J. Cryptology (2001) 14: 231-253 Journal of

DOI: 10.1007500145-001-0010-y CRYPTOLOGY

© 2001 International Association for
Cryptologic Research

Almost k-Wise Independent Sample Spaces
and Their Cryptologic Applications*

Kaoru Kurosawa

Department of Communication and Integrated Systems,
Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
kurosawa@ss.titech.ac.jp

Thomas Johansson
Department of Information Technology, Lund University,
PO Box 118, S-22100 Lund, Sweden
thomas@it.lth.se

Douglas R. Stinson

Department of Combinatorics and Optimization,
University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1
dstinson@uwaterloo.ca

Communicated by Ernie Brickell

Received September 1999 and revised January 2001
Online publication 29 August 2001

Abstract. An almostk-wise independent sample space is a small subset bit
sequences in which arkybits are “almost independent”. We show that this idea has
close relationships with useful cryptologic notions such as multiple authentication codes
(multiple A-codes), almost strongly universal hash families, alrkassilient functions,
almost correlation-immune functions, indistinguishable random variable&-avise
decorrelation bias of block ciphers.

We use almosk-wise independent sample spaces to construct new efficient multiple
A-codes such that the number of key bits grows linearly as a functiar(wherek is
the number of messages to be authenticated with a single key). This improves on the
construction of Atici and Stinson [2], in which the number of key bitQi&?).

We introduce the concepts efalmostk-resilient functions and almost correlation-
immune functions, and give a construction for almksesilient functions that has
parameters superior toresilient functions. We also point out the connection between
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almostk-wise independent sample spaces and pseudorandom functions that can be
distinguished from truly random functions, by a distinguisher limitdddoacle queries,
with only a small probability. Vaudenay [32] has shown that such functions can be used
to construct block ciphers with a small decorrelation bias.

Finally, new bounds (necessary conditions) are derived for alkaeste independent
sample spaces, multipk-codes and balancedalmostk-resilient functions.

Key words. Independent sample space, Resilient function, Universal hash family,
Authentication code.

1. Introduction

An almost k-wise independent sample spizca probability space om-bit sequences
such that ani bits are almost independent. Arbiased sample spade a space in
which any (boolean) linear combination of threbits takes the value 1 with probability
close to J2. These notions were introduced by Naor and Naor [23] and further studied
in [1] due to their applications to algorithms and complexity theory. However, there
are also cryptographic applications: Krawczyk appliebiased sample spaces to the
construction of authentication codes [19].

In this paper we investigate several new relationships between dtmose indepen-
dent sample spaces and useful cryptologic notions such as multiple authentication codes
(multiple A-codes) [33], [21], [2];k-resilient and correlation-immune functions [15],
[3],[16], [29], [4], [5], [11]-[13], [17], [25]; and indistinguishable random variables and
their application tdk-wise decorrelation bias of block ciphers [32]. We begin our study
with a summary of basic definitions and results on alnkesise independent sample
spaces in Section 1.1.

In Section 2 we study multiplé-codes. In a multipleA-code,k > 2 messages are
authenticated with the same key. (In “usué¥codes, just one message is authenticated
with a given key.) Recently, Atici and Stinson [2] defined some new classes of almost
strongly universal hash families which allowed the construction of multipleodes.
Here, we prove that almoktwise independent sample spaces are equivalent to multiple
A-codes. This allows us to obtain a more efficient construction of muléigtedes from
the almosk-wise independent sample spaces of [1].

In Section 3 we present a lower bound on the size of the keyspace in a mdltiple
code. Numerical examples show that the multipleodes we construct are quite close
to this bound. Further, from the above equivalence, a lower bound on the size of almost
k-wise independent sample spaces is obtained for free. (While a lower bound on the size
of e-biased sample spaces was given in [1], no lower bound was known for the size of
almostk-wise independent sample spaces.)

In Section 4 we generalize the idea of resilient functions. A funcgiof0, 1}™ —

{0, 1} is calledk-resilientif every possible outputtuple is equally likely to occur when

the values ok arbitrary inputs are fixed by an opponent and the remainmingk input

bits are chosen at random. This is a useful tool for achieving key renewatidtrsecret

key (X, ..., Xm) can be renewed to a ndwbit secret keyp(xy, .. ., Xm) about which an
opponent has no information if the opponent knows at redsts of (xg, ..., Xm). We

show thak can be made larger if the definition of a resilient function is slightly relaxed.
Thus, we define agralmostk-resilient function as a functiop such that every possible
outputl-tuple is almost equally likely to occur when the valueskddrbitrary inputs

are fixed by an opponent. (The statistical difference between the output distribution of
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a k-resilient function and an-almostk-resilient function is bounded above by We
prove that a large set of almokstwise independent sample spaces is equivalent to a
balancedt-almostk-resilient function, generalizing a result of [29]. (A similar result is
shown for correlation-immune functions.) From this equivalence, we are able to obtain
both efficient constructions and bounds for balancedimostk-resilient functions.

Finally, in Section 5, we point out the connection between alikegise independent
sample spaces and pseudorandom functions that can be distinguished from truly random
functions, by a distinguisher limited tooracle queries, with only a small probability.
Vaudenay [32] has shown that such functions can be used to construct block ciphers with
a small decorrelation bias. Thus alméstvise independent sample spaces potentially
can be used as round functions for Feistel type ciphers.

1.1. Almost k-Wise Independent Sample Spaces

In this paper @ample spacis a set of binaryn-tuplesS;,, € {0, 1}™. A sample space is
linear if it is a subspace of the vector spaje 1}™. If S, C {0, 1} is a sample space,
we let X = Xx; -- - Xq be the random variable obtained by choosing eaehple from
Sy, with the same probability /1S,

Definition 1.1[1]. A sample spac&, C {0, 1}™ is (e, k)-independentf, for any k
positionsi; < ip < -+ < ix and anyk-bit stringe, it holds that

|Prixi, i, - X =a] =27 <e. D

A (0, k)-independent sample space is said ti&bedependent

k-Independent sample spaces are also knowpeafect local randomizersThese
objects were introduced by Schnorr [26] and further studied in [22] and [24]. They are
in fact equivalent to certain combinatorial structures which we define now.

Definition 1.2. An orthogonal array O A(t, m, v) is aiv' by m array onv symbols,
sayM, such that, within any columns ofM, everyt-tuple occurs in exactly rows.

The following observation is due to Maurer and Massey [22].

Theorem 1.1. Ak-independent sample spagg S {0, 1}™is equivalent to an orthog-
onal array OA (k, m, 2), wherex = |Sy|/2X.

It is well known thatk-independent sample spaces are “large”. For example, the
classical Rao bound for orthogonal arrays, together with Theorem 1.1, shoy&that
Q(M¥2)if S, C {0, 1} is k-independent. Thus several researchers have studiky
independent sample spaces, where 0 and|S;,| is “small”. See, for example, [1],

[7] and [8]. The following efficient construction fa@e, k)-independent sample spaces is
proved by Alon et al.

Proposition 1.2[1]. There exists arnie, k)-independent sample spacg & {0, 1}™
such that

log, |Sn| = 2(log, log, m — log, ¢ + log, k — 1).
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For completeness, we briefly review the main construction method(sdk)-
independent sample spaces. We require another definition.

Definition 1.3[23]. A sample spac&;, C {0, 1}™ is ¢-biasedif, for any « € {0, 1}™,
it holds that

|IPrix-a =1] - Prjx-a = 0]| <&, 2
where “” denotes the inner product modulo 2.

The following result is due to Naor and Naor.

Proposition 1.3[23]. Suppose the following exist

1. Ane-biased sample spaceS {0, 1}" with |S] = 2™.
2. Alinear k-independent sample spacecL{0, 1}N with [L| = 2".

Then there exists az, k)-independent sample spacecR{0, 1}N with |R| = 2™,

Appropriate ingredients required for Proposition 1.3 can be obtained as follows. Three
explicit constructions foe-biased sample spaces are presented in [1]. One of these,
the “powering construction”, yields agn/2")-biased sample spac® C {0, 1}" with
|S| = 2% for integersn andr. (Note: It is observed in [7] and [8] that this construction
can be viewed as an application of Reed—Solomon codes, and more efficient variations
can be obtained using algebraic geometry codes.)

The second ingredient is a linekfindependent sample spate € {0, 1}N with
|L| = 2". Such a sample space is a lin€aAx»-«(k, N, 2). The orthogonal complement
of this sample space is therefore & [N —n, k+ 1]-code, and, conversely, from a code
with these parameters we can construct the desired sample Isfaee, for example,
[20]). It is suggested in [23] to use a sample space of this type constructed from a BCH
code. Supposd&l = 2! — 1 for some integet, and supposk is odd. Then the sample
spacel obtained by this method hak| = 2<+Dt/2,

If we construct our ingredients as described above, and apply Proposition 1.3, then
the resulting sample space has parameters as stated in Proposition 1.2.

2. Multiple A-Codes and ASUk Hash Families

In this section we prove that almdstise independent sample spaces are equivalent to
multiple authentication codes (more precisely, almost strongly univkisash families,

as defined in [2]). This allows us to obtain more efficient multipleodes than were
previously known.

First, we briefly review basic concepts of (multiple) authentication codes. In the usual
Simmons model of authentication codés¢odes) [27], [28] there are three participants,
atransmitter areceiverand anopponentin an A-code without secre¢yhe transmitter
sends anessagés, a) to the receiver, wherg is asource statéplaintext) anda is an
authenticator The authenticator is computedas- e(s), whereeis a secrekeyshared
between the transmitter and the receiver. The &&ychosen according to a specified
probability distribution.
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In amultiple A-code we suppose that an opponent obsarve® messages which are
sent using the same key. Then the opponent places a new bogus messdgmto the
channel, wherg' is distinct from the source states already sent. This attack is called
aspoofing attack of order.iPy denotes the success probability of a spoofing attack of
orderi, see [21].

Almost strongly universal hash families are a very useful way of constructing practical
A-codes. This idea was introduced by Wegman and Carter [33], and further developed
and refined in papers such as[30], [6], [19] and [18]. Atici and Stinson [2] generalized the
definitions so that they could be applied to multipleodes. We review these definitions
now.

Definition 2.1.  An (N; m, n) hash familyis a sef- of N functions suchthat: A — B
for eachf € F, where|A| = m, |B| = nandm > n.

Definition 2.2[2]. An (N; m, n) hash familyF of functions fromA to B is e-almost

strongly universal-kand denoted-ASU (N; m, n, k)) provided that, for all distinct
elements, X2, ..., Xk € A, and for all (not necessary distingt), yo, ..., Yk € B, we

have

HfeF: f(x)=vy.,1<i<kl|<ex|{feF: f(x)=y,1<i<k-1}].

The following result of Atici and Stinson gives the connection betweekSU
(N; m, n, k) hash families and multipl&-codes.

Proposition 2.1[2]. There exists an A-code without secrecy for m source stegsg
n authenticators and N equiprobable authentication rules and such that R ¢, if
and only if there exists astASU(N; m, n, k) hash family £

2.1. Equivalence of Hash Families and Sample Spaces

We can rephrase Definition 1.1 in terms of hash families, and generalize it to the nonbinary
case, as follows.

Definition 2.3. An (N; m, n) hash family F of functions from A to B is (e, k)-

independentf for all distinct elements«y, xo, ..., X € A, and for all (not necessary
distinct) yi, ¥o, ..., Yk € B, we have
IPr(f(x)=y.1<i <k —n*<e, 3)

wheref € F is chosen uniformly at random.
The following results are straightforward.

Proposition 2.2. An (g, k)-independent sample spacg & {0, 1}™ is equivalent to
an (e, k)-independeng| Sy|; m, 2) hash family
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Proof. LetS;, C {0, 1}™be an(e, k)-independent sample space. Defing|&|; m, 2)
hash familyF as follows: Foreack = (X, ..., Xm) € Sy, define afunctiorfy: {1, ...,
m} — {0, 1} by the rulef, (i) = x;. Then defind= = { f;: x € S;}. F is easily seen to
be an(e, k)-independent hash family.

Conversely, suppodeis an(e, k)-independentN; m, 2) hash family, where, without

loss of generality,f: {1,..., m} — {0, 1} for eachf € F. For eachf € F, define
xi = (f(Q),..., f(m)), and defineS, = {x;: f € F}. ThenS, € {0,1}™is an
(g, k)-independent sample space wigy| = N. O

Proposition 2.3. Suppose that,kn and t are positive integers such thantand tk,
and suppose that there exists @n k)-independent sample spacg § {0, 1}™. Then
there exists ans, k/t)-independent| Sy|; m/t, 21) hash family

Proof. Supposes, is the hypothesized sample space. By Proposition 2.2, there exists
an(e, k)-independent| Sy|; m, 2) hash family, say, wheref: {1, ..., m} — {0, 1} for
eachf € F.Letm' = m/t. Foreachf e F, defineafunctiorf’: {1,..., m'} — {0, 1}

by the following rule:

(1) = (f,..., f@t),
2 = (ftt+1),..., f(21)),

f'(m) = (f(mM =Dt +1),..., f(m).
Then defing=" = {f": f € F}.

Letk’ = k/t. We will show thatF’ is an(e, k')-independent| S, |; N7, 2) hash family.
LetXy, ..., X € {1,...,m} be distinct, and leyy, ...,y € {0, 1}'. For1<i <K,
letyi = (Vi1, Yi2, ..., vit), wherey;; € {0, 1} for alli, j. Thenf’(x;) = y; if and only
if f(t(x —1+j)=y;forallj,1<j <t. Thereforeitholds that

Pr(f'(x) =v¥,1<i <K)=Pr(f(t(x —D+j)=yj,1<i <k,1<j<t).

Using the fact thafF is an(e, k)-independent| Sy|; m, 2) hash family ank = k't, it
follows that

IPrft6 — D+ =wy,1<i<K,l<j<t)-2¥<e
We have that 2¢ = 2Kt = (2t)~K  so it follows that
IPr(f'(i)=y,1<i<k)— (@) ¥ <e.

Therefore F’ is an(e, k')-independent| Sy|; N7, 2') hash family. O

Now we show the equivalence@f, k)-independent sample spaces and almost strongly
universalk hash families.
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Theorem 2.4. If F is an (¢, k)-independentN; m, n) hash familythen F is as-ASU
(N; m, n, k) hash familywhere
(4
T n(nk—¢)’
Proof. Because (3) holds, for any, ..., yx € B it follows that
Prif(x)=vyi,1<i<k] > nk—g,
Y Pfq)=y.1<i<k = > .(n*—¢), and

ykeB Y€B

Prif(x)=y,1<i<k-1] -k

v

v

nin™" —eg).
From the above inequality and (3), we have

Prif(x)=Vyi,1<i <K] B nk+e
Pr[f(X|)=y|,1§| Sk—l] - n(n—k_g)‘

Lets 2 (nK + &)/(n(n% — ¢)). Then

HfeF: fx)=y,1<i<kl<dx|{feF: f(x)=y,1<i<k-1}.

Hence,F is as-ASU (N; m, n, k) hash family. O
Definition 2.4. An (N; m, n) hash familyF of functions fromA to B is strongly(e, k)-
independenif for anyt such that 1< t < k and for all distinct elements;, x, ..., X; €
A, and for all (not necessary distingt), y», ..., y; € B, we have
IPr(f(x)=y.1<i<t)y—n'|<e (4

wheref € F is chosen uniformly at random.

Theorem 2.5. If an (N; m, n) hash family F is stronglye, k)-independenthen F is
as-ASU(N; m, n, k) hash familywheres = (n™% 4+ ¢)/(n~®&=D —¢).

Proof. The proof is similar to the proof of Theorem 2.4. O

Lemma 2.6[2]. Suppose that a hash family F of functions from A to B-&SU

(N;m, n, k). Then for alll < j <k, for all distinct elements xx»,...,x; € A and
for all (not necessary distincys, y», ..., y; € B, we have
{feF: fx)=y.1<i<j}<e xN. 5

Lemma 2.7[2]. If a hash family F is-ASU(N; m, n, k), thene > 1/n.

Theorem 2.8. If a hash family F is-ASU(N; m, n, k), then F is(8, k)-independent
wheres = (nK — 1)(ek — n7).
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Proof. From Lemma 2.6, we have
Prif(x)=V¥,1<i <K < (6)
Prfox)=y.1<i<k—-n* <& —nk @)

A
™
Q
>
o

On the other hand, from (6), we have
Y. PHf)=%1<i <k <@ -De
(F15-s )F (Y150 Vi)
Therefore, we have
Plifoi) =y, 1<i<kl=1- Y Prifo)=%,1<i<Kk
(F1s J)F (Y1505 Vi)
1— (nk = D&k

v

Hence,

Pifx)=9,1<i<kl—-n%>1—@m=1ek—nX

v

= 1—cknf 4 gk —nk
= —(N“ = 1= n").
From Lemma 2.7, we see thdt— n™ > 0. Hence,
—( =D =N <Prfx) =9, 1<i<k-n¥ < —nk
Then the family is(8, k)-independent, where

s=max|ek—nK, | = " =D =n)} = = D —n). O

2.2. New Multiple A-Codes

By combining Propositions 1.2 and 2.3 with Theorem 2.4 or 2.5, we can obtain new
multiple A-codes (ASUk hash families) from axe, k)-independent sample space. The

(&, k)-independent sample spaces from [1] mentioned in Proposition 1.2 can be shown
to produce strong ASW-hash families. Therefore we can apply Theorem 2.5, obtaining
the following.

Theorem 2.9. There exists a-ASU(N; m, n, k) hash familywhere
log, N = 2(log, log,(mlog, n) + klog, n —log,(né — 1)
+ log,(klog, n) — 1). (8)
Proof. Definel = klog, n, u = mlog, n and

_ n*@n-1)

—k
~n @n-—1).
§+1 ( )
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Apply Propositions 1.2 and 2.3, constructing a stronglyk)-independentN, m, n)
hash family, where logN = 2(log, log, u—log, e+log, | —1). Now apply Theorem 2.5
to obtain a-ASU (N; m, n, k) hash family. We compute IgiN as

2(log, log,(mlog, ) — log,(n~*(sn — 1)) + log,(klog, n) — 1)
2(log, log,(mlog, n) + klog, n —log,(6n — 1) + log,(klog, n) —1). O

log, N

3. A Lower Bound

In this section we present a new lower bound on the size of A$ldsh families and
almostk-wise independent sample spaces.

Theorem 3.1. If there exists ar-ASU(N; m, n, k) hash family such that

e <1/n, €
then
N> 1 ( log(mn/(k — 1)) B l)
ek \log((1 — &K)/(1/n — gk))

Proof. Supposé- is ane-ASU(N; m, n, k) hash family fromAto B, where|A] = m,
|B| = nandk > 2. Construct arN x mnbinary matrixG = (gij), with rows indexed
by the functions inF and columns indexed b x B, defined by the rule

1 if f(x)=vy,
ey =lo if fx#£y.
Interpret the columns d& as incidence vectors of tHe-setF. We obtain a set-system
(F,C={Cyy: x € Ay € B}), where
Chy=({feF: f(x)=y)}
forallx € A,y € B. Let
t2 [N+ 1. (10)

This set-system satisfies the following properties: (&) = N, (B) |[C|] = mn,
(C) > cec ICl = Nm, (D) there does not exist a subsettopoints that occurs as a
subset ok different blocks (see Lemma 2.6).

Property (D) says thatF, C) is at-packing of index = k — 1 (i.e., not-subset of
points occurs in more thanblocks). Hence we obtain the following:

N IC]
A > . 11
<t> B CX: ( t ) (b
eC
Property (C) implies that the average block sizBi®/mn = N/n. Define a real-valued

function f (x) as

Fox) — 0 if x<t,
) = XX=1D---(x—t+1) otherwise
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Since f (x) is convex, we have
A (N 1 f(N
_( )Z_Z<|<:|>2 (N/m) w2
mn\ t mng&z\ t t!

from Jensen’s inequality. We observe thgtn > t — 1 follows from (9) and (10). Then
we obtain

k-1 NIN-D-(N-t+D >mn (13
(N/m)(N/n—=1)---(N/n—t+1)

N—t+1\'

From (10), we havé < ¢“N + 1. Then (14) can be simplified as follows:

1— gk t
(k=1 <1/n—ek>

1— ek mn
k
(g N+1)|Og(1/n—sk> > Iog(k_1>,

from which our bound is obtained. O

and hence

v

mn, and hence

Corollary 3.2. Suppose Sis an(e, k)-independent sample spa&enotes = (2K +
€)/(2(27% —¢)). If X < 1/2,then

1 log2m/(k — 1))
> — —-1].
0l = 5% (Iog((l—sk)/(% — &) )
Proof. This follows from Theorem 2.4. O

This technique also gives us a bound on orthogonal arrays, which appears to be new.
An O A, (s,m, n) is equivalent to a1/n)-ASU(An%; m, n, s) hash family. Certainly
inequality (9) holds. Applying Theorem 3.1 witlh = An® ande = 1/n, we obtain the
following.

Theorem 3.3. If there exists an OAs, m, n) with s > 2, then

N > ns( log(mn/(s — 1)) B 1) .
log((ns — 1)/(ns~1 — 1))

3.1. Some Numerical Examples of Multiple A-Codes

We give some numerical examples to compare the mulfipdedes constructed by Atici
and Stinson in [2]; our new multipl&-codes obtained from Theorem 2.9; and the lower
bound of Theorem 3.1. Suppose we want an authentication coae for22* source
states with deception probabilily= 2-°. (In other words, we are authenticating a bit
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string of length 228 which is truly enormous!) We tabulate the number of key bits (i.e.,
log, N) for k = 3, 4, 10. Note that we take = 2/§ = 2* in Theorems 2.9 and 3.1
(whereas in [2]n > 2/§):

k [2] Theorem 2.9 Lower bound
3 657 518 243
4 1043 602 283

10 5376 1096 523

An alternative method which could be considered is a counter-based multiple au-
thentication scheme [33]. For completeness, we briefly describe an efficient version, as
presented in[2]. Let;, s, .. ., S be a sequence of source states to be authenticated. Let
f be a function chosen from anASU (N; m, n, 2) hash family fromA to B, and let
(by, ..., bx_1) be a sequence &f— 1 randomly chosen elementsBf The key consists
of f and(by, ..., bc_1). Theith source states, is authenticated witlf (sy) if i = 1,
andwithf(s) +b_1if2 <i <k.

Counter-based authentication (of course) requires fewer key bits than the proposed
construction. For example, tabulated values from [2] show that the construction from [6]
would for the parameters above dne: 4 require 447 key bits. Hence, the 60247 =
155 additional key bits we use can be thought of as the price paid for having a stateless
multiple authentication scheme. An interesting property that can be verified through
Theorem 2.9 is the following. Whén— oo, the number of key bits required per message
approaches logn, which is the same as for the counter-based multiple authentication
scheme.

4. Almost Resilient Functions

We now turn our attention to the concept of resilient functions, and we show how almost
independent sample spaces can be used to construct functions that are “almost resilient”.

In what follows, letm > | > 1 be integers and let: {0, 1™ — {0, 1} be a function
mappingm bit vectors intd bit vectors.

Definition 4.1. The functiong is called anim, |, k)-resilient functionf

Pr[(p(X]_, -~~’Xm) = (yl’ MR} YI) | Xilxiz.-.xik Za] = 27'

for any k positionsi; < --- < ik, for any k-bit string« € {0, 1} and for any
(Y1, ..., W) € {0, 1}, where the values; (j ¢ {i1, ..., ix}) are chosen independently
at random.

Resilient functions have been studied in several papers, e.g., [15], [3], [16], [29] and [4].
We now introduce a generalization, which we callimost resilient functions. Here the
the output distribution may deviate from the uniform distribution by a small amaunt

Definition 4.2. Let the functiony be called arz-almost(m, I, k)-resilient functionif

IPrlo(X1, o Xm) = (Yis o W) | XigXip - X, =] =27 <&
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for any k positionsi; < --- < ik, for any k-bit string« € {0, 1} and for any
(Y1, ..., Y) € {0, 1)}, where the values; (j € {i1, ..., ix}) are chosen independently
at random.

As will be demonstrated, by allowing this small deviation from the uniform distribution,
one can obtain a substantial improvement on the parameters.

4.1. Relation with(e, k)-Independent Sample Space

It is well known that a resilient function is equivalent to a large set of orthogonal arrays
[29]. Here we prove a similar result for almost resilient functions that invdkvesse
independent sample spaces.

Definition 4.3. A large set of(e, k)-independent sample spacetenotedL S(e, K,
m, t), is a set of 27t (¢, k)-independent sample spaces, each of sizeuh that their
union contains all 2 binary vectors of lengtim.

Theorem 4.1. If there exists an L&, k, m, t), then there exists &-almost(m, m —
t, k)-resilient functionwheres = ¢/2mt-k,

Proof. There are 2! (¢, k)-independent sample spacedif(e, k, m, t). Name the
(¢, k)-independent sample spa&s y € {0, 1}™*. Then define afunctiop: {0, 1}™ —
{0, 1}™* by the rule

O(X1, ..., Xm) =¥ if and only if (Xg,...,%m) € C,.

Due to Definition 4.3¢p is well defined. For ank positionsi; < --- < ik, anyk-bit
stringa € {0, 1}* and anyy € {0, 1}™1, let

L2 {0, s Xe)? Xiy = Xy = &, (X1, -, Xm) € C, ).
Then
L
Prip(, - Xm) = ¥ | XX % = o] = oo 15

From Definition 1.1, we have
—k L —k
2 —85552 + e. (16
Hence, from (15) and (16) we obtain

IPpO, o Xm) =7 1% Xy =] = 27TV < e

Definition 4.4. The functiong: {0, 1}™ — {0, 1} is calledbalancedif we have

Prig(Xe, ..., Xm) = (Y1, ..., )] = 27
forall (yr,..., ) € {0, 1}'.
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For balanced functions, we can prove the converse of Theorem 4.1.

Theorem 4.2. Ifthere exists a balancedalmost(m, |, k)-resilient functionthen there
exists an L%, k, m, m — ), wheres = /2!,

Proof. Fory € {0, 1}, let

C)/ é {(Xl’ ey Xm): (p(xl! LR ] Xm) = V}-
Sinceg is balanced|C, | = 2m-tf eachC, is an (e, k)-independent sample space,

then we automatically get a large set. For &mositionsi; < --- < i, for anyk-bit
stringa and for anyy < {0, 1}, let

L2 [{0X, . Xn): Xiy -+ Xy = @, (X0, - -, Xm) € Cy}-
Then, within the sample spack , we have

L L

Prxi, Xi, - - - Xi, = a] = m = omT 17)
From Definition 4.2, we get
27 —e < % <2 te. (18)
Hence, from (17) and (18), we obtain
IPrX, X, - X, = @) — 27 < % O

Finally, we can use the bound from Theorem 4.2 to obtain the following bound on
almost resilient functions.

Corollary 4.3. Suppose that there exists a balaneeadlmost(m, |, k)-resilient func-
tion. Let

14 g2k
T 21— 2%’

If sk < 1/2,then
I <m+klogé —log Z,

where

log(2m/(k — 1))
z= 1.
log((1—84)/(5 — &%)

Proof. From Corollary 3.2 we have™®' > 7 /8. O
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In summation, we have in this subsection established the relations between the notions
of almost independent sample spaces large sets of almost independent sample spaces and
almost resilient functions. This can be thought of as an “almost” version of the relations
between orthogonal arrays, large sets of orthogonal arrays and resilient functions. The
main motivation is that by considering “almost” versions we will be able to improve
certain parameters significantly, compared with the traditional case.

4.2. Constructions of-Almost Resilient Functions

In order to construct almost resilient functions, we first exhibit a construction of almost
independent sample spaces. It will then be extended to obtain a large set of almost
independent sample spaces, i.e., an almost resilient function.

Definition 4.5. An (¢, k)-independent sample spa8gis calledt-systematiéf |Sy,| =
2, and there exist positionsi; < --- < i¢ such that each-bit string occurs in these
positions for exactly onen-tuple in Sy,.

At-systematice, k)-independent sample space can be transformed int&an k, m, t)
by using the same technique as Theorem 3 of [31]. We have the following result.

Theorem 4.4. If there exists a t-systematie, k)-independent sample spacg, ¥hen
there exists a balancetialmost(m, m — t, k)-resilient functionwheres = ¢/2m-t-K,

Proof. By using the same technique asTheorem 3 of [31], we can obtain a large set of
(e, k, m, t)-independent sample spaces frortrsystematiae, k)-independent sample
spaceS, as follows. Without loss of generality, assume that the fifgbsitions inS;

run through all possible-bit strings. We then obtain™2! sample spaces, indexed by

o = (g, ...,0m) € {0, ™ by

CO(:ST'I+(0$Oa"'70aala"'7am7t)'
—_———
t

These sample spaces formlaB(e, k, m, t).
Then, from Theorem 4.1 &almost(m, m—t, k)-resilient function is obtained, where
§=g/2mt-k, O

We now present a summary of our constructiort-gfystematic(e, k)-independent
sample spaces. Our approach is similar to [18] (see also [24]), and depends on the Weil-
Carlitz—Uchiyama bound. In what follows, Tr denotes ttace function fromGF(2')
to GF(2).

Proposition 4.5(Weil-Carlitz—Uchiyama Bound [14]). Let f(x) = iD:1 fix € GF
(2YH[x] be a polynomial that is not expressible in the forx ¥ = g(x)? — g(x) + 6 for
any polynomial gx) € GF(2")[x] and for any9 € Fx. Then

()T < (D — V2

aeGF(2)
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Definition 4.6. A polynomialh(x) € GF(2)[x]is called a(2!, D)-polynomialif h has
degree at modd anda;, = O for all eveni, whereh = ZiDzoa.- xi. DefineH (2!, D, k) to

be a set of2!, D)-polynomials such that arly polynomials in the set are independent
overGF(2).

Observe that the conditicay; = O for alli guarantees thdt(x) is not expressible in
the form f (x) = g(x)? — g(x) + 6 for any polynomialg(x) overGF(2') andd € Fx.
Hence, Proposition 4.5 can be applied.

Forhi,, hi,, ..., h, € H(2, D, k) and for anyk elements, . .., ax € GF(2), define

i

.....

Proof. The proofis an application of Proposition 4.5. The dase 2 can be found in
[18] and the general case is proved similarly. O

Theorem 4.7. Suppose thag is a primitive element of G&'), and H(2!, D, k) is
chosen such that

(X, BX, B, ..., BX} S H(2', D, K.
Then there exists a t-systematic k)-independent sample spacg Bhere m= |H (2!,
D, k)| ande = (D — 1)/+/2t.

Proof. Let H(2!, D,k) = {hy, ..., hn}. Construct a sample spa&, as follows: a
binary stringX, = XiXz - - - Xm € Sy is specified by any € GF(2'), where theth bit
of X, isx = Tr(hi(y)).

Then from Lemma 4.6, for & bit string«,

IPHOXG, X, - X, = &) — 275 = [Ng (i, ..., hi )2 — 27K < (D — 1)/V2.

Therefore S, is an(e, k)-independent sample space, where (D — 1)/+/2".

Let 8 be a primitive element o6&F(2'). Thenx, gx, 82, ..., pi~1x are indepen-
dent overGF(2). Now, H (2!, D, k) was chosen such th&k, gx, 82x, ..., pi=1x} €
H (2, D, k).

It is a well-known fact that
Yy = (Tr(x), Tr(Bx), ..., Tr(B" %))

runs through{0, 1}! when x runs throughGF(2'). Hence, the sample space tis
systematic. O

In our approach, using Theorem 4.7, we need to construct a set of polynomials
H (2!, D, k) such that anyk of them are linearly independent ov&F(2). For this
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we can use linear error-correcting codes (see [20]). For a fixed (odd) dBgree can
express each polynomial as a linear combination of polynomials in the set

(X, BX, ..., B, 3, B3, B, L xP, BxP, L B IXPY.
The polynomials in this set are clearly independent @#¢2). Indexing the polynomials
in H(2!, D, k) ashy, hy, ..., h, we obtain a binary D’ x m matrix, whereD’ =
(D+1/2,
h1,1 hl,2 e h1,m
ho:1  ha2 - hym
htD’,l htD’,2 e htD’,m

whereh; (X) = hyix+hyi X+ - - - +hip; B71XP. Any k polynomials are independent
over GF(2) means that ank columns of the above matrix are linearly independent.
Hence the matrix corresponds to a parity check matrix ofrari [d] error correcting
code, a code of lengtm = |H (2!, D, k)|, dimensionm — | = tD’ and minimum
Hamming distancd = k + 1 [20].

In order to get d-systematic sample space, we have already chosen the polynomials
h: = x,h, = Bx, ..., hy = B=Ix. However, clearly, this is no restriction, since any
parity check matrix can be rewritten into such a form without changing the code param-
eters. Conversely, given such a code, we obtdisgstematic sample space, and hence
a balanced-almost(m, m — t, k)-resilient function, as follows.

Theorem 4.8. Suppose D= 2D’ — 1 and there is afim, m — tD’, k + 1] code Then
there exists a balancedalmost(m, m — t, k)-resilient function such that

,_(D-1vZ

2m—k
Proof. From Theorems 4.4 and 4.7. O

A suitable value ot could be 2™~1, We obtain the following corollary of Theo-
rem 4.8 by takind® = 3 andk = (t/2) — 2.

Corollary 4.9. Suppose there is gm, m — 4k — 8, k 4+ 1] code Then there exists a
balanced2 ™+ %+3-almost(m, m — 2k — 4, k)-resilient function

4.3. Examples and Comparison

Example 4.1(Numerical Comparison). In the first example we do a numerical com-
parison in the following way. Aim, |, k)-resilient function has probability2 on each
output. We allow our-almost(m, |, k)-resilient function to have probability at most
3/2-2"' on each output, i.es, = 2-'~1. Furthermore, we sdd = 3 in the construction
from the previous subsection and can thus use Corollary 4.9. Some numerical results are
given in Table 1.

We use tables of the best known binary linear codes to verify the existence of the
required codes in Corollary 4.9. The best possible parameters for binary linear codes can
be found in [10].
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Tablel. Maximumresiliencyfofm, |, k) resilientfunctions ang-almost resilient functions

withe = 27171,

Input bits Output bits Maximum known resiliency Resiliency for constructed
m | for linear resilient function g-almost resilient function
80 60 7 8
80 40 15 18
80 20 24 28

120 80 9 13
120 60 19 28
120 30 33 43
160 120 11 18
160 80 22 38
160 40 41 58
200 150 13 23
200 100 27 48
200 50 49 73

Example 4.2(Asymptotic Results on Resilient Functions).  This example demonstrates
a strictly better asymptotic behaviour foalmost(m, |, k)-resilient functions compared
with resilient functions{ = 0).

We consider a family ofm, m — t, k)-resilient functions whem — oo. Introduce
the notationr = t/m and« = k/m. We consider the maximum normalized resiliency
« as a function ot.

For resilient functionsg = 0), the best known construction is through linear codes.
Existence of arim, (1 — t)m, km)-resilient function is equivalent to the existence of
an [m, (1 — t)m, km + 1] linear code. We use the asymptotic form of the Varshamov—
Gilbert bound [20], which in this case states that there exist linear codes such that
(1 -1t) = 1 - h(x), whereh() is the binary entropy function. This brings us to the
conclusion that whem — oo, the maximum normalized resiliency that can be obtained
(through the best known methods) is

K= h_l(r), (19

whereh2() is the inverse of the binary entropy function, under the constkaiat0.5.
Consider now the same problem, but forsaalmost resilient function. The truly re-

silient function has probability 2™ on each output. In order to have a fair comparison,

we fix ¢ to be (arbitrarily) small compared with this value, eg.< 2~M . 27 for

some constant. Using the proposed construction, Bt = t—'m. The requirement of

an[m, (1—tD")m, km+1] linear code is then trivially fulfilled for any. This leaves us

with the condition for asmall. Fors < 2-(M-Y.2-¢we musthave'?¢(2D’'—2) < 22,

Considering the asymptotic form of this expression we can get a maximum normalized

resiliency of

Kk=1/2, (20

with ¢ < 2=(M=Y . 2-¢ for any fixedc.
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Comparing with (19), we have a strictly better asymptotic behaviour for af
O<1t<l1.

Example 4.3(Constructing Multiple A-Codes). The constructive results of this sec-
tion can also be used to construct multiglecodes. Using the constructed almost inde-
pendent sample space from the previous subsection, one can verify that there exists an
e-ASU (qM+1; qmP-DB/k=Lk/P) _ 1 ¢, k) hash family such that

po 1, (D-DHA"+VA"—2)
q Q- (D-1yg" -

Example 4.4(Implementation Aspects). We make aremark onimplementirig, &n-
almost resilient function. Again, lét (2!, D, k) = {hy, ..., hn}. The proposed con-
struction is very simple to implement. Following the construction, one should take the
first t bits of the inputx and solve a set of linear equations(Ar = x, Tr(fz) =

Xo, ..., Tr(871z) = x to obtainz € Fx. However, it is easy to see that this can be
simplified and that one can actually just put the firsits of x to bez. Then generate

the remaining sequence, callgt S = (Tr(hi11(2)), Tr(hiy2(2)), ..., Tr(hm(2))). The

output is finallyp (X, ..., Xm) = S® (X1, Xt42s - - - » Xm)-

In conclusion, a compact description of the almost resilient fungtitmas follows.
Split the inputx in two parts,x = (z, w), wherez = (xy,...,%) € GF(2") and
w = (Xt11, - - - » Xm). The functionp(z, w) is defined as

@z, w) = (Tr(ht11(2), Tr(he2(2), ..., Tr(hm(2))) S w.

4.4. Almost Correlation Immune Functions

Our results on almost resilient functions can easily be generalized to almost correlation
immune functions. We begin with a definition.

Definition 4.7. ¢ is called an(m, |, k)-correlation immune functioif

Prip(xa, ... Xm)=(Y1, ... Y1) | XiXi, - Xie=a] =Prlo(xq, ..., Xm) = (Y1, ..., W]

for anyk positionsi; < - - - < iy, for anyk-bit stringe and for any(ys, ..., yi) € {0, 1}',
where the values; (j ¢ {i1, ..., ix}) are chosen independently at random.

We introduce a generalization, which we catilmost correlation immune functions.
Definition 4.8. We say thap is aneg-almost(m, I, k)-correlation immune functioif

[Prio(Xg, ..., Xm) = (Y1, ---» W) | Xiy Xi, -+« X, = ] = Prp(Xg, ..., Xm)
Y, ... W]l <e¢

for anyk positiond; < - - - < iy, for anyk-bit stringe and for any(ys, ..., yi) € {0, 1}',
where the values; (j ¢ {i1, ..., ix}) are chosen independently at random.
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Definition 4.9. A nonuniform large set ofe, k, m, Ty, ..., Ta)-independent sample
spaceswhich we denote ablLS(e, k, m, Ty, ..., Ta), is a set of 2 pairwise disjoint
(g, k)-independent sample spaces, of siEgs. ., Ta, respectively, such that their union
contains all 2' binary vectors of lengtm.

Theorem 4.10. Ifthere existsan NL@, k, m, Ty, ..., Ta), thenthere exists&almost
(m, I, k)-correlation immune functigrwhere
T
(S = miaXW.

Proof. There are 2 (e, k)-independent sample spaces in the set. Name(dhle)-
independent sample spac@s y < {0, 1}'. Then define a functiop: {0, 1}™ — {0, 1}!
by the rule

O(X1, ..., Xm) =¥ ifand only if (X1,...,%m) € C,.

Then
Ty
Pr[(p(X]_, e Xm) = )/] = 2—m

For anyk positionsi; < --- < iy, for anyk-bit stringe and for anyy < {0, 1}, let

A
L= [{(Xe, ..oy Xm)? Xiy == Xi, = &, (X1, ..., Xm) € C, }|.
Then
L
Pr[W(XL LRI Xm) =Y | XI]_XIZ o .Xik = a] = W' (21)

From Definition 1.1, we have
—k L —k
27— < — <2 %+e¢. (22
TV
Hence, from (21) and (22), we obtain
eT,
[Prio(X1, ..., Xm) = ¥ | XiyXi, - -+ Xi, = o] — Prlp(Xe, ..., Xm) = y]I < ok
We now prove a converse to Theorem 4.10.

Theorem 4.11. If there exists are-almost(m, |, k)-correlation immune functignp,
then there exist integersI..., To and an NL$S, k, m, Ty, ..., T») in which

Eszk
§ = max
i Ti

Proof. Fory € {0, 1}, let

C, 2 {(Xg, ...y Xm): (X1, ...y Xm) = ¥}
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and let
T, =IC,|.

If eachC, is an (e, k)-independent sample space, then we automatically get a (non-
uniform) large set of sample spaces. For &rgositionsi; < --- < i, for anyk-bit
stringe and for anyy € {0, 1}, let

L2 (X, oo Xn)E Xy oo X, = @, (X1, .. Xm) € C, ).

Then, within the sample spa€k,, we have

Prix, X, - -- X, = a] = ﬁ = TLJ/ (23
From Definition 4.8 we get
;—;—85%52—;4-8. 29
Hence, from (23) and (24), we obtain
m—k
PO, X, -+ X, = @) = 27¢] < O

T

14

5. Indistinguishability and Almost k-Wise Independence

Indistinguishability of random variables plays an important role in cryptography. In this
section we study the indistinguishability of almdstvise independent sample spaces
from truly random sample spaces.

We consider a computationally unbounded distinguisiewhich is limited tok
queries to an oracl®. Its aim is to distinguish if the oract@ implements a truly random
function or a pseudorandom function. First, we considemdaptivedistinguisher, i.e.,

a distinguisher in which each query may depend on the answers to the previous queries.

Without loss of generality, we can represent a pseudorandom functior(&ls em n)
hash familyF; of functions fromA to B. A truly random function corresponds to the
(n™; m, n) hash familyFq consisting of all functions fromi\ to B. Theadvantageof the
distinguisherD is defined to be

AdVP (Fy) = |Pr[pY=F = 1] — Pr[p9=F0 = 1].

We have the following theorem.

Theorem 5.1. Let F, be an(N; m, n) hash family Suppose that
maxAdv’ (F;) < a,

where the maximum is taken over all adaptive distinguistierghich are limited to k
oracle queriesThen F is (2a, k)-independentConverselyif F; is (g, k)-independent
then

maxAdv® (Fy) < nKe/2.
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Proof. Vaudenay showed in [32] that the following formula holds:

maxAd\P (Fy)
_1 N — i —k
—zrg?XZy:H;SIXZy:--~mx§x§|Pr<f<x.>—y.,lsnsk)—n . (25)

Then our assumption is written as
1 N — s H _nk
§@?x%:nl?x;mnlkax;|Pr(f(x.)_yl,lgl§k) n X < a.

From the above equation we have, for all distigtxo,...,Xx € A and for all
Vi, ..., Yk € B, that

IPr(f(x)=y,1<i<k —n¥<2a.

This implies thatF; is (2«, k)-independent.
Conversely, suppose that

max max [Pr(f(x)=y,1<i <k —n¥ <e.
Xiseeey Xk Y1,---5 Yk

Then we obtain that
maxAdvP (F1) < nke/2
from (25). O

A particular security property of block ciphers is also related to alrkasise inde-
pendence, as follows. Lé#; denote the set of round functions of a Feistel type block
cipher. A keyK has the effect of selecting one of the functiohg F;. Vaudenay [32]
defined the concept d&-wise decorrelation biasf F1, which is denoted bpecF(F;).

In our terminology, this quantity can be defined as

DecF(F;) = max yzy IPrf(x)=yi,1<i <k —n7K.
Lyeees k

Vaudenay considered several constructions of hash fantiesith small values of
DecH(F1) which are suitable for block ciphers.
We prove the following corollary of Theorem 5.1.

Corollary 5.2. If Fyis (¢, k)-independenthen
DecF(F1) < ne/2.
Proof. Note that

DecF(F1) < maxAd\P (Fy)

follows from (25). Then we see from Theorem 5.1 th&gifis (¢, k)-independent, then

DecF(F1) < ne/2. O
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Conversely, in a similar manner as in the proof of Theorem 5.1, it is straightforward
to show that if

DecF(Fy) < a,

thenF is (2, k)-independent.

6. Conclusion

Inthis paper we have presented several applications of akneiste independent sample
spaces in cryptology. In particular, we have found significantly improved constructions
for multiple authentication codes by this approach.

The themes in this paper have recently been further developed be Bierbrauer and
Schellwat [9]. We hope that almostwise independent sample spaces will find further
cryptologic applications in the future.
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