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Abstract. We present a polynomial-time algorithm that provably recovers the signer’s
secret DSA key when a few consecutive bits of the random nonces k (used at each
signature generation) are known for a number of DSA signatures at most linear in log q
(q denoting as usual the small prime of DSA), under a reasonable assumption on the
hash function used in DSA. For most significant or least significant bits, the number of
required bits is about log1/2 q, but can be decreased to log log q with a running time
q O(1/log log q) subexponential in log q, and even further to two in polynomial time if one
assumes access to ideal lattice basis reduction, namely an oracle for the lattice closest
vector problem for the infinity norm. For arbitrary consecutive bits, the attack requires
twice as many bits. All previously known results were only heuristic, including those of
Howgrave-Graham and Smart who recently introduced that topic. Our attack is based on
a connection with the hidden number problem (HNP) introduced at Crypto ’96 by Boneh
and Venkatesan in order to study the bit-security of the Diffie–Hellman key exchange.
The HNP consists, given a prime number q, of recovering a number α ∈ Fq such that
for many known random t ∈ Fq a certain approximation of tα is known. To handle the
DSA case, we extend Boneh and Venkatesan’s results on the HNP to the case where t
has not necessarily perfectly uniform distribution, and establish uniformity statements
on the DSA signatures, using exponential sum techniques. The efficiency of our attack
has been validated experimentally, and illustrates once again the fact that one should be
very cautious with the pseudo-random generation of the nonce within DSA.

Key words. Cryptanalysis, DSA, Lattices, LLL, Closest vector problem, Distribution,
Discrepancy, Exponential sums.
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1. Introduction

1.1. The Digital Signature Algorithm (DSA)

Recall the Digital Signature Algorithm (see [26] and [43]), or DSA, used in the American
federal digital signature standard [29].

Let p and q ≥ 3 be prime numbers with q|p − 1. As usual Fp and Fq denote fields
of p and q elements which we assume to be represented by the elements {0, . . . , p − 1}
and {0, . . . , q − 1}, respectively.

For a rational number z and m ≥ 1 we denote by 	z
m the unique integer a, 0 ≤ a ≤
m − 1, such that a ≡ z (mod m) (provided that the denominator of z is relatively prime
to m). We also use log z to denote the binary logarithm of z > 0.

Let M be the set of messages to be signed and let h: M → Fq be an arbitrary
hash-function. The signer’s secret key is an element α ∈ F∗

q .
Let g ∈ Fp be a fixed element of multiplicative order q, that is, gq = 1 and q �= 1

which is publicly known. To sign a message µ ∈ M, one chooses a random integer
k ∈ F∗

q usually called the nonce, and which must be kept secret. One then defines the
following two elements of Fq :

r(k) = 		gk
p
q
,

s(k, µ) = 	k−1 (h(µ) + αr(k))
q .

The pair (r(k), s(k, µ)) is the DSA signature of the message µ with a nonce k. In general,
q has bit-length 160 and p has bit-length between 512 and 1024.

1.2. Former Results

The security of DSA relies on the hardness of the discrete logarithm problem in prime
fields and it subgroups. Under slight modifications and the random oracle model [4],
the security of DSA (with respect to adaptive chosen-message attacks) can be proved
relative to the hardness of the discrete logarithm (see [9]). The well-known random oracle
model assumes that the hash function behaves as a random oracle, that is, its values are
independent and uniformly distributed.

However, serious precautions must be taken when using DSA. It was noticed by
Vaudenay [45] that the primes p and q need to be validated, for one could forge signature
collisions otherwise. Special care must be taken with the nonce k. It is well known that if
k is disclosed, then the secret key α can be easily recovered. It was shown by Bellare et al.
[3] that one can still recover α if the nonce k is produced by Knuth’s linear congruential
generator with known parameters, or variants. That attack is provable under the random
oracle model, and relies on Babai’s approximation algorithm [2] for the closest vector
problem (CVP) in a lattice, which is based on the celebrated LLL algorithm [24]. The
attack does not work if the parameters of the generator are unknown.

Recently, Howgrave-Graham and Smart [18] introduced a different scenario. Suppose
that for a reasonable number of signatures, a small fraction of the corresponding nonce k is
revealed. For instance, suppose that the 	 least significant bits of k are known. Howgrave-
Graham and Smart proposed in [18] several heuristic attacks to recover the secret key in
such a setting and variants (known bits in the middle, or split in several blocks) when 	 is
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not too small. Like [3], the attacks are based on the LLL-based Babai CVP approximation
algorithm [2]. However, the attacks of [3] and [18] are quite different. Howgrave-Graham
and Smart followed an applied approach. The attack used several heuristic assumptions
which did not allow precise statements on its theoretical behaviour It was assumed that
the DSA signatures followed a perfectly uniform distribution, that some lattice enjoyed
some natural, however heuristic, property, and that Babai’s algorithm [2] behaves much
better than theoretically guaranteed. Consequently, it was hard to guess what were the
limitations of the attack, such as how small could 	 be in practice, and what could be
proved?

1.3. Our Results

In this paper we present the first provable polynomial-time attack against DSA when the
nonces are partially known, under two reasonable assumptions: the size of q should not
be too small compared with p, and the probability of collisions for the hash function h
should not be too large compared with 1/q. More precisely, under these conditions, we
show that if, for a certain (polynomially bounded) number of random messages µ ∈ M
and random nonces k ∈ [1, q − 1], about log1/2 q least significant bits of k are known,
then in polynomial time one can recover the signer’s secret key α. The same result
holds for the most significant bits when one uses an appropriate definition of the most
significant bits tailored to modular residues. With the usual definition of most significant
bits, one needs one more bit than in the case of least significant bits, as q might be only
marginally larger than a power of two (certainly this distinction is important only for
our numerical results). The result is slightly worse for arbitrary windows of consecutive
bits: in such a case, one requires twice as many bits (contrary to what the analysis of [18]
suggested). For least significant bits (or appropriate most significant bits), the number
of bits can be decreased to two if one further assumes access to ideal lattice reduction
(namely, an oracle for the CVP for the infinity norm). Such an assumption is realistic in
low dimensions despite NP-hardness results on lattice problems, due to the well-known
experimental fact that state-of-the-art lattice basis reduction algorithms behave much
better than theoretically guaranteed. Alternatively, the number of bits can be decreased
to log log q but with a running time q O(1/log log q) subexponential in log q, using the closest
vector approximation algorithm of Corollary 16 of [1]. This subexponential running time
is interesting, as the bit-length of q is usually chosen to be 160, in order to avoid square-
root attacks.

Our attack has been validated experimentally. Using a standard workstation, most of
the time we could recover in a few minutes the signer’s DSA 160-bit secret key when
only 	 = 3 least significant bits of the nonces were known for about 100 signatures.
Interestingly, this improves the experimental results of [18], where the best experiment
corresponded to 	 = 8, and where it was suggested that 	 = 4 was impossible.

It should be pointed out that the study of the security of DSA in such settings might
have practical implications. Indeed, Bleichenbacher [5] recently noticed that in AT&T’s
CryptoLib version 1.2 (a widely distributed cryptographic library), the implementation
of DSA suffers from the following flaw: the random nonce k is always odd, thus leaking
its least significant bit. Apparently, this is because the same routine is used in the imple-
mentation of the El Gamal signature scheme, for which k must be coprime with p − 1,
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and thus necessarily odd. Our results do not show that CryptoLib’s DSA implementation
can be broken, but they do not rule out such a possibility either, even with the same
attack. In fact, they indicate a potential weakness in this implementation.

This has been confirmed by a very recent important result of Bleichenbacher [6], who
has presented a heuristic attack on DSA with time complexity 264 (and requiring memory
240 and 222 signatures), when the pseudo-random number generator suggested by the
NIST to produce the nonces is used (see [29]). The NIST generator suffered from the
following flaw: the outputs are biased in the sense that small values modulo q are more
likely to occur than high values modulo q. This is because the output is some 160-bit
pseudo-random number reduced modulo the 160-bit prime q. Bleichenbacher’s heuristic
attack also applies to the case when some of the bits of the nonces are known. The attack
is based on clever meet-in-the-middle techniques, and not lattices. Currently, the best
experimental result with this attack is that one can recover the secret key given a leakage
of log 3 ≈ 1.58 bits for 222 signatures, in about 3 days on a 450 MHz Ultrasparc using
500 Mb of RAM. Thus, our experimental results are superseded by Bleichenbacher’s
results. Note, however, that the techniques used are completely different, and that our
method remains the only one yielding provable results at the moment.

1.4. Overview of Our Attack

Our attack follows Nguyen’s approach [30] that reduces the DSA problem to a variant of
the hidden number problem (HNP) introduced in 1996 by Boneh and Venkatesan [7], [8].
The HNP can be stated as follows: recover a number α ∈ Fq such that for many known
random t ∈ Fq , an approximation APP	,q(αt) of αt is known. Here, for any rationals n
and 	, the notation APP	,q(n) denotes any rational r such that

|n − r |q ≤ q

2	+1
,

where the symbol | · |q is defined as |z|q = minb∈Z|z − bq| for any real z.
The connection between the DSA problem and the HNP can be easily explained.

Assume that we know the 	 least significant bits of a nonce k ∈ F∗
q . That is, we are given

an integer a such that 0 ≤ a ≤ 2	 − 1 and k − a = 2	b for some integer b ≥ 0. Given a
message µ signed with the nonce k, the congruence

αr(k) ≡ s(k, µ)k − h(µ) (mod q)

can be rewritten for s(k, µ) �= 0 as

αr(k)2−	s(k, µ)−1 ≡ (a − s(k, µ)−1h(µ))2−	 + b (mod q). (1)

Now define the following two elements:

t (k, µ) = 	2−	r(k)s(k, µ)−1
q ,

u(k, µ) = 	2−	(a − s(k, µ)−1h(µ))
q ,

and note that both t (k, µ) and u(k, µ) can be easily computed by the attacker from the
publicly known information. Recalling that 0 ≤ b ≤ q/2	, we obtain

0 ≤ 	αt (k, µ) − u(k, µ)
q < q/2	.
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Therefore,

|αt (k, µ) − u(k, µ) − q/2	+1|q ≤ q/2	+1. (2)

Thus, an approximation APP	,q(αt (k, µ)) is known. Collecting several relations of this
kind for several pairs (k, µ), the problem of recovering the secret key α is thus an HNP
in which the distribution of the multiplier t (k, µ) is not necessarily perfectly uniform,
and which at first sight seems hard to study. This problem of recovering is called the
DSA–HNP in the rest of the paper.

To solve the DSA–HNP, we apply a lattice-based algorithm proposed by Boneh and
Venkatesan in [7], which relies on a simple reduction from the HNP to the CVP. This
polynomial-time algorithm, which we call BV, is again based on Babai’s CVP approx-
imation algorithm [2]. It provably solves the HNP when 	 ≥ log1/2 q + log log q. That
result is often cited as the only positive application known of the LLL algorithm, because
it enabled Boneh and Venkatesan to establish in [7] some results on the bit-security of
the Diffie–Hellman key exchange and related cryptographic schemes. However, in the
latter application, the distribution of the multipliers t is not perfectly uniform, making
some of the statements of [7] incorrect. This led Gonzáles Vasco and Shparlinski [16]
to extend results on the BV algorithm to the case where t is randomly selected from a
subgroup of F∗

q , to obtain rigorous statements on the bit-security of the Diffie–Hellman
key exchange and related schemes (see also [17]).

In the DSA–HNP as well, the distribution of the multiplier t (k, µ) is not necessarily
perfectly uniform. Hence, we present another extension of the results of [7] on the BV
algorithm using the notion of discrepancy, in the spirit of that of [16] and [17]. To
achieve the proof of our attack, we show using exponential sum techniques that the DSA
signatures follow some kind of uniform distribution.

1.5. Structure of the Paper and Notation

The paper is organised as follows. In Section 2 we review a few facts on lattices and
the HNP and we present three extensions of Theorem 1 of [7] where the multipliers
can have imperfect uniform distribution. In Section 3 we obtain uniformity results on
the distribution of DSA signatures, which might be of independent interest. Finally, in
Section 4, we collect the aforementioned results and apply it to DSA.

Throughout the paper the implied constants in symbols “O” may occasionally, where
obvious, depend on the small positive parameter ε and are absolute otherwise; they all
are effective and can be explicitly evaluated.

We use [α, β] and ]α, β[ to denote the closed and open intervals, respectively.
As usual, Pr(E) denotes the probability of an event E .
For a real x , 	x
 denotes the integer part of x , that is, the integer n such that n ≤ x <

n + 1. �x� is the integer n such that n ≥ x > n − 1.

2. Lattices and the Hidden Number Problem

2.1. Background on Lattices

As in [7], our results rely on rounding techniques in lattices. We briefly review a few
results and definitions. For general references on lattice theory and its important crypto-
graphic applications, we refer to the recent surveys [32] and [33].
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Let {b1, . . . , bs} be a set of linearly independent vectors in Rs . The set of vectors

L =
{

s∑
i=1

ni bi | ni ∈ Z

}

is called an s-dimensional full rank lattice. The set {b1, . . . , bs} is called a basis of L ,
and L is said to be spanned by {b1, . . . , bs}.

A basic lattice problem is the CVP: given a basis of a lattice L in Rs and a target
u ∈ Rs , find a lattice vector v ∈ L which minimises the Euclidean norm ‖u − v‖ among
all lattice vectors. The CVP generally refers to the Euclidean norm, but, of course, other
norms are possible as well: we denote by CVP∞ the problem corresponding to the infinity
norm. Both the CVP and the CVP∞ are NP-hard (see [32] and [33] for references). We
call any algorithm that solves the CVP exactly a CVP∞-oracle.

We use the best CVP approximation polynomial-time result known, which follows
from the recent shortest vector algorithm of Ajtai et al. [1] and Kannan’s reduction from
approximating the CVP to approximating the shortest vector problem [19]:

Lemma 1. For any constant γ > 0, there exists a randomized polynomial-time algo-
rithm which, given a lattice L and a vector r ∈ Qs , finds a lattice vector v satisfying
with probability exponentially close to 1 the inequality

‖v − r‖ ≤ 2γ s log log s/log s min{‖z − r‖, z ∈ L}.

Proof. By taking k = �c1 log n� in Corollary 15 of [1], where c1 > 0 is a sufficiently
large constant, we obtain a randomized polynomial-time algorithm which approximates
the shortest vector within 2c2s log log s/log s for any constant c2 > 0. Besides, Kannan
proved in Section 7 of [19] that any algorithm approximating the shortest vector problem
to within a non-decreasing function f (s) can be used to approximate CVP to within
s3/2 f (s)2. Since the number of calls of the algorithm remains polynomial, one obtains
the desired statement.

The best deterministic polynomial-time algorithm known for the problem has a slightly
larger approximation factor 2ηs log2 log s/log s , see for instance Section 2.1 of [27], Sec-
tion 2.4 of [32], or Section 2.4 of [33]. This result is a combination of Schnorr’s gen-
eralisation [38] of the lattice basis reduction algorithm of Lenstra et al. [24] with the
aforementioned reduction of Kannan [19]. In the literature, one often finds a weaker and
older result (due to Babai [2]) where the approximation factor is only 2s/2.

In Lemma 1 the success probability is exponentially close to 1: in the rest of the paper
we assume that the probability is at least 1 − 2−s3

, which we are allowed to do because
if the probability is at least 1 − 2−cs for some constant c > 0, then we can obtain the
probability 1 − 2−s3

by applying the algorithm a polynomial number of times.

2.2. The Hidden Number Problem

We sketch the Boneh and Venkatesan (BV) algorithm proposed in [7] to solve the HNP.
Our presentation is slightly different from that of [7]. Consider an instance of the HNP:



The Insecurity of the Digital Signature Algorithm with Partially Known Nonces 157

let t1, . . . , td be chosen uniformly and independently at random in F∗
q , and let ui =

APP	,q(αti ). Given t1, . . . , td , u1, . . . , ud , 	, and q, we wish to find the hidden number
α. Recall that, by definition, |ui −αti |q ≤ q/2	+1. The BV algorithm is based on a lattice
interpretation of those d inequalities: a vector derived from the ui ’s is exceptionally close
to a particular lattice vector related to the hidden number α. This is done by considering
the (d + 1)-dimensional lattice L(q, 	, t1, . . . , td) spanned by the rows of the following
matrix: 



q 0 · · · 0 0

0 q
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 q 0
t1 · · · · · · td 1/2	+1




. (3)

The inequality |ui − αti |q ≤ q/2	+1 implies the existence of an integer hi such that

|ui − αti − qhi | ≤ q/2	+1. (4)

Notice that the row vector h = (αt1 +qh1, . . . , αtd +qhd , α/2	+1) belongs to L(q, 	, t1,
. . . , td), since it can be obtained by multiplying the last row vector by α and then
subtracting appropriate multiples of the first d row vectors. Since the last coordinate of
this vector discloses the hidden number α, we call h the hidden vector. The hidden vector
is very close to the row vector u = (u1, . . . , ud , 0). Indeed, by (4) and 0 ≤ α < q, we
have

‖h − u‖∞ ≤ q/2	+1.

The choice of the (d + 1) × (d + 1) entry in the matrix (3) was made to balance the size
of the entries of h − u.

The BV algorithm applies Babai’s nearest plane algorithm [2] to the lattice L(q, 	, t1,
. . . , td) and the target vector u, which of course can both be built from available infor-
mation. This yields a lattice point v that must satisfy

‖u − v‖ ≤ 2(d+1)/4‖u − h‖ ≤ (d + 1)1/22(d+1)/4q/2	+1.

Thus, the lattice vector h − v satisfies

‖h − v‖∞ ≤ ‖h − u‖∞ + ‖u − v‖ ≤ q(1 + (d + 1)1/22(d+1)/4)

2	+1
.

This means that if 	 is not too small, then h−v is a very short lattice vector. Intuitively, only
very particular lattice vectors should have infinity norm less than q/21+η. The following
lemma (which is actually the core of Theorem 5 of [7]) formalises this intuition by
characterising all short vectors in L(q, 	, t1, . . . , td):

Lemma 2. Let α be a fixed integer in the range [1, q − 1] and let 	 ≥ η > 0. Choose
integers t1, . . . , td uniformly and independently at random in the range [1, q − 1]. Then
with probability P ≥ 1 − q/2dη, all vectors w in L(q, 	, t1, . . . , td) such that ‖w‖∞ ≤
q/21+η are of the form

w = (0, . . . , 0, β/2	+1),

where β ≡ 0 (mod q).
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Proof. Let w ∈ L(q, 	, t1, . . . , td). By definition of the lattice, there exist integers
β, z1, . . . , zd such that

w = (βt1 − z1q, . . . , βtd − zdq, β/2	+1). (5)

If β ≡ 0 (mod q), then each βti − zi q is a multiple of q, and, therefore, ‖w‖∞ ≤ q/21+η

implies that each βti − zi q is zero, so that

w = (0, . . . , 0, β/2	+1).

Hence, to achieve the proof of the lemma, it suffices to prove that the probability P , that
there exists an integer β �≡ 0 (mod q) and integers z1, . . . , zd such that ‖w‖∞ ≤ q/21+η

(where w is defined by 5), is less than q/2dη.
For any β �≡ 0 (mod q), denote by E(β) the event that there exist integers z1, . . . , zd

such that ‖w‖∞ ≤ q/21+η. Obviously, if |βti − zi q| ≤ q/21+η, then |βti |q ≤ q/21+η

(recall the definition |n|q = min{	n
q , q − 	n
q} in Section 1.4). Hence, the probability
of E(β) is less than the probability that, for all i , |βti |q < q/21+η. It follows by inde-
pendence of the ti ’s, that Pr(E(β)) ≤ p(β, q)d , if p(β, q) denotes the probability that
|βt |q ≤ q/21+η for t uniformly chosen in [1, q − 1]. By definition,

p(β, q) = 1 − Pr(q/21+η < 	βt
q < q − q/21+η).

Since β �≡ 0 (mod q), and t is uniformly chosen in [1, q −1], 	βt
q is uniformly chosen
in [1, q − 1], implying that

p(β, q) = 1 − 	q − q/21+η
 − �q/21+η� + 1

q − 1

≤ 1 − q − q/2η + 1

q − 1
= q − 21+η

2η(q − 1)
≤ 1

2η
.

Hence, the probability of E(β) is less than 1/2dη. Finally, notice that E(β) occurs only
if E(	β
q) occurs, so that

P ≤
q−1∑
β=1

Pr(E(β)),

from which the result follows.

Now, if h − v is sufficiently short to satisfy the condition of Lemma 2, the hidden
number α can be easily derived from the last coordinate of v because of h. A straight-
forward computation shows that the condition is satisfied for all sufficiently large q, if
	 = �log1/2 q� + �log log q� and d = 2�log1/2 q�, using Babai’s CVP approximation
algorithm [2], and not Lemma 1. Thus, with these parameters, the polynomial-time BV
algorithm recovers with high probability α, which is formalised by Theorem 1 of [7]. Of
course the value of 	 can be slightly decreased if one uses Lemma 1 instead of Babai’s
algorithm.
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2.3. Extending the Hidden Number Problem

As we have seen, the correctness of the BV algorithm relies on Lemma 2. We would
like to generalise Lemma 2 to cases where the multiplier t has not necessarily perfectly
uniform distribution. A simple look at the proof of Lemma 2 shows that the distribution
of t only intervenes in the upper bounding of the probability p(β, q) that |βt |q ≤ q/21+η.
We need p(β, q) to be less than a constant strictly less than 1. We rewrite p(β, q) as

p(β, q) = 1 − Pr(q/21+η < 	βt
q < q − q/21+η)

= 1 − Pr

(	βt
q

q
∈

]
1

21+η
, 1 − 1

21+η

[)
.

This suggests using the classical notion of discrepancy [11], [22], [35]. Recall that the
discrepancy D(�) of a sequence � = {γ1, . . . , γN } of N elements of the interval [0, 1]
is defined as

D(�) = sup
J⊆[0,1]

∣∣∣∣ A(J, N )

N
− |J |

∣∣∣∣ ,
where the supremum is extended over all subintervals J of [0, 1], |J | is the length of
J , and A(J, N ) denotes the number of points γn in J for 0 ≤ n ≤ N − 1. The term
	βt
q/q in our expression of p(β, q) suggests the following definition. We say that a
finite sequence T of integers is �-homogeneously distributed modulo q if for any integer
a coprime with q the discrepancy of the sequence {	at
q/q}t∈T is at most �. Indeed,
if t is now chosen uniformly at random from a �-homogeneously distributed modulo q
sequence T , then, by definition,

Pr

(	βt
q

q
∈

]
1

21+η
, 1 − 1

21+η

[)
≥

∣∣∣∣
]

1

21+η
, 1 − 1

21+η

[∣∣∣∣ − � = 1 − 1

2η
− �.

This obviously leads to the following generalisation of Lemma 2:

Lemma 3. Let α be a fixed integer in the range [1, q − 1] and let 	 ≥ η > 0. Choose
integers t1, . . . , td uniformly and independently at random from a �-homogeneously
distributed modulo q sequence T . Then with probability at least 1 − q(1/2η + �)d , all
w in L(q, 	, t1, . . . , td) such that ‖w‖∞ ≤ q/21+η are of the form

w = (0, . . . , 0, β/2	+1),

where β ≡ 0 (mod q).

Using Lemma 3, we easily obtain a generalisation of Theorem 1 of [7]:

Lemma 4. Let ω > 0 be an arbitrary absolute constant. For a prime q, define

	 =
⌈

ω

(
log q log log log q

log log q

)1/2
⌉

and d =
⌈

3 log
q

	

⌉
.
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Let T be a 2−	-homogeneously distributed modulo q sequence of integer numbers. There
exists a probabilistic polynomial-time algorithm A such that for any fixed integer α in
the interval [0, q − 1], given as input a prime q , d integers t1, . . . , td and d rationals

ui = APPαti , i = 1, . . . , d,

its output satisfies, for sufficiently large q ,

Pr[A (q, t1, . . . , td; u1, . . . , ud) = α] ≥ 1 − q−1

where the probability is taken over all t1, . . . , td chosen uniformly and independently at
random from the elements of T and all coin tosses of the algorithm A.

Proof. We simply follow the sketch of Section 2.2. The algorithm A applies the algo-
rithm of Lemma 1 with s = d +1 and γ = ω/10 to the lattice L(q, 	, t1, . . . , td) spanned
by the rows of the matrix 3, and the target vector u = (u1, . . . , ud , 0). The algorithm A
outputs 	β
q where β/2	+1 is the last entry of the vector v yielded by the algorithm of
Lemma 1.

We now analyse the correctness of A. Letting the lattice vector h = (	αt1
q , . . . ,

	αtd
q , α/2	+1), we see from Lemma 1 that the lattice vector v must satisfy, with prob-

ability at least 1 − 2−d3
,

‖u − v‖ ≤ 2γ (d+1) log log(d+1)/log(d+1)‖u − h‖ ≤ 2ωd log log d/9 log d‖u − h‖.

Since ‖h − u‖∞ < q/2	+1, we obtain

‖h − v‖∞ ≤ q2−	−1+ωd log log d/9 log d .

One easily verifies that

ωd log log d/9 log d ≤ 	/2

for sufficiently large q . Thus, h − v satisfies the assumption of Lemma 3 with η =
	/2 + 1 provided that q is large enough. Therefore, A outputs the hidden number α with
probability at least

1 − q(2−η + 2−	)d − 2−d3 ≥ 1 − q2−d(η−1) − 2−d3 ≥ 1 − q−1

and the result follows.

Since our results apply lattice reduction, it is interesting to know how our results are
affected if ideal lattice reduction is available, due to the well-known experimental fact
that lattice basis reduction algorithms behave much better than theoretically guaranteed,
despite NP-hardness results for most lattice problems (see [32] and [33]). The method-
ology of Section 2.2 is more adapted to the infinity norm than the Euclidean norm, so the
following result is an improved version of Lemma 4, when a CVP∞-oracle is available:
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Lemma 5. Let η > 0 be fixed. For a prime q, define 	 = 1 + η, and

d = � 8
3η−1 log q�.

Let T be an f (q)-homogeneously distributed modulo q sequence of integer numbers,
where f (q) is any function with f (q) → 0 as q → ∞. There exists a deterministic
polynomial-time algorithm A using a CVP∞-oracle (in dimension d + 1) such that for
any fixed integer α in the interval [0, q −1], given as input a prime q , d integers t1, . . . , td
and d rationals

ui = APPαti , i = 1, . . . , d,

its output satisfies, for sufficiently large q,

Pr[A (q, t1, . . . , td; u1, . . . , ud) = α] ≥ 1 − 1

q
,

where the probability is taken over all t1, . . . , td chosen uniformly and independently at
random from the elements of T .

Proof. We follow the proof of Lemma 4, and replace the algorithm of Lemma 1 by a
CVP∞-oracle. This time, we have

‖h − v‖∞ ≤ q

2	
= q

21+η
.

Applying Lemma 3, we obtain that the probability of success of the algorithm is at least
1 − q(1/2η + f (q))d . For sufficiently large q we have 1/2η + f (q) ≤ 1/23η/4, so that

(1/2η + f (q))d ≤ 1/23dη/4 ≤ 1/22 log q ,

from which the result follows.

It is worth noting that in Lemma 5 the assumption on the distribution of T is quite
weak, which explains why, in practice, attacks based on variants of the HNP are likely
to work (as illustrated in [18] and [30]). In fact, only a non-trivial upper bound on the
number of fractions 	at
q/q , t ∈ T , in a given interval is really needed (rather than the
much stronger property of homogeneous distribution modulo q).

We remark that the choice of parameters in DSA and ECDSA is based on the assump-
tion that any attack should take time of order at least q1/2. Thus any attack requiring
significantly less time could still be a threat. Interestingly, one can obtain a combination
of Lemmas 4 and 5 which leads to such an attack

Lemma 6. For a prime q , define 	 = 	log log q
 and

d = �4
log q

log log q
�.

Let T be a 2−	-homogeneously distributed modulo q sequence of integer numbers. There
exists a probabilistic algorithm A which runs in time q O(1/log log q) and such that for any
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fixed integer α in the interval [0, q − 1], given as input a prime q , d integers t1, . . . , td
and d rationals

ui = APPαti , i = 1, . . . , d,

its output satisfies, for sufficiently large q ,

Pr[A (q, t1, . . . , td; u1, . . . , ud) = α] ≥ 1 − 1

q
,

where the probability is taken over all t1, . . . , td chosen uniformly and independently at
random from the elements of T .

Proof. We repeat the arguments of the proof of Lemma 4, however, we use the closest
vector approximation algorithm of Corollary 16 of [1] in the corresponding place which
runs in time at most 2O(d) = q O(1/log log q). Following the same calculations as in the
proof of Lemma 4, we obtain that the probability of failure does not exceed

q(d1/22−	+O(1))d ≤ q−1

for sufficiently large q .

3. Distribution of Signatures Modulo q

From the previous section, it remains to study the distribution of signatures. In this section
we obtain uniformity results on the distribution of t (k, µ) modulo q, which might be of
independent interest.

3.1. Preliminaries on Exponential Sums

Let ep(z) = exp(2π i z/p) and eq(z) = exp(2π i z/q). One of our main tools is the Weil
bound on exponential sums with rational functions which we present in the following
form given by Theorem 2 of [28].

Lemma 7. For any polynomials g(X), f (X) ∈ Fq [X ] such that the rational function
F(X) = f (X)/g(X) is not constant on Fq , the bound∣∣∣∣∣∣

∑
λ∈Fq

∗eq(F(λ))

∣∣∣∣∣∣ ≤ (max{deg g, deg f } + u − 2)q1/2 + δ

holds, where
∑∗ means that the summation is taken over all λ ∈ Fq which are not poles

of F(X) and

(u, δ) =
{

(v, 1), if deg f ≤ deg g,

(v + 1, 0), if deg f > deg g,

and v is the number of distinct zeros of g(X) in the algebraic closure of Fq .
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We also need some estimates from [20] of exponential sums with exponential func-
tions. In fact we present them in the somewhat simplified forms similar to those given
in [16].

Lemma 8. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp of
multiplicative order T ≥ p1/3+ε the bound

max
gcd(c,p)=1

∣∣∣∣∣
T −1∑
x=0

ep(cgx )

∣∣∣∣∣ ≤ T 1−δ

holds.

Proof. The result follows immediately from the estimate

max
gcd(c,p)=1

∣∣∣∣∣
T −1∑
x=0

ep(cgx )

∣∣∣∣∣ = O(B(T, p)),

where

B(T, p) =




p1/2, if T ≥ p2/3;
p1/4T 3/8, if p2/3 > T ≥ p1/2;
p1/8T 5/8, if p1/2 > T ≥ p1/3;

which is essentially Theorem 3.4 of [20].

Lemma 9. Let Q be a sufficiently large integer. For any ε > 0 there exists δ > 0
such that for all primes p ∈ [Q, 2Q], except at most Q5/6+ε of them, and any element
gp,T ∈ Fp of multiplicative order T ≥ pε the bound

max
gcd(c,p)=1

∣∣∣∣∣
T −1∑
x=0

ep(cgx
p,T )

∣∣∣∣∣ ≤ T 1−δ

holds.

Proof. For each integer T ≥ 1 and for each prime p ≡ 1 (mod T ) we fix an element
gp,T of multiplicative order T . Then Theorem 5.5 of [20] claims that for any U > 1 and
any integer ν ≥ 2, for all primes p ≡ 1 (mod T ) except at most O(U/log U ) of them,
the bound

max
gcd(c,p)=1

∣∣∣∣∣
T −1∑
x=0

ep(cgx
p,T )

∣∣∣∣∣ = O(Tp1/2ν2
(T −1/ν + U−1/ν2

))

holds. We remark that the value of the above exponential sum does not depend on the
particular choice of the element gp,T .

Taking

ν =
⌊

1

ε

⌋
+ 1, U = Q1/2+ε/3, V = Q1/3+ε/3,
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after simple computation we obtain that there exists some δ > 0, depending only on ε,
such that for any fixed T ≥ Qε the bound

max
gcd(c,p)=1

∣∣∣∣∣
T −1∑
x=0

ep(cgx
p,T )

∣∣∣∣∣ ≤ T 1−δ

holds for all except O(U/log U ) primes p ≡ 1 (mod T ) in the interval p ∈ [Q, 2Q].
As follows from Lemma 8, a similar bound also holds for T ≥ V . So the total number
of exceptional primes p for which the bound of the lemma does not hold for at least one
T ≥ pε ≥ Qε is O(U V ) = O(Q5/6+2ε/3). Thus for sufficiently large Q we obtain the
desired result.

3.2. Distribution of r(k)

For any integer ρ ∈ [0, q − 1], we denote by N (ρ) the number of solutions of the
equation

r(k) = ρ, k ∈ [1, q − 1].

Lemma 10. Let Q be a sufficiently large integer. The following statement holds with
ϑ = 1

3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for all primes p ∈ [Q, 2Q] except at
most Q5/6+ε of them. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp

of multiplicative order q ≥ pϑ+ε the bound

N (ρ) = O(q1−δ), ρ ∈ [0, q − 1],

holds.

Proof. Let

L =
⌊

p − ρ − 1

q

⌋
.

We remark that N (ρ) is the number of solutions k ∈ [1, q − 1] of the congruence

gk ≡ qx + ρ (mod p), k ∈ [1, q − 1], x ∈ [0, L].

Using the identity (see Exercise 11.a in Chapter 3 of [46])

p−1∑
c=0

ep (cu) =
{

0, if u �≡ 0 (mod p);
p, if u ≡ 0 (mod p);

we obtain

N (ρ) = 1

p

q−1∑
k=1

L∑
x=0

p−1∑
c=0

ep(c(g
k − qx − ρ))

= 1

p

p−1∑
c=0

ep(−cρ)

q−1∑
k=1

ep(cgk)

L∑
x=0

ep(−cqx).
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Separating the term

(q − 1)(L + 1)

p
≤ (q − 1)(p/q + 1)

p
≤ 2

corresponding to c = 0, we derive

N (ρ) ≤ 2 + 1

p

p−1∑
c=1

∣∣∣∣∣
q−1∑
k=1

ep
(
cgk

)∣∣∣∣∣
∣∣∣∣∣

L∑
x=0

ep (−cqx)

∣∣∣∣∣
≤ 2 + 1

p

p−1∑
c=1

∣∣∣∣∣
q−1∑
k=1

ep
(
cgk

)∣∣∣∣∣
∣∣∣∣∣

L∑
x=0

ep (cqx)

∣∣∣∣∣ .
Combining Lemmas 8 and 9 to estimate the sum over k ∈ [1, q − 1] (certainly the
missing term corresponding to k = 0 does not change the order of magnitude of this
sum) with the estimate

p−1∑
c=1

∣∣∣∣∣
L∑

x=0

ep(cqx)

∣∣∣∣∣ =
p−1∑
c=1

∣∣∣∣∣
L∑

x=0

ep(cx)

∣∣∣∣∣ = O(p log p),

see Exercise 11.c in Chapter 3 of [46], we obtain the desired result.

In particular, denote by S the set of pairs (k, µ) ∈ [1, q − 1] × M with s(k, µ) �= 0
(that is, the set of pairs (k, µ) for which the congruence (1) holds and thus t (k, µ) is
defined). Then

|S| = q|M|(1 + O(q−δ)) (6)

for all p and q satisfying the conditions of Lemma 10.

3.3. Distribution of t (k, µ)

For a hash function h: M → Fq we also denote by W the number of pairs (µ1, µ2) ∈ M2

with h(µ1) = h(µ2). Thus, W/|M|2 is the probability of a collision and our results are
non-trivial under a reasonable assumption that this probability is of order of magnitude
close to 1/q .

First, we need to estimate exponential sums with the multipliers t (k, µ):

Lemma 11. Let Q be a sufficiently large integer. The following statement holds with
ϑ = 1

3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for all primes p ∈ [Q, 2Q] except at
most Q5/6+ε of them. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp

of multiplicative order q ≥ pϑ+ε the bound

max
gcd(c,q)=1

∣∣∣∣∣
∑

(k,µ)∈S
eq(ct (k, µ))

∣∣∣∣∣ = O(W 1/2q3/2−δ)

holds.
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Proof. For each µ ∈ Mwe denote byKµ the set of k ∈ [1, q−1] for which (k, µ) ∈ S.
We consider a c0 ∈ F∗

q corresponding to the largest exponential sum of interest to us.
We denote

σ =
∣∣∣∣∣

∑
(k,µ)∈S

eq (c0t (k, µ))

∣∣∣∣∣ = max
gcd(c,q)=1

∣∣∣∣∣
∑

(k,µ)∈S
eq(ct (k, µ))

∣∣∣∣∣ .
We have

σ ≤
∑
µ∈M

∣∣∣∣∣∣
∑

k∈Kµ

eq(c0t (k, µ))

∣∣∣∣∣∣ .
For λ ∈ Fq we denote by H(λ) the number of µ ∈ M with h(µ) = λ. We also define
the integer a ∈ [1, q − 1] by the congruence a ≡ 2−	c0 (mod q). Then

σ ≤
∑
λ∈Fq

H(λ)

∣∣∣∣∣∣
q−1∑
k=1

αr(k)�≡−λ(mod q)

eq

(
a

kr(k)

λ + αr(k)

)∣∣∣∣∣∣ .
Applying the Cauchy inequality we obtain

σ 2 ≤
∑
λ∈Fq

H(λ)2
∑
λ∈Fq

∣∣∣∣∣∣
q−1∑
k=1

αr(k)�≡−λ(mod q)

eq

(
a

kr(k)

λ + αr(k)

)∣∣∣∣∣∣
2

. (7)

First we remark that ∑
λ∈Fq

H(λ)2 = W. (8)

Furthermore,

∑
λ∈Fq

∣∣∣∣∣∣
q−1∑
k=1

αr(k)�≡−λ(mod q)

eq

(
a

kr(k)

λ + αr(k)

)∣∣∣∣∣∣
2

=
∑
λ∈Fq

q−1∑
k=1

αr(k)�≡−λ(mod q)

q−1∑
m=1

αr(m)�≡−λ(mod q)

eq

(
a

(
kr(k)

λ + αr(k)
− mr(m)

λ + αr(m)

))

=
q−1∑

k,m=1

∑
λ∈Fq

∗eq

(
a

(
kr(k)

λ + αr(k)
− mr(m)

λ + αr(m)

))
,

where, as in Lemma 7, the symbol
∑∗ means that the summation in the inner sum is

taken over all λ ∈ Fq with

λ �≡ −αr(k) (mod q) and λ �≡ −αr(m) (mod q).

It is easy to see that if r(k) �= r(m), then the rational function

Fk,m(X) = kr(k)

X + αr(k)
− mr(m)

X + αr(m)
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is not constant in Fq . If r(k) = r(m), then

Fk,m(X) = (k − m)r(k)

X + αr(k)
.

Thus it is constant only if k = m or r(k) = r(m) = 0. From Lemma 10 we see that the
number of such pairs is O(q2−2δ + q) for some δ > 0 for which we estimate the sum
over λ trivially as q . For other pairs (k, m) ∈ [1, q − 1]2 we use Lemma 7 getting

∑
λ∈Fq

∣∣∣∣∣∣
q−1∑
k=1

αr(k)�≡−λ(mod q)

eq

(
a

kr(k)

λ + αr(k)

)∣∣∣∣∣∣
2

= O((q2−2δ + q)q + q5/2)

= O(q3−2δ)

(without loss of generality we may assume that δ < 1
4 ). Substituting this estimate and

the identity (8) in (7), we obtain the desired statement.

Lemma 12. Let Q be a sufficiently large integer. The following statement holds with
ϑ = 1

3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for all primes p ∈ [Q, 2Q]
except at most Q5/6+ε of them. For any ε > 0 there exists δ > 0 such that for any
element g ∈ Fp of multiplicative order q ≥ pϑ+ε the sequence t (k, µ), (k, µ) ∈ S, is
2− log1/2 q -homogeneously distributed modulo q provided that

W ≤ |M|2
q1−δ

.

Proof. We fix an integer a coprime with q. According to a general discrepancy bound,
given by Corollary 3.11 of [35] for the discrepancy D of the set{	at (k, µ)
q

q
: (k, µ) ∈ S

}
,

we have

D ≤ log q

|S| max
gcd(c,q)=1

∣∣∣∣∣
∑

(k,µ)∈S
eq(c	at (k, µ)
q)

∣∣∣∣∣
≤ log q

|S| max
gcd(c,q)=1

∣∣∣∣∣
∑

(k,µ)∈S
eq(cat (k, µ))

∣∣∣∣∣
≤ log q

|S| max
gcd(c,q)=1

∣∣∣∣∣
∑

(k,µ)∈S
eq(ct (k, µ))

∣∣∣∣∣ .
Applying Lemma 11 and the bound (6) we obtain

D = O(W 1/2q1/2−δ|M|−1) = O(q−δ/2) = o(2− log1/2 q)

and the desired result follows.
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4. Insecurity of the Digital Signature Algorithm

4.1. Theoretical Results

It now suffices to collect the previous results. For an integer 	 we define the oracle O	

which, for any given DSA signature (r(k), s(k, µ)), k ∈ [0, q − 1], µ ∈ M, returns the
	 least significant bits of k. Combining (2), Lemma 4 and Lemma 12 we obtain

Theorem 13. Let ω > 0 be an arbitrary absolute constant. Let Q be a sufficiently
large integer. The following statement holds with ϑ = 1

3 for all primes p ∈ [Q, 2Q],
and with ϑ = 0 for all primes p ∈ [Q, 2Q] except at most Q5/6+ε of them. For any
ε > 0 there exists δ > 0 such that for any element g ∈ Fp of multiplicative order q ,
where q ≥ pϑ+ε is prime, and any hash function h with

W ≤ |M|2
q1−δ

,

given an oracle O	 with

	 =
⌈

ω

(
log q log log log q

log log q

)1/2
⌉

,

there exists a probabilistic polynomial-time algorithm to find the signer’s DSA secret key
α from O((log q log log q/log log log q)1/2) signatures (r(k), s(k, µ)) with k ∈ [0, q−1]
and µ ∈ M selected independently and uniformly at random. The probability of success
is at least 1 − q−1.

Proof. We choose k ∈ [0, q − 1] and µ ∈ M independently and uniformly at random
and ignore pairs (k, µ) �∈ S. It follows from (6) that the expected number of choices in
order to get d pairs (k, µ) ∈ S is d + O(dq−δ) for some δ > 0 depending only on ε > 0.

Now, combining inequality (2), Lemma 12 and Lemma 4 we obtain our main
result.

In Section 5.1 we extend this result to other consecutive bits, such as most significant
bits or bits in the middle. The result is essentially the same for most significant bits,
while one requires twice as many bits for arbitrary consecutive bits.

If a CVP∞-oracle is available, the number 	 of required bits can be decreased to two
due to Lemma 5. The dimension of the lattice used by the oracle is d + 1, where the
number d of required signatures is O(log q). More precisely we have:

Theorem 14. Let Q be a sufficiently large integer. The following statement holds with
ϑ = 1

3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for all primes p ∈ [Q, 2Q] except at
most Q5/6+ε of them. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp

of multiplicative order q , where q ≥ pϑ+ε is prime, and any hash function h with

W ≤ |M|2
q1−δ

,
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given an oracle O	 with 	 = 2 and a CVP∞-oracle for the dimension d + 1 where

d = � 8
3 log q�,

there exists a probabilistic polynomial-time algorithm to find the signer’s DSA secret
key α from d signatures (r(k), s(k, µ)) with k ∈ [0, q − 1] and µ ∈ M selected
independently and uniformly at random. The probability of success is at least 1 − q−1.

Accordingly, from Lemma 6 we derive:

Theorem 15. Let Q be a sufficiently large integer. The following statement holds with
ϑ = 1

3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for all primes p ∈ [Q, 2Q] except at
most Q5/6+ε of them. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp

of multiplicative order q , where q ≥ pϑ+ε is prime, and any hash function h with

W ≤ |M|2
q1−δ

,

given an oracle O	 with

	 = �log log q�,

there exists a probabilistic algorithm to find the signer’s DSA secret key α, in time
q O(1/log log q), from O(log q/log log q) signatures (r(k), s(k, µ)) with k ∈ [0, q − 1] and
µ ∈ M selected independently and uniformly at random. The probability of success is
at least 1 − q−1.

4.2. Experimental Results

We report experimental results on the attack obtained with the NTL library [41] (see
also [30]). The running time is less than half an hour for a number of signatures d less
than 100, on a 500 MHz DEC Alpha. We used a 160-bit prime q and a 512-bit prime p.
For each choice of parameters size, we run the attack several times on newly generated
parameters (including the prime q and the multipliers of the DSA–HNP). Each trial is
referred to as a sample. Using Babai’s nearest plane algorithm [2] and Schnorr’s Korkine-
Zolotarev reduction [38], [40] with blocksize 20, we could break DSA with 	 as low as
	 = 4 and d = 70. More precisely, the method always worked for 	 = 5 (100 samples).
For 	 = 4, it worked 90% of the time over 100 samples. For 	 = 3, it always failed on
about 100 samples, even with d = 100.

We made additional experiments with the well-known embedding strategy (see [32]
and [33]) and Schnorr’s improved lattice reduction [38], [40] to solve the CVP. The
embedding strategy heuristically reduces the CVP to the lattice shortest vector problem.
More precisely, if the CVP-instance is given by the vector a = (a1, . . . , ad) and a d-
dimensional lattice spanned by the row vectors bi = (bi,1, . . . , bi,d) with 1 ≤ i ≤ d, the
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embedding strategy builds the lattice L spanned by the rows of the following matrix:


b1,1 · · · b1,d 0
b2,1 · · · b2,d 0
...

...
...

bd,1 · · · bd,d 0
a1 · · · ad 1


 .

It is hoped that the shortest vector of L (or one of the vectors of the reduced basis) is
of the form (a − u, 1) where u is a sufficiently close lattice vector we are looking for.
Using that strategy, we were always able to solve the DSA problem with 	 = 3 and
d = 100 (on more than 50 samples). We always failed with 	 = 2 and d = 150. In our
experiments, to balance the coefficients of the lattice, we replaced the coefficient 1 in the
lowest right-hand entry by q/2	+1. When the attack succeeded, the vector (a−u, q/2	+1)

(where u is a lattice point revealing the hidden number) was generally the second vector
of the reduced basis.

Our experimental bound is very close to that of Lemma 5. We believe it should be
possible to reach 	 = 2 in practice using a lattice basis reduction algorithm more suited
to the infinity norm (see for instance [37]), especially since the lattice dimension is
reasonable. In fact, even 	 = 1 might be possible in practice: the proof of Lemma 5 does
not rule out such a possibility.

As previously mentioned in the Introduction, Bleichenbacher [6] has recently discov-
ered a new attack in this setting, which does not use lattices. This attack is heuristic,
but gives better experimental results for currently recommended values of parameters,
if one is only interested in minimizing 	. More precisely, the best experimental result of
[6] shows that one can recover the DSA secret key given a leakage of log 3 ≈ 1.58 bits
for 222 signatures, in about 3 days on a 450 MHz Ultrasparc using 500 Mb of RAM. The
number of signatures required is much larger than with the lattice approach with 3 bits
(which is close to the information theoretic bound), but it is still reasonably small.

5. Remarks

5.1. Other Consecutive Bits

A similar argument works if, more generally, we are given consecutive bits at a known
position.

The simplest case is when the consecutive bits are the most significant bits. The
definition of most significant bits may depend on the context, as opposed to least sig-
nificant bits. Here, we study two possible definitions. The usual definition refers to the
binary encoding of elements in Fq , where each element is encoded with n bits where
n = 1 + 	log q
 is the bit-length of q. Thus, we define the 	 most significant bits of an
element x ∈ Fq as the unique positive integer MSB	,q(x) ∈ {0, . . . , 2	−1} such that

x − 2n−	MSB	,q(x) ∈ {0, . . . , 2n−	 − 1}.
For instance, the most significant bit is 1 if x ≥ 2n−1, and 0 otherwise. However, this
definition is not very well-suited to modular residues, since the most significant bit



The Insecurity of the Digital Signature Algorithm with Partially Known Nonces 171

MSB1,q(x) may in fact leak less than one bit of information: if q is very close to 2n−1,
then MSB1,q(x) is most of the time equal to 0. Hence, Boneh and Venkatesan used in [7]
another definition of most significant bits, which we refer to as most significant modular
bits. The 	 most significant modular bits of an element x ∈ Fq are defined as the unique
integer MSMB	,q(x) such that

0 ≤ x − MSMB	,q(x)q/2	 < q/2	.

For example, the most significant modular bit is 0 if x < q/2, and 1 otherwise.
Now, recall that, by definition of the DSA signature,

αT (k, µ) ≡ k − h(µ)s(k, µ)−1 (mod q),

where T (k, µ) = 	r(k)s(k, µ)−1
q . It follows that, for any integer 	,

|αT (k, µ) − h(µ)s(k, µ)−1 − 2n−	MSB	,q(k) − 2n−	−1|q ≤ 2n−	−1

and

|αT (k, µ) − h(µ)s(k, µ)−1 − MSMB	,q(k)q/2	 − q/2	+1|q ≤ q/2	+1.

In other words, the 	 most significant bits MSB	,q(k) yield an approximation APP	−1,q

αT (k, µ), while the 	 most significant modular bits MSMB	,q(k) yield an approximation
APP	,q(αT (k, µ)). Hence, Theorems 13 and 14 also hold for most significant usual and
modular bits, provided that we add one more bit in the case of most significant (usual)
bits.

For oracles returning 	 consecutive bits in the middle, one requires twice as many bits.
The idea is to use a trick, which appeared in the work of Frieze et al. [15], see (2.13) in
that work, on breaking truncated linear congruential generators, and which is based on
the following statement for which we provide a proof somewhat simpler to that of [15].
Paper [15] invokes Lenstra’s work [25] on integer programming with a fixed number of
variables. Our arguments makes use of a simple technique based on continued fractions.

Lemma 16. There exists a polynomial-time algorithm which, given A and B in [1, q],
finds λ ∈ Z∗

q such that

|λ|q < B and |λA|q ≤ q/B.

Proof. Let Pi and Qi denote respectively the numerator and denominator of the i th
continued fraction convergents to the rational A/q, i ≥ 1. There exists j such that
Qj < B ≤ Qj+1. Then we have∣∣∣∣ A

q
− Pj

Qj

∣∣∣∣ ≤ 1

Qj Qj+1
.

Therefore |AQj − qPj | ≤ q/Qj+1. Selecting λ = Qj , we obtain the desired
statement.
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Now, assume that we are given the 	 consecutive bits of a nonce k ∈ F∗
q , starting at some

known position j . More precisely, we are given an integer a such that 0 ≤ a ≤ 2	 − 1
and k = 2 j a + 2	+ j b + c for some integers 0 ≤ b ≤ q/2	+ j and 0 ≤ c < 2 j . We apply
Lemma 16, with B = q2− j−	/2 and A = 2 j+	, to obtain λ ∈ F∗

q such that

|λ|q < q2− j−	/2 and |λ2 j+	|q ≤ 2 j+	/2.

Multiplying by λ, (1) can be rewritten as

αr(k)λs(k, µ)−1 ≡ (2 j a − s(k, µ)−1h(µ))λ + (cλ + 2	+ j bλ) (mod q).

Notice that

|cλ + 2	+ j bλ|q ≤ c|λ|q + b|2	+ jλ|q
< 2 j q2− j−	/2 + q/2	+ j 2 j+	/2 = q/2	/2−1.

Thus, for arbitrary consecutive bits, one requires roughly twice as many bits. Note that
[18] actually suggested that the bounds remained the same with arbitrary consecutive
bits. More generally, by using high-dimensional lattice reduction, it is not difficult to
show that when 	 arbitrary bits at known positions are leaked, one requires roughly m
as many bits, where m is the number of blocks of consecutive unknown bits.

5.2. Practical Implications of Our Results

First we note that the constants in our theoretical results are effective and can be explicitly
evaluated. One can also find a precise dependence of δ on ε in the above estimates. In
particular, it would be interesting to obtain a non-asymptotic form of our theoretical
results for the range of p and q corresponding to the real applications of DSA, that is,
when q is a 160-bit prime and p is a 512-bit prime, see [26] and [43].

The condition W ≤ |M|2q−1+δ does not seem too restrictive, as one could expect
W ∼ |M|2q−1 for any “good” hash function.

It might be worth noting that Lemma 10 implies that r(k) takes exponentially many
distinct values. Thus DSA indeed generates exponentially many distinct signatures.
Certainly this fact has never been doubted in practice but our results provide its rigorous
confirmation. On the other hand, the bound qδ implied by Lemma 10 on the number of
distinct values of r(k) falls far below the expected value of order about q. Obtaining such
a lower bound is a very challenging question which probably requires some advanced
number theoretic tools.

Finally, we observe that if, for efficiency reasons, one chooses either a nonce k with
fewer bits than q or a sparse nonce k (to speed up the exponentiation at each signature
round), then our attack obviously applies, because one then either knows or guesses with
high probability sufficiently many bits of the nonce k. We remark that it could be quite
tempting to choose such “special” k. Indeed, the size of q is currently determined by
the time required by the q1/2-attacks on the signer’s discrete log key (such as Pollard’s
rho algorithm, see the survey [44]). However, such attacks fail to recover the value of k
from r(k) because the double reduction (modulo p and then modulo q) seems to erase
all useful properties of the exponential function. Thus, simple exhaustive search may a
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priori seem the only method to recover k from r(k), and one may believe that taking k
in the range 1 ≤ k ≤ q1/2 does not undermine the security of the scheme. Our results
show that this choice is fatal for the whole scheme.

To establish the corresponding uniformity of distribution results one can use bounds
of exponential sums when k runs over a part of the interval [1, q − 1]. Namely, for any
element g ∈ Fp of multiplicative order T the bound

max
1≤K≤T

max
gcd(c,p)=1

∣∣∣∣∣
K∑

k=1

ep(cgk)

∣∣∣∣∣ = O(p1/2 log p)

holds, see Lemma 2 of [21] or Theorem 8.2 of [34]. This bound is non-trivial only
for T ≥ p1/2+ε. Accordingly, our method applies only to larger values of q than in
Theorems 13 and 14, namely q ≥ p1/2+ε, but the attack itself still can be launched (even
without rigorous proof of success). In fact one can obtain an analogue of Lemma 8 for
such short sums as well. For sparse exponents one can use the approach of [14] to obtain
the necessary bounds of the corresponding exponential sums. We remark that the results
of [14] apply only to the case of a primitive root g but the technique can be expanded to
g of arbitrary (but sufficiently large) multiplicative order modulo p.

Hence, our results show that it is really essential to the security of DSA that the nonce
k be generated by a cryptographically secure pseudo-random number generator. We also
remark that a very different heuristic attack on very small values of k = O(q1/2) has
recently been described in [23]. Even in this case, if the attacker is able to apply a timing
or power attack and select signatures corresponding to small values of k, then the whole
signature scheme is insecure. Generally, any leakage of information on k could prove
dramatic.

5.3. Related Signature Schemes

One might wonder to what extent our results also apply to other DSA-related signature
schemes (see Section 11.5 of [26]), such as Schnorr’s [39] or El Gamal’s [12]. We follow
the notations of Section 1.1.

Recall that in Schnorr’s signature scheme, the signature of a message µ with a nonce
k ∈ F∗

q is the pair (e, s) ∈ F2
q defined as (the symbol ‖ denoting as usual concatenation)

e(k, µ) = h(µ ‖ 	gk
p),

s(k, µ) = 	k + αe(k, µ)
q .

Obviously, the same attack applies with different multipliers. For instance, suppose that
the 	 least significant bits of k are known for several signatures. Then, as in Section 1.4,
it can be seen that recovering the signer’s secret key α is an HNP with multiplier

t (k, µ) = 	e(k, µ)2−	
q .

Under the random oracle model, t (k, µ) has (perfect) uniform distribution, making
Lemmas 4 and 5 directly applicable. The same holds for any block of consecutive bits.
Hence, our results are even simpler with Schnorr’s signature scheme.
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In El Gamal’s signature scheme, there is only one large prime p, and g is a generator
of F∗

p. The signature of a message µ with a nonce k ∈ [1, p − 2] coprime with p − 1 is
the pair (r, s) ∈ [1, p − 1]2 defined as

r(k) = 	gk
p,

s(k, µ) = 	k−1(h(µ) − αr(k))
p.

This time, we cannot work with the least significant bits, as 2 is not invertible modulo
p − 1. So suppose instead that the 	 most significant modular bits of k are known for
several signatures. Then we obtain an HNP with multiplier:

t (k, µ) = 	r(k)s(k, µ)−1
p.

The resemblance with the DSA case is of course natural. Statements similar to that of
Section 3 can be obtained on such multipliers. In fact, for this case, many things can be
done in much stronger form. In particular, it has been shown in [42] that in El Gamal’s
signature scheme the pairs (r(k), s(k, µ)) are uniformly distributed modulo p, rather
than just their ratios t (k, µ). Thus we have no doubt that a similar attack applies to
this scheme as well, however, we are not able to give a rigorous proof of this statement
because the above approach to the HNP fails to work modulo a composite. Probably
some further adjustments and modifications should be made to design an algorithm for
the HNP modulo a composite, which could be an interesting problem by itself.

The modifications of DSA described in Table 11.5 of [26]), see also [36], can be
studied by our method as well, see [13]. Also, in [31] we have obtained similar results
for the elliptic curve analogue of DSA.

Finally, the results and ideas of this paper have recently been used in [10] to design
an attack on another DSA-based cryptosystem. It is shown in [10] that in the above
cryptosystem there is a way to extract all necessary information from the protocol itself,
thus no additional “leakage” is assumed. In fact, Lemma 11 allows us to make the attack
of [10] rigorously proved and also to extend it to other small subgroups of F∗

p (not only
those with a power of 2 elements as in [10]).

Acknowledgments

We thank Daniel Bleichenbacher, Dan Boneh, Nick Howgrave-Graham and Ramarath-
nam Venkatesan for helpful discussions. Part of this work was done while the first author
was visiting Stanford University, whose hospitality is gratefully acknowledged.

References

[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proc.
of the 33rd ACM Symposium on Theory of Computation (STOC ’2001), Crete, pages 601–610, 2001.

[2] L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13,
1986.

[3] M. Bellare, S. Goldwasser, and D. Micciancio. “Pseudo-random” number generation within cryptographic
algorithms: the DSS case. In Proc. of Crypto ’97, volume 1294 of LNCS. IACR, Palo Alto, CA, Springer-
Verlag, Berlin, 1997.



The Insecurity of the Digital Signature Algorithm with Partially Known Nonces 175

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In Proc. of the 1st ACM Conference on Computer and Communications Security, pages 62–73. ACM
Press, New York, 1993.

[5] D. Bleichenbacher, 1999. Private communication.
[6] D. Bleichenbacher. On the generation of DSS one-time keys. Manuscript. The result was presented at

the Monteverita workshop in March 2001.
[7] D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in Diffie–

Hellman and related schemes. In Proc. of Crypto ’96, volume 1109 of LNCS. IACR, Palo Alto, CA,
Springer-Verlag, New York, 1996.

[8] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic applications. In Proc. of the 8th
Symposium on Discrete Algorithms, pages 675–681. ACM, New York, 1997.

[9] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for discrete logarithm based
signature schemes. In Proc. of PKC ’2000, volume 1751 of LNCS, pages 276–292. Springer-Verlag,
Berlin, 2000.

[10] D. R. L. Brown and A. J. Menezes. A small subgroup attack on a key agreement protocol of Arazi.
Technical report CORR 2001–50, Dept. of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, 2001.

[11] M. Drmota and R. Tichy. Sequences, Discrepancies and Applications. Springer-Verlag, Berlin, 1997.
[12] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Trans. Inform. Theory, 31:469–472, 1985.
[13] E. El Mahassni, P. Q. Nguyen, and I. E. Shparlinski. The insecurity of Nyberg–Rueppel and other

DSA-like signature schemes with partially known nonce. In Proc. of the Workshop on Cryptography and
Lattices (CALC ’01), volume 2146 of LNCS, pages 97–109. Springer-Verlag, Berlin, 2001.

[14] J. B. Friedlander and I. E. Shparlinski. On the distribution of Diffie–Hellman triples with sparse exponents.
SIAM J. Discrete Math., 14:162–169, 2001.
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