
DOI: 10.1007/s00145-003-0051-5

J. Cryptology (2003) 16: 287–289

© 2003 International Association for
Cryptologic Research

Generating Random Factored Numbers, Easily

Adam Kalai
Department of Mathematics,

Massachusetts Institute of Technology,
77 Massachusetts Avenue,

Cambridge, MA 02139, U.S.A.
akalai@mit.edu

Communicated by Moni Naor

Received August 2000 and revised May 2003
Online publication 5 September 2003

Consider the problem of generating a random “pre-factored” number, that is, a uniformly
random number between 1 and n, along with its prime factorization. Of course, one could
pick a random number in this range and try to factor it, but there are no known polynomial-
time factoring algorithms. In his dissertation, Bach presents an efficient algorithm for
this problem [1], [2]. Here, we present a significantly simpler algorithm and analysis for
the same problem. Our algorithm is, however, a log(n) factor less efficient.

Algorithm

Input: Integer n > 0.

Output: A uniformly random number 1 ≤ r ≤ n.

1. Generate a sequence n ≥ s1 ≥ s2 ≥ · · · ≥ sl = 1 by choosing
s1 ∈ {1, 2, . . . , n} and si+1 ∈ {1, 2, . . . , si }, until reaching 1.

2. Let r be the product of the prime si ’s.
3. If r ≤ n, output r with probability r/n.
4. Otherwise, RESTART.

A common class exercise is pick a random number between 1 and n using a coin with
Pr(H) = Pr(T ) = 1/2. Instead suppose we had n coins c1, c2, . . . , cn where,

coin ci has Pr(H) = 1

i
and Pr(T ) = 1− 1

i
.

Hypothetically, one slow way to pick a number between 1 and n is first to flip cn and
choose n if it is H , otherwise flip cn−1 and choose n − 1 if it is H , and so on.

287



288 A. Kalai

Claim 1. One way to choose a uniformly random 1 ≤ m ≤ n is to flip coins cn, cn−1, . . .

until we get H on some coin cm .

Proof. By induction. The base case n = 1 is trivial. For a general n, we pick n with
probability 1/n and otherwise, by induction hypothesis, all 1 ≤ m ≤ n − 1 are equally
likely.

Claim 2. The output of our algorithm is uniform in {1, 2, . . . , n}.

Proof. Imagine that in step 1 we chose s1 by flipping coins cn, cn−1, . . . , until we got
T on some cs1 , and chose s2 by flipping cs1 , cs1−1, . . ., and so on. (Of course, in practice
we would use some more efficient method.) Every coin will be flipped, and the number
of occurrences of a number m in the sequence is the number of H ’s we saw on coin cm

before T .
Thus, in step 2, we get a particular r =∏p≤n pαp with probability

Pr

[
r =

∏
p≤n

pαp

]
= Pr [∧p≤n we had αp H ’s followed by T on coin cp]

=
∏
p≤n

(
1

p

)αp
(

1− 1

p

)

= 1

r
Mn,

where Mn =
∏

p≤n(1− 1/p). Next, the probability of generating such a 1 ≤ r ≤ n and
outputting it in step 3 is

Mn

r

r

n
= Mn

n
.

Since this is the same for every 1 ≤ r ≤ n, each time we reach step 3, we either output
a uniformly random 1 ≤ r ≤ n or restart.

Intuition. The above analysis shows that in fact every number m occurs at least once
in the sequence with probability 1/m, and at least k times with probability 1/mk . This
matches the intuition that a prime p � n divides a random number in 1 ≤ r ≤ n at least
once with probability ≈ p and at least k times with probability ≈ 1/pk .

Claim 3. The expected number of primality tests is O(log2 n).

Proof. Since the probability of outputting any particular 1 ≤ r ≤ n is Mn/n, the
probability of outputting any number in step 3 is n(Mn/n) = Mn . If we refer to a round
as an execution of steps 1, 2, and 3, then the probability of reaching round t is (1−Mn)

t .
During a round, we test m with probability 1/m, the probability we get at least one H
on cm . So

Pr [m is tested during round t] = (1− Mn)
t

m
.



Generating Random Factored Numbers, Easily 289

Thus the expected total number of primality tests is1

∞∑
t=0

n∑
m=1

(1− Mn)
t

m
= Hn

∞∑
t=0

(1− Mn)
t = Hn

Mn
.

Since Hn ≤ 1+ ln n and 1/Mn ≈ 1.78 ln n (Mertens’ theorem [3]), Hn/Mn is O(log2 n).

Acknowledgments

I thank Manuel Blum, Michael Rabin, Doug Rohde, Yael Tauman, and the referees for
helpful comments.

References

[1] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press,
Cambridge, MA, 1985.

[2] E. Bach, How to generate factored random numbers, SIAM Journal on Computing, vol. 17 (1988), pp. 179–
193.

[3] E. Bach and J. Shallit, Algorithmic Number Theory, MIT Press, Cambridge, MA, 1996.

1 It is tempting to take a shortcut and argue that the expected number of total primality tests is Hn/Mn

because the expected number of rounds is 1/Mn and the expected number of tests per round is Hn , but this
assumes independence.


