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Abstract. In this paper we look in detail at the curves which arise in the method of 
Galbraith and Smart for producing curves in the Weil restriction of an elliptic curve over 
a finite field of characteristic 2 of composite degree. We explain how this method can be 
used to construct hyperelliptic cryptosystems which could be as secure as cryptosystems 
based on the original elliptic curve. On the other hand, we show that the same technique 
may provide a way of attacking the original elliptic curve cryptosystem using recent 
advances in the study of the discrete logarithm problem on hyperelliptic curves. 

We examine the resulting higher genus curves in some detail and propose an additional 
check on elliptic curve systems defined over fields of characteristic 2 so as to make them 
immune from the methods in this paper. 
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1. Introduct ion 

In  th is  p a p e r  w e  a d d r e s s  t w o  p r o b l e m s :  h o w  to c o n s t r u c t  h y p e r e l l i p t i c  c r y p t o s y s t e m s  

a n d  h o w  to a t t a c k  e l l ip t i c  c u r v e  c r y p t o s y s t e m s  d e f i n e d  o v e r  f ie lds  o f  c o m p o s i t e  d e g r e e  

o v e r  F2.  
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As explained in [17], there is currently no practical method which generates crypto- 
graphically secure Jacobians of  hyperelliptic curves that have no special added structure. 
We present a method that will produce a hyperelliptic Jacobian related to a "random" 
elliptic curve, which is secure assuming one believes the discrete logarithm problem on 
the elliptic curve is itself hard. 

For the second problem we turn our construction of  hyperelliptic cryptosystems on 
its head and argue that this provides evidence for the weakness of  the original elliptic 
curve discrete logarithm problem. We stress that this does not provide evidence for the 
weakness of  elliptic curve systems in general, but only those which are defined over the 
special finite fields considered in this paper. These fields are extensions of  composite 
degree over the field ~'2. 

Let 

E: y2  + X Y  = X 3 + o lX  2 q- t~ 

denote an elliptic curve defined over a field of  characteristic 2, which is not defined over 
a proper subfield of K = ~q,. We let m denote an integer, which is defined in Lemma 6, 
that satisfies 1 < m < n. We assume that our elliptic curve satisfies one of  the following 
conditions: 

either n is odd, 
(t) ~orm=n, 

[ or Trlc/F~ (or) = O. 

We shall see that if n is even, then only approximately 1/(2q) of  all elliptic curves over 
K are eliminated by the above condition. We shall prove the following: 

Theorem 1. Let E (IFq, ) denote an elliptic curve satisfying condition (?). Let # E (]Fq, ) = 
ph,  where p is a large prime. Assuming the map {b defined below does not have a kernel 
divisible by p, one can solve the discrete logarithm problem in the p-cyclic subgroup o f  
E(Fq,)  in time O(q 2+~) where the complexity estimate holds f o r  a f ixed value o f  n >_ 4 
as q --+ o~. 

The complexity in the theorem should be compared with the time estimate of  0 (qn/2) 
for the best general purpose algorithm, namely Pollard's rho method. We conjecture that 
the condition on the kernel of  the map 4} is true in all cryptographically interesting cases. 

The implied constant in the O(.) notation of  the theorem contains a very bad depen- 
dence on n, o f  the order of  0 ( 2  n !). Hence, for certain values of  n the crossover point 
between the method of the theorem and Pollard's rho method may be at higher values 
of  q than are used in practical elliptic curve cryptosystems. However, we exhibit ex- 
perimental evidence that for n = 4 and around 1/q of the elliptic curves defined over 
~'q,, the method of  the above theorem is better than Pollard rho for values of  q used in 
practice. For other elliptic curves over ]Fq, our method is only asymptotically better than 
Pollard rho, and further practical experiments need to be carried out to deduce whether 
the crossover point is at a size of  q which is of  cryptographic interest. 

Our methods are based on the idea of  Well descent on elliptic curves. Hence, much of 
the following is an extension of  the work begun by Frey in [7] and continued in [9], to 
which we refer the reader for further details. The details of  elliptic curve cryptosystems 
which we shall require can be found in [3]. 
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The paper is organized as follows. In Section 2 we give some simple examples of  curves 
defined over a special type of  field extension, for which hand calculation is particularly 
simple. In Section 3 we give proofs that the properties observed in the hand calculations 
hold in general. In addition, we construct an explicit group homomorphism 

(o: E(~'q,) ----> Cl~  

where Cl~  is the degree 0 divisor class group of  a hyperelliptic function field over 
]Fq. As we stated earlier, if the map r maps the cryptographically interesting subgroup 
of  E(~'q,,) to  the zero element in Cl~ then our method will fail to work. However, 
since it is highly unlikely that the kernel of  r will contain almost the whole of  the 
group E (~'q,), we expect that our method will work in all cryptographically interesting 
examples. 

In Section 4 we show how our method of  producing curves in the Weil restriction can 
be used to construct hyperelliptic cryptosystems, whilst in Section 5 we explain how one 
could possibly attack the underlying elliptic curve system using the Weil restriction. In 
Section 6 we report on an experiment using the index calculus algorithm of  Gaudry on 
one of the curves of  genus 4 produced by our method; this is used to help decide which 
genera should be used in practice for constructing cryptographic systems and which 
elliptic curve systems are made weaker by our methods. Finally, in Section 7, we turn 
our attention to other types of finite fields and discuss why the ideas of  this paper are 
unlikely to work in other cases. In particular, for a large proportion of  elliptic curves 
defined over F2,, where p is prime, we show that the methods of this paper give no 
decrease in the security of the resulting cryptosystem. 

2. Example Curves in the Weil Restriction 

Let k = Fq denote some finite field of  characteristic 2, and let n > 2 denote an integer. In 
practice we are thinking of  the situation where n is quite small and q is large enough so 
that q" > 2 I6~ Let K denote the field extension ~'q,, with k-basis {~0, 7tl . . . . .  ~n-1 }- 

In this section we consider elliptic curves E over K, given by the equation 

y2 + X Y  = X 3 + fl, 

where/3 6 K. Notice that for such curves condition (t) is satisfied. We a s s u m e  E(]Fq,,) 
contains a subgroup of  prime order p with p .~ qn. 

We set 

fl = boT."o + b t fq  + . . .  + bn-LC',~-t, 

X = xor +x~7"l + " "  +x, . , -I~, ,- t ,  

Y = Y0~P0 + ylVtl + "'" + Yn-l~n-t ,  

where bi E k are given and xi, yi E k are variables. Substituting these equations into 
the equation for our elliptic curve, and equating coefficients of Ci, we obtain an abelian 
variety A defined over k, of dimension n, the group law on A being given by the group 
law on E ( K ) .  The variety A is called the Weil restriction, and the above process is called 
Weil descent. 
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Since A is isomorphic to E ( K )  as a group, the variety A will contain an irreducible 
subvariety B (we do not exclude B = A) with group order divisible by p.  In curves of  
cryptographic interest, where p ,~ qn, this subvariety will either equal the whole of  A or 
have dimension at least n - 1, which can be seen by simple cardinality arguments. The 
variety B is the part of  A in which our discrete logarithm problem is defined. We wish to 
find a curve C in A whose Jacobian contains a subvariety isogenous to B. Recall  that B 
is the part of  A which is interesting for cryptographic applications. Hence, we must  have 
g = dim Jac(C) > dim B where dim B as stated above will be either n or n - 1. For  the 
applications we would like the genus of  C to be linear in n, but it is highly unlikely such 
a curve exists at all. 

For  the rest of  this section we look at a special set of  finite fields for which it is 
relatively easy to perform calculations. Our aim is to fix the ideas and provide a rich 
set of  examples for the reader and for later in the paper. In the next section we show 
that the remarkable properties we observe in this section hold in general for fields of  
characteristic 2. The method used is a natural extension of  the one presented in [9]. 

We specialize to those fields K for which we can take ~i  = 0 21 in our basis of  K over 
k where 0 + 0 2 + 0 4 + -- �9 + 0 2"-~ = 1. The reason for choosing such a basis is so that 
the curves in the Weil restriction below have "small"  degree and are easy to write down. 
One reason for this is that squaring an element represented by such a basis is s imply a 
cyclic shift of  the coefficients since 

02" = (02"-1) 2 = (1 + 0 + 02 + ' ' -  + 02"-2) 2 

= 1 + 0 2 + 0 4 + ' ' ' + 0 2 " - '  = 0 ,  

However, such a basis does not always exist, since we require the existence of  an irre- 
ducible factor of  degree n of the polynomial  h(x) = x 2"-~ + - - -  + x 4 + x z + x + 1 over 
the field k. Hence, we clearly require that the degree of  k over F2 must be coprime to n, 
which we assume to be the case for the rest of  this section. In addition, for a root 0 of 
such an irreducible factor we require that the set {0, 0 2, 0 4 . . . . .  0 2"-' } forms a basis of 
K over k. 

Hence, for this section, we have restricted the choice of  q and n. For  n = 2, we can 
always use the element defined by 0 2 + 0 + 1 = 0 whilst for n = 3 we can always use the 
element defined by 0 3 + 0 2 + 1 = 0. For  certain higher values of  n we can obtain many 
irreducible factors of  h (x) of  degree n over F2, and by the coprimali ty of  the degree of  k 
to n we see that such factors will be irreducible over k. For example, if  n + 1 is a prime 
and q is a generator of  the multiplicative group of  the field Fn+l,  then we can take 0 as 
a generator of  K over k, where 0 n + 0 n-I  + - - .  + 0 + 1 = 0. 

To produce a curve of low genus in A one could produce a curve of  low degree, and 
hence of  hopefully low genus. Such a curve of  low degree can be obtained by intersecting 
A with the hyperplanes given by x0 = xl . . . . .  xn- t  = x. Hence, we look at the 
subvariety defined by restricting X to lie in k. We obtain a curve s defined by the 
equations 

[y2_ 1 +xyo  + x  3 + b o  = 0, 

~: ] y~ + xyl.+ x 3 + bi = O, 

I 
[ y2 2 + Xyn-I + X  3 + bn-I = O. 
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That we can obtain such sparse equations is due to our choice of  basis of  K over k. On 
elimination of  variables we produce a curve in x and y = y0 of  the form 

C: 
n - I  

y 2~ + x 2 ~ - l y  -q- ~ X  2~+2i + g(x), 
i=0 

where g(x)  is a polynomial, depending on b0 . . . . .  bn-1, of degree less than or equal to 
2 ~. The polynomial g(x) is given by the formula: 

2n_i 2 n 2n-~+l 
g(x) = b i x - , 

i=l 

where we make the identification bn = b0. The Jacobians of the irreducible components 
of  the curve C are isogenous to abelian varieties which contain subvarieties of  A, by the 
arguments of  Section 2 of [9]. In examples of  cryptographic interest the subvariety B of  
A has order divisible by a large prime p, hence the degree of  the isogeny is likely to be 
coprime to p.  Therefore, we can expect that the Jacobians actually contain a subgroup 
isomorphic to the subgroup of  B of  order p. 

We give the following examples: 

n = 2  

C2: y4 + x3y + X 6 ..1_ X 5 -'t'- box 2 + b 2 -= O. 

If  the original elliptic curve is defined over the base field, i.e. b0 = bl, then the curve 
C has two irreducible components, each being an elliptic curve. In all other cases it is 
irreducible. Substituting a large number of  elements for the parameters bo and bl into 
the equation for C2, we found that experimentally the genus of  this curve always seems 
tobe  2. 

n = 3  

C3: y8 ._1_ x7y -t- x 12 + x 10 --1- x 9 -q- bo X6 + b2x 4 -I- b 4 = O. 

The curve is reducible when bo = bl = b2, in other words when the original elliptic curve 
is defined over the base field k. In all other cases it is irreducible, and experimentally the 
genus of  this curve always seems to be 3 or 4. 

n----4 

C 4 : y l 6  _}_ x l 5 y  "t- x 24 -t- x 20 n t- x 18 -t- x 17 -t- b0 x14 q- b 2 x  12 -Jr b4x  8 + b~ = O. 

Experimentally, when the curve is irreducible, the genus of  this curve always seems to 
be at most 8. This curve is reducible when b3 -~ b0 + bl + b2, and when it is reducible, 
one of the components is given by 

C4a: y8 + x4y4 .q,_ x6y2 _}_ x7y '1- x 12 -t'- x 9 -t- box 6 + (b~ + b2)x 4 "t- b 4 = O. 

When C4a is irreducible it experimentally always has genus at most 4. 
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Note, in all the cases when the curve C was irreducible, it experimentally had genus 
equal to 2 n-1 or 2 n- 1 _ I. In addition, we noticed that the irreducible components were 
always hyperelliptic. In the next section we prove that these remarkable properties hold 
in general for curves satisfying condition (I"). 

3. Hyperellipticity and Genus of Curves in the Weil Restriction 

In this section we show that the observations of  the previous section about the genus, 
irreducibility and hyperellipticity of  the curves s hold in general. In addition, we show 
the existence of  a computable mapping from E(]Fq.) to the divisor class group of  a 
hyperelliptic curve. It is this mapping which translates the hard elliptic curve discrete 
logarithm problem into a potentially easier hyperelliptic discrete logarithm problem. 

3.1. The Curve in the Weil Restriction 

We now let K denote an arbitrary degree n extension of  a finite field k of characteristic 2 
of  q elements. We make no assumptions about the existence of  special types of  bases of  
K over k as we did in the previous section. In this section, to keep track of  which fields 
we are considering, all fixed elements of  K are denoted by Greek letters. 

We take an elliptic curve 

E: y2 + x Y  = X 3 + etX 2 + fl, 

where ce, f l e  K,/3 # 0. We do not assume condition (?) unless explicitly stated. 
We can form the Weil restriction as in the previous section by substituting the coor- 

dinate representations of X and Y and expanding with respect to any given basis of  K 
over k, but for simplicity we assume that the sum of  the basis elements is I. We intersect 
the resulting abelian variety A with the hyperplanes which mark out the subvariety of 
values of  X which lie in k. The resulting subvariety of  A will be a curve defined over k, 
in (n + 1)-dimensional space, which we denote by ~, as in the previous section. 

We wish to study the curves ~ geometrically, so we consider ~ over the algebraic 
closure of  k. In fact, we only need to go to the extension K. 

L e m m a  2. By a linear change o f  variables Yi ~ Wi, defined over K,  we find that ~ is 
birationally equivalent to the curve ~ ,  defined over K,  given by 

w 2 + xwo + x 3 + ~ox 2 +/~0 = 0, 

~:  

2 Jr XU)n-I + X 3 + Oin-lX 2 "~- 13n-1 = O, Wn-  1 

where we have etj = aJ (ot) and flj = aJ (fl), with a the Frobenius automorphism o f  K 

over k. 
We can extend the Frobenius automorphism cr to K[x,  wo . . . . .  w.-1] via a ( x )  = x, 

~ (wi )  = wi+l for  O <_ i < n - 1 and a ( w . _ l )  = wo. We obtain ~(Yi) = yi f o r  all 
O < i < n - 1 .  
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Proof. Let ~0 . . . . .  ~ , - a  be a basis of  K over k with ~ ~i = 1. It is convenient to 
prove the Frobenius automorphism statement first. That cr can be extended as stated is 
obvious. Next set T = (aJ(~i))o<_i,j<_n-i ~ K n• and notice that T is invertible since 
T T t = (Trx /k(~i~j ) )  is invertible because finite field extensions are separable. The 
linear change of  variables of the lemma is then (wo . . . . .  w~_ 1) = (Yo . . . . .  Yn- 1 ) T. 

Let ti denote the ith column of  T, for 0 < i < n - 1. The Yi are expressed as K-  
linear combinations of the wi via (Y0 . . . . .  Y~-l) - ~  (tOO . . . . .  W n _ l ) T  -1 . We apply cr to 
(wo . . . . .  wn-1) = (Yo . . . . .  y~-I)T and obtain 

(wl . . . . .  wn-1, w0) = (o'(y0) . . . . .  cr(yn-l))(q . . . . .  tn-1, to) 

= (Y0 . . . . .  y~-l)(tt  . . . . .  tn-l, to). 

The second equation holds because of  the relation of  the yi and wi. As the matrix 
(tl . . . . .  t~-l, to) is invertible we conclude a(yi)  = yi. 

We are left to prove the birational equivalence of  s and ~ .  The equations of  ff are 
obtained by expanding 

Y - - - - - Z Y i ~ i ,  o ~ = Z a i ~ i ,  f l = E b i ~ i  and X = x  

in E, and equating the resulting coefficients of  the ~Pi. We obtain f/ ~ k[x, yo, . . . .  yn-1] 
such that 

n--I 
1132 -'1- XW0 -'}- X3 + ~0 Xz "Jr" tO -~- E fi(x, Yo . . . . .  Y / ~ - l ) r  

i=0 

The corresponding equations for r are 

f0(x, Y0 . . . . .  Y,-I)  = 0, 
r 

[ fn - l ( x ,  Yo . . . .  y , - l )  = O. 

We denote the left-hand sides of  ~ by gi E K [ x ,  to o . . . . .  wn -1] .  Upon applying T 
columnwise to the equations of r we then see 

Yo . . . . .  Yn-l))O<i<_n-lT = ( Z i  ~ ( x ,  YO . . . . .  Yn-t)o'J(~i))o<_j<n_ 1 (fi(x, 

= ( crj ( Z i  f i (x ,  Yo . . . . .  yn-l)~i))o~j<_n_l 

= + + + + 

= (gi(x, wo . . . . .  W,-l))0_<i_<,-1, 

which shows that ~ is linearly transformed into ~ by T. [] 

Let Fi be the splitting field of  the ith equation defining ~ over K (x). 
We wish to form the compositum F = / 7 o . . .  Fn-I over K(x) .  Generally, a composi- 

turn of  field extensions Li / K can only be formed meaningfully when there is a covering 
field k such that K and all Li  are embedded into/(7. If  the L i / K  are Galois all possible 
embeddings of  K and Li into any k will give a K-isomorphic compositum. In this case 
we say that the compositum can be formed without ambiguity. 
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L e m m a  3. We can form the compositum F = Fo . . . Fn-1 over K (x) without ambi- 
guity. Let  m ~ Z such that IF  : K(x)]  = 2".  Viewed over K the curve ~ has 2 n-m 

irreducible reduced components, each having funct ion f ield K-isomorphic to F. 

Proof, We can form F without ambiguity because the extensions F i / K ( x )  are all 
quadratic, hence Galois over K (x). More specifically, in order to generate F over K (x) 
we can choose a suitable subset of  m equations of  the equations defining the curve ~ ,  
such that adjoining tbt,, for 1 < i < m, to K ( x )  gives F,  with tbl, a root of  the left-hand 
side of  the ith such equation. The remaining n - m equations of  ~ will each have two 
solutions ~vj and tb~j + x in F.  

Consider the homomorphism 

r K[x ,  wo . . . . .  wn-l]  ~ K[x ,  r . . . . .  ~bn-l] ___ F. 

The kernel I of  this homomorphism is a prime ideal of  dimension 1, since F is a field of  
transcendence degree 1 over K being generated by x, tb0 . . . . .  ~bn_ 1 over K. This prime 
ideal contains the left-hand sides of  ~ by construction of  F.  Therefore, I defines an 
irreducible reduced component of  ~ having function field K-isomorphic to F.  

The statement about the number of  these components follows from the possible choices 
of  ~vj or Yovj + x in the definition of  the homomorphism. This can be seen in detail as 
follows: Assume I were contained in the kernel J of  a homomorphism ~ as above which 
maps woj to tb~j + x .  There are f ,  g ~ K[x ,  wo . . . . .  Wm--I] such that ~b(g), ~ ( g )  ~ 0 
and tbvj = dp(f)/dp(g) = @(f ) /~p(g) .  Then gwvj + f ~ 1 c J and g(Wvj -']-X) § f ~ J ,  
hence gx  ~ J andx 6 J because ~p(g) # 0 and J is prime. This is clearly acontradiction 
as x is not mapped to zero by ~ .  [] 

3.2. Artin-Schreier  Properties 

If  we multiply the equations defining ~ by x -z,  substitute si = w i / x  + 3 / / 2 / x  and 
z = 1 /x ,  we see that another model for our curve ~ is 

[ s~ + so + z -~ + ~o + 3~/2z = O, 
~: 

Is?,_, + s,,_, + z - '  + + = o. 

The advantage of  this model is that we can apply the Artin-Schreier theory as outlined 
on pp. 22-24  of  [2], pp. 275-281 of  [14] and p. 115 of  [ 18]. We use the following special 
version of  Theorem 23.3 on p. 279 of  [14]: 

Theorem 4. Let  p be a prime number, let go (x) : x p - x be the Art in-Schreier  

operator, let K be a field o f  characteristic p and let ~[ be a f ixed separable closure 
o f  K.  For every additive subgroup A < K + with Ko (K)  c A C K there is a f ie ld 
L = K ( ~ - I ( A ) )  with K C L c k obtained by adjoining all roots o fa l lpo lynomia l s  

x p - x - d f o r d  E A in ~[ to K.  Given this, the map 

A ~ L = K ( ~ - I ( A ) )  



Constructive and Destructive Facets of Weil Descent on Ell ipt ic Curves 27 

defines a 1-1 correspondence between such additive subgroups A and abelian extensions 
L / K in K o f  exponent p. 

Before giving the result we state the following lemma which will be used repeatedly 
in what follows. 

L e m m a  5. Any sum of  an even number o f  the aj is o f  the form v 2 + v with a suitable 

v ~ ~'2(00. 

Proof.  For f (t) = ~~i di ti ~ F2[t] we define f (t)~ = ~-.i di ~2' for all e ~ K,  thereby 
turning the additive group K + of  K into an IF2 [t ]-module. The required statement is then 
reformulated as follows: For f ( t )  ~ ~2[t] with f ( 1 )  = 0 there is a suitable v ~ ~2(a)  
such that f ( t )o t  = (t + 1)v (remember that every c 9 is of the form a2').  However, this is 
now easily seen to be true. Namely, f ( t )  is divisible by t + 1 and v can thus be chosen 
to be f ( t ) / ( t  + 1)~. [] 

L e m m a  6. For m as in Lemma 3 we have the equality 

m = dimF2(SpanF_,{(1, fld/2) . . . . .  (1, f l ~ ) } ) .  (1) 

The field K is the exact constant field o f f  (i.e. K is algebraically closed in F)  and F 
is the compositum of  the first m fields Fi over K (z), i.e. F = Fo . " . F,~-1. 

The Galois group o f F / K  ( z ) is isomorphic to ( Z / 2 Z )  m . The action o f t  ~ Gal ( F / K ( z ) ) 
is given by r(si)  = si or r(gi)  = si + 1, where si is a root o f  the left-hand side o f  the ith 
equation o f ~  in F , f o r  0 < i < n - I. 

Proof .  Consider  the operator go (x) = x 2 + x and the additive group (or IF2-module) 

,~i/2 i/2 
A0 = Span~2{z - l  + do + Po z . . . . .  z -~ + c~n-1 + ~n-iz}- 

We further define A = A o + go(K(z)).  With this we have F = K ( z ) ( g o - t ( A ) )  = 
K (z)(go - t  (Ao))  and 

m = dim~2(A/go(K(z)))  = dim~2(A0/Ao f~ ~ (K(z) ) ) ,  

where the first equality holds according to Theorem 4 and the second equality holds 
according to the first isomorphism theorem for groups. 

We have A o fq go(K(z)) = Ao N go (K)  because applying go to nonconstant functions 
in K (z) would necessarily involve quadratic terms in z which are not to be found in 

t/2 1 1/2 A o. We abbreviate U = SpanF2{(1,/~o ) . . . . .  ( ,/3~_t) }. Expanding the elements in 
A 0 into vectors in K 2 by taking the coefficients of  z -  t and z gives a surjective linear map 
A o --+ U. Its kemel  is Ao N K. However, every element of  the kernel must be a sum of  
an even number of the ~j because otherwise the z - l  would not cancel. From Lemma 5 
we conclude that A o A K = A 0 N go (K) ,  and using A o A go (K)  = A 0 fq go (K(z) ) ,  we 
obtain A o / A  o N go (K(z ) )  .-~ U. The formula for m is thereby verified. 

In order to prove that K is the exact constant field of  F we have to show that A (q K c 
go(K) (remember F = K(Z)(go-I(A))) ,  However, again every u ~ A N K is congruent 
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to a sum of  an even number of  the ~j modulo go(K). Lemma 5 gives u ~ go(K) and K 
is hence algebraical ly closed in F.  

The statement about the compositum is seen as follows: The first m terms in the 
definition of  A0 constitute a basis of  the IF2-vector space A 0. This is due to the property 
that if  the i th term is dependent on the previous j t h  terms for 0 < j < i - 1, then the 
i + 1, i + 2 . . . .  terms would be as well, because they arise by applying a to the i th term. 
Hence, F is obtained by adjoining roots of  the first m left-hand sides of  ~: to K (z) from 
which the statement follows. 

From Theorem 4 and [ F  : K(z)]  = 2" we obtain Gal (F /K(z ) )  ~ ( Z / 2 Z )  m. The 
action o f t  6 Gal (F /K( z ) )  is as stated because r fixes all z -1 +~i  +3il/2z by definition 

and hence has to map roots of  s~ + si + z -I  + ~i + 3ill2z to themselves. [] 

3.3. Hyperellipticity and Genus 

Adding the 0th equation to the ith equation of  ~ for i = 1 . . . . .  m - 1 and substituting 
rr ti for SO + si, gi for d0 + c~i and ~i for v0 + fli t12 we obtain 

t z + t i + ~ i z + y i = O ,  i = 1  . . . . .  m - - 1 .  (2) 

These equations define extensions Li of  K (z) such that F = FoL with L = L 1 " '"  L, ,_l  
the composi tum of  the Li over K (z). The field L is crucial to establishing the hyperel-  
lipticity, since it defines a rational svbfield of  index 2, as we now show. 

L e m m a  7. The field L is an extension field of  degree 2 m-I of  K (z). It is a rational 
ra--l function field L = K (c) having a generator c such that z = X-I + Y~i=0 ~'ic2' with 

)~i E K and ~.o, )~m-1 ~ O. 

Proof .  The  extens ion field statement fo l l ows  from 2[L : K ( z ) ]  = [F  : L][L : K ( z ) ]  = 

[ F  : K(z) ]  = 2" .  
We now apply inductively some further transformations to (2). We wish to determine 

a change of  variables so that we obtain equations of  the form 

t 2 + t i + S i t i _ l + y i = O ,  i = l  . . . . .  m - l ,  (3) 

Where to = z. 
We take the first equation of  (2) (i = 1) to be the first equation of  (3). Now suppose, 

after already having performed some transformations (with ti, Yi and ~i substituted 
properly),  for some j e [2 . . . . .  m - 1], we are given equations 

t2 q-ti-+-~iti_l -t- yi = O, 

tzi + ti + 6iz + Yi = 0, 

i = 1  . . . . .  j - l ,  

i = j  . . . . .  m - l ,  

defining the extension L / K ( z )  as well. Al l  left-hand sides of  these equations must be 
irreducible due to the choice ofm and hence we must have ~i ~ 0, since K is algebraical ly 
closed in F ,  by Lemma 6. Because of  this also being true for the next intermediate 6i, 
we can carry out the following transformations: 
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By substituting tj + (Sj/6t)l/2tt for tj and using the above equation with i = 1 we 
obtain 

( ( ~ j  x~ 1/2 ~j)  ~j 
t 2 + t j +  \ \ ~ l , ]  +~1  t I + ~ I Y t + y J = O '  

wherein we write 6j for the coefficient of h and D for the constant term. Next, we use 
the equation for i = 2 to eliminate tl in the same way as was done with z = to, and we 
repeat this for t2, t3 . . . . .  t j-2;  we eventually arrive at 

t f  + tj + ajtj_l + yj = O, 

as desired. By induction we go on until j = m. 
Next, by expressing z = (t~ + tl + Yt) /31, tl = (t~ + te + Y2) /~2, and so on, we obtain 

rn--I 
z = ~ - l  + )-~i=0 ~i cz' with c = tin-1 and suitable )~i 6 K. Since L / K ( z )  is separable 
and [L : K(z)]  = 2 m-l ,  we finally see that L0, Lm-1 r 0. [] 

To estimate the genus of  our function field we use the following theorem, which is a 
special case of  Proposition 111.7.8 on p. 115 of [ 18]: 

T h e o r e m  8. Let L / K denote a rational algebraic function field o f  characteristic 2. 
Suppose that u E L is an element which satisfies the following condition: 

u ~ w 2 + w for  all w ~ L. 

Let F = L(y )  with y2 + y = u. For a place P of  L we define the integer m e by 

m i f  there is an element z E L such that 
m e =  v e ( u + ( z 2 + z ) ) = - - m  < 0  and m 7 ~ O  ( m o d p ) ,  

--1 i f  v e ( u + ( z 2 + z ) ) > _ O  f o r s o m e  z E L .  

I f  at least one place Q o f  L satisfies m a  > O, then K is algebraically closed in F, and 

g = 2  p 

where g is the genus o f  F. 

L e m m a  9. F~ K is a hyperelliptic function field of  genus 2 m- t or genus 2 m- t _ 1 over 
the exact constant field K. 

Proof .  The constant field statement is proved in Lemma 6. Recall,  we have F = FoL 
and [ F  : L] = 2. Hence, the hyperell ipticity is clear, since L is rational by Lemma 7. 

Next we prove the genus statement. In order to obtain F from L we need to adjoin to 
L a root of  the left-hand side of the 0th equation defining ~. We take a closer look at the 

I/2 
constant term (in so) of this equation u = 1/z + do + flo z ~ L, where we think o f z  as 
a polynomial  in c of  degree 2 " -  l as in Lemma 7. 
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Since this polynomial is separable, it factors in K [c] into irreducible polynomials with 
all multiplicities equal to one. The valuations ve (u) of u at the places P above z = 0 of 
the rational function field L (i.e. those places satisfying r e ( z )  > 0) are thus all - 1  and 
we obtain me = 1. We additionally know ~-'~-~(z)=0 deg P = 2 m-t , this is easily seen as 
we are working in a rational function field. 

m--I  We now consider the degree valuation oo of L = K(c) .  Since z = X-i + Y~i=0 ~'i c2' 

there are fi, v ~ K[c] such that 13~/2z = ~ + v 2 + v and deg(~) < 1. The polynomial 
v can be obtained, e.g. by successively eliminating leading terms using elements of the 
form (Xc) zl + (~.c) 21-~. Thus uoo(u + v 2 + v) > - 1  and moo = 1 ormoo = - 1 .  

The remaining places P of L have r e ( u )  = 0 hence m e  = - 1 .  Summing up, using 
Theorem 8, we finally obtain g = 2 "-1 o r g  = 2 m-l - 1. [] 

3.4. Restriction to Smaller Constant Field 

Up to now we have used the Artin-Schreier nature of the equations defining ~ (resp. 
5) in an essential way, in order to obtain the statements on the hyperellipticity and the 
genus. Next, we need to restrict to a smaller constant field, and here we use the existence 
of a Frobenius automorphism on F which is due to the very construction of ~ .  

L e m m a  10. The Frobenius automorphism a o f  K over k extends (nonuniquely) to a 
k-automorphism on F o f  order n or 2n, again denoted by a.  

We have roots si = ai  (go) o f  the left-hand sides o f  ~ and accordingly roots ~)i  = 

a i (COo) o f  the left-hand sides o f ~  with COl = x s i  '[- t~i 1/2 f o r  all 0 < i < n - 1. 

Proof. The Frobenius automorphism a extends to a k-automorphism of K (x) = K (z) 

by leaving x, resp. z, fixed. 
The field F is obtained from K (z) by successively adjoining roots si for 0 < i < m - 1 

of the left-hand sides of ~ to K(z) .  Once these m roots si are adjoined, roots si of the 
other equations for m < i < n - 1 are readily found in F and a will be defined 
on them. For m = 1 we can simply define a(g0) = s0. Assume we h a v e m  > 1 
a n d a :  K(z) (so  . . . . .  gi-1) --+ F f o r a n i w i t h O  < i < m -  1. We can extend a to 
K(z)(go . . . . .  si) --+ F by choosing a(gi)  = Si+l because the left-hand side of the ith 
equation of ~ is irreducible over K(z)(go . . . . .  gi-1) and applying a to z -1 + cti + ~iz 
gives z -1 + oti+l + l~i+~z. Hence we can extend a to the whole of F by defining a on 

si for 0 < i < m - 1. 
The order of any such a on F must be a multiple of n since K c F and a has order 

n on K. Furthermore, an(go) = go or an(go) = go + 1 because an(g0) must be a root of 

the left-hand side of the first equation of ~:. We conclude that the order of a on F will 
be n or 2n accordingly. 

The statement on the roots is clear and serves primarily as a definition for later use. [] 

It is at this point that condition (t)  becomes important. 

L e m m a  11. I f  condition ( t )  is satisfied, then the extension a in Lemma 10 o f  the 
Frobenius to F can be chosen with order exactly n on F. 
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Proof .  We now need to derive a precise condition for the order of  such extensions a .  
It will turn out that we have to choose a particular extension cr carefully if  we want to 
obtain order n. The precise condition will  be obtained from the precise value of  cra (go), 
and is then compared with condition ( t ) .  

To begin with we start with any extension a of  the Frobenius to F which will  be 
changed later as required. It is convenient to employ the following technique: For 
f ( G )  = ~.i  ditia E ~2[ta] we define f ( t~ ) s  = ff-~.i dial(s) where s E F arbitrarily, 
thereby turning F + into an IF2 [t~ ]-module. As a subgroup K § inherits this ]F2 [t,~]-module 
structure which is compatible with the ]F2[t]-module structure of  K + used in the proof  
of  Lemma 5 under the relation to = F for r = log2(q). 

We let f~o (to) be the polynomial  of  smallest  degree such that f~0 (t~)r0 = 0 and set 

[ f~o(G)  for deg f~o(G) even, 

f ( t a )  = [(t~ + 1)f~o(t~) otherwise. 

The same polynomials  fr and f are obtained upon replacing 3o with a l / z  ~'o . From 
Lemma 6 and its proof  it is easily seen that deg f ( t o )  = m. 

Since (t~ + 1)/30 = 0 there is an h(G) ~ ]Fz[ta] such that h( to) f ( t~)  = t~ + 1. We 
have 

(f(t~,)go) 2 + f (G)So = f ( G ) ( s  2 4- So) 

= f (hr)(Z -1 4- OtO 4- flo/2Z) 

= f(G)OtO. 

Now, as f ( 1 )  = 0, we can apply Lemma 5 to the last right-hand side above and find a 
v ~ K with v 2 + v = f(t~)oto. Here we actually have a choice between v and v 4- 1 
which will be important later. Adding v 2 + v to the first left-hand side above we obtain 
f(t~)go 4- v ~ {0, 1}. It is now that we have to choose the correct extension of  or, 
depending on the choice of v: If  we have f ( to)so + v = 1 we replace cr by a or' which 
satisfies crt(si) = O'(Si) for 0 < i < m - 1 and cr'(gm-l) = o ' ( s m - l )  4- 1, which we can 
do according to the extension process at the beginning of the proof. Since the leading 
term of  f ( t~ )  is t~ and g, ,- t  = c r " - I  (go) we can hence assume 

f (G)so  + v = 0. (4) 

Mult iplying this with h(tr yields (t~ + 1)go + h(t~)v = 0 from which we draw the 
conclusion: cr has order n on F if  and only if  h(G)v  = 0. The rest of  the proof  deals 
with the relation of  this condition and ( t ) ,  and the suitable choice of  v. 

Using the proof  of  Lemma 5 and the above compatibi l i ty remark we see that we can 
choose between v = f ( t r ) / ( t  + 1)Oto and v = f ( t r ) / ( t  + 1)a0 + 1. Mult iplying the 
first v with h(t  r) we obtain h ( t r ) f ( F ) / ( t  + 1)ao = (t r~ + 1)/ ( t  + 1)ao = TrK/~2(ot0). 
Thus, depending on the choice of v, 

= [Trx/~2(ao) or  
h(t~)v [Trx/~'2(~o) + h(1). (5) 
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Our k-automorphism a on F ,  depending on v, has order n if  and only if we obtain zero 
for at least one of  the cases in the right-hand side of  (5). However, this is impl ied by ( t ) :  
The case TrK/F~ (or0) = 0 is clear. F o r n  odd we obtain h(1) = 1 because to + 1 divides 
t~ + 1 only once. F o r n  = m we obtain h(t~) = 1, hence h(1) = 1 too. [] 

We remark that the conditions ( t )  are sufficient but not necessary for the existence of  
an extension of  the Frobenius automorphism of  K / k  to F of  order n. Precise conditions 
can be derived from (5) and may be summarized as follows: "The extension exists either 
for all a 6 K or only for those ot 6 K with TrK/~: (a )  = 0, given any fixed fl 6 K • ." 

T h e o r e m  12. Let a be an extension o f  the Frobenius automorphism o f  K / k to F, 
having order n, and let F '  be the f ield o f  elements of  F f ixed by a.  The f ield F'  is a 
hyperelliptic function field o f  genus 2 m-1 or 2 m-l - 1 over the exact constant f ield k. 
The curve ~ has an irreducible reduced component having F'  as its function field. 

Such a k-automorphism ~ exists i f  the condition (~f) is satisfied. 

Proof.  We let L '  = F '  r L. The relations between the fields F,  F ' ,  L and L '  are 
described in Fig. I. 

The fixed field F '  of  a has index n in F because a is of order n on F and it is clear 
that F '  r K = k holds because a is of  order n on K as well. 

The automorphism a restricts to a k-automorphism of  L of  order n because it is the 
unique subfield of  F of  index 2 and K c L. Thus, [L " L']  = n, since L '  is the fixed 
field of  a restricted to L and we obtain [ F '  : L ']  = 2, as desired. Clearly F = F ' K  (and 
also L = L ' K )  which gives the genus statement. 

From the tbi we obtain n, not necessarily distinct, elements Yi via the l inear transfor- 
mation of  L e m m a  2. The automorphism a operates cyclically on the ~ i  so that we have 
a(Yi)  = yi, as was proved generically in Lemma 2. The Yi are thus in F '  and together 

b" 

h'(E) L F' 

K(~) L' 

K k(~) 

k 

Fig. 1. Lattice diagram of fields. 
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with x they generate F '  over k (because the LU i c a n  be obtained from the Yi o v e r  K). 
Due to Lemma 2 the Yi satisfy the equations of if, from which we finally see that s has 
an irreducible reduced component with function field F '  (we can for example again use 
the kernel technique from the proof of  Lemma 3). 

The existence of  cr under condition (1") was proved in Lemma 11. [] 

Note, that if condition ( t )  is not satisfied and ~r has order 2n, then we could have 
F '  = L'  in the arguments of the proof of  Theorem 12, and hence we could not guarantee 
finding a curve defined over k which is hyperell iptic and has genus 2 m-1  o r  2 rn-1 - -  1. 

If  the value of  m is too small, then none of  the irreducible components of  C will  have 
a Jacobian which contains a subvariety isogenous to the subvariety B of A. For  example,  
let E (Fq,) denote a Koblitz curve, i.e. one defined over the field ~2. We will then obtain 
irreducible components of ~ of  genus 1, by the definition of m. In this case the Weil 
restriction A factors as the product 

A = E(]Fq) • B, 

where B is an (n - I)-dimensional abelian variety defined over/Fq. The curve in the 
Weil restriction we have constructed has irreducible components whose Jacobians are 
isogenous t o  E(~q) and so we obtain no information about the subvariety B from our 
curves. This does not mean that one cannot find useful curves in A, whose Jacobian 
contains a subvariety isogenous to B. It just  means that the curves we have constructed 
are not useful in this context. This is why we have assumed throughout that E is not 
defined over a proper subfield of K. 

In view of  Theorem 12 and Lemma 11 we assume for the rest of  Section 3 that we are 
given an extension a of  the Frobenius automorphism of  K / k  on F of  order n and that 
a operates cyclically on the gi and ~)i while leaving x and z fixed. This can be reached 
when condition (I") is fulfilled. 

3.5. Determination of  an Explicit Model for  F and F'  

We describe how to obtain Art in-Schreier  equations defining F over L and F '  over 
L' .  The corresponding hyperelliptic equations are easily obtained by similar (reversed) 
transformations as done in the beginning of  Section 3.2. 

To compute an Art in-Schreier  equation in so and c for F over L for the generators 
m--1 go ~ K ( E )  c_ F and c ~ L, we only need to substitute (L_i + ~ i = 0  Lic2') - l  for z in 

,~1/2 
the first equation s 2 + so + z -1 + d0 + P0 z = 0 o f ~ ,  due to Lemma 7. 

In order to determine the action of cr on F we need to compute cr i (c) and o "i (S0) for 
0 < i < n - 1 as expressions in c and g0- This can be done using the operation of  a 
as given in (4) and by tracing back the transformations of Lemma 7. Note that c is a 
K-l inear  combination o f z  and the cri(g0) for 0 < i < m - I and that each of  these can in 
return be expressed in c (z = f ( c ) ,  resp. cri(g0) = f i ( c )  + s0 for suitable f ,  f,- 6 K[c]) .  

Given c and s0 and the action of cr on c and s0 we can explicitly construct F '  and L'  
as follows: 

L e m m a  13. Choose Ix ~ K such that Trx/k(/x) = 1 and set ~ = TrL/L,(I,Z)~oC), 
= TrF/F, (#gO). We then have U = k(~) and F' = k(g, ~). An Artin-Schreier equation 
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defining the field F' over L ' is given by 

~2 + ~ + 1/z + YrK/k(]s + TrK/k(I.L2fl 1/2) Z 

+ (TrF/F,(#2So) "k-TrF/F,(lZSo)) = O, (6) 

where the absolute coefficient in ~ of the left-hand side of this equation, the element z 
and hence the last line TrF/F,(#Zgo) + TrF/F,(IZSo) are in L'. 

m~l Proof .  F rom the extension structure L / K ( z ) ,  because z = ~-1 + )--]i=0 ~'iC2' and 
a(z)  = z, it is clear that a maps poles of  c to poles of  c. Since L is rational we see that 
there are L, U 6 K such that a (c) = kc + U. Then 

m-1 ~-i C 21 / 
or(z) = cr k _ l +  

i=0 ] 
m--I 

i=0 

On equating coefficients in a (z) = z, we obtain for i > 0, 

For  i = 0 we thus obtain 

aO.oc) = aO.o)(Xc + ~.') = ~.oc + a(~.o)~.'. 

Now from this ? = Trz/L,(IZkoc) = )~oC + L" for some k" ~ K and thus L '  = k(?).  
Consider  the Galois group of  F / K ( z ) .  According to Lemma 6 it is an elementary 

abelian 2-group whose elements send each a i (s0) to a i (so) or  o "i (s0) + 1. Now let r be 
the hyperell ipfic involution on F / L ,  being an element of  this Galois group. Since ~: fixes 
L and any o f  the ai(w generates F over L we must have r (a i (g0) )  = ai(go) + 1 = 
~r i (r(s0))  for all i. We thus see that a and r commute in their action on F and that hence 
r operates by restriction on F' /L ' .  We again consider  the equations defining ~. Using 
Trx/k(#)  = 1 we obtain r(g)  = g + t and 

Trr, /z,(g) = g + r (g)  = 1. 

Using 

g2 = TrF/F,(]~2~2) = TrF/F,(I~2(~O + 1/Z + Ct + fll/2Z)) 

we obtain for the norm 

NF'/L'(g) = g(g + 1) 

= 1/Z + Trg/k(lZ20t) + TrK,/k(lZ2131/2)Z 

+ (TrF/F,(/A2So) + TrF/F, (/~S0)). 

Putting this together we thus arrive at (6). This equation is separable in g, and by con- 
struction it has coefficients in L'.  Looking at the equations defining ~ gives that the 
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valuation of gi at the zeros of z is only half the valuation of 1/z. The term in the second 
line of (6) is a K-linear combination of the gi and, as an element of L', has therefore 
no poles except at ~ = c~z. It is hence a polynomial in ? and we can conclude that the 
left-hand side of (6) is indeed irreducible. [] 

The elements g and ? can be computed in F using o-. The absolute coefficient in (6) 
is first computed in K(c) and lies in k(~) after substituting c = (~ +/ .") /k0.  

We let ~ = xg0 +/~1/2 and ~ = Trr/F,( /~)  so that 33 = xg + TrK/k(/Z/31/2). In the 
case of odd n we can choose lz = 1 and obtain the equation 

f:2 .4_ x y  q- X 3 q- TrK/k(Ol)X 2 -~- T r K / k ( ~ )  -~- O, 

m-1 for x the inverse of the separable polynomial ~-1 + Y~i=0 ~-i ((c-'~ ~tt)/~'O)2i E k[Y]. We 
remark that in this case the genus of F'/k  is 2 '~-l - 1 if TrK/k(/3) = 0. 

3.6. Mapping the Discrete Logarithm Problem 

We next address the question of mapping the discrete logarithm problem from E to F' ,  
where we again use the function field setting. We let CI~ denote the group of 
divisor classes of degree 0 of the function field K(E) of E, and similarly for Cl~ 
The divisor class of the divisor D is written [D]. 

The conorm COnF/K(e) and norm NF/F' maps we define as on p. 65 of [5] (see p. 63 
and 239 of [18]), on recalling that F is a function field extension of both K(E) and F'. 
Both conorm and norm are homomorphisms of divisor groups, are well defined on divisor 
classes and map divisor classes of degree 0 to divisor classes of degree 0. 

The point group E(K) of the elliptic curve E is isomorphic to the group of divisor 
classes of degree 0 of K(E) [16, p. 66, Proposition 3.4]. The mapping of the discrete 
logarithm problem in the point group E(K) of E is then achieved as follows: First we 
translate the problem into Cl ~ (K (E)). From there we use the conorm ConFtx(E) in order 
to map it to Cl~ and from there, using the norm NF/F,, to CI~ On composition 
we thus obtain a group homomorphism 

ok: E(K) ~ Cl~ 

The important question now is whether the large cyclic factor of E(K) of order p is 
preserved by this homomorphism. 

Lemma 14. The kernel of ConF/K(e): CI~ (E)) ~ Cl~ can only consist of 
2-power torsion elements of Cl~ ( K ( E) ). 

Proof. Let D be a degree 0 divisor of K (E). We have according to line 21 on p. 66 of 
[5] that 

NF/X(e)(COnF/K(z)(D)) = [ F :  K(E)]D. 

Thus, if Cone//~(e)(D) is principal, then [F : K(E)]D is also principal. However, 
[F : K(E)] = 2 m-I which means that [D] has 2-power order. [] 
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According to the lemma the large cyclic factor can only be mapped to zero under 
by the norm NF/p,. 

For very small values of m, such as those obtained for Koblitz curves, the kernel of ~b 
will necessarily be divisible by the large prime p. However, if m is larger than log2(n ), 
then the large prime factor of the order of E(K) will be preserved in many instances. 
Hence, to solve our discrete logarithm problem 

P2 = [I]P1 

on E(K) we map degree 0 divisor classes representing P2 and Pl over to Cl~ ') using 
the map ~b. Set D1 = ~b(Pl) and D2 = r If we do not obtain DI = D2 = 0, which 
in practice is unlikely unless the elliptic curve is actually defined over a subfield of K, 
we can attempt to solve the discrete logarithm problem 

D2 = [l]D1 

in Cl~ 
The computation of images under ~b is in principle feasible by general methods, 

such as those used for computations with algebraic number fields and their extensions. 
Nevertheless, we want to give some rough indications on a method for our case. We 
assume that we can compute sufficiently well with finite fields and that we can define the 
function field of an irreducible affine plane curve, that we can compute the decomposition 
into places of the principal divisor of an element and of effective divisors and that we 
can evaluate elements at places. 

Let P1 be aplace of K(E)  of degree 1 wherex, y ~ K(E) take the values x(Pt) ,  Y(P1) 
E K, respectively (we assume for simplicity that x(P1) 5~ O, ~ ) .  The place Pl is 
clearly the unique common zero o f x  + x(P1) ~ K(E) and y + y(P1) ~ K(E). Then 
COnF/K(E) (Pl) can be computed as the greatest common divisor of the numerators of 
the principal divisors (x + x(Pt))  and (y + y(Pl)) taken in F. It is a divisor of degree 
2 m-I according to Lemma 1 on p. 65 of [5]. 

Let P be a place of F dividing ConF/K(~)(Pl) for some place P1 of K (E) of degree 1 
(we decompose ConF/Ir to compute P). The place L A P can be described as the 
numerator of ( f (?) ) ,  where f is the minimal polynomial of ?(P) over K and the principal 
divisor is taken in L. This is possible as ? has no pole at P because x(P)  = x(Pl) ~ 0, 
which we have assumed above (~ and ~ are defined after Lernma 13 and given as elements 
of F and generators of F'). The place P can similarly be given as follows: Let h be a 
bivariate polynomial over K such that h(., ?(P))  is the minimal polynomial of y (P)  over 
K(~(P)). f~ is defined at P because all of the cr i (y) are as x(P) ~ o0. We may represent 
P as the the greatest common divisor of the numerators of ( f (? ) )  and (h(~, ~)), where 
the principal divisors are taken in F. This divisor consists of only P without multiplicities 
because as x(Pl) ~ 0 we have that L (~ P is unramified in F, hence there are at most 
two places in the numerator of  ( f (? ) )  and each of them occurs with multiplicity one. 
Furthermore, if the other place Q ~ P above L N P exists, then h (., ?) has degree 1 as the 
residue class degree of P over L (q P is 1. We also obtain ~(Q) = ~(P)  +x(P)  ~ f~(P) 
and h(fffQ), ~(Q)) ~ 0, hence Q does not occur in the numerator of (h(~, ?)) (see 
Theorem III.3.7 on p. 76 of [18] and its proof, h is one of the qgi and ~o is the minimal 
polynomial of 33 over K(~)). We are actually interested in determining the underlying 
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place P '  = F '  N P of  F ' ,  so we need to express the situation with coefficients in k rather 
than K. 

For this we simply compute minimal polynomials f ,  h as above, but over k instead, 
and compute P '  as the greatest common divisor of  the numerators of ( f (g ) )  and (h @, g)), 
where the principal divisors are now taken in F ' .  This divisor consists of  only P '  without 
multiplicities because of  the same reasons as above. 

Finally, N F / F'( P ) = f ( P , P')  P '  where f ( P , P')  = n d e g ( P ) / d e g ( P ' )  is the residue 
class degree of  P over P ' .  We will have that NF/p, (COnF/KCe)(P1)) is effective and that 
its degree equals n2 m-l , for the latter taking Lemma 2 on p. 66 of [5] and its proof into 
account. 

A program for computing F '  and 4~ given E has been written in KASH and is planned 
to be written for inclusion in the Magma computer algebra system. 

4. Constructing Hyperelliptic Cryptosystems 

Our method for constructing hyperelliptic cryptosystems is now immediate. 

1. Fix a field k = lFq and an integer n such that K = IFq,. 
2. Choose an E over K of  order 2tp where p is a prime and l is a small integer. This 

can be achieved by generating curves at random and computing their group orders 
using the algorithm of Schoof [15]. 

3. Construct the Weil restriction and the curve ff as we did in Section 3. 
4. Find a model H of  an irreducible component of  ff in hyperelliptic form. 
5. Check that the divisor class group of  H over k has a subgroup of order p. 

The final condition is necessary since we only know that a subvariety of  A is isogenous 
to a subvariety of  the Jacobian of  H.  Clearly in step 2 we should only choose curves for 
which condition (t)  will automatically hold, i.e. n odd or TrK/F~ (~) = 0. 

If  in the above algorithm we choose n = 4, b3 = bo + bl + bz, with the special 
examples o f  Section 2, we will expect to obtain a hypereltiptic curve of  genus 3 or 4, 
defined over k, whose Jacobian will, in general, have order 21 p. If  I is chosen small, then 
we do not expect to obtain genus 3. If  we choose n = 2, and a very small value for l, then 
we expect to obtain a hyperelliptic curve of  genus 2, defined over k, whose Jacobian has 
order divisible by p. 

4.1. Genus 4 Example  

We consider an example where p ~ 28~ Clearly this is not large enough for cryptographic 
use, but we use it for illustrative purposes, both here and later. Curves with p > 2160 are 
just as easy to produce, they just require more paper to write down. 

Consider the field k = IF2-,~ generated over IF2 by a root of  the polynomial: 

w 21 + w 2 + 1. 

Let K = 1~284 be generated over k by a root of  the polynomial 

0 4 -'t-0 3 + 0  2 -t-O -'[- 1. 
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We construct the elliptic curve 

E: y2 + XY = X 3 + boo + b102 + b204 + b308, 

where 

b0 = 0, bl = ll31127280, b2 = W 171398, b3 = /131370436. 

Notice that b3 = b0 + bl + b2, and so we expect to obtain a hyperelliptic curve of genus 4. 
The order of E(K) is computed using the algorithm of Schoof [15] and it is equal to 
24p, where 

p = 1208925819614311295169073. 

Our algorithm for producing a curve of genus 4 in the Weil restriction produces the curve 
C~ of Section 2. This curve has Jacobian also of order 24p. However, the curve  C4a is 
birationally equivalent to the following hyperelliptic curve, which we calculated using 
the method in Section 3, 

H: y2 + G(X)Y + F(X) = 0, (7) 

where G(x) is given by 

X 4 + w624429X 3 -t- wI248858X 2 -t- 1/)1442662 X -}- I13386860 

and F(X) is given by 

S 9 + to1859582X 6 ..[_ to293124X4 _]._ 1/31783647X3 

"F to1541982X2 "-F 1/3137~ + 1131888298. 

4.2. Genus 2 Example 

We construct an elliptic curve over the field K = ~"216~ with group order equal to 

5846006549323611672814739995379292203636332479268 

which is four times a prime, p. We do not give the details of this eItiptic curve here for 
reasons of space. The Weil restriction, and our construction of the associated hypereUiptic 
curves, produces the following example of a genus 2 hyperelliptic curve defined over 
k = F2sl. 

Define k by k = F2[w]/(1 + ll34 + W81), The Jacobian of the hyperelliptic curve of 
genus 2 given by 

H" y2 + (X 2 + w2012013793551629036365609X) Y 
~_. X 5 + X 4 -~- w1586464037343056940725724X2 

+//3433342229878496~176 + w 774788345987798314632240 

has order divisible by p. Its group structure is given by C2 x C2p and it is not subject to 
the Tate pairing attack [8] since p does not divide qk _ 1 for small values ofk.  

Notice, that if the original elliptic curve E(~'q,) resists the Tate pairing attack, i.e. 
there does not exist a small value ofk for which qn~ _ I --- 1 (rood p), then the analogous 
test for the Jacobian is obviously satisfied for small values of k. 
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5. Attacking Elliptic Curve Cryptosystems 

The question remains as to whether the above construction provides either a mechanism to 
attack elliptic curve cryptosystems or whether the hyperelliptic cryptosystems proposed 
above are strong. In this section we discuss the difficulty of solving the discrete logarithm 
problem in the Picard group of the hyperelliptic curves we have constructed. We assume 
a fixed, small, value of n and we look at the situation as q tends to infinity. 

For any group, the rho method (with Pohlig-Hellman) provides an algorithm for 
computing the discrete logarithm in time O (V/if) where p is the largest prime factor of 
the order of the group. For general elliptic curves, this is the best known algorithm. For 
the curves defined over ]~qn considered in this paper we obtain a complexity of O(q n/2) 
in general. 

For hyperelliptic curves, we can obtain a better complexity by using an index-calculus 
method. If  the curve is defined over ]~q and the genus is not too high (say at most 8), we 
can proceed as follows. We consider a factor base containing all the prime divisors of the 
Jacobian of degree 1. We can then proceed in two phases. In the first phase, relations are 
found between the elements of the factor base, whilst in the second phase we perform 
sparse linear algebra to solve the original discrete logarithm problem. The details of this 
algorithm are in [10], but we give some details in an example below. 

Theorem 15 [ 10]. There is an index-calculus style algorithm to solve the hyperelliptic 
discrete logarithm problem in a hyperelliptic curve of  genus g over the field ~q which 
requires a factor base of size O(q) and which runs in time 

O(g3g! q log • q) + O(g3q 2 log y q) 

for some fixed integer y. 

Hence, for fixed values of g the complexity of this algorithm is O(q2+'), which is 
better than the rho method for a (almost) cyclic Jacobian of genus at least 5. However, 
it is unclear where the exact crossover point between the method of [10] and the rho 
method lies. 

The theoretical complexity can be improved by reducing the size of the factor base. 
The smoothness bound is already minimal, but we can decide that some of the prime 
divisors of degree 1 are "good" (we keep them in the factor base), whereas others are 
rejected. If we set the proportion of "good" divisors to 1/l, then the time for finding 
a relation will be increased by a factor I g. However, we will need l times less such 
relations, and the cost of the linear algebra will be reduced by a factor 1/l  2. If we try to 
optimize the choice of l, we obtain I = ~)((q/g!)l/(g+l)) and the complexity becomes 
O(q2g/(g+l)+~), as q --+ ~ .  

In the following table we give the complexities of the discrete logarithm problem on 
the elliptic curves studied in the previous sections and on the corresponding Jacobians. 
We only look at the genera which are likely to occur in practice for the example curves 
in Section 2 and we ignore the q '  term in the complexity estimate. Notice that for the 
"interesting" subvariety of Jac(C) in our Weil descent examples the complexity of the 
rho method on Jac(C) is equal to the complexity of the rho method on E(Fq,). For a 
general Jacobian of genus g the rho method has complexity O (qg/2). 
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Example Curve 

C2 C3 C3 C4 C4 C4a 

n, g 2,2 3,3 3,4 4,8 4,7 4,4 
Rho on E (~'qn ) q q3/2 q3/2 q2 q2 q2 
Index on Jac(C) q4/3 q3/2 q8/5 ql6/9 q7/4 q8/5 

We stress that these complexities hold as q tends to infinity and with n and g fixed. 
Hence, for g > 4 we obtain a complexity which is better than that of  Pollard rho. 

In a context where we would like to build a hyperelliptic cryptosystem by a Weil 
descent, the Jacobians have to be almost cyclic, which occurs for the cases C2, C3 and 
C~.  For the first two, this seems to be a good way to build a cryptosystem in genus 2 or 
3; however, for the last one the index-calculus provides an attack with a better theoretical 
complexity than the rho method, and the security is asymptotically lower than with an 
elliptic curve cryptosystem with the same key size. 

On the other hand, if we want to attack an elliptic curve cryptosystem, we see that 
for C4 and C4~ the complexity of  index-calculus is better than for the rho method. Thus, 
asymptotically, it is a good way to attack such elliptic curve cryptosystems by transferring 
the problem to a hyperelliptic curve. 

However, experiments have to be done for each fixed value of  n and g to see where 
the crossover between the two attacks is, since the group operations in E (Fq~) and in 
Jac(C) will have different complexities. Such an experiment is carried out in the next 
section. 

6. Solving a Hyperelliptic DLOG Problem 

It is important to decide, not only for the Weil descent attack but also for our construction 
of  hyperelliptic cryptosystems in genus 4, whether the method of  [10] is practical in 
genus 4. In this section we consider the example given by the curve in (7). The field 
size is q = 2 21 and the curve has genus 4, so the Jacobian has size approximately 2 84. 
We solve a discrete logarithm problem in this group using the method of  [I0] and then 
compare the running time with known efficient implementations of  the rho method in 
an elliptic curve group of  the same size. Since the rho method applied to a hyperelliptic 
curve will run slower than on an equivalently sized elliptic curve, if the method of  [10] 
runs faster on the hyperelliptic curve compared with rho on an elliptic curve we will 
know that: 

�9 Genus 4 systems are less secure than the equivalent elliptic curve system, for field 
sizes greater than 221. We would then conclude that genus 4 hyperelliptic systems 
should not be deployed in real life. 

�9 Elliptic curves defined over Fq,, with m = 3 and q = 2 t, are weaker than those 
defined over F2p with p prime and of  the order of nt .  

We attempted to solve the discrete logarithm problem given by 

D2 = [I]D1, 
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where 

Dl = (X 4 --}--//)1277131X3 q- 1/)1~176 --1-//)1391819X + w 1964994, 

w1784~ 3 -t- 113131164X2 --t- w1975559X -b w2~ 

D2 = (X 4 + 1B895988X3 --[- w1765969X 2 --t-//31667155X -t- 1131531893, 

//3110642X3 -}- w2~176 2 dr t0927941X -{- 1/)1~ 

where the divisors are given in the reduced representation as in the paper by Cantor [4]. 
In this notation the point at infinity is implicitly subtracted with the correct multiplicity in 
order to obtain a divisor of  degree 0. The above divisor D1 is a generator of the subgroup 
of  prime order p ~ 28~ 

The factor base consists of  all prime divisors of  the form 

where c~,/3 E k = ~q ,  and 

p = ( x  + c~,/3), 

/32 + G(a)/3 + F ( a )  = 0. 

To each a there are two corresponding values of/3, but we only choose one of  these to 
be in our factor base, since the two prime divisors are related by the equation 

(X + a, 15) + (X + c~, G(c~) + fi) =~ O, 

in the divisor class group. 
To reduce the factor base even further we only use divisors in the factor base such 

that the binary representation of  e has a bit representation with its three most significant 
bits set to zero, where the bit representation is in the polynomial basis with respect to w. 
Such prime divisors are called "good". In our example the number of  such good divisors 
which make up our factor base F is 131294. 

Consider the following general reduced divisor 

D = (a(X) ,  b (X) )  

with deg b < deg a < g. A necessary condition for this divisor to factor over our factor 
base of "good" divisors will be for the binary representation of  adeg a -  1, the (deg a - 1)th 
coefficient of  a(X),  to have its three most significant bits set to zero. This gives us 
a simple test to eliminate lots of  divisors which are not smooth over our set of  good 
divisors. 

The algorithm proceeds as follows. We compute a set of "random" multipliers 

Mi -= [ri]Dl + [si]D2, for 1 < i < 20, 

for some random integers ri and si. Then setting R~ = MI, say, we compute the following 
random walk: 

Ri+l -~ Ri + gh(R~), 
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where h: Jac(H)  --+ [1 . . . . .  20] is some hash function. Notice that every value R i c a n  

be written as 

Ri -= [ai]D1 --}- [bi]D2. 

We then try to "factor" R~ over our factor base to obtain a relation of  the form 

Ri = Z [ t p ] p .  
p~F 

Due to our choice of  factor base this factorization can be achieved using root extraction 
techniques over finite fields rather than general polynomial factoring techniques. We 
eliminate many divisors, before we apply root extraction, by our test for smoothness 
over the good divisors which we described above. The resulting tp lie in [ - g  . . . . .  g], 
where for our example g = 4. We store the tp in a matrix as a column, which will 
have at most g nonzero entries in each column. Almost all relations we obtain will have 
t o 6 { -  1,0, 1 } and will have exactly g nonzero values of  tp in each column. 

After collecting more relations than elements in our factor base we can apply sparse 
matrix techniques modulo p, such as the Lanczos method, to find a nontrivial element in 
the kernel of  the matrix. Using the element in the kernel we can then find the solution to 
the original discrete logarithm problem, with overwhelming probability, in the standard 
manner. 

We ran the above algorithm on the above example. The relation collection phase took 
about 2 weeks of  calendar time, using the idle time of  a disparate set of  machines. I f  we 
had run this task on a single Pentium 17 450 MHz, the timing would have been about 31 
weeks. The linear algebra step took 64.4 hours using the same machine. After all this 
computation we determined the solution to Dz = [l]Dl was given by 

l = 12345678. 

An equivalent calculation on an 84 bit elliptic curve, using Pollard's rho method, would 
have taken 44 weeks on the same machine, with a program with a similar level of  
optimizations applied. Since the crossover point is for a value o f q  less than what would 
be used in practice, we can conclude that genus 4 hyperelliptic systems are weaker than 
an elliptic curve system with the same size group order. 

7. Other Types of Finite Fields 

7.1. Noncomposite Fields of Even Characteristic 

In Section 5 we looked at what happens when n is fixed and we let q tend to infinity. In 
practice the elliptic curves over even characteristic fields which are used are ones defined 
over ~2p, with p a prime. Hence, we need to look at the situation where q is fixed and n 
tends to infinity. 

Let E denote an elliptic curve, defined over Fzp where p is prime. We expect that the 
methods of  this paper would produce a hyperelliptic curve of  genus 2 p-1 over the field 
FE. It seems unlikely that one would, in general, be able to find a curve of  significantly 
smaller genus in the Weil restriction of  E(F2p) over F2. 
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However, using (1) one may be able to find, in very special circumstances, certain 
elliptic curves which have values of m slightly larger than log 2 p, for which there exist 
curves in the Weil restriction of  genus slightly larger than p, as the following example 
shows: 

Consider K = tr2[w]/(1 + w  + w 127) and the elliptic curve defined by (a,/5) = (0, w), 
i.e. 

E: y2 + X Y  = X3 + w. 

The number points on E ( K )  is computed to be 

#E(F2t:7) = 220 . 32 -45615671 �9 395232781659164075412101. 

Along the arguments of  Section 3 we computed its Wei! restriction for n = 127 down 
to IF2, obtaining the hyperelliptic curve 

H: y 2 + ( X I 2 S + X 6 4 + x ) y + x I 2 8 + X 6 4 + x = O .  

The curve H has genus 127 and its Jacobian contains an element of  order 

#E(IF2~-7)/2. 

We constructed this example by trying to make m as small as possible. It appears that 
one can obtmn very small values of m for/5 a zero of a polynomial with only 2-power 
coefficients, in the above case/5128 +/52 + /5  = 0. Another similar value for/5 may be 
obtained by a zero of the irreducible factor of  degree 127 of x 2'~ + x 2 + x over F2. 

In general, for random/5, a small value of m is very unlikely as we now show. 

Lemma 16. We expect at least 50% o f  all the elliptic curves over K = F2v, f o r  p 
prime, to produce a value o f  m equal to p. 

Proof.  By a change of  variables we can put our curve in the form 

y2 + X Y  = X 3 + ctX 2 +/5,  

where u = 0 or 1 and/5 e K. Now by the definition o f m  in (1), if {/5, 152 . . . . .  /52p-~ } is 
a normal basis of K over F2, then m = p. However, around 50% of all elements of  K 
generate a normal basis, as we now show. 

By Lemma 3.69 and Theorem 3.73 of  [12] the number of  elements, 15 ~ K, which 
generate a normal basis over ~'2 is equal to 

t 

2 p I ' I ( 1  - 2-nl), 
i=1 

where ni denotes the degrees of  the distinct monic irreducible factors of  the polynomial 
X p - 1 over F2. However, by Theorem 2.47 of  the same book we see that this is equal to 

(2(p-O/d _ 1) d = O(2P-t) ,  

where d is the number of  distinct factors of  the polynomial X p-1 + Xp-2  + . . .  + X + 1 
over IF2. Hence, around 50% of all elements in K generate a normal basis. [] 
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For general curves, where m = p and g = 2 p - I ,  one needs to bear  in mind that 
although there is a subexponential algorithm for the discrete logarithm problem on 
hyperell iptic curves of  large genus, it is subexponential in the size of  the Jacobian which 
will be of  the order of 

2 g = 22p-I" 

However, we are really aiming for a subexponential  algorithm in the size of  the original 
elliptic curve, which is 2 p. On the other hand, for the very special elliptic curve in the 
above example, we indeed obtain a possible subexponential attack. Note that the method 
of [10] should not be used in this case since it is only efficient for "small"  genera. 

To obtain a subexponential algori thm for very large genera the methods from [1], [9], 
[11] and [ 13] should be combined after suitable modification for our hyperell iptic even 
characteristic case. 

Hence, for curves defined over noncomposi te  fields of  characteristic 2, we do not expect 
the techniques in this paper to contribute a significant threat to elliptic curve cryptosys-  
terns. This last statement holds assuming curves are either chosen with values of  m of  
the order of  p ,  or are chosen to be curves which are defined over ~2, i.e. a Koblitz curve. 

7.2. Odd Characteristic Fields 

The question arises as to whether the process of  Weil descent can be applied to fields 
of  the form Fp, where p is an odd prime. Clearly we must have n >_ 2 and by similar 
arguments to those above n should not be too large. 

The proofs in Section 3 relied heavily on the Art in-Schre ier  nature of  the extensions. 
It appears hard to see how they can be modified to apply in the odd characteristic case. 
Indeed, in the few examples we have calculated we see that the resulting curves neither 
have such nice genera nor are they hyperell iptic in nature. Hence, using odd characteristic 
fields does not seem helpful in constructing higher genus hyperelliptic cryptosystems.  

We turn to attacking elliptic curve systems based on fields of  the form Yp,. This is an 
open problem which we now outline with an example:  Consider the field 

Fp3 = Fp[t]/(t 3 + 3491750t 2 + 217412320t + 795426309), 

where p = 1073741839 = 23o + 15. An elliptic curve defined over ]Fp3 is given by 

y2 = X3 q_ A X  § B, 

where 

A = 787621733t 2 + 572191144t + 6271705, 

B = 167167209t 2 + 739374709t + 362095083. 

For  this curve it is easily verified that the group order is 

#E(~p3) = 24 �9 59 �9 2261143 �9 579962087855207501. 

Setting 

X = x o + x ~ t + x 2 t  2 and Y = y o + y l t + y z t  2 

one can construct the Weil restriction. 
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Suppose the method of Gaudry could be extended to arbitrary Jacobians and not 
just hyperelliptic Jacobians with almost prime group orders. This at first sight does 
not seem too implausible but is the subject of  ongoing research [6]. One would expect 
the resulting algorithm to have complexity at best O(p2g/(g+l)). Hence, to beat the 
asymptotic complexity of Pollard's rho method o n  E(]Fp3) we would require a curve of  
genus at most 3. 

Naively mimicking our method of Weft descent in characteristic 2 one forms the curve 
C defined by the hyperplanes xl = x2 = 0, i.e. specializing to those x-coordinates which 
are fixed under the Frobenius automorphism. The resulting curve has genus 13 and is not 
hyperelliptic. Trying different types of  bases for Fp3 over Fp and different hyperplanes 
does not appear to result in anything better. 

This is an avenue for further work and the construction of  a suitably well behaved 
curve in the Weil restriction cannot be ruled out at present. 

8. Conclusion 

Let E(~q.) denote an elliptic curve over a field of  even characteristic, which is not 
defined over a subfield of  Ib'q~ and which satisfies condition (-~). Then we have shown 
how the Weil restriction produces a hyperellipfic Jacobian of  genus at most 2 n-I which, 
for examples of  cryptographic interest, contains a subgroup isomorphic to a subgroup 
of  E (Fq,). 

Using this observation we can construct hyperelliptic cryptosystems by first construct- 
ing elliptic curves using the School algorithm and then determining the associated hy- 
perelliptic curve. This appears to be a way to produce secure hyperelliptic cryptosystems 
in genus 2 and 3. We recommend against using this method in genus 4 and above because 
of  our experiment in solving discrete logarithm problems in genus 4, where we showed 
that the discrete logarithm problem in the Jacobian of  a curve of  genus 4 was easier than 
on an elliptic curve of  the same group order, with a security level of  at least 80 bits. 

However, for fixed values of  n > 4, this provides evidence for the weakness of  the 
original elliptic curve discrete logarithm problem. We have shown that for n = 4 and 
around 1/q of  all such curves the crossover point, between our method and Pollard 
rho, is at a value of q less than 22t . However, for larger fixed values of  n, say n = 11 
or 13, the crossover between our method and Pollard rho will be much higher. Hence, 
further experiments are needed in determining the exact crossover point between the two 
methods for various values of n. 

We have no evidence to suggest that the discrete logarithm problem on general elliptic 
curves, defined over fields of the form Yzp where p is prime, has complexity smaller 
than O (2P/2). Since these are the fields of  characteristic 2 which are recommended in 
the elliptic curve standards, Well descent does not appear to be a threat to Standards 
compliant elliptic curve systems in the real world. 

However, we do recommend that elliptic curves defined over ]F2,, for p prime, be 
checked to be sure that they produce a value for m in (1) which is of order around p or 
equal to one, as in the case of curves defined over F2. Only curves with these values for 
m should be deployed in real-world cryptosystems. In practice most elliptic curves over 
F2p will satisfy such a requirement, but it is worth adding this check to curve generation 
programs and to standards documents. 
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