bound for orthogonal arrays, together with Theorem 1.1, shows that|Sm| is
Ä(mk/2) if Sm ⊆ {0,1}m is k-independent. Thus several researchers have studied(ε, k)-
independent sample spaces, whereε > 0 and|Sm| is “small”. See, for example, [1],
[7] and [8]. The following efficient construction for(ε, k)-independent sample spaces is
proved by Alon et al.

Proposition 1.2[1]. There exists an(ε, k)-independent sample space Sm ⊆ {0,1}m
such that

log2|Sm| = 2(log2 log2 m− log2 ε + log2 k− 1).
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For completeness, we briefly review the main construction method for(ε, k)-
independent sample spaces. We require another definition.

Definition 1.3 [23]. A sample spaceSm ⊆ {0,1}m is ε-biasedif, for any α ∈ {0,1}m,
it holds that

|Pr[x · α = 1]− Pr[x · α = 0]| ≤ ε, (2)

where “·” denotes the inner product modulo 2.

The following result is due to Naor and Naor.

Proposition 1.3[23]. Suppose the following exist:

1. An ε-biased sample space S⊆ {0,1}n with |S| = 2m.
2. A linear k-independent sample space L⊆ {0,1}N with |L| = 2n.

Then there exists an(ε, k)-independent sample space R⊆ {0,1}N with |R| = 2m.

Appropriate ingredients required for Proposition 1.3 can be obtained as follows. Three
explicit constructions forε-biased sample spaces are presented in [1]. One of these,
the “powering construction”, yields an(n/2r )-biased sample spaceS ⊆ {0,1}n with
|S| = 22r for integersn andr . (Note: It is observed in [7] and [8] that this construction
can be viewed as an application of Reed–Solomon codes, and more efficient variations
can be obtained using algebraic geometry codes.)

The second ingredient is a lineark-independent sample spaceL ⊆ {0,1}N with
|L| = 2n. Such a sample space is a linearO A2n−k(k, N,2). The orthogonal complement
of this sample space is therefore an [N, N−n, k+1]-code, and, conversely, from a code
with these parameters we can construct the desired sample spaceL (see, for example,
[20]). It is suggested in [23] to use a sample space of this type constructed from a BCH
code. SupposeN = 2t − 1 for some integert , and supposek is odd. Then the sample
spaceL obtained by this method has|L| = 2(k+1)t/2.

If we construct our ingredients as described above, and apply Proposition 1.3, then
the resulting sample space has parameters as stated in Proposition 1.2.

2. Multiple A-Codes and ASU-k Hash Families

In this section we prove that almostk-wise independent sample spaces are equivalent to
multiple authentication codes (more precisely, almost strongly universal-k hash families,
as defined in [2]). This allows us to obtain more efficient multipleA-codes than were
previously known.

First, we briefly review basic concepts of (multiple) authentication codes. In the usual
Simmons model of authentication codes (A-codes) [27], [28] there are three participants,
a transmitter, areceiverand anopponent. In an A-code without secrecy, the transmitter
sends amessage(s,a) to the receiver, wheres is asource state(plaintext) anda is an
authenticator. The authenticator is computed asa = e(s), wheree is a secretkeyshared
between the transmitter and the receiver. The keye is chosen according to a specified
probability distribution.



Almostk-Wise Independent Sample Spaces and Their Cryptologic Applications 235

In amultiple A-code we suppose that an opponent observesi ≥ 2 messages which are
sent using the same key. Then the opponent places a new bogus message(s′,a′) into the
channel, wheres′ is distinct from thei source states already sent. This attack is called
a spoofing attack of order i. Pdi denotes the success probability of a spoofing attack of
orderi , see [21].

Almost strongly universal hash families are a very useful way of constructing practical
A-codes. This idea was introduced by Wegman and Carter [33], and further developed
and refined in papers such as [30], [6], [19] and [18]. Atici and Stinson [2] generalized the
definitions so that they could be applied to multipleA-codes. We review these definitions
now.

Definition 2.1. An (N;m,n)hash familyis a setF of N functions such thatf : A→ B
for each f ∈ F , where|A| = m, |B| = n andm> n.

Definition 2.2 [2]. An (N;m,n) hash familyF of functions fromA to B is ε-almost
strongly universal-k(and denotedε-ASU (N;m,n, k)) provided that, for all distinct
elementsx1, x2, . . . , xk ∈ A, and for all (not necessary distinct)y1, y2, . . . , yk ∈ B, we
have

|{ f ∈ F : f (xi ) = yi ,1≤ i ≤ k}| ≤ ε × |{ f ∈ F : f (xi ) = yi ,1≤ i ≤ k− 1}|.

The following result of Atici and Stinson gives the connection betweenε-ASU
(N;m,n, k) hash families and multipleA-codes.

Proposition 2.1[2]. There exists an A-code without secrecy for m source states,having
n authenticators and N equiprobable authentication rules and such that Pdk−1 ≤ ε, if
and only if there exists anε-ASU(N;m,n, k) hash family F.

2.1. Equivalence of Hash Families and Sample Spaces

We can rephrase Definition 1.1 in terms of hash families, and generalize it to the nonbinary
case, as follows.

Definition 2.3. An (N;m,n) hash family F of functions from A to B is (ε, k)-
independentif for all distinct elementsx1, x2, . . . , xk ∈ A, and for all (not necessary
distinct) y1, y2, . . . , yk ∈ B, we have

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k| ≤ ε, (3)

where f ∈ F is chosen uniformly at random.

The following results are straightforward.

Proposition 2.2. An (ε, k)-independent sample space Sm ⊆ {0,1}m is equivalent to
an (ε, k)-independent(|Sm|;m,2) hash family.
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Proof. Let Sm ⊆ {0,1}m be an(ε, k)-independent sample space. Define an(|Sm|;m,2)
hash familyF as follows: For eachx = (x1, . . . , xm) ∈ Sm, define a functionfx: {1, . . . ,
m} → {0,1} by the rule fx(i ) = xi . Then defineF = { fx: x ∈ Sm}. F is easily seen to
be an(ε, k)-independent hash family.

Conversely, supposeF is an(ε, k)-independent(N;m,2) hash family, where, without
loss of generality,f : {1, . . . ,m} → {0,1} for each f ∈ F . For eachf ∈ F , define
xf = ( f (1), . . . , f (m)), and defineSm = {xf : f ∈ F}. Then Sm ⊆ {0,1}m is an
(ε, k)-independent sample space with|Sm| = N.

Proposition 2.3. Suppose that k,m and t are positive integers such that t|m and t|k,
and suppose that there exists an(ε, k)-independent sample space Sm ⊆ {0,1}m. Then
there exists an(ε, k/t)-independent(|Sm|;m/t,2t ) hash family.

Proof. SupposeSm is the hypothesized sample space. By Proposition 2.2, there exists
an(ε, k)-independent(|Sm|;m,2) hash family, sayF , wheref : {1, . . . ,m} → {0,1} for
eachf ∈ F . Letm′ = m/t . For eachf ∈ F , define a functionf ′: {1, . . . ,m′} → {0,1}t
by the following rule:

f ′(1) = ( f (1), . . . , f (t)),

f ′(2) = ( f (t + 1), . . . , f (2t)),
...

f ′(m′) = ( f ((m′ − 1)t + 1), . . . , f (m)).

Then defineF ′ = { f ′: f ∈ F}.
Letk′ = k/t . We will show thatF ′ is an(ε, k′)-independent(|Sm|;m′,2t ) hash family.

Let x1, . . . , xk′ ∈ {1, . . . ,m′} be distinct, and lety1, . . . , yk′ ∈ {0,1}t . For 1≤ i ≤ k′,
let yi = (yi 1, yi 2, . . . , yit ), whereyi j ∈ {0,1} for all i, j . Then f ′(xi ) = yi if and only
if f (t (xi − 1)+ j ) = yi j for all j , 1≤ j ≤ t . Therefore it holds that

Pr( f ′(xi ) = yi ,1≤ i ≤ k′) = Pr( f (t (xi − 1)+ j ) = yi j ,1≤ i ≤ k′,1≤ j ≤ t).

Using the fact thatF is an(ε, k)-independent(|Sm|;m,2) hash family andk = k′t , it
follows that

|Pr( f (t (xi − 1)+ j ) = yi j ,1≤ i ≤ k′,1≤ j ≤ t)− 2−k| ≤ ε.

We have that 2−k = 2−k′t = (2t )−k′ , so it follows that

|Pr( f ′(xi ) = yi ,1≤ i ≤ k′)− (2t )−k′ | ≤ ε.

Therefore,F ′ is an(ε, k′)-independent(|Sm|;m′,2t ) hash family.

Now we show the equivalence of(ε, k)-independent sample spaces and almost strongly
universal-k hash families.
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Theorem 2.4. If F is an (ε, k)-independent(N;m,n) hash family, then F is aδ-ASU
(N;m,n, k) hash family, where

δ = (n−k + ε)
n(n−k − ε) .

Proof. Because (3) holds, for anyy1, . . . , yk ∈ B it follows that

Pr[ f (xi ) = yi ,1≤ i ≤ k] ≥ n−k − ε,∑
yk∈B

Pr[ f (xi ) = yi ,1≤ i ≤ k] ≥
∑
yk∈B

(n−k − ε), and

Pr[ f (xi ) = yi ,1≤ i ≤ k− 1] ≥ n(n−k − ε).
From the above inequality and (3), we have

Pr[ f (xi ) = yi ,1≤ i ≤ k]

Pr[ f (xi ) = yi ,1≤ i ≤ k− 1]
≤ n−k + ε

n(n−k − ε) .

Let δ
4= (n−k + ε)/(n(n−k − ε)). Then

|{ f ∈ F : f (xi ) = yi ,1≤ i ≤ k}| ≤ δ × |{ f ∈ F : f (xi ) = yi ,1≤ i ≤ k− 1}|.
Hence,F is aδ-ASU (N;m,n, k) hash family.

Definition 2.4. An (N;m,n) hash familyF of functions fromA to B isstrongly(ε, k)-
independentif for any t such that 1≤ t ≤ k and for all distinct elementsx1, x2, . . . , xt ∈
A, and for all (not necessary distinct)y1, y2, . . . , yt ∈ B, we have

|Pr( f (xi ) = yi ,1≤ i ≤ t)− n−t | ≤ ε, (4)

where f ∈ F is chosen uniformly at random.

Theorem 2.5. If an (N;m,n) hash family F is strongly(ε, k)-independent, then F is
a δ-ASU(N;m,n, k) hash family, whereδ = (n−k + ε)/(n−(k−1) − ε).

Proof. The proof is similar to the proof of Theorem 2.4.

Lemma 2.6[2]. Suppose that a hash family F of functions from A to B isε-ASU
(N;m,n, k). Then for all1 ≤ j ≤ k, for all distinct elements x1, x2, . . . , xj ∈ A and
for all (not necessary distinct) y1, y2, . . . , yj ∈ B, we have

|{ f ∈ F : f (xi ) = yi ,1≤ i ≤ j }| ≤ ε j × N. (5)

Lemma 2.7[2]. If a hash family F isε-ASU(N;m,n, k), thenε ≥ 1/n.

Theorem 2.8. If a hash family F isε-ASU(N;m,n, k), then F is(δ, k)-independent,
whereδ = (nk − 1)(εk − n−k).
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Proof. From Lemma 2.6, we have

Pr[ f (xi ) = yi ,1≤ i ≤ k] ≤ εk and (6)

Pr[ f (xi ) = yi ,1≤ i ≤ k] − n−k ≤ εk − n−k. (7)

On the other hand, from (6), we have∑
(ŷ1,...,ŷk)6=(y1,...,yk)

Pr[ f (xi ) = ŷi ,1≤ i ≤ k] ≤ (nk − 1)εk.

Therefore, we have

Pr[ f (xi ) = yi ,1≤ i ≤ k] = 1−
∑

(ŷ1,...,ŷk)6=(y1,...,yk)

Pr[ f (xi ) = ŷi ,1≤ i ≤ k]

≥ 1− (nk − 1)εk.

Hence,

Pr[ f (xi ) = ŷi ,1≤ i ≤ k] − n−k ≥ 1− (nk − 1)εk − n−k

= 1− εknk + εk − n−k

= −(nk − 1)(εk − n−k).

From Lemma 2.7, we see thatεk − n−k ≥ 0. Hence,

−(nk − 1)(εk − n−k) ≤ Pr[ f (xi ) = ŷi ,1≤ i ≤ k] − n−k ≤ εk − n−k.

Then the family is(δ, k)-independent, where

δ = max{|εk − n−k|, | − (nk − 1)(εk − n−k)|} = (nk − 1)(εk − n−k).

2.2. New Multiple A-Codes

By combining Propositions 1.2 and 2.3 with Theorem 2.4 or 2.5, we can obtain new
multiple A-codes (ASU-k hash families) from an(ε, k)-independent sample space. The
(ε, k)-independent sample spaces from [1] mentioned in Proposition 1.2 can be shown
to produce strong ASU-k hash families. Therefore we can apply Theorem 2.5, obtaining
the following.

Theorem 2.9. There exists aδ-ASU(N;m,n, k) hash family, where

log2 N = 2(log2 log2(m log2 n)+ k log2 n− log2(nδ − 1)

+ log2(k log2 n)− 1). (8)

Proof. Definel = k log2 n, u = m log2 n and

ε = n−k(δn− 1)

δ + 1
≈ n−k(δn− 1).
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Apply Propositions 1.2 and 2.3, constructing a strongly(ε, k)-independent(N,m,n)
hash family, where log2 N = 2(log2 log2 u−log2 ε+log2 l−1).Now apply Theorem 2.5
to obtain aδ-ASU (N;m,n, k) hash family. We compute log2 N as

log2 N = 2(log2 log2(m log2 n)− log2(n
−k(δn− 1))+ log2(k log2 n)− 1)

= 2(log2 log2(m log2 n)+ k log2 n− log2(δn− 1)+ log2(k log2 n)− 1).

3. A Lower Bound

In this section we present a new lower bound on the size of ASU-k hash families and
almostk-wise independent sample spaces.

Theorem 3.1. If there exists anε-ASU(N;m,n, k) hash family such that

εk ≤ 1/n, (9)

then

N ≥ 1

εk

(
log(mn/(k− 1))

log((1− εk)/(1/n− εk))
− 1

)
.

Proof. SupposeF is anε-ASU(N;m,n, k) hash family fromA to B, where|A| = m,
|B| = n andk ≥ 2. Construct anN ×mn binary matrixG = (gi j ), with rows indexed
by the functions inF and columns indexed byA× B, defined by the rule

gf,(x,y) =
{

1 if f (x) = y,
0 if f (x) 6= y.

Interpret the columns ofG as incidence vectors of theN-setF . We obtain a set-system
(F, C = {Cx,y: x ∈ A, y ∈ B}), where

Cx,y = { f ∈ F : f (x) = y}
for all x ∈ A, y ∈ B. Let

t
4= ⌊εk N

⌋+ 1. (10)

This set-system satisfies the following properties: (A)|F | = N, (B) |C| = mn,
(C)

∑
C∈C |C| = Nm, (D) there does not exist a subset oft points that occurs as a

subset ofk different blocks (see Lemma 2.6).
Property (D) says that(F, C) is a t-packing of indexλ = k − 1 (i.e., not-subset of

points occurs in more thanλ blocks). Hence we obtain the following:

λ

(
N

t

)
≥
∑
C∈C

(|C|
t

)
. (11)

Property (C) implies that the average block size isNm/mn= N/n. Define a real-valued
function f (x) as

f (x) =
{

0 if x < t,
x(x − 1) · · · (x − t + 1) otherwise.
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Since f (x) is convex, we have

λ

mn

(
N

t

)
≥ 1

mn

∑
C∈C

(|C|
t

)
≥ f (N/n)

t !
(12)

from Jensen’s inequality. We observe thatN/n ≥ t − 1 follows from (9) and (10). Then
we obtain

(k− 1)
N(N − 1) · · · (N − t + 1)

(N/n)(N/n− 1) · · · (N/n− t + 1)
≥ mn (13)

and hence

(k− 1)

(
N − t + 1

N/n− t + 1

)t

≥ mn. (14)

From (10), we havet ≤ εk N + 1. Then (14) can be simplified as follows:

(k− 1)

(
1− εk

1/n− εk

)t

≥ mn, and hence

(εk N + 1) log

(
1− εk

1/n− εk

)
≥ log

(
mn

k− 1

)
,

from which our bound is obtained.

Corollary 3.2. Suppose Sm is an(ε, k)-independent sample space. Denoteδ = (2−k+
ε)/(2(2−k − ε)). If δk ≤ 1/2, then

|Sm| ≥ 1

δk

(
log(2m/(k− 1))

log((1− δk)/( 1
2 − δk))

− 1

)
.

Proof. This follows from Theorem 2.4.

This technique also gives us a bound on orthogonal arrays, which appears to be new.
An O Aλ(s,m,n) is equivalent to a(1/n)-ASU(λns;m,n, s) hash family. Certainly
inequality (9) holds. Applying Theorem 3.1 withN = λns andε = 1/n, we obtain the
following.

Theorem 3.3. If there exists an OAλ(s,m,n) with s≥ 2, then

N ≥ ns

(
log(mn/(s− 1))

log((ns − 1)/(ns−1− 1))
− 1

)
.

3.1. Some Numerical Examples of Multiple A-Codes

We give some numerical examples to compare the multipleA-codes constructed by Atici
and Stinson in [2]; our new multipleA-codes obtained from Theorem 2.9; and the lower
bound of Theorem 3.1. Suppose we want an authentication code form = 22128

source
states with deception probabilityδ = 2−40. (In other words, we are authenticating a bit
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string of length 2128, which is truly enormous!) We tabulate the number of key bits (i.e.,
log2 N) for k = 3,4,10. Note that we taken = 2/δ = 241 in Theorems 2.9 and 3.1
(whereas in [2],n > 2/δ):

k [2] Theorem 2.9 Lower bound

3 657 518 243
4 1043 602 283

10 5376 1096 523

An alternative method which could be considered is a counter-based multiple au-
thentication scheme [33]. For completeness, we briefly describe an efficient version, as
presented in [2]. Lets1, s2, . . . , sk be a sequence of source states to be authenticated. Let
f be a function chosen from anε-ASU (N;m,n,2) hash family fromA to B, and let
(b1, . . . ,bk−1) be a sequence ofk− 1 randomly chosen elements ofB. The key consists
of f and(b1, . . . ,bk−1). The i th source state,si , is authenticated withf (s1) if i = 1,
and with f (si )+ bi−1 if 2 ≤ i ≤ k.

Counter-based authentication (of course) requires fewer key bits than the proposed
construction. For example, tabulated values from [2] show that the construction from [6]
would for the parameters above andk = 4 require 447 key bits. Hence, the 602−447=
155 additional key bits we use can be thought of as the price paid for having a stateless
multiple authentication scheme. An interesting property that can be verified through
Theorem 2.9 is the following. Whenk→∞, the number of key bits required per message
approaches log2 n, which is the same as for the counter-based multiple authentication
scheme.

4. Almost Resilient Functions

We now turn our attention to the concept of resilient functions, and we show how almost
independent sample spaces can be used to construct functions that are “almost resilient”.

In what follows, letm≥ l ≥ 1 be integers and letϕ: {0,1}m→ {0,1}l be a function
mappingm bit vectors intol bit vectors.

Definition 4.1. The functionϕ is called an(m, l , k)-resilient functionif

Pr[ϕ(x1, . . . , xm) = (y1, . . . , yl ) | xi1xi2 · · · xik = α] = 2−l

for any k positions i1 < · · · < i k, for any k-bit string α ∈ {0,1}k and for any
(y1, . . . , yl ) ∈ {0,1}l , where the valuesxj ( j 6∈ {i1, . . . , i k}) are chosen independently
at random.

Resilient functions have been studied in several papers, e.g., [15], [3], [16], [29] and [4].
We now introduce a generalization, which we callε-almost resilient functions. Here the
the output distribution may deviate from the uniform distribution by a small amountε.

Definition 4.2. Let the functionϕ be called anε-almost(m, l , k)-resilient functionif

|Pr[ϕ(x1, . . . , xm) = (y1, . . . , yl ) | xi1xi2 · · · xik = α] − 2−l | ≤ ε
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for any k positions i1 < · · · < i k, for any k-bit string α ∈ {0,1}k and for any
(y1, . . . , yl ) ∈ {0,1}l , where the valuesxj ( j 6∈ {i1, . . . , i k}) are chosen independently
at random.

As will be demonstrated, by allowing this small deviation from the uniform distribution,
one can obtain a substantial improvement on the parameters.

4.1. Relation with(ε, k)-Independent Sample Space

It is well known that a resilient function is equivalent to a large set of orthogonal arrays
[29]. Here we prove a similar result for almost resilient functions that involvesk-wise
independent sample spaces.

Definition 4.3. A large set of(ε, k)-independent sample spaces, denotedLS(ε, k,
m, t), is a set of 2m−t (ε, k)-independent sample spaces, each of size 2t , such that their
union contains all 2m binary vectors of lengthm.

Theorem 4.1. If there exists an LS(ε, k,m, t), then there exists aδ-almost(m,m−
t, k)-resilient function, whereδ = ε/2m−t−k.

Proof. There are 2m−t (ε, k)-independent sample spaces inLS(ε, k,m, t). Name the
(ε, k)-independent sample spacesCγ ,γ ∈ {0,1}m−t . Then define a functionϕ: {0,1}m→
{0,1}m−t by the rule

ϕ(x1, . . . , xm) = γ if and only if (x1, . . . , xm) ∈ Cγ .

Due to Definition 4.3,ϕ is well defined. For anyk positionsi1 < · · · < i k, anyk-bit
stringα ∈ {0,1}k and anyγ ∈ {0,1}m−t , let

L
4= |{(x1, . . . , xm): xi1 · · · xik = α, (x1, . . . , xm) ∈ Cγ }|.

Then

Pr[ϕ(x1, . . . , xm) = γ | xi1xi2 · · · xik = α] = L

2m−k
. (15)

From Definition 1.1, we have

2−k − ε ≤ L

2t
≤ 2−k + ε. (16)

Hence, from (15) and (16) we obtain

|Pr[ϕ(x1, . . . , xm) = γ | xi1xi2 · · · xik = α] − 2−(m−t)| ≤ ε

2m−t−k
.

Definition 4.4. The functionϕ: {0,1}m→ {0,1}l is calledbalancedif we have

Pr[ϕ(x1, . . . , xm) = (y1, . . . , yl )] = 2−l

for all (y1, . . . , yl ) ∈ {0,1}l .
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For balanced functions, we can prove the converse of Theorem 4.1.

Theorem 4.2. If there exists a balancedε-almost(m, l , k)-resilient function, then there
exists an LS(δ, k,m,m− l ), whereδ = ε/2k−l .

Proof. Forγ ∈ {0,1}l , let

Cγ
4= {(x1, . . . , xm): ϕ(x1, . . . , xm) = γ }.

Sinceϕ is balanced,|Cγ | = 2m−l . If eachCγ is an(ε, k)-independent sample space,
then we automatically get a large set. For anyk positionsi1 < · · · < i k, for anyk-bit
stringα and for anyγ ∈ {0,1}l , let

L
4= |{(x1, . . . , xm): xi1 · · · xik = α, (x1, . . . , xm) ∈ Cγ }|.

Then, within the sample spaceCγ , we have

Pr[xi1xi2 · · · xik = α] = L

|Cγ | =
L

2m−l
. (17)

From Definition 4.2, we get

2−l − ε ≤ L

2m−k
≤ 2−l + ε. (18)

Hence, from (17) and (18), we obtain

|Pr(xi1xi2 · · · xik = α)− 2−k| ≤ ε

2k−l
.

Finally, we can use the bound from Theorem 4.2 to obtain the following bound on
almost resilient functions.

Corollary 4.3. Suppose that there exists a balancedε-almost(m, l , k)-resilient func-
tion. Let

δ = 1+ ε2k

2(1− ε2k)
.

If δk ≤ 1/2, then

l ≤ m+ k logδ − log Z,

where

Z =
(

log(2m/(k− 1))

log((1− δk)/( 1
2 − δk))

− 1

)
.

Proof. From Corollary 3.2 we have 2m−l ≥ Z/δk.
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In summation, we have in this subsection established the relations between the notions
of almost independent sample spaces large sets of almost independent sample spaces and
almost resilient functions. This can be thought of as an “almost” version of the relations
between orthogonal arrays, large sets of orthogonal arrays and resilient functions. The
main motivation is that by considering “almost” versions we will be able to improve
certain parameters significantly, compared with the traditional case.

4.2. Constructions ofε-Almost Resilient Functions

In order to construct almost resilient functions, we first exhibit a construction of almost
independent sample spaces. It will then be extended to obtain a large set of almost
independent sample spaces, i.e., an almost resilient function.

Definition 4.5. An (ε, k)-independent sample spaceSm is calledt-systematicif |Sm| =
2t , and there existt positionsi1 < · · · < i t such that eacht-bit string occurs in these
positions for exactly onem-tuple inSm.

A t-systematic(ε, k)-independent sample space can be transformed into anLS(ε, k,m, t)
by using the same technique as Theorem 3 of [31]. We have the following result.

Theorem 4.4. If there exists a t-systematic(ε, k)-independent sample space Sm, then
there exists a balancedδ-almost(m,m− t, k)-resilient function, whereδ = ε/2m−t−k.

Proof. By using the same technique asTheorem 3 of [31], we can obtain a large set of
(ε, k,m, t)-independent sample spaces from at-systematic(ε, k)-independent sample
spaceSm as follows. Without loss of generality, assume that the firstt positions inSm

run through all possiblet-bit strings. We then obtain 2m−t sample spacesCα indexed by
α = (α1, . . . , αm−t ) ∈ {0,1}m−t by

Cα = Sm + (0,0, . . . ,0︸ ︷︷ ︸
t

, α1, . . . , αm−t ).

These sample spaces form anLS(ε, k,m, t).
Then, from Theorem 4.1, aδ-almost(m,m−t, k)-resilient function is obtained, where

δ = ε/2m−t−k.

We now present a summary of our construction oft-systematic(ε, k)-independent
sample spaces. Our approach is similar to [18] (see also [24]), and depends on the Weil–
Carlitz–Uchiyama bound. In what follows, Tr denotes thetrace function fromGF(2t )

to GF(2).

Proposition 4.5(Weil–Carlitz–Uchiyama Bound [14]). Let f(x) =∑D
i=1 fi xi ∈ GF

(2t )[x] be a polynomial that is not expressible in the form f(x) = g(x)2− g(x)+ θ for
any polynomial g(x) ∈ GF(2t )[x] and for anyθ ∈ F2t . Then∣∣∣∣∣ ∑

α∈GF(2t )

(−1)Tr( f (α))

∣∣∣∣∣ ≤ (D − 1)
√

2t .
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Definition 4.6. A polynomialh(x) ∈ GF(2t )[x] is called a(2t , D)-polynomialif h has
degree at mostD andai = 0 for all eveni , whereh =∑D

i=0 ai xi . DefineH(2t , D, k) to
be a set of(2t , D)-polynomials such that anyk polynomials in the set are independent
overGF(2).

Observe that the conditiona2i = 0 for all i guarantees thath(x) is not expressible in
the form f (x) = g(x)p − g(x)+ θ for any polynomialg(x) overGF(2t ) andθ ∈ F2t .
Hence, Proposition 4.5 can be applied.

Forhi1, hi2, . . . , hik ∈ H(2t , D, k) and for anyk elementsα1, . . . , αk ∈ GF(2), define

Nα1,...,αk(hi1, . . . , hik)
4= |{x ∈ GF(2t ): Tr(hi1(x)) = α1, . . . ,Tr(hik(x)) = αk}|.

Lemma 4.6[18]. |Nα1,...,αk(hi1, . . . , hik)− 2t−k| ≤ (D − 1)
√

2t .

Proof. The proof is an application of Proposition 4.5. The casek = 2 can be found in
[18] and the general case is proved similarly.

Theorem 4.7. Suppose thatβ is a primitive element of GF(2t ), and H(2t , D, k) is
chosen such that

{x, βx, β2x, . . . , β t−1x} ⊆ H(2t , D, k).

Then there exists a t-systematic(ε, k)-independent sample space Sm where m= |H(2t ,

D, k)| andε = (D − 1)/
√

2t .

Proof. Let H(2t , D, k) = {h1, . . . , hm}. Construct a sample spaceSm as follows: a
binary stringXγ = x1x2 · · · xm ∈ Sm is specified by anyγ ∈ GF(2t ), where thei th bit
of Xγ is xi = Tr(hi (γ )).

Then from Lemma 4.6, for ak bit stringα,

|Pr(xi1xi2 · · · xik = α)− 2−k| = |Nα(hi1, . . . , hik)/2
t − 2−k| ≤ (D − 1)/

√
2t .

Therefore,Sm is an(ε, k)-independent sample space, whereε = (D − 1)/
√

2t .
Let β be a primitive element ofGF(2t ). Thenx, βx, β2x, . . . , β t−1x are indepen-

dent overGF(2). Now, H(2t , D, k) was chosen such that{x, βx, β2x, . . . , β t−1x} ⊆
H(2t , D, k).

It is a well-known fact that

Yx = (Tr(x),Tr(βx), . . . ,Tr(β t−1x))

runs through{0,1}t when x runs throughGF(2t ). Hence, the sample space ist-
systematic.

In our approach, using Theorem 4.7, we need to construct a set of polynomials
H(2t , D, k) such that anyk of them are linearly independent overGF(2). For this
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we can use linear error-correcting codes (see [20]). For a fixed (odd) degreeD, we can
express each polynomial as a linear combination of polynomials in the set

{x, βx, . . . , β t−1x, x3, βx3, . . . , β t−1x3, . . . , xD, βxD, . . . , β t−1xD}.
The polynomials in this set are clearly independent overGF(2). Indexing the polynomials
in H(2t , D, k) as h1, h2, . . . , hm we obtain a binaryt D′ × m matrix, whereD′ =
(D + 1)/2, 

h1,1 h1,2 · · · h1,m

h2,1 h2,2 · · · h2,m
...

. . .
. . .

...

ht D′,1 ht D′,2 · · · ht D′,m

 ,
wherehi (x) = h1,i x+h2,iβx+· · ·+ht D′,iβ

t−1xD. Any k polynomials are independent
over GF(2) means that anyk columns of the above matrix are linearly independent.
Hence the matrix corresponds to a parity check matrix of an [m, l ,d] error correcting
code, a code of lengthm = |H(2t , D, k)|, dimensionm − l = t D′ and minimum
Hamming distanced = k+ 1 [20].

In order to get at-systematic sample space, we have already chosen the polynomials
h1 = x, h2 = βx, . . . , ht = β t−1x. However, clearly, this is no restriction, since any
parity check matrix can be rewritten into such a form without changing the code param-
eters. Conversely, given such a code, we obtain at-systematic sample space, and hence
a balancedε-almost(m,m− t, k)-resilient function, as follows.

Theorem 4.8. Suppose D= 2D′ − 1 and there is an[m,m− t D′, k+ 1] code. Then
there exists a balancedε-almost(m,m− t, k)-resilient function such that

ε = (D − 1)
√

2t

2m−k
.

Proof. From Theorems 4.4 and 4.7.

A suitable value ofε could be 2−m+t−1. We obtain the following corollary of Theo-
rem 4.8 by takingD = 3 andk = (t/2)− 2.

Corollary 4.9. Suppose there is an[m,m− 4k − 8, k + 1] code. Then there exists a
balanced2−m+2k+3-almost(m,m− 2k− 4, k)-resilient function.

4.3. Examples and Comparison

Example 4.1(Numerical Comparison). In the first example we do a numerical com-
parison in the following way. An(m, l , k)-resilient function has probability 2−l on each
output. We allow ourε-almost(m, l , k)-resilient function to have probability at most
3/2 · 2−l on each output, i.e.,ε = 2−l−1. Furthermore, we setD = 3 in the construction
from the previous subsection and can thus use Corollary 4.9. Some numerical results are
given in Table 1.

We use tables of the best known binary linear codes to verify the existence of the
required codes in Corollary 4.9. The best possible parameters for binary linear codes can
be found in [10].
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Table 1. Maximum resiliency for(m, l , k) resilient functions andε-almost resilient functions
with ε = 2−l−1.

Input bits Output bits Maximum known resiliency Resiliency for constructed
m l for linear resilient function ε-almost resilient function

80 60 7 8
80 40 15 18
80 20 24 28

120 80 9 13
120 60 19 28
120 30 33 43

160 120 11 18
160 80 22 38
160 40 41 58

200 150 13 23
200 100 27 48
200 50 49 73

Example 4.2(Asymptotic Results on Resilient Functions). This example demonstrates
a strictly better asymptotic behaviour forε-almost(m, l , k)-resilient functions compared
with resilient functions (ε = 0).

We consider a family of(m,m− t, k)-resilient functions whenm→ ∞. Introduce
the notationτ = t/m andκ = k/m. We consider the maximum normalized resiliency
κ as a function ofτ .

For resilient functions (ε = 0), the best known construction is through linear codes.
Existence of an(m, (1− τ)m, κm)-resilient function is equivalent to the existence of
an [m, (1− τ)m, κm+ 1] linear code. We use the asymptotic form of the Varshamov–
Gilbert bound [20], which in this case states that there exist linear codes such that
(1− τ) = 1− h(κ), whereh() is the binary entropy function. This brings us to the
conclusion that whenm→∞, the maximum normalized resiliency that can be obtained
(through the best known methods) is

κ = h−1(τ ), (19)

whereh−1() is the inverse of the binary entropy function, under the constraintκ < 0.5.
Consider now the same problem, but for anε-almost resilient function. The truly re-

silient function has probability 2−(m−t) on each output. In order to have a fair comparison,
we fix ε to be (arbitrarily) small compared with this value, e.g.,ε < 2−(m−t) · 2−c for
some constantc. Using the proposed construction, letD′ = t−1m. The requirement of
an [m, (1−τD′)m, κm+1] linear code is then trivially fulfilled for anyκ. This leaves us
with the condition for a smallε. Forε < 2−(m−t) ·2−c we must have 2k+c(2D′−2) < 2t/2.
Considering the asymptotic form of this expression we can get a maximum normalized
resiliency of

κ = τ/2, (20)

with ε < 2−(m−t) · 2−c for any fixedc.
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Comparing with (19), we have a strictly better asymptotic behaviour for allτ in
0< τ < 1.

Example 4.3(Constructing Multiple A-Codes). The constructive results of this sec-
tion can also be used to construct multipleA-codes. Using the constructed almost inde-
pendent sample space from the previous subsection, one can verify that there exists an
ε-ASU (qm+1;qm(p−1)D/(k−bk/pc) − 1,q, k) hash family such that

ε = 1

q
+ (D − 1)(

√
qm +√qm − 2)

qm−k+2− (D − 1)
√

qm
.

Example 4.4(Implementation Aspects). We make a remark on implementing an(ε, k)-
almost resilient function. Again, letH(2t , D, k) = {h1, . . . , hm}. The proposed con-
struction is very simple to implement. Following the construction, one should take the
first t bits of the inputx and solve a set of linear equations Tr(z) = x1,Tr(βz) =
x2, . . . ,Tr(β t−1z) = xt to obtainz ∈ F2t . However, it is easy to see that this can be
simplified and that one can actually just put the firstt bits of x to bez. Then generate
the remaining sequence, call itS, S= (Tr(ht+1(z)),Tr(ht+2(z)), . . . ,Tr(hm(z))). The
output is finallyϕ(x1, . . . , xm) = S⊕ (xt+1, xt+2, . . . , xm).

In conclusion, a compact description of the almost resilient functionϕ is as follows.
Split the inputx in two parts,x = (z, w), wherez = (x1, . . . , xt ) ∈ GF(2t ) and
w = (xt+1, . . . , xm). The functionϕ(z, w) is defined as

ϕ(z, w) = (Tr(ht+1(z)),Tr(ht+2(z)), . . . ,Tr(hm(z)))⊕ w.

4.4. Almost Correlation Immune Functions

Our results on almost resilient functions can easily be generalized to almost correlation
immune functions. We begin with a definition.

Definition 4.7. ϕ is called an(m, l , k)-correlation immune functionif

Pr[ϕ(x1, . . . , xm)=(y1, . . . , yl ) | xi1xi2 · · · xik=α]=Pr[ϕ(x1, . . . , xm)=(y1, . . . , yl )]

for anyk positionsi1 < · · · < i k, for anyk-bit stringα and for any(y1, . . . , yl ) ∈ {0,1}l ,
where the valuesxj ( j 6∈ {i1, . . . , i k}) are chosen independently at random.

We introduce a generalization, which we callε-almost correlation immune functions.

Definition 4.8. We say thatϕ is anε-almost(m, l , k)-correlation immune functionif

|Pr[ϕ(x1, . . . , xm) = (y1, . . . , yl ) | xi1xi2 · · · xik = α] − Pr[ϕ(x1, . . . , xm)

= (y1, . . . , yl )]| ≤ ε

for anyk positionsi1 < · · · < i k, for anyk-bit stringα and for any(y1, . . . , yl ) ∈ {0,1}l ,
where the valuesxj ( j 6∈ {i1, . . . , i k}) are chosen independently at random.
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Definition 4.9. A nonuniform large set of(ε, k,m, T1, . . . , T2l )-independent sample
spaces, which we denote asNLS(ε, k,m, T1, . . . , T2l ), is a set of 2l pairwise disjoint
(ε, k)-independent sample spaces, of sizesT1, . . . , T2l , respectively, such that their union
contains all 2m binary vectors of lengthm.

Theorem 4.10. If there exists an NLS(ε, k,m, T1, . . . , T2l ), then there exists aδ-almost
(m, l , k)-correlation immune function, where

δ = max
i

εTi

2m−k
.

Proof. There are 2l (ε, k)-independent sample spaces in the set. Name the(ε, k)-
independent sample spacesCγ , γ ∈ {0,1}l . Then define a functionϕ: {0,1}m→ {0,1}l
by the rule

ϕ(x1, . . . , xm) = γ if and only if (x1, . . . , xm) ∈ Cγ .

Then

Pr[ϕ(x1, . . . , xm) = γ ] = Tγ
2m
.

For anyk positionsi1 < · · · < i k, for anyk-bit stringα and for anyγ ∈ {0,1}l , let

L
4= |{(x1, . . . , xm): xi1 · · · xik = α, (x1, . . . , xm) ∈ Cγ }|.

Then

Pr[ϕ(x1, . . . , xm) = γ | xi1xi2 · · · xik = α] = L

2m−k
. (21)

From Definition 1.1, we have

2−k − ε ≤ L

Tγ
≤ 2−k + ε. (22)

Hence, from (21) and (22), we obtain

|Pr[ϕ(x1, . . . , xm) = γ | xi1xi2 · · · xik = α] − Pr[ϕ(x1, . . . , xm) = γ ]| ≤ εTγ
2m−k

.

We now prove a converse to Theorem 4.10.

Theorem 4.11. If there exists anε-almost(m, l , k)-correlation immune function, ϕ,
then there exist integers T1, . . . , T2l and an NLS(δ, k,m, T1, . . . , T2l ) in which

δ = max
i

ε2m−k

Ti
.

Proof. Forγ ∈ {0,1}l , let

Cγ
4= {(x1, . . . , xm): ϕ(x1, . . . , xm) = γ }
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and let

Tγ = |Cγ |.
If eachCγ is an (ε, k)-independent sample space, then we automatically get a (non-
uniform) large set of sample spaces. For anyk positionsi1 < · · · < i k, for anyk-bit
stringα and for anyγ ∈ {0,1}l , let

L
4= |{(x1, . . . , xm): xi1 · · · xik = α, (x1, . . . , xm) ∈ Cγ }|.

Then, within the sample spaceCγ , we have

Pr[xi1xi2 · · · xik = α] = L

|Cγ | =
L

Tγ
. (23)

From Definition 4.8 we get

Tγ
2m
− ε ≤ L

2m−k
≤ Tγ

2m
+ ε. (24)

Hence, from (23) and (24), we obtain

|Pr(xi1xi2 · · · xik = α)− 2−k| ≤ ε2
m−k

Tγ
.

5. Indistinguishability and Almost k-Wise Independence

Indistinguishability of random variables plays an important role in cryptography. In this
section we study the indistinguishability of almostk-wise independent sample spaces
from truly random sample spaces.

We consider a computationally unbounded distinguisherD which is limited tok
queries to an oracleO. Its aim is to distinguish if the oracleO implements a truly random
function or a pseudorandom function. First, we consider anadaptivedistinguisher, i.e.,
a distinguisher in which each query may depend on the answers to the previous queries.

Without loss of generality, we can represent a pseudorandom function as an(N;m,n)
hash familyF1 of functions fromA to B. A truly random function corresponds to the
(nm;m,n) hash familyF0 consisting of all functions fromA to B. Theadvantageof the
distinguisherD is defined to be

AdvD(F1) = |Pr[DO=F1 = 1]− Pr[DO=F0 = 1]|.
We have the following theorem.

Theorem 5.1. Let F1 be an(N;m,n) hash family. Suppose that

maxAdvD(F1) ≤ α,
where the maximum is taken over all adaptive distinguishersD which are limited to k
oracle queries. Then F1 is (2α, k)-independent. Conversely, if F1 is (ε, k)-independent,
then

maxAdvD(F1) ≤ nkε/2.
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Proof. Vaudenay showed in [32] that the following formula holds:

maxAdvD(F1)

= 1
2 max

x1

∑
y1

max
x2

∑
y2

· · ·max
xk

∑
yk

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k|. (25)

Then our assumption is written as

1
2 max

x1

∑
y1

max
x2

∑
y2

· · ·max
xk

∑
yk

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k| ≤ α.

From the above equation we have, for all distinctx1, x2, . . . , xk ∈ A and for all
y1, . . . , yk ∈ B, that

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k| ≤ 2α.

This implies thatF1 is (2α, k)-independent.
Conversely, suppose that

max
x1,...,xk

max
y1,...,yk

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k| ≤ ε.

Then we obtain that

maxAdvD(F1) ≤ nkε/2

from (25).

A particular security property of block ciphers is also related to almostk-wise inde-
pendence, as follows. LetF1 denote the set of round functions of a Feistel type block
cipher. A keyK has the effect of selecting one of the functionsf ∈ F1. Vaudenay [32]
defined the concept ofk-wise decorrelation biasof F1, which is denoted byDecFk(F1).
In our terminology, this quantity can be defined as

DecFk(F1) = max
x1,...,xk

∑
y1,...,yk

|Pr( f (xi ) = yi ,1≤ i ≤ k)− n−k|.

Vaudenay considered several constructions of hash familiesF1 with small values of
DecFk(F1) which are suitable for block ciphers.

We prove the following corollary of Theorem 5.1.

Corollary 5.2. If F1 is (ε, k)-independent, then

DecFk(F1) ≤ nkε/2.

Proof. Note that

DecFk(F1) ≤ maxAdvD(F1)

follows from (25). Then we see from Theorem 5.1 that ifF1 is (ε, k)-independent, then

DecFk(F1) ≤ nkε/2.
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Conversely, in a similar manner as in the proof of Theorem 5.1, it is straightforward
to show that if

DecFk(F1) ≤ α,
thenF1 is (2α, k)-independent.

6. Conclusion

In this paper we have presented several applications of almostk-wise independent sample
spaces in cryptology. In particular, we have found significantly improved constructions
for multiple authentication codes by this approach.

The themes in this paper have recently been further developed be Bierbrauer and
Schellwat [9]. We hope that almostk-wise independent sample spaces will find further
cryptologic applications in the future.
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