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Abstract. We describe new computationally secure protocols of 1-out-of-N oblivious
transfer, k-out-of-N oblivious transfer, and oblivious transfer with adaptive queries. The
protocols are very efficient compared with solutions based on generic two-party compu-
tation or on information-theoretic security. The 1-out-of-N oblivious transfer protocol
requires only log N executions of a 1-out-of-2 oblivious transfer protocol. The k-out-
of-N protocol is considerably more efficient than k repetitions of 1-out-of-N oblivious
transfer, as is the construction for oblivious transfer with adaptive queries. The efficiency
of the new oblivious transfer protocols makes them useful for many applications. A di-
rect corollary of the 1-out-of-N oblivious transfer protocol is an efficient transformation
of any Private Information Retrieval protocol to a Symmetric PIR protocol.

Key words. Cryptography, Privacy preserving computation, Secure function evalua-
tion, Oblivious transfer.

1. Introduction

An oblivious evaluation protocol for a function f (·, ·) allows two parties, Alice who
knows x and Bob who knows y, to compute jointly the value of f (x, y) in a way that
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does not reveal to each side more information than can be deduced from f (x, y). (This
definition can be generalized in a natural way to capture the case where each party learns
a different output, or where only one party learns an output.) The fact that for every
polynomially computable function f (·, ·) there exists such a (polynomially computable)
protocol is one of the most remarkable achievements of research in foundations of
cryptography. However, the efficiency of the resulting protocols is often not satisfactory
since the number of cryptographic operations performed is proportional to the size of
the circuit computing f (x, y) [51], [31]. Even for relatively simple functions this may
be prohibitively expensive. Therefore it is interesting to look for functions for which it
is possible to design a protocol that does not emulate the circuit for the function.

This paper presents efficient protocols for the basic two-party problem of 1-out-of-N
oblivious transfer (OT N

1 ). In this problem Bob knows N values and would like to let
Alice choose any one of them in such a way that she does not learn more than one value,
and he remains oblivious to the value she chooses. This is a well-known problem. We
discuss two new applications of it for Symmetric Private Information Retrieval (SPIR)
and oblivious sampling (which is useful, for example, for checking the size of the index
of a search engine). The paper also describes protocols for k-out-of-N oblivious transfer
(OT N

k ), and for running oblivious transfer with k adaptive queries (OT N
k×1). All protocols

are based on standard cryptographic assumptions.

Organization. In the rest of this section we discuss in more detail oblivious transfer
and oblivious function evaluation, and present appropriate security definitions. Section 2
presents protocols for 1-out-of-N and k-out-of-N oblivious transfers. Section 3 presents
protocols for oblivious transfer with adaptive queries. Section 4 describes various appli-
cations for the protocols we present.

1.1. Oblivious Transfer

Oblivious Transfer (OT) refers to several types of two-party protocols where at the
beginning of the protocol one party, the sender (or sometimes Bob or B), has an input,
and at the end of the protocol the other party, the receiver (or sometime Alice or A),
learns some information about this input in a way that does not allow the sender to figure
out what she has learned. In this paper we are concerned with 1-out-of-2 OT protocols
where the sender’s input consists of two strings (X1, X2) and the receiver can choose to
get either X1 or X2 and learns nothing about the other string. Similarly, in 1-out-of-N
OT the sender has as input N strings X1, X2, . . . , X N and the receiver can choose to get
X I for some 1 ≤ I ≤ N of her choice, without learning anything about the other inputs
and without the sender learning anything about I .

1-out-2 OT was suggested by Even et al. [23], as a generalization of Rabin’s “oblivious
transfer” [49] (the notion was also developed independently by Wiesner in the 1970s, but
was only published in [50]). 1-out-of-N OT was introduced by Brassard et al. [7] under
the name ANDOS (all or nothing disclosure of secrets). For an up-to-date definition of
OT and oblivious function evaluation see [29].

Since its proposal OT has enjoyed a large number of applications and in particular
Kilian [35] and Goldreich and Vainish [32] have shown how to use OT in order to
implement general oblivious function evaluation, i.e., to enable Alice and Bob to evaluate



Computationally Secure Oblivious Transfer 3

any function of their inputs without revealing more information than necessary. There are
many applications for 1-out-of-N OT in case N is relatively large, and some of them are
described in Section 4. Another application is oblivious polynomial evaluation, which
is described in [45].

Reductions between various types of OT protocols have been investigated extensively
and it was concluded that the various types of OT are information-theoretically equivalent
(See [6], [8], [18], [17], and [10]). This is of interest, given the possibility of implementing
OT using “physical means,” e.g., via a noisy channel or quantum cryptography. However,
some of these reductions are not particularly efficient. Furthermore, it was shown that
an information-theoretic reduction from 1-out-of-N OT to 1-out-of-w OT (where both
OTs operate on strings of the same length) must use at least (N−1)/(w−1) invocations
of 1-out-of-w OT in order to preserve the information-theoretic security [20]. In this
paper we use non-information-theoretic reductions, i.e., employ additional cryptographic
primitives, to obtain very efficient reductions. In particular, we apply pseudo-random
functions which can be based on one-way functions.

Staying in the complexity-based world, without physical realizations of OT channels
but assuming that the adversary’s power is limited to probabilistic polynomial time,
OT can be implemented under a variety of assumptions (see, e.g., [6], [23], and [4]).
Essentially every known suggestion of public-key cryptography allows one also to imple-
ment OT (although in general public-key cryptography and OT are incomparable under
black-box reductions [27]), and the complexity of 1-out-of-2 OT is typical of public-
key operations [6], [4]. Oblivious transfer based on the paradigm of [23] can be easily
constructed using public-key systems if it is possible to generate two computationally
indistinguishable strings, one of them being a public key and the other being random.
Consequently, OT can be based on the existence of trapdoor permutations, the hardness
of factoring, the Diffie–Hellman assumption, and the hardness of finding short vectors
in a lattice (the Ajtai–Dwork cryptosystem). On the other hand, given an OT protocol it
is a simple matter to implement secret-key exchange using it. Therefore from the work
of Impagliazzo and Rudich [33] it follows that there is no black-box reduction to OT
from one-way functions.

Complexity. Our working assumption is that 1-out-of-2 OT is an expensive operation
compared with the evaluation of a pseudo-random function or a pseudo-random gen-
erator. This is justified both theoretically, by the separation of [33] mentioned above,
and in practice, where one can model a pseudo-random function by very efficient block
ciphers or keyed one-way hash functions which are several orders of magnitude more
efficient than operations in public-key cryptography. Our goal is therefore to achieve
efficient constructions of 1-out-of-N OT protocols from 1-out-of-2 OT protocols, where
the number of invocations of the 1-out-of-2 OT protocol is small. For instance, the 1-
out-of-N OT constructions of [6] and [8] need N calls to the 1-out-of-2 OT protocol,
and almost match the lower bound of [20]. In contrast our protocols need only log N
calls to the 1-out-of-2 OT protocol plus O(N ) evaluations of a pseudo-random func-
tion (note also that there is an efficient construction in [8] of 1-out-of-2 OT of string
inputs from 1-out-of-2 OT of bit inputs). We note that in a subsequent work [44] we
described how to implement 1-out-of-N OT with an amortized overhead of a single
1-out-of-2 OT.
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Another measure of complexity is communication complexity. While OT protocols
might have communication complexity which is linear in N , Private Information Re-
trieval (PIR) protocols have sublinear communication complexity while guaranteeing
privacy for the client but not necessarily for the server. Symmetric PIR (SPIR) proto-
cols have sublinear communication complexity while providing privacy for both par-
ties (therefore they are equivalent to OT with sublinear communication complexity).
Section 4.1.1 presents a generic reduction from SPIR to PIR using 1-out-of-N OT. In
conjunction with PIR constructions we can obtain a protocol for 1-out-of-N OT with
O(N εm) communication overhead under the Quadratic Residuosity Assumption, based
on the PIR construction of [36] (where m is the security parameter, i.e., the length of the
modulus), or a protocol with a communication overhead that is poly-logarithmic in N ,
based on the PIR protocol of [11].

1.2. Correctness and Security Definitions

When defining security for 1-out-of-N OT, there is no real difference between 1-out-of-2
OT and 1-out-of-N OT and we treat the former as 1-out-of-N OT with N = 2.

We first define the input and output for 1-out-of-N OT. This is a two-party protocol
run between a receiver (sometimes called Alice, or A) and a sender (called Bob, or B).

• Input
— Receiver: an index 1 ≤ I ≤ N .
— Sender: N data elements X1, X2, . . . , X N .
• Output

— Receiver: X I .
— Sender: nothing.

The definition of correctness is simple: at the end of a successful execution where all
parties follow the protocol, the receiver should obtain X I and be able to output it.

Oblivious transfer is a two-party protocol and as such its definition of security can be
derived from the security definition of such protocols. However, there are several obsta-
cles: (i) Achieving the precise definition of general two-party or multi-party protocols
is by no means simple and there is no consensus yet on the definition (see [3], [12],
[29], and [40], though the two-party case is less controversial). (ii) These definitions are
rather complex, whereas the OT case is much simpler and does not require the full power
of the general definitions. (iii) We feel that the constructions presented in this work are
rather robust and should work with several definitions. However, the existing definitions
are of course a good guideline and we follow most closely those due to Goldreich [29].
As the main purpose of our paper is to provide efficient constructions of OT rather than
to concentrate on elaborate definitions, we keep the formalities at a bare minimum and
ignore such important issues as uniformity.

The definition of security is separated into the issue of protecting the receiver and the
issue of protecting the sender. Since our constructions offer computational security, they
define privacy in the sense of computational indistinguishability (see, e.g., [28]).

The Receiver’s Security—Indistinguishability. Given that under normal operation the
sender gets no output from the protocol, the definition of the receiver’s security in a
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1-out-of-N OT protocol is rather simple: it is required that for any X1, X2, . . . , X N , for
any 1 ≤ I, I ′ ≤ N , and for any probabilistic polynomial time B′ executing the sender’s
part, the views thatB′ sees in case the receiver tries to obtain X I and in case the receiver
tries to obtain X I ′ are computationally indistinguishable.

The Sender’s Security—Comparison with the Ideal Model. Here the issue is a bit trick-
ier, since the receiver (or whatever machine which is substituted for her part) obtains
some information, and we want to say that the receiver does not get more or different
information than she should. We make the comparison with the ideal implementation.
The ideal implementation contains a trusted third party Charlie that gets the sender’s
input X1, X2, . . . , X N and the receiver’s request I and gives the receiver X I . This is the
minimal information that the receiver learns in the any implementation of the protocol.
We require that in the real implementation of the protocol, without a trusted party, the
receiver does not learn more than in the ideal implementation.

More formally, the requirement is that for every probabilistic polynomial-time machine
A′ substituting the receiver in the real implementation of the protocol, there exists a
probabilistic polynomial-time machine A′′ that plays the receiver’s role in the ideal
implementation, such that for every input X1, . . . , X N of the sender, the outputs ofA′ and
A′′ are computationally indistinguishable. This requirement implies that except for the
single X I that the receiver has learned the rest of X1, X2, . . . , X N are semantically secure.

An issue that this definition does not handle is whether A′, which might behave
arbitrarily, “knows” which input it has chosen, i.e., whether I (for which A learns X I )
is extractable. It turns out that our 1-out-of-N construction enjoys this property even
if the original 1-out-of-2 OT protocol it is built from does not (see, e.g., the proof of
Lemma 2.3).

2. Protocols for 1-out-of-N Oblivious Transfer

In this section we describe efficient constructions of a 1-out-of-N OT protocol, and a
k-out-of-N OT protocol. Section 4 describes two applications for these new protocols,
and in particular a transformation of any Private Information Retrieval (PIR) protocol to
a Symmetric PIR (SPIR) protocol, without using additional databases. A more involved
application is that of oblivious polynomial evaluation which is described in [45].

The 1-out-of-N OT protocol uses, in addition to 1-out-of-2 OT, an additional cryp-
tographic primitive: pseudo-random functions. A pseudo-random function is a function
that cannot be distinguished from a truly random one by an observer granted access to
the function in a black-box manner. Consider, for example, a function FK specified by a
short key K , and assume that the function can only be accessed by the observer by adap-
tively specifying inputs and obtaining the value of the function on these inputs. (See [30],
[28], [37], [46], and [47] for precise definitions and various constructions.) Our working
assumption is that block ciphers (such as DES or AES) or keyed one-way hash functions
(such as HMAC), can be modeled as a pseudo-random function. Therefore, the function
FK (x) can be implemented by keying a block cipher with the key K and encrypting x , or
keying a hash function with K and applying it to x . The evaluation of a pseudo-random
function is therefore considerably more efficient than a typical public-key operation.
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Let {FK : {0, 1}m �→ {0, 1}m | K ∈ {0, 1}t } be a family of pseudo-random functions.
The 1-out-of-2 OT will be performed on strings of length t , since the transmitted strings
are used as keys of F .

The main idea of the protocol is to use a small set of O(log N ) keys and mask each
input with a combination of a different subset of the keys. The keys are not applied
directly (which would leak information, for example, if the keys were simply xored to
the inputs and the receiver knows some of the X I ’s): when a key K is to be used to mask
input X I , the value FK (I ) is used for masking. The complexity is measured in terms of
the number of invocations of 1-out-of-2 OT and the number of times the pseudo-random
function FK is evaluated.

We present two protocols for 1-out-of-N OT. The first protocol solves the problem
using log N applications of 1-out-of-2 OT. The second protocol is recursive and reduces
1-out-of-N OT to two invocations of 1-out-of-

√
N OT. The 1-out-of-

√
N OT protocols

can be computed using the first protocol, or alternatively the recursion can be applied
until a 1-out-of-2 OT protocol is needed (in any case, the total number of 1-out-of-2 OTs
that should be executed is the same as in the first protocol). The latter protocol has a
better initialization overhead, O(N ) invocations of a pseudo-random function, instead of
O(N log N ) invocations in the first protocol, but in both cases the main computational
overhead is incurred during the transfer stage. The main reason for presenting both
protocols is that later we present k-out-of-N OT protocols and adaptive OT protocols
that are based on both types of 1-out-of-N OT protocols.

2.1. A Protocol for 1-out-of-N Oblivious Transfer

Protocol 2.1 (1-out-of-N OT). The input of the sender (B) is X1, X2, . . . , X N , where
each X I ∈ {0, 1}m and N = 2�. The receiver (A) would like to learn X I .

1. B prepares � random pairs of keys

(K 0
1 , K 1

1 ), (K
0
2 , K 1

2 ), . . . , (K
0
� , K 1

� ),

where for all 1 ≤ j ≤ � and b ∈ {0, 1}, K b
j is a t-bit key to the pseudo-random

function FK . For all 1 ≤ I ≤ N let 〈i1, i2, . . . i�〉 be the bits1 of I . B prepares
YI = X I ⊕

⊕�
j=1 F

K
ij
j

(I ).

2. For 1 ≤ j ≤ �, A and B engage in a 1-out-of-2 OT on the strings 〈K 0
j , K 1

j 〉. If A

would like to learn X I she should pick K
ij

j .
3. B sends to A the strings Y1, Y2, . . . , YN .
4. A reconstructs X I = YI ⊕

⊕�
j=1 F

K
ij
j

(I ).

Theorem 2.1. Protocol 2.1 is a 1-out-of-N OT protocol.

Proof. It is straightforward to see that the protocol lets the receiver obtain any value
she desires. As for the security analysis, it has to be argued that both the sender’s security

1 To simplify the exposition we assume that the index I , which is in the range [1, N ], is represented by
log N bits. The representation can be, for example, the binary representation of I − 1.
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and the receiver’s security are satisfied. Given that the 1-out-of-2 OT protocol maintains
the computational indistinguishability of A’s choice, performing it log N times preserves
the indistinguishability of all of A’s choices, i.e., for any 1 ≤ I1, I2 ≤ N the distributions
that the sender B sees when the receiver A is retrieving X I1 or X I2 are computationally
indistinguishable. This is proved in the following lemma. The sender’s privacy is proved
in Lemma 2.3.

Lemma 2.2. If the receiver’s privacy is not preserved in Protocol 2.1, then it is also
not preserved in the OT2

1 protocol.

Proof. Assume that the receiver’s privacy is not preserved in Protocol 2.1. Namely,
there are two receiver’s inputs I0, I1 for which the sender B can distinguish the distri-
butions that he sees when the receiver tries to retrieve X I0 or X I1 . In this case, B can
be used to compromise the receiver’s privacy in the 1-out-of-2 OT protocol: Let m ≥ 1
be the Hamming distance between I0 and I1 and let 〈J0 = I0, J1, . . . , Jm = I1〉 be a
sequence of m + 1 ≤ � indices with Hamming distance 1 between each other. A hybrid
argument shows that there must be a pair JI , JI+1 for which B has a non-negligible
success probability in distinguishing between the case that A is trying to learn X JI and
the case that she is trying to learn X JI+1 .

Now, to show that the receiver’s privacy is not preserved in the OT2
1 protocol we

assume that we are given a receiver A′ in an OT2
1 protocol, and our task is to compromise

her privacy. We then simulate the part of the receiver in an OT N
1 protocol that is run with

B. In the OT2
1 protocols that correspond to the bits in which JI agrees with JI+1 we ask

to learn the input that corresponds to the appropriate bit of JI (which is equal to the bit of
JI+1). We run the receiver A′ in the OT2

1 protocol that corresponds to the bit in which JI

differs from JI+1. The output of B distinguishes with non-negligible probability between
the two possible inputs of A′. This concludes the proof of the lemma.

Lemma 2.3. If the sender’s privacy is not preserved in Protocol 2.1, then either the OT2
1

protocol does not provide the sender’s privacy or the function F is not pseudo-random.

Proof. The definition of the sender’s privacy is based on comparison with the ideal
model: we must show that for every probabilistic polynomial-time machineA′ substitut-
ing the receiver there exists a probabilistic polynomial-time machine A′′ that plays the
receiver’s role in the ideal model, such that the outputs ofA′ andA′′ are computationally
indistinguishable.

Assume that the OT2
1 protocol preserves the sender’s privacy, i.e., that the receiver

learns only one of the two inputs of the sender (otherwise the lemma follows trivially).
We next show how, given black-box access to the receiver A′, it is possible to extract
the indices of the keys that were learned by her in Step 2 of Protocol 2.1. Knowledge of
these indices enable the identification of the item from the server’s input that is learned
by A′ in the protocol, and construct an A′′ whose output is indistinguishable from that
of A′.

The extraction can be done by the following procedure: Run the protocol up to the
end of Step 2, fix the state of the receiver A′ at the end of this step, and run different
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experiments starting with this state. In order to find out which keys the receiver learned,
run 2� experiments {Ci, j | 0 ≤ i ≤ 1, 1 ≤ j ≤ �}. In each experiment Ci, j choose a
random key r and replace the values FK i

j
(I ), in the generation of the encrypted inputs

(the YI ’s), with Fr (I ). If the receiver learns K i
j in Step 2 then her view in experiment

Ci, j (where r is used instead of K i
j as an encryption key) is different by a non-negligible

difference from her view in the runs of the protocol that use the original keys. Note
that for every j this phenomenon occurs for at most one of the experiments C0, j and
C1, j (otherwise it is easy to show that the OT2

1 protocol does not preserve the sender’s
privacy). Therefore in at most one of the experiments C0, j and C1, j the distribution of
the output of the receiver is different (by a non-negligible difference) than her output
in the original protocol. Let I j

0 ∈ {0, 1} be equal to the index i ∈ {0, 1} for which this
phenomenon occurs. (We can disregard the case where the receiver’s output in both C0, j

and C1, j is distributed as her output in the original protocol, since in that case we can
deduce that the output of A′ is independent of the server’s inputs and therefore A′′ can
be run in the ideal model. This is because in C0, j the receiver cannot learn the server’s
inputs for which the j th bit of the index is 0, and in C1, j she cannot learn the inputs
in which this bit is 1, and therefore if none of these experiments changes her output,
her output is not one of the server’s inputs.) At the end of the set of experiments define
1 ≤ I0 ≤ N as the concatenation of the bits I j

0 , for 1 ≤ j ≤ �.
Now, given the procedure and a receiver algorithm A′, we construct an algorithm A′′

that runs in the ideal model, and operates in the following way:

1. A′′ generates a set of keys in the same way that the sender does in Step 1 of
Protocol 2.1, and engages in OT interactions with A′ as in Step 2 of the protocol.

2. A′′ extracts, using the procedure outlined above, the index I0 corresponding to the
keys learned by A′ in Step 2.

3. A′′ asks the third party Charlie for the value of X I0 .
4. A′′ sends toA′ a set of values Y1, . . . , YN , where YI0 is the encryption of X I0 using

the keys corresponding to the index I0, and every other YJ is an encryption of a
random value with the keys corresponding to index J .

5. A′′ outputs the same output that A′ outputs.

We claim that the outputs of A′ and A′′ are computationally indistinguishable: Assume
that the output of A′′ is computationally distinguishable from the output of A′, then we
can construct a distinguisher between the output of the pseudo-random function F and
random values.

Denote the � keys whose values are not learned byA′ in Step 2, as K u1
1 , . . . , K u�

� . We
define � + 1 hybrids H1, . . . , H� + 1. Hybrid Hi corresponds to running the receiver
and sending it, in Step 3, a set of values Y1, . . . , YN that is generated as in the protocol,
except for the following difference: for every J �= I0, YJ is generated using random
values instead of the outputs of F that are keyed by K ui

i , . . . , K u�
� .

Hybrid H�+1 therefore corresponds to running the receiver in the original protocol.
We claim that if F is pseudo-random then hybrid H1 corresponds to running A′ using
the algorithm A′′ that runs in the ideal model, as we defined above. This follows from
the fact that the difference between the two instances is that in H1 each YJ , for J �= I0,
is generated by xoring the real value of X J with a random value (instead of the output
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of F), and in the invocation of A′ these values are generated by xoring the real outputs
of F with random values instead of the X J ’s.

We thus get that the output of hybrids H1 and H�+1 are computationally distinguish-
able. Therefore there are two hybrids, Hi and Hi+1, 1 ≤ i ≤ �, that are computationally
distinguishable. This means that there is a distinguisher between random values and the
output of F when it is keyed by K ui

i .

Complexity. The computational complexity of the protocol is N log N evaluations of
the pseudo-random function FK in the preprocessing of Step 1, and log N invocations of
the 1-out-of-2 OT protocol in the transfer stage. The communication overhead involves
the sender sending to the receiver N encryptions, one of each of his input items.

Improving the Preprocessing Overhead. Yuval Ishai [34] suggested an improvement
to the preprocessing complexity of the above protocol—each YI should be masked by⊕�

j=1 F
K

ij
j

(pref j (I )) where pref j (I ) denotes the first j bits of I (this construction is

similar to the construction of pseudo-random functions in [30]). The advantage of this
proposal is that the total number of evaluations of the pseudo-random function is linear
in N . Protocol 2.2 in Section 2.2 introduces a different method for lowering the overhead
of the preprocessing stage.

2.2. A Recursive Protocol for 1-out-of-N Oblivious Transfer

We present here a different protocol for 1-out-of-N OT, which is recursive and reduces
the 1-out-of-N problem to two 1-out-of-

√
N protocols. The recursion can be continued,

or, alternatively, the 1-out-of-
√

N protocols can be run with O(
√

N ) overhead. The
preprocessing overhead of this protocol is better than that of the previous protocol, and
is O(N ) invocations of a pseudo-random function, instead of O(N log N ) invocations.
The protocol is used in the k-out-of-N protocol of Section 2.3.

Protocol 2.2 (1-out-of-N OT). The sender’s (B) input is X1, X2, . . . , X N where each
X I ∈ {0, 1}m and N = 2�. The receiver (A) would like to learn X I .

1. B prepares two sets of
√

N randomly chosen keys

R1, R2, . . . , R√N

(for the rows) and

C1,C2, . . . ,C√N

(for the columns), each t-bits long. B arranges the N inputs in a
√

N×√N matrix,
i.e., each input is indexed now as Xi, j . Bob sets Yi, j = Xi, j ⊕ FRi ( j)⊕ FCj (i).

2. A and B engage in a 1-out-of-
√

N OT protocol on R1, R2, . . . , R√N and on
C1,C2, . . . ,C√N (e.g., by invoking Protocol 2.1 twice). If A would like to learn
Xi, j she should pick Ri and Cj .

3. B sends to A all the Yi, j ’s.
4. A reconstructs Xi, j = Yi, j ⊕ FRi ( j)⊕ FCj (i).
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It is clear that the receiver can get any value she desires in the above protocol. The com-
plexity of the protocol is 2N evaluations of FK for preprocessing, and two invocations
of the 1-out-of-

√
N protocol for the transfer. Implementing the 1-out-of-

√
N protocols

using Protocol 2.1 involves
√

N log N evaluations of the function FK and log N calls to
the 1-out-of-2 OT. Protocol 2.2 can be described as being two-dimensional whereas Pro-
tocol 2.1 is (log n)-dimensional. The proofs of security are straightforward modifications
of the proofs for Protocol 2.1.

2.3. k-out-of-N Oblivious Transfer

Some applications require a k-out-of-N OT protocol, i.e., a protocol which enables the
receiver to choose any k out of N input strings. It is possible to implement this task
by repeating Protocol 2.1 k times independently, but the overhead would be k N log N
(or k N ) applications of a pseudo-random function for preprocessing, and k log N OTs
for the k transfers. Since N might be very large, the preprocessing overhead might be
prohibitively expensive. An additional problem with repeating Protocol 2.1 k times is
that the sender might not be consistent from round to round and he can thus induce a
distribution on the receiver’s output that is impossible in the ideal implementation. A
simple solution for this issue is that the sender commits to the X I ’s (once), and protects
the keys that open the commitments using the masks

⊕�
j=1 F

K
ij
j

(I ) (that are used in

the 1-out-of-N protocol for simple encryption). The use of commitments introduces the
selective decommitment problem, which is discussed in Section 3.3.3. Given the addi-
tional overhead and subtle issues of repeating Protocol 2.1, it is interesting to investigate
whether it is possible to keep the price low in terms of pseudo-random function evalu-
ations while keeping the number of 1-out-of-2 OTs proportional to k. Next we describe
a k-out-of-N scheme which achieves this property.

The scheme as described works for k � N . Consider first running Protocol 2.2
to perform a k-out-of-N OT. Suppose that in Step 2 we let A obtain k of the keys
R1, R2, . . . , R√N and k of the keys C1,C2, . . . ,C√N , by repeating the 1-out-of-

√
N

protocol k times independently. Then A is able to obtain any k values she wishes.
However, she gets more information than that: if she is interested in Xi, j and Xi ′, j ′ then,
by learning the keys (Ri , Ri ′ ,Cj ,Cj ′) she can actually also learn Xi, j ′ and Xi ′, j . The
total number of items she can learn is, therefore, k2, but all other values remain hidden.
Furthermore, after the execution of the protocol these k2 values are well defined. The
main idea we use is to use this protocol to learn shares of the inputs, and repeat the
protocol again after randomly permuting the locations in the matrix. It is important that
the permutation be revealed only after the first protocol is executed, so that the receiver
has effectively committed to a set S ⊂ {1, . . . , N } of k2 values.

To get some basic intuition why this protocol works, note that a good permutation
might be one where no two elements of S are mapped to the same column or to the same
row. The probability that there are two different values in S which are mapped to the
same row is at most k4/

√
N . If this procedure is repeated several times, each time with

independent keys and without revealing the new permutation before the previous stage
is over, the probability can be made arbitrarily small.
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Protocol 2.3 (k-out-of-N OT). The input to B is X1, X2, . . . , X N , where N = 2�, and
A would like to learn X I1 , . . . , X Ik .

• Repeat for j = 1 to W
1. B chooses two random sets of

√
N keys, R j

1 , R j
2 , . . . , R j√

N
and C j

1 ,C j
2 , . . . ,C j√

N
.

2. B chooses a random permutation σj on 1 · · · N . For any I we let σj,R(I ) be the
first �/2 bits of σj (I ) and σj,C(I ) be the second �/2 bits of σj (I ). Bob arranges
the N inputs in a

√
N×√N matrix, i.e., input X I is indexed now as Xσj,R(I ),σj,C (I )

3. B sends σj to A.
4. A and B engage in two k-out-of-

√
N OT protocols, one for the keys R j

1 , R j
2 , . . . ,

R j√
N

, and the other for the keys C j
1 ,C j

2 , . . . ,C j√
N

. For all 1 ≤ I ≤ k, A picks

R j
σj,R(I )

and C j
σj,C (I )

.
• B computes

YI = X I

W⊕
j=1

(
FR j

σj,R (I )
(I )⊕ FC j

σj,C (I )
(I )

)
,

and sends them to A.
• To reconstruct the desired inputs A computes for each I1, I2, . . . , Ik the value

X Ii = YIi ⊕
W⊕

j=1

(
FR j

σj,R (Ii )
(Ii )⊕ FC j

σj,C (Ii )
(Ii )

)
.

The protocol preserves the privacy of the receiver since the OT protocols that are run
have this property (the proof is similar to that of Protocol 2.1). As for the privacy of the
sender, we present two different proofs: first a simple proof for the case k < N 1/8, and
then a more intricate proof for the case k < N 1/4.

Theorem 2.4. For k ≤ N 1/8−ε, Protocol 2.3 with W = w + 1 rounds, where w >

log(1/δ)/(4ε log N ), is a k-out-of-N OT protocol which provides sender security with
probability 1− δ.

Proof. Let S1 be the set of k2 input elements that are mapped by the first permutation
σ1, to the rectangle of size k × k whose keys are learned by the receiver in the first
round (these keys can be extracted using similar methods to those used in the proof of
Lemma 2.3). The input elements in S1 are the only ones about which the receiver learns
information in the first round. Note that in order to learn an input element the receiver
must learn the keys associated with it in every round. Furthermore, in every round the
receiver learns the keys of only k rows. In order for the receiver to be able to learn, in
a subsequent round, the row keys of more than k of the elements of S1, at least two of
them must be mapped to the same row. The probability that there are two elements of
S1 that are mapped by a random permutation to the same row is at most k4/

√
N . The

probability that this happens in each of thew subsequent rounds of the protocol is at most
(k4/
√

N )w ≤ N−4εw and should be smaller than δ. Setting w > log(1/δ)/(4ε log N )
satisfies this requirement.
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Theorem 2.5. For k ≤ N 1/4−ε and W = w + 2 rounds, where w > log(1/δ)/(2ε
log N ), Protocol 2.3 is a k-out-of-N OT protocol that provides sender security with
probability 1− δ.

Proof. The proof is composed of two steps. The first step shows that, with high proba-
bility, after two rounds of the protocol the receiver knows the keys of at most O(k) input
elements. The second step shows that after sufficiently more rounds, the receiver knows
the keys of only k elements.

Lemma 2.6. After two rounds of Protocol 2.3 it holds with overwhelming probability
that the receiver knows the keys of at most (2e + 1)k input elements.

Proof. Let S1 be the set of k2 input elements which were mapped, in the first permutation
σ1, to the rectangle of size k × k whose keys are learned by the receiver. Examine first
the probability that the second permutation maps more than 2ek of these elements to a
specific rectangle of size k×k. Assume that the permutation maps the elements one by one
into the rectangle. The probability that the i th element is mapped to the rectangle, given
that j , 0 ≤ j ≤ i − 1, of the previously mapped elements were mapped to the rectangle,
is (k2 − j)/(N − (i − 1)). This probability is at most p = k2/(N − k2), regardless of
the values of i and j . It therefore holds that for any set of t input items, 1 ≤ t ≤ N , the
probability that all t items are mapped by the permutation to the rectangle is at most pt .
Thus it is sufficient to examine the probability distribution where the probability of each
element falling in the rectangle is p, independently of the other elements, and bound
the probability that 2ek or more input elements are mapped to the rectangle. Let xi be a
random variable which is set to 1 if the i th element in S1 is mapped to the rectangle by
this probability distribution, and is 0 otherwise. Therefore, Pr(xi = 1) = p. Define the
random variable X as the number of elements of S1 which are mapped to the rectangle,
i.e., X =∑k2

i=1 xi .
We use the Chernoff bound to estimate the probability that X ≥ 2ek. Consider the

following version of the Chernoff bound (see Theorem A.12 of [1]): Let x1, . . . , x� be
mutually independent random variables, with

Pr[xi = 1] = p,

Pr[xi = 0] = 1− p.

Then, for all β ≥ 1,

Pr

[
1

�

�∑
i=1

Xi ≥ βp

]
<

(
eβ−1

ββ

)p�

.

Returning to our proof, examine the following probability:

Pr(X ≥ 2ek) = Pr

(
1

k2

k2∑
i=1

xi ≥ 2e

k

)
= Pr

(
1

k2

k2∑
i=1

xi ≥ pβ

)
,
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where β = 2e/(kp) = 2e(N − k2)/k3 = 2eN 1/4+3ε − 2e/N 1/4−ε ≈ 2eN 1/4+3ε.
Therefore,

Pr(X ≥ 2ek) <

(
eβ−1

ββ

)pk2

<

(
e

β

)βpk2

=
(

e

β

)2ek

< N−(e/2)·(N
1/4−ε).

Now, the number of possible rectangles is [
(√N

k

)
]2 ≈ N N 1/4

. Therefore, the probability

that there is a rectangle which contains more than 2ek elements is about N N 1/4
N−(e/2)N

1/4

= N−0.7N 1/4
, and is negligible. This concludes the proof of the lemma.

The remainder of the proof follows the lines of the proof of Theorem 2.4. It bounds the
probability that the receiver can learn the keys of more than k of the 2ek elements whose
keys she knows after the first two rounds. The probability that this happens in a single
round is smaller than the probability that two of the elements are mapped to the same
row, i.e., smaller than (2ek)2/

√
N ≈ 30N−2ε. The probability that this happens in w

rounds is (30N−2ε)w and should be bounded by δ. Therefore, if N 2ε ≤ 30 then in order
for a protocol to be secure with probability 1− δ, it should setw ≥ log(1/δ)/(2ε log N )
(or more accurately, w ≥ log(1/δ)/(2ε log N + log 30)).

Complexity. The protocol consists of W = O(log(1/δ)/(ε log N )) communication
rounds.

The preprocessing stage requires 2W N invocations of a pseudo-random function. The
transfer stages require a total of 2W executions of k-out-of-

√
N OT protocols. Each of

these transfers can be implemented by running k invocations of 1-out-of-
√

N OT, and
using commitments to ensure that the elements transferred by the sender in each of them
are consistent.

The computation overhead consists of the 2W N applications of a pseudo-random
function for the initialization, additional 2W k

√
N applications of a pseudo-random

function for initializing the 1-out-of-
√

N OT protocols, and W k log N invocations of
OT2

1 for the actual transfers. Alternatively, each k-out-of-
√

N OT protocol can be im-
plemented recursively, using two k-out-of- 4

√
N OT protocols (this means that k must

be o((
√

N )1/4) = o( 8
√

N )). The recursion could continue, but it results in even smaller
bounds on k (e.g., the next step being k = o( 8

√
N ), which for N = 106 means a k

smaller than 6). Furthermore, continuing the recursion does not improve the overhead. If
the recursion stops in a k-out-of- 4

√
N protocol then the initialization overhead is reduced

to 2W N+4W 2k 4
√

N applications of a pseudo-random function, which is still dominated
by 2W N , while the transfer overhead increases to W 2k log N invocations of OT2

1.

3. Oblivious Transfer with Adaptive Queries

3.1. Introduction

The k-out-of-N OT protocol (Protocol 2.3) enables the receiver to obtain simultaneously
any k out of the N values. However it is not secure to use this protocol to perform k
adaptive transfers of single values, since the privacy of the sender is based on hiding the
permutations from the receiver.
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This section presents several protocols for k successive (possibly adaptive) OTs, an
operation which we denote as OT N

k×1. The sender performs a single initialization of his
input, which requires O(N ) work. Each transfer requires only log N OT2

1’s. In some of
the protocols the parameter k does not affect the complexity, and the protocol can even
be used for k = N successive transfers.

Motivation. Adaptive OT (OT N
k×1) protocols are useful whenever the following three

requirements hold:

• A large database should be queried in an adaptive fashion.
• The privacy of the party which performs the queries should be preserved.
• The owner of the database does not want to reveal to the other party more than a

minimal amount of information.

3.1.1. Protocol Structure

Protocols for adaptive OT (OT N
k×1) are composed of two phases, for initialization and

for transfer.
The initialization phase is run by the sender (Bob) who knows the N data elements. Bob

typically computes a commitment to each of the N data elements, with a total overhead
of O(N ). He then sends the commitments to the receiver (Alice). (The adaptive OT
protocol uses commitments, or alternatively committing encryptions, rather than simple
encryptions, in order to prevent Bob from changing the data elements between different
invocations of the transfer stage.)

The transfer phase is used to transfer a single data element to Alice. At the beginning
of each transfer Alice has an input I , and her output at the end of the phase should be
data element X I . The transfer phase typically involves the invocation of several OT m

1

protocols, where m is small (either constant or
√

N ). In these OTs Alice obtains keys
which enable her to open the commitment to X I . An OT N

k×1 protocol supports up to k
successive transfer phases.

3.1.2. Correctness and Security Definitions

The correctness and security definitions are slight modifications of the definitions for
the OT N

1 case, taking into account the fact that the receiver’s operation can be adaptive.
The definition of correctness is simple: The sender’s input is X1, X2, . . . , X N . At

each transfer phase the receiver’s input is 1 ≤ I ≤ N , and at the end of this transfer the
receiver should obtain X I and be able to output it. Note that this implies that the sender
essentially commits to his inputs at the beginning of the protocol and cannot change the
X ’s between transfers.

The definition of security is separated into the issue of protecting the receiver and
the issue of protecting the sender, and is based on adjusting the definition of OT to the
adaptive case.

The Receiver’s Security—Indistinguishability. Since under normal operation the
sender gets no output from the protocol, the definition of the receiver’s security in an
OT N

k×1 protocol is rather simple: for any given X1, X2, . . . , X N , for any step 1 ≤ t ≤ k,
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for any previous items I1, . . . , It−1 that the receiver has obtained in the first t − 1 trans-
fers, for any 1 ≤ It , I ′t ≤ N , and for any probabilistic polynomial time B′ executing the
sender’s part, the views that B′ sees in case the receiver tries to obtain X I and in case
the receiver tries to obtain X I ′ are computationally indistinguishable.

The Sender’s Security—Comparison with the Ideal Model. We make again a compari-
son with the ideal implementation, using a trusted third party Charlie that gets the sender’s
input X1, X2, . . . , X N and the receiver’s requests and gives the receiver the data elements
she has requested. The requirement is that for every probabilistic polynomial-time ma-
chine A′ substituting the receiver there exists a probabilistic polynomial-time machine
A′′ that plays the receiver’s role in the ideal model such that the outputs of A′ and A′′
are computationally indistinguishable. This implies that except for the X I1 , . . . , X Ik that
the receiver has learned, the rest of X1, X2, . . . , X N are semantically secure.

3.2. The OT N
k×1 Protocols

The protocols use three cryptographic primitives, operation respecting synthesizers
which are introduced in Section 3.2.1, 1-out-of-2 OT (which were described in Sec-
tion 1.1), and commitments.

Commitment schemes are used to ensure that the sender does not change his inputs
between rounds. In a commitment scheme there is a commit phase which we assume to
map a random key k and a value x to a string commitk(x), and a reveal phase, which
in our case would simply be revealing the key k, which enables us to compute x . The
commitment should have the properties that given commitk(x) the value x is indistin-
guishable from random, and that it is infeasible to generate a commitment yielding two
different x’s. The commitment scheme can be implemented using the construction of
Naor [42], which is based only on the existence of one-way functions. In Section 3.3 we
need to use a trapdoor commitment scheme (as explained in Section 3.3.3), which can
be implemented, for example, using the construction of Chaum et al. [14].

3.2.1. Operation-Respecting Synthesizers

The OT N
k×1 protocols are based on encrypting the data elements using pseudo-random

synthesizers with a special property, which we call “operation respectfulness.” Each
transfer phase reveals information which is sufficient to decrypt just a single data ele-
ment, but cannot be used in conjunction with information from other transfer phases.
Operation-respecting synthesizers can be constructed based on the decisional Diffie–
Hellman assumption or based on a function modeled as a random oracle. Section 3.3
describes a construction of an OT N

k×1 protocol using Diffie–Hellman-based synthesizers,
and Section 3.4 describes a construction of an OT N

k×1 protocol based on any operation-
respecting synthesizer.

Pseudo-random synthesizers

Pseudo-random synthesizers were introduced by Naor and Reingold in [46]. A pseudo-
random synthesizer S is an efficiently computable function of � variables x1, . . . , x�,
that satisfies the following property: given polynomially many uniformly distributed
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assignments to each of its input variables, the output of S on all the combinations of
these inputs is pseudo-random. Consider, for example, a synthesizer S(x, y) with two
inputs. Then for random sets of inputs 〈x1, . . . , xm〉, 〈y1, . . . , ym〉, the set {S(xi , yj ) |1 ≤
i, j ≤ m} of m2 values is pseudo-random, i.e., indistinguishable from a truly random
set (this is a special property which does not hold for any pseudo-random generator G,
since it is concerned with inputs which are not independent).

We use this property of synthesizers in order to encrypt the data elements. For example,
the elements can be arranged in a square and a random key can be attached to every row
and every column (say, key Ri to row i , and key Cj to column j). The element in position
(i, j) can be encrypted using the combined key S(Ri ,Cj ). It is ensured that the values
of any set of combined keys do not leak information about the values of other combined
keys.

Operation-respecting synthesizers

We require an additional property from the pseudo-random synthesizers that we use. We
define a specific arithmetic operation, such as addition or multiplication, and require that
the synthesizers have the same output for any two input vectors for which the result of
applying the operation to the input variables is the same. For example, for the addition
operation and a two-dimensional synthesizer S this implies that for every x1, y1, x2, y2

that satisfies x1 + y1 = x2 + y2 it holds that S(x1, y1) = S(x2, y2). More formally, the
requirement is as follows:

Definition 3.1 (Operation-Respecting Synthesizer). Given an operation ⊗, a function
S (defined over m inputs in a commutative group where ⊗ is defined) is an operation-
respecting synthesizer if the following two conditions hold:

• S is a pseudo-random synthesizer.
• For every x1, . . . , xm , and every y1, . . . , ym satisfying

⊗m
i=1 xi =

⊗m
i=1 yi , it

holds that

S(x1, x2, . . . , xm) = S(y1, y2, . . . , ym).

An alternative, and equal, definition could define a function S to be an operation-
respecting synthesizer if (1) S is a pseudo-random synthesizer, and (2) there exists an S′

such that for all inputs (x1, . . . , xm) it holds that S(x1, . . . , xm) = S′(
⊗m

i=1 xi ).

Comment. In particular, we would use addition-respecting synthesizers, where the
operation⊗ is addition, and multiplication-respecting synthesizers, where the operation
⊗ is multiplication.

Construction 1 (Random-Oracle-Based Operation-Respecting Synthesizer). Let RO
be a function which is modeled as a random oracle. An operation-respecting synthe-
sizer can be realized as

S(x1, x2, . . . , xm) = RO(x1 ⊗ x2 ⊗ · · · ⊗ xm).
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In particular, we would use the addition operation and define an addition-respecting
synthesizer as

S(x1, x2, . . . , xm) = RO(x1 + x2 + · · · + xm).

Given that the inputs are taken from a domain that is exponentially large (as is the
case in the constructions that we use, where each input element is a cryptographic key)
this simple construction satisfies Definition 3.1: operation-respectfulness is satisfied
trivially. The function S is a pseudo-random synthesizer as long as all the inputs to the
random oracle RO are distinct, i.e., if there is a negligible probability that there are two
combinations of input variables for which the sum of the input variables is equal given
polynomially many uniformly distributed assignments to each of its input variables (the
parameters should ensure that this happens with negligible probability).

This construction implies that it is plausible to assume that such functions exists,
and also suggests a heuristic approach for constructing them using a “complex” function
(e.g., SHA1). We should stress however that security in the random oracle model does not
imply provable security (as was demonstrated by [13]). We prefer the number-theoretic
construction that is presented next, but on the downside it requires exponentiations which
are more complicated to compute than common realizations of “complex” functions.

The following construction introduces multiplication-respecting synthesizers based
on the synthesizers of [47] whose security relies on the decisional Diffie–Hellman as-
sumption (the DDH assumption is introduced and discussed in Section 3.3.1 below).
This construction is used in Protocols 3.1 and 3.2 described below.

Construction 2 (DDH-Based Multiplication-Respecting Synthesizer). Let 〈Gg, g〉 be
a group and a generator for which the DDH assumption holds. Let the input values
x1, . . . , xm be elements in {1, . . . , |Gg|}. A multiplication-respecting synthesizer can be
realized as

S(x1, x2, . . . , xm) = gx1x2···xm .

This construction trivially satisfies Definition 3.1. The function is the Naor–Reingold
DDH-based pseudo-random synthesizer [47]. Its definition ensures that two input vec-
tors, for which the multiplication of the coordinates is equal, have the same output, and
the pseudo-randomness is shown in [47].

The basic idea (which is insufficient, as we see below) of using an operation-respecting
synthesizer S to construct an adaptive OT protocol is the following. Suppose that the
elements are arranged and encrypted as entries in a square, as described above. Then for
each transfer protocol Bob can choose a random value r , and let Alice obtain one of the
values 〈R1+r, R2+r, . . . , R√N+r〉, and one of the values 〈C1−r,C2−r, . . . ,C√N−r〉.
Alice can compute S(Ri + r,Cj − r) = S(Ri ,Cj ) and obtain the key that hides data
element (i, j). This basic protocol is insufficient, however, since it should also be ensured
that Alice is unable to combine the values she obtains in different transfer phases.

3.2.2. The Protocols

We present two types of OT N
k×1 protocols, protocols that are based on the Naor–Reingold

synthesizer, and whose security depends on the DDH assumption, and protocols that
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can be based on any operation-respecting synthesizer. We start with two DDH-based
protocols. These protocols are somewhat simpler than the general construction, since
the hardness of the discrete logarithm problem prevents some attacks which are possible
in the general case. The DDH-based protocols can be used to transfer any number of
elements. That is, they are good for OT N

k×1 with any k < N , and their efficiency does
not depend on k. We then present an OT N

k×1 protocol based on any operation-respecting
synthesizer. This protocol is secure for at most k transfers, where k is a parameter that
must satisfy k = o( 4

√
N ) and affects the complexity of the protocol.

3.3. Protocols Based on the Decisional Diffie–Hellman Assumption

This section presents two protocols that are based on the Naor–Reingold synthesizer, and
consequently on the DDH assumption. The overhead of both protocols is of the same
order.

The protocols presented here enable the sender to commit to n values, and ensure that
in k transfer rounds the receiver cannot learn the commitment keys of more than k of
these values. The proof showing that the receiver cannot use these k keys to learn more
than k of the committed values is a little intricate, as it must handle the issue of selective
decommitment and requires the use of trapdoor commitments and a slight change to the
protocol. We defer the discussion of this proof to Section 3.3.3.

3.3.1. The Decisional Diffie–Hellman Assumption

The DDH assumption is used as the underlying security assumption of many cryp-
tographic protocols (e.g., the Diffie–Hellman key agreement Protocol [19], the ElGa-
mal encryption scheme [22], the Naor–Reingold pseudo-random functions [47], and
the Cramer–Shoup construction of a cryptosystem secure against chosen ciphertext at-
tacks [16]).

The DDH assumption is thoroughly discussed in [9]. The assumption is about a cyclic
group G and a generator g. Loosely speaking, it states that no efficient algorithm can
distinguish between the two distributions 〈ga, gb, gab〉 and 〈ga, gb, gc〉, where a, b, c
are randomly chosen in [1, |G|].

Our protocols essentially encrypt the data elements using a key which is the output of
the DDH-based pseudo-random synthesizer of Naor and Reingold [47].

3.3.2. A Two-Dimensional Protocol

The following protocol arranges the elements in a two-dimensional structure of size√
N×√N . It uses OT

√
N

k×1 as a primitive. This primitive can either be realized recursively,
or by k individual invocations of an OT

√
N

1 protocol. In Section 3.3.4 we present a protocol
which arranges the elements in a structure with log N dimensions and uses OT2

1 as its
basic primitive.

Let G be a group, and let Gg be a subgroup of G generated by g in which the DDH
assumption holds. The protocol uses the operation-respecting, DDH-based, synthesizer
of Construction 2. The range of that synthesizer is Gg , which is a non-standard range for
the keys of commitment schemes. We therefore use, as suggested in [46] (based on an
analysis using the leftover hash lemma), a method that uses pairwise independent hash
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functions to generate an output which is indistinguishable from uniformly distributed bit
strings.

Protocol 3.1. B’s input is X1, X2, . . . , X N , where N = 2�. Rename these inputs as
{Xi, j | 1 ≤ i, j ≤ √N }.

1. Initialization:
(a) Let {H} be a family of pairwise independent hash functions from Gg to
{0, 1}|Gg |/2. B chooses a random function h ∈ {H}.

(b) B prepares 2
√

N random keys

(R1, R2, . . . , R√N), (C1,C2, . . . ,C√N)

which are random integers in the range 1, . . . , |Gg|. For every pair 1 ≤ i, j ≤√
N , B prepares a commitment key Ki, j = h(gRi Cj ), and a commitment Yi, j

of Xi, j using this key, Yi, j = commitKi, j (Xi, j ).
(c) B sends to A the commitments Y1,1, . . . , Y√N ,

√
N .

2. Transfer (this part takes place when A wants to learn an input element). For each
Xi, j that A wants to learn, the parties invoke the following protocol:
(a) B chooses random elements rR, rC (rR is used to randomize the row keys, and

rC is used to randomize the column keys).
(b) A and B engage in an OT

√
N

1 protocol on the values 〈R1·rR, R2·rR, . . . , R√N ·rR〉.
If A wants to learn Xi, j she should pick Ri ·rR.

(c) A and B engage in an OT
√

N

1 protocol on the values 〈C1·rC,C2 ·rC, . . . ,C√N ·rC〉.
If A wants to learn Xi, j she should pick Cj ·rC.

(d) B sends to A the value g1/(rRrC).
(e) A reconstructs Ki, j as Ki, j = h((g1/(rRrC))(Ri rR)·(Cj rC)), and uses it as a decom-

mitment key to open the commitment Yi, j and reveal Xi, j .

Theorem 3.1. Protocol 3.1 is an adaptive OT protocol, and can be used for N adaptive
transfers.

Proof. The receiver can clearly use the protocol to obtain any value she wishes to
receive from the sender. The key is reconstructed is Step 2(e) using the multiplication-
respecting synthesizer of Construction 2. Namely, Ki, j = h(S(1/(rRrC), RirR,CjrC)) =
h(g(1/(rRrC))·(Ri rR)·(Cj rC)). The operation-respectfullnes of the synthesizer ensures that the
key is reconstructed correctly.

The use of commitments ensures that the sender cannot change the input elements
from round to round.

The privacy of the receiver A is guaranteed by the security of the OT
√

N

1 , as is shown
by Lemma 3.2. The privacy of the sender B is guaranteed by Lemma 3.3.

Lemma 3.2. If the receiver’s privacy is not preserved in Protocol 3.1, then it is also
not preserved in the OT

√
N

k×1 protocol.

Proof. Assume that the receiver’s privacy is not preserved in Protocol 3.1. Namely,
there are two receiver’s inputs, Xi1, j1 , Xi2, j2 , for which the sender B can distinguish the
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distributions that he sees when the receiver tries to retrieve Xi1, j1 or Xi2, j2 . In this case,
B can be used to compromise the receiver’s privacy in the 1-out-of-

√
N OT protocol.

Assume, without loss of generality, that the indexes of the two inputs are equal in one
coordinate, say i1 = i2. (Otherwise, it is possible to use a hybrid argument to show that
the sender can distinguish between two inputs which are equal in one of their coordinates.
Namely, that the sender can distinguish the case that the receiver’s input is Xi1, j2 , either
from the case that A’s input is Xi1, j1 or from the case that her input is Xi2, j2 .)

Now, in order to break the privacy of a receiver A′ in a given 1-out-of-
√

N OT protocol,
run the part of the receiver in Protocol 3.1 with B. In the OT protocol that corresponds to
coordinate i , ask to learn the input that corresponds to i1 = i2. Then run the receiver A′

in the 1-out-of-
√

N OT protocol that corresponds to the j coordinate. The output of the
sender B distinguishes with non-negligible probability between the two possible inputs
of A′. This concludes the proof of the lemma.

The privacy of the sender B is guaranteed by the privacy of the sender in the OT
protocols, and by the pseudo-randomness of the Naor–Reingold synthesizer (that is
based on the DDH assumption). To prove that the privacy of the sender is preserved we
compare A with a party A′ who instead of running the transfer phases simply asks and
receives the keys for k commitments, and prove that A does not gain more information
than A′. To complete the proof of security it is required to simulate A′ and show that given
the k keys she obtained she does not learn more than k committed values. This statement
seems trivial, but the formal proof of this property turns out to be rather subtle (since
it involves the problem of selective decommitment) and is discussed in Section 3.3.3.
We provide here a proof that the receiver does not learn more than k keys, and defer to
Section 3.3.3 the discussion on learning more than k input items.

Lemma 3.3. In k ≤ N invocations of the above protocol, the receiver A does not learn
more information than a party that can adaptively ask and obtain the commitment keys
of k elements.

Proof. We show that for every algorithm A′ run by the receiver, there is an algorithm
A′′ that she can run in the ideal model, such that the outputs of A′ and A′′ are compu-
tationally indistinguishable. We consider the following scenarios in which the receiver
could operate:

• E1—the two-party interaction between the receiver and the sender, as defined by
Protocol 3.1.
• E2—this scenario is the same as scenario E1, except for the following change:

instead of the receiver running OT protocols in Steps 2(b) and 2(c), she interacts
with an ideal party, sends it indexes i and j of her choice, and receives the values
Ri · rR and Cj · rC.
• E3—in this scenario the receiver interacts with a trusted party, and the input ele-

ments of the sender are committed to using random keys. The receiver sends to the
trusted party indexes of input elements X I she wants to learn, and receives the keys
corresponding to these elements.
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Suppose that there is a receiver algorithm A′ that is executed in scenario E1, for which
there is no algorithm A′′, which is executed in scenario E3, such that the outputs of A′

and A′′ are computationally indistinguishable. In other words, given A′ then for every
A′′ there is a distinguisher between the outputs of A′ and A′′.

Consider now algorithms A∗ that operate in scenario E2. Then either it holds that for
every A∗ there is a distinguisher between the outputs of A′ and A∗ (we denote this as case
1), or otherwise there is an A∗ whose output is computationally indistinguishable from
that of A′, and therefore it holds that for every A′′ operating in E3 there is a distinguisher
between the outputs of A′′ and this A∗ (we denote this as case 2).

Consider case 1. The only difference between scenarios E1 and E2 is that in E2

the receiver obtains values Ri · rR and Cj · rC of her choice, whereas in E1 she uses
1-out-of-

√
N OT protocols to obtain these values. The existence of the distinguisher

therefore contradicts (using a hybrid argument) the sender’s privacy in the 1-out-of-
√

N
OT protocol.

Consider now case 2. In scenario E2 the receiver can only learn tuples of the form
V1 = (g1/r1r2 , Rir1,Cjr2), where r1, r2 were chosen at random by B. This is equivalent to
her learning tuples V2 = (gRi Cj /r1r2 , r1, r2), with r1, r2 that are uniformly chosen, which
have the same distribution. The receiver can easily compute from this information tuples
V3 = (gRi Cj , gRi Cj /r1r2 , r1, r2), which of course do not contain more information than
the keys gRi Cj alone (that enable the receiver to generate tuples in the same distribution
as that of V3).

In other words, the receiver A∗ can only obtain in scenario E2 values gRi Cj of her
choice, and no other information. These keys were generated using the operation-
respecting synthesizer. The only difference from the operation of A′′ in scenario E3

is that in that scenario the keys are random. Therefore, a distinguisher between the
outputs of A′′ and A∗ contradicts the pseudo-randomness of the synthesizer.

Complexity. The initialization phase requires B to compute all N commitment keys,
i.e., to compute N exponentiations (see in Protocol 3.2 a discussion on how to imple-
ment these exponentiations efficiently by utilizing the structure of the exponents). Each
transfer phase requires two invocations of an OT

√
N

1 protocol. These can be realized by
independent OT

√
N

1 protocols (which each require O(
√

N ) initialization work by B). The
k calls to OT

√
N

1 can also be realized by k calls to an OT
√

N

k×1 protocol. A slight compli-
cation is the fact that in each transfer round the sender uses different keys rR, rC, and
the transfer should be for values of the form Ri · rR or Ci · rC, which are different in
each round. Therefore, the OT

√
N

k×1 protocol should not use commitments, but rather the

sender should send, in each round, encrypted values of {Ri · rR,Ci · rC}
√

N
i=1. This does

not enable the sender to change from round to round the values that are transferred in
the OT N

k×1 protocol, since the OT N
k×1 protocol employs commitments.

3.3.3. Solving the Selective Decommitment Problem

To show that the receiver in Protocol 3.1 does not learn more than k input items, it should
be proven that party A′ which sees N commitments and then asks for the keys of k of
them is not able to get information about more than k committed values. A′ should,
therefore, be simulated by a party that can adaptively ask and get k of the committed
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values and sees nothing else (as in the ideal model). Although there does not seem to
be any obvious way for A′ to take advantage of the fact that she sees the commitments
before asking for the keys, it is not trivial to prove that this is indeed the case. The
problem is that it is hard to simulate the operation of A′ because it is unknown at the
time of generating the commitments which of them she would like to open. See [21] for
a discussion of this issue.

To enable the simulation it should be possible to open in the simulation any commit-
ment to any value. In the scenario of OT N

k×1 there is a way to enable this property by
using trapdoor commitments. These are commitment schemes that have a trapdoor that
enables opening them to arbitrary values (see [24] for a detailed discussion of trapdoor
commitments). The main idea of amending the OT protocol using trapdoor permuta-
tions is to use a trapdoor commitment scheme and let the receiver choose its public
parameters. In general, trapdoor commitment schemes can be based on the existence of
one-way functions (see Section 4.9.2.3 of [28]). We describe the construction using a
specific trapdoor commitment scheme of Chaum et al. [14]. (For the sake of clarity we
do not describe the use of the trapdoor commitment scheme in the body of the protocols
that are detailed in the paper, but rather in this separate section.) Next we describe in
more detail the changes to the protocols:

• In the beginning of the protocol the receiver A sends to B the trapdoor to a com-
mitment scheme and proves that the trapdoor is correct. (When using the com-
mitment scheme of [14] the receiver sends two values g1, g2 ∈ G and proves in
zero-knowledge that she knows the discrete logarithm of g2 to the base g1. In the
simulation we would extract logg1

g2 for the values g1, g2 that would be used there.)
• B uses the trapdoor commitments in his part of the protocol.

In particular, the commitments of [14] are of the form ga
1 gb

2 . (These commitments
can be opened in an arbitrary way in the simulation, where logg1

g2 is known.)
B commits to the value X I in the following way: (i) chooses a random RI and
computes CI = gX I

1 gRI
2 ; (ii) takes the output of the synthesizer and uses it as a

key to encrypt (X I , RI ) by xoring it; and (iii) sends the two results (CI and the
encrypted (X I , RI )) to A.

In the protocol, when the receiver computes the output of the synthesizer she can
use it to compute X I and use the commitment to verify the result. In the simulation it
is possible given X I to find an RI that is consistent with it, and give an output of the
synthesizer that “decrypts” these values.

More formally, suppose that there is a receiver A′ that receives all the commitments,
asks for the keys of k of them, and is able to distinguish from random more than k of
the inputs. This A′ can be used to break the security of the commitment scheme in the
following manner. The reduction first extracts from A′ the discrete log of g2 to the base
g1. This information enables the opening of any commitment to any value. Then the N
commitments of the form 〈(X I , RI )⊕ K I ,CI 〉 (where the K I ’s are random keys which
are unknown to us) are sent to A′. When A′ asks to open commitment I , we can choose
what value X I to reveal for this commitment, compute the appropriate values of YI and
K I , and send K I to A′. If, after receiving k such values, A′ is able to distinguish from
random more than k committed values, we can use her output to distinguish from random
one of the values of the original set of committed values.
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3.3.4. A Protocol Using OT2
1

The following protocol constructs OT N
k×1 using direct invocations of a simple OT2

1
protocol.

Protocol 3.2. B’s input is X1, X2, . . . , X N , where N = 2�.

1. Initialization:
(a) Let {H} be a family of pairwise independent hash functions from Gg to
{0, 1}|Gg |/2. B chooses a random function h ∈ {H}.

(b) B prepares � random pairs of keys

(a0
1, a1

1), (a
0
2, a1

2), . . . , (a
0
� , a1

� ),

where for all 1 ≤ j ≤ � and b ∈ {0, 1} each ab
j is a random integer2 in the

range 1, . . . , |Gg|. For all 1 ≤ I ≤ N let 〈i1, i2, . . . , i�〉 be the bits of I . B

prepares a commitment key K I = h(g�
�
j=1a

ij
j ), and a commitment YI of X I

using this key, YI = commitK I (X I ).
(c) B sends to A the commitments Y1, Y2, . . . , YN .

2. Transfer: For each X I that A wants to learn, the parties invoke the following
protocol:
(a) B chooses random elements r1, . . . , r�. Element ri will be used to randomize

the keys of the i th coordinate.
(b) For each 1 ≤ j ≤ �, A and B engage in an OT2

1 protocol on the strings

〈a0
j rj , a1

j rj 〉. If A wants to learn X I she should pick a
ij

j rj .
(c) B sends to A the value g1/r1r2···r� .
(d) A reconstructs K I as K I = h((g1/(r1r2···r�))(a

i1
1 r1)···(ai�

�
r�)), and uses it to open

the commitment YI and reveal X I .

Theorem 3.4. Protocol 3.2 is an adaptive OT protocol, which can be used for N
adaptive transfers.

Proof. The protocol uses a multiplication-respecting synthesizer with �+1 inputs. The
key is initialized as S(1, ai1

1 , . . . , ai�
� ), and is reconstructed in Step 2(d) by computing

S(1/(r1r2 · · · r�), ai1
1 r1, . . . , ai�

� r�). The receiver can therefore obtain any value it wishes
to receive in the protocol. The privacy of A is guaranteed by the privacy of the OT2

1
protocols, and the proof is similar to that of Lemma 3.2 . The receiver A is ensured by the
commitments that the sender B cannot change the values of the X I ’s between transfers.
The security of B is guaranteed by the DDH assumption, and is proven identically to the
security of the sender in Protocol 3.1.

Complexity. The initialization phase requires B to compute all N commitment keys.
This can be done with exactly N exponentiations if the order in which the commitment

2 Note also that B can set every a0
j to be equal to 1 without affecting the security of the system. The gain

from this is a reduction in the size of the keys that B needs to keep.
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keys are computed follows a Gray code (i.e., the Hamming distance between each two
consecutive words is 1). The computation can be further improved by using efficient
techniques for raising the same number to many powers, or for raising many elements to
the same exponent (see [39] for a survey of such techniques). It is an interesting problem
to find a way to utilize the special structure of the exponents (being the multiplications of
all the subsets of � elements) to compute the N = 2� commitment keys more efficiently.

The transfer part of the protocol requires � = log N invocations of an OT2
1 protocol.

In addition A and B should each compute a single exponentiation.

3.4. Protocols Based on Any Operation-Respecting Synthesizer

This section presents an OT N
k×1 protocol which can be based on any operation-respecting

synthesizer. In order to emphasize the issues underlying the protocol, we first describe a
protocol that is insecure, examine it, and construct a secure protocol.

3.4.1. An Insecure Protocol

The following protocol is insecure. The protocol is based on organizing the input el-
ements in a matrix, encrypting each element with the corresponding row and column
keys, and letting the receiver learn the keys of k locations.

Protocol 3.3. B’s input is {xi, j | 1 ≤ i, j ≤ √N }, where N = 2�. Let S(x, y) be an
operation-respecting synthesizer with two inputs.

1. Initialization:
(a) B prepares 2

√
N random keys

(R1, R2, . . . , R√N), (C1,C2, . . . ,C√N).

For every pair 1 ≤ i, j ≤ √N , B prepares a commitment key Ki, j =
S(Ri ,Cj ), and a commitment Yi, j of Xi, j using this key, Yi, j = commitKi, j (Xi, j ).

(b) B sends to A the commitments Y1,1, . . . , Y√N,
√

N .
2. Transfer: for each Xi, j that A wants to learn, the parties invoke the following

protocol:
(a) B chooses random elements rR, rC, such that rR + rC = 0 (rR is used to

randomize the row keys, and rC is used to randomize the column keys).
(b) A and B engage in an OT

√
N

1 protocol on the values 〈R1+rR, R2+rR, . . . , R√N+
rR〉. If A wants to learn Xi, j she should pick Ri + rR.

(c) A and B engage in an OT
√

N

1 protocol on the values 〈C1+rC,C2+rC, . . . ,C√N+
rC〉. If A wants to learn Xi, j she should pick Cj + rC.

(d) A reconstructs Ki, j as Ki, j = S(Ri + rR,Cj + rC), and uses it to open the
commitment Yi, j and reveal Xi, j .

The Security Problem. The above protocol seems to be correct and secure. It enables A
to learn any value she wishes and protects her privacy. However, the protocol is insecure
for B because A can combine information she learns in different invocations of the
protocol, and use linear relations between the keys to learn more keys than she is entitled
to. In particular, she can use the relation (Ri+Cj )+(Ri ′ +Cj ′) = (Ri ′ +Cj )+(Ri+Cj ′).
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She can thus ask to learn the keys of Ki, j , Ki ′, j , Ki, j ′ and use them to compute the key
Ki ′, j ′ . (The problem does not exist for DDH-based solutions since the DDH assumption
implies that it is hard to compute relations similar to the linear relations outlined above.)

3.4.2. The Secure Protocol

In order to transform the above protocol to be secure, we use a mapping which ensures that
no linear relations exist between the keys of different entries. The mapping is composed
of N permutations that map the N input elements to locations in each of a set of matrices
(each such location corresponds to a key in the protocol). The desired property is that
for every k inputs it holds there is no linear combination of the keys associated with
them, which covers the keys of a different input. The following construction of a set of
permutation matrices is used to construct a protocol for k = o(

√
N ):

Definition 3.2 (k-out-of-N Relation-Free Matrices).

• Let M1, . . . ,Mt be t matrices of size
√

N × √N , each containing the elements
1, . . . , N .
• Define a (2t

√
N )-dimensional vector space V , whose coordinates correspond to

the rows and columns of each of the matrices. Denote the coordinates as {(i, j, k) |
1 ≤ i ≤ t, 1 ≤ j ≤ 2, 1 ≤ k ≤ √N } (i.e., i represents the matrix, j indicates a
choice of either a row or a column, and k is the row, or column, index).
• For each element x denote its row and column in matrix i as Ri (x),Ci (x). Construct

a vector vx ∈ V in which the coordinates that correspond to the locations of x in
the matrices are set to 1, i.e., coordinates (i, 1, Ri (x)) and (i, 2,Ci (x)) are 1 for
1 ≤ i ≤ t , and all other coordinates are 0.
• The t matrices are k-out-of-N relation-free if the vectors corresponding to any

k + 1 elements are linearly independent.

The motivation for this construction is to allocate keys to inputs according to a mapping
defined by a relation-free set of matrices. In this mapping there are no linear relations
between keys and the resulting protocol is good for OT with adaptive queries. The
security of the protocol is based on the following lemma.

Lemma 3.5. Consider a set of t matrices of size
√

N × √N , and a set of t random
permutations of {1, . . . , N }. These permutations map the values 1, . . . , N to locations
in each of the matrices. Then with high probability this set is k-out-of-n relation-free for

t = 2 log(N/k)

log(
√

N/k)
+ 1 = 5 log N − 6 log k

log N − 2 log k
.

Proof. The vectors corresponding to the matrices contain 2t
√

N coordinates. Call the
coordinates of the row (or column) keys of a certain matrix a region. The vectors contain
2t regions, each with

√
N coordinates. Each vector has in each region a single coordinate

with a “1” value.
Consider a set of k + 1 linearly dependent vectors. Then each coordinate either has

no vectors in which it is set to 1, or the number of these vectors is at least 2. We examine
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the probability that this property holds for a single region. This probability is the same
as that of throwing s = k + 1 balls into n = √N bins independently at random, and
witnessing the event that there are at least two balls in every non-empty bin (there are
at most s/2 such bins). When this event happens, it is possible to remove one ball from
every bin that has an odd number of balls and partition the remaining balls (of which
there are at least s/2) into pairs, such that the balls in each pair fall into the same bin.
(If each bin contains either none or two remaining balls, then there is only one such
partition into pairs. If there is a bin with four or more balls then there are several such
partitions.) The probability of such a partition happening is

(s/2)!

(s/4)! · 2s/4
· 1

ns/4
<

( s

4n

)s/4
.

In other words, it is at most ((k + 1)/4
√

N )(k+1)/4.
The probability that this property holds for all regions is at most ((k+1)/4

√
N )(k+1)t/2.

We apply the probabilistic method and require that this probability be smaller than the
inverse of the number of subsets of k + 1 elements, 1/

( N
k+1

) ≈ ((k + 1)/eN )k+1. This
holds for

t ≥ 2 · log(eN/(k + 1))

log(4
√

N/(k + 1))
≈ 2 log(N/k)

log(
√

N/k)
.

Therefore, setting t = 2 log(N/k)/ log(
√

N/k) + 1 satisfies the requirement of the
theorem.

It should be interesting to design an explicit construction of k-out-of-n relation-free
matrices.

An overview of the protocol

On a high level Protocol 3.3 is transformed in the following way: In the initialization
phase B takes a k-out-of-N relation-free construction of t matrices and maps the N
elements to the t matrices according to the construction (we use the random construction
of Lemma 3.5). He publishes the mapping and makes it available to A. B chooses
random keys for every row and column from each matrix (a total of 2t

√
N keys). The

commitment key for each element is the output of an operation-respecting synthesizer
with 2t inputs, which are the keys corresponding to the rows and columns to which the
element is mapped in each of the matrices.

In each transfer phase B chooses 2t random hiding elements ri whose sum is zero.
A and B run 2t OT

√
N

1 protocols, which let A learn each of the relevant inputs of the
synthesizer, each summed with the corresponding random element ri . The sum of these
values equals the sum of the inputs that generated the key to the commitment that hides
X I , and so A is able to open this commitment,

The protocol

Protocol 3.4 (Adaptive OT Based on Any Operation-Respecting Synthesizer). B’s in-
put is {xi, j | 1 ≤ i, j ≤ √N }, where N = 2�. B maps the inputs into t square matrices
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independently at random. Let xm
R denote the row into which x is mapped in matrix m,

and let xm
C denote the column into which x is mapped in matrix m.

Let S(x1, . . . , x2t ) be an operation-respecting synthesizer with two inputs.

1. Initialization:
(a) B prepares 2t

√
N random keys

(R1
1, R1

2, . . . , R1√
N), (C

1
1 ,C1

2 , . . . ,C1√
N), . . . , (R

t
1, Rt

2, . . . , Rt√
N),

(Ct
1,Ct

2, . . . ,Ct√
N).

For every pair 1 ≤ i, j ≤ √N , B prepares a commitment key

Ki, j = S
(

R1
(xi, j )

1
R
,C1

(xi, j )
1
C
, . . . , Rt

(xi, j )
t
R
,Ct

(xi, j )
t
C

)
.

That is, the output of the synthesizer on the row and column keys that correspond
to the locations of the input in each of the matrices. B prepares a commitment
Yi, j of Xi, j using this key, Yi, j = commitKi, j (Xi, j ).

(b) B sends to A the commitments Y1,1, . . . , Y√N,
√

N .
2. Transfer: The parties invoke the following protocol for each Xi, j that A wants to

learn:
(a) B chooses random elements r1

R, r
1
C, . . . , r

t
R, r

t
C, such that their sum is zero. (rm

R
is used to randomize the row keys of matrix m, and rm

C is used to randomize
the column keys of matrix m.)

(b) For every matrix 1 ≤ m ≤ t , A and B engage in the following protocols:
• An OT

√
N

1 protocol on the values 〈Rm
1 + rm

R , Rm
2 + rm

R , . . . , Rm√
N
+ rm

R 〉. If A
wants to learn Xi, j she should pick Rm

(xi, j )
m
r
+ rm

R .

• An OT
√

N

1 protocol on the values 〈Cm
1 + rm

C ,Cm
2 + rm

C , . . . ,Cm√
N
+ rm

C 〉. If A
wants to learn Xi, j she should pick Cm

(xi, j )
m
c
+ rm

C .
(c) A reconstructs Ki, j as

Ki, j = S
(

R1
(xi, j )

1
R
+ r1

R,C1
(xi, j )

1
C
+ r1

C, . . . , Rt
(xi, j )

t
R
+ r t

R,Ct
(xi, j )

t
C
+ r t

C

)
and uses it to open the commitment Yi, j and reveal Xi, j .

The following theorem states that Protocol 3.4 is secure if enough matrices are used
(fortunately, if k is not too close to

√
N only a few matrices are needed).

Theorem 3.6. The above OT N
k×1 protocol with

t = 2 log(N/k)

log(
√

N/k)
+ 1 = 5 log N − 6 log k

log N − 2 log k

matrices is secure.

Note that this yields a construction for any k = o(
√

N ). In particular, if k < N 1/4 it is
sufficient to use only seven matrices, and k < N 1/3 requires only nine matrices.
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Proof. The privacy of the receiver is preserved since each OT
√

N

1 protocol preserves
her privacy. As for the sender’s privacy, the same arguments that were used to prove
Lemma 3.3 show that if the output of the receiver is computationally distinguishable
from that of a receiver in the ideal model, then either (1) the sender’s privacy is not
preserved in the OT

√
N

1 protocol, or (2) given the information the receiver is prescribed
to learn in k invocations of the OT protocols she can learn the commitment keys of k+1
or more inputs. Case (1) should not happen since we assume the OT

√
N

1 to be secure. As
for case (2), in every transfer stage the receiver learns one row key and one column key
of each matrix, where each of these keys is added to a random value and the sum of all
the random values is zero. The receiver learns, therefore, a single linear combination of
all the row and column keys. (Note that we do not assume that in each run of the transfer
protocol A has learned the sum of keys which correspond to one of the elements. In each
transfer protocol she could have obtained the sum of keys of her choice, not necessarily
corresponding to an element X I .) Now, after k invocations of the protocol the receiver
learns k linear equations of the keys. If these k equations span the commitment keys of
k + 1 elements then this is a contradiction to the k-out-of-N relation-freeness property
of the matrices. If they do not, then the receiver can learn information about at most k
keys. The methods described in Section 3.3.3 (discussing the selective decommitment
problem) can be used in order to show that these k keys do not enable the receiver to
learn more than k committed input elements.

4. Applications

This section describes the basic details of several applications of OT and of OT with
adaptive queries.

4.1. Applications of 1-out-of-N Oblivious Transfer

Two applications of 1-out-of-N OT are described here. Another application is oblivious
polynomial evaluation [45].

4.1.1. PIR to SPIR Transformation

The problem of allowing search in databases so that the database owner does not learn
what is being searched has received a great deal of attention. A system that allows a user
to access a database consisting of N words 〈W1,W2, . . . ,WN 〉, read any word it wishes
without the owner learning which word was accessed, and use o(N ) communication,
is called PIR (for Private Information Retrieval) [15]. There are various proposals for
implementing such schemes, where the emphasis is on the communication complexity.
Some of the proposals require that the user communicates with several servers maintained
by the database owner where these servers are certified somehow not to communicate with
each other. This assumption (of non-communicating replicated databases) was shown
to be unnecessary by Kushilevitz and Ostrovsky [36], who proposed a PIR scheme
with a single server—where the user’s security depends on the Quadratic Residuosity
assumption modulo a Blum integer and the communication complexity is O(N εm) (m
is the security parameter, i.e., the length of a number that is hard to factor). Another
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proposal of such a scheme is by Cachin et al. [11] where the communication complexity
is poly-logarithmic in N .

More recently attention was given to the question of protecting the database as well,
i.e., ensuring that the user does not learn more than one word of data (or as many words
as he or she paid for). A PIR scheme that enjoys this property is called Symmetric PIR,
or SPIR. In [26] a transformation of any PIR scheme into a SPIR scheme was proposed
at the cost of increasing the number of servers (and introducing the separation of servers
assumption). Kushilevitz and Ostrovsky [36] suggest an adaptation of their single server
PIR protocol to enable the receiver to learn only a single element of the database,
and transform it to a SPIR protocol by combining a zero-knowledge proof in which
the receiver proves that it followed the protocol. We show here that the combination
of 1-out-of-N OT with any PIR protocol provides a SPIR protocol which does not
require adding any new servers and requires relatively little work on behalf of the parties
involved. In particular, the overhead is only the sum of the overheads of the PIR and
OT protocols, and is reasonable for any application for which the overhead of PIR is
reasonable.

It is not hard to see the connection between the PIR/SPIR setting and the 1-out-of-N
OT setting. As described in Table 1, both PIR and OT protocols provide privacy for the
receiver, but PIR protocols emphasize communication complexity, whereas OT protocols
emphasize the server’s privacy. One can regard a SPIR construction as a combination of
1-out-of-N OT and PIR which provides low communication complexity, and privacy, for
both parties. SPIR is essentially OT with o(N ) communication. The important feature of
Protocol 2.1 for 1-out-of-N OT is that for the receiver to obtain the value of the desired
X I she does not need all of the encrypted values Y1, Y2, . . . , YN but only YI . Therefore
if instead of Step 3 in Protocol 2.1 the sender and the receiver perform a PIR reading
of Y1, Y2, . . . , YN , then the receiver can get sufficient information without giving the
sender any information about the value she is interested in. The added communication
complexity to the PIR protocol is the log N invocations of the 1-out-of-2 OT protocol.
The evaluations of FK do not add to the communication complexity, but add to the work
done by the database. Therefore one can use this protocol to transform any PIR protocol
to a SPIR protocol without increasing the number of databases.

PIR and Oblivious Transfer with Adaptive Queries. OT N
1 protocols enable an efficient

transformation of any PIR protocol to a SPIR protocol. Adaptive OT protocols could
enable even more efficient future transformations from PIR to SPIR, by transforming a
protocol for k adaptive invocations of PIR to a protocol for k adaptive invocations of
SPIR (the problem is that currently there are no adaptive PIR protocols, but when such

Table 1. A comparison of PIR, oblivious transfer, and
SPIR protocols.

PIR OT SPIR

Receiver privacy + + +
Sender privacy + ⇒ +
Communication o(N ) O(N ) o(N )
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a protocol is introduced, OT N
k×1 would enable us to transform it immediately to an SPIR

protocol).

PIR versus Oblivious Transfer. On a more practical level, we believe that it is preferable
to use the computation efficient OT N

1 and OT N
k×1 protocols rather than the communication

efficient PIR protocols. Oblivious transfer protocols, including the protocol that can
handle adaptive queries, require O(N ) communication only at the end of the initialization
phase and before the transfer phases begin. For many applications this communication
overhead is not an issue. Communication of gigabytes of data is cheap and simple, using
detachable storage devices (such as DATs or DVDs) or fast communication networks. In
contrast, single server PIR protocols [36], [11] are very costly to implement since they
require O(N ) exponentiations or modular multiplications per transfer.

4.1.2. Oblivious Sampling

In this section we briefly describe an application of 1-out-of-N OT protocols to a problem
suggested by Andrei Broder.

Consider the following scenario: a search engine claims to have the largest searchable
database of all search engines. Alice would like to check this claim and measure the
number of URLs indexed by this search engine, i.e., web pages that can be searched for
using its search interface. She might also like to check the overlap between the pages
indexed by this search engine and by other search engines, and this task also requires a
random sample of the pages indexed by the search engine (see [5]). One possibility is
for the search engine to give Alice the list of the URLs it has indexed; Alice will then
make sure that all (or most of) these URLs are indeed indexed actively, i.e., that the
corresponding page can be retrieved in a search (it is much easier to gather many URLs
without indexing the content). This can be done by sampling a few of them, retrieving
the corresponding page, and searching for the page via the public interface of the search
engine. The problem is of course that the list of URLs is a trade secret and the search
engine will not reveal it even to a study that will declare it to be the largest search engine.
Therefore we are looking for a sampling procedure which will allow Alice to select a
few URLs from the list, and then search for them in the search engine’s web interface.
The selection procedure must:

• Keep most of the list (the part not sampled) secret from Alice.
• Prevent the search engine from learning which URLs were selected—otherwise

it can quickly add them to the active index. (There is a great difference between
finding and storing web pages on one hand, and indexing them so that they can be
searched for through a search engine’s interface, on the other hand. Alice wants to
check how many web pages are searchable, and therefore should keep the URLs she
selected secret from the search engine, and then quickly search for them through
its web interface.)

1-out-of-N OT (and in particular k-out-of-N OT protocols) can be used for oblivious
sampling, i.e., to let the receiver sample a random element from a large set of elements
known to the sender, without giving the sender any information about the item that the
receiver chooses. In the case of the search engines application this enables Alice and
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the search engine to solve their problem at a small cost, even if the engine’s databases
consists of hundreds of millions of pages. If the search engine claims to have indexed
N URLs it should feed them as the input X1, . . . , X N to the 1-out-of-N OT protocol,
whose main computational overhead is logarithmic in N .

The only problem remaining is the duplication problem—what if the search engine
duplicates some of the URLs in order to claim a larger set (namely, taking a database of
N ′ URLs, and creating a database of N = cN ′ URLs by duplicating each URL c times).
This can be solved using a hash tree structure, but there is also a very simple solution
using the following procedure—for some of the sampled URLs Alice does the following:
she sends the URL to the search engine and asks it what was the index I that Alice chose
when she sampled the URL. If the search engine does not answer correctly—then Alice
can conclude that the search engine was cheating by duplicating URLs.

4.2. Applications for Searching

Oblivious transfer is useful for making private search queries in a large private database.
Namely, for ensuring that the party doing the queries learns nothing more than the result
of each query, and that the queries themselves are kept hidden from the database owner.

If the items in the database are indexed from 1 to N and N is of moderate size, then the
party requesting the query (the receiver) should simply run a 1-out-of-N OT in which
she retrieves the item she is interested in. This type of search is useful for example for
searching patent databases, i.e., in a scenario where Bob holds a patent database, does
not want to give the whole database to other parties, but is willing to let other people
search it. Alice wants to search the database while hiding her queries (which might reveal
the great new invention she is working on). Note that in this scenario Alice’s search might
be adaptive: after she retrieves a certain patent Alice might ask to read patents which are
referenced by this patent. Alice and Bob can use OT N

k×1 to enable Alice to search Bob’s
database adaptively without revealing her queries to him.

4.2.1. Keyword Search

Assume again that Bob owns a database which Alice wants to search, but now each
record has a keyword (e.g., a user name) which identifies it. Namely, the database is
composed of items Xk1 , . . . , XkN , where k1, . . . , kN are the keywords of the records,
and Alice’s input is a keyword s. The situation is complicated since the keywords might
come from a large domain which contains much more than N items.

Suppose first that the database is sorted according to the keywords and Alice would
be using binary search. The two parties can invoke an OT N

log N×1 protocol to perform
this search without revealing to Bob the element that Alice is searching for. This search
limits Alice’s knowledge to log N elements of the database.

Ideally, we would like to limit Alice’s output to a single value, namely to let her learn
Xs if s ∈ {k1, . . . , kN }, and nothing otherwise. We design such a solution using perfect
hash functions [25]. A hash function is perfect for an input set k1, . . . , kN if it maps it to
its range without collisions, and we are interested in perfect hash functions whose range
is of size O(N ). The common structure for constructions of perfect hash functions uses
two-level hash, using two levels of hash functions. The first function maps data elements
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into bins. A different hash function is associated with each bin, and is used to map further
the elements that were mapped to the bin.

Keyword search can be implemented using perfect hash functions in the following
way. Bob uses a perfect hash function H to map the keywords of his input to a domain
{1, . . . , N ′}, where N ′ = O(N ). He chooses a random pairwise independent function
R, constructs a table T of size N ′, and stores the values R(ki ) in location H(ki ), namely
in the location to which ki is mapped by the perfect hash function. In the retrieval stage
Alice computes H(s) and uses OT to learn entry H(s) of the table T . She compares this
value with R(s). If these two values are equal she concludes that the entry keyed by s is
in the database. (She can then also use a key derived from R(s) to decrypt an encryption
of Xs , if such an encryption is stored in this entry.)

It is obvious that Bob learns nothing about Alice’s query, and that if the hash function
is perfect then the protocol is correct. It is more complicated to design the protocol such
that Bob’s privacy is also preserved. First, Alice should not be able to compute the hash
function R() more than a single time. Otherwise, after she learns the value of the entry
of T she could try several keywords and check whether they are mapped by the function
R to this value. Luckily, R() can be implemented as a linear polynomial, and there are
efficient protocols [45] that enable Bob to let Alice obliviously compute a single output
of the polynomial. It is slightly harder to let Alice compute the output H(s) of the hash
function H , while hiding from her any information about H except for H(s). This is
essential since constructions of perfect hash functions depend on the input set k1, . . . , kN

in order to prevent collisions. Therefore if Alice learns information about H she might
learn about Bob’s input (for example, if she learns that H(s) = H(t) she knows that it
cannot be the case that both s and t are in Bob’s input).

4.2.2. An Oblivious Perfect Hash Function

We describe a construction of a perfect hash function with a range of size O(N ), similar to
the class of perfect hash functions suggested in [48]. Unlike the construction of [25], it can
be evaluated (at least once) without revealing information about the input set k1, . . . , kN .
The first step of the construction uses a hash function f to map the inputs to N bins such
that the following property holds: Let bi be the number of items which are mapped to
the i th bin, then

∑N
i=1

(bi

2

)
<

∑N
i=1(bi )

2 < cN = O(N ). This property is satisfied by
at least half of the choices of hash functions of the form ha(x) = (ax mod p) mod N ,
where p is prime and we assume that ki ∈ {0, p − 1} (see Corollary 8.20 in [41]).

The next step maps the items into a table T of size cN . First choose a random pairwise
independent hash function g, whose range is [1, cN ], and which can be made public.
Then for every bin assign a secret offset di . Item x in bin i is mapped to a location in T
by the function g(x)+ di mod cN . For the analysis, first note that the expected number
of collisions of two items taken from the same bin is (1/cN )

∑N
i=1

(bi

2

)
< 1 and therefore

the constant c can be set to ensure that a pairwise independent hash function generates
such a collision with probability smaller than 1/2. It is also required to choose offsets di

such that no collisions occur between items from different bins. This is indeed possible
if offsets are assigned starting from the most populated bin to the least populated one.
Assume, without loss of generality, that b1 ≥ b2 ≥ · · · ≥ bN . The offset assigned to
bin i should prevent collisions with items of bins b1, . . . , bi−1. The number of possible
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collisions is at most bi · (b1 + b2 + · · · + bi−1) ≤ b2
1 + b2

2 + · · · + b2
i−1 < cN , and

therefore there is always an offset which does not cause any collision.
The last step chooses a random rotation 0 ≤ r ≤ N−1, assigns the value di+r mod N

to bin i , and defines the hash function as H(x) = g(x)+ df (x) + r mod cN .

Performing the search

The most straightforward method for performing the search requires Alice to perform
one oblivious evaluation of the hash function f of the first level. The search is composed
of the following steps: (1) Alice obliviously computing f (s). (2) Alice using 1-out-of-N
OT to learn the offset r + df (s) mod cN . (3) Alice using 1-out-of-cN OT to learn the
value in entry g(s) + df (s) + r mod cN in table T . (4) Alice computing an oblivious
evaluation of R(s), and comparing the result to the entry of T that she learned. Note that
the only information learned by Alice is one output of the function f , two outputs of the
function R, and the value of an offset. Bob’s privacy is preserved since the functions f
and R are pairwise independent, and each offset is distributed uniformly at random.

An alternative method relaxes the need for an oblivious evaluation of f (s). The system
is changed and includes e = log(1/ε) first level hash functions f1, . . . , fe (where ε is
an error probability), which are public and are known to Alice. These hash functions are
chosen by Bob independently of his input. It therefore holds that with probability at least
1− ε there is a function fi that maps the inputs such that the sum of the squares of the
number of items mapped to the bins is less than cN . Assume, without loss of generality,
that this property holds for f1. Bob constructs e sets of second level hash functions, and
e tables T1, . . . , Te. He chooses random values r2, . . . , re and sets all the entries of table
Ti (i ≥ 2) to be ri . Then for each input value kj he sets the value of the entry to which it
is mapped in T1 to be R(kj )⊕ r2 ⊕ · · · ⊕ re.

During the search operation Alice finds the locations to which s is mapped in each of
the e tables (note that she knows the functions f1, . . . , fe and does not need to compute
them obliviously). She then uses invocations of 1-out-of-cN OT to learn the values in
these entries. She computes the exclusive-or of these values and compares it with R(s).
Note that in this process all the fi functions are treated symmetrically, and Alice does
not learn which one of them supports perfect hashing of the input set.

5. Conclusions

Oblivious transfer is a fundamental tool of secure computation. We presented efficient
constructions of a computationally secure 1-out-of-N OT protocol, variants that support
multiple and adaptive queries, and several applications. Another application is commu-
nication preserving protocols for secure function evaluation [43]. Our approach uses a
logarithmic number of 1-out-of-2 OTs compared with �(N ) 1-out-of-2 OTs that must
be used by any information-theoretic secure construction. It is also more efficient than a
generic solution that applies Yao’s two-party protocol to a circuit that selects one of N
inputs (that solution might use log N 1-out-of-2 OTs and O(N ) communication, but the
constants are larger than in our solution).
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