
DOI: 10.1007/s00145-004-0135-x

J. Cryptology (2004) 17: 153–207

© 2004 International Association for
Cryptologic Research

Adaptive versus Non-Adaptive Security
of Multi-Party Protocols∗

Ran Canetti
IBM Research, 19 Skyline Drive,
Hawthorne, NY 10532, U.S.A.

canette@watson.ibm.com

Ivan Damgård
BRICS, Aarhus University,

Aabogade 34, DK-8000 Aarhus C, Denmark
ivan@daimi.au.dk

Stefan Dziembowski
Institute of Informatics, University of Warsaw,

Banacha 2, PL-02-D97 Warsaw, Poland
std@mimuns.edu.pl

Yuval Ishai
Department of Computer Science, Technion,

Haifa 32000, Israel
yuvali@cs.technion.ac.il

Tal Malkin
Computer Science Department, Columbia University,

New York, NY 6027-7003, U.S.A.
tal@cs.columbia.edu

Communicated by Oded Goldreich

Received 5 September 2002 and revised 16 September 2002
Online publication 22 March 2004

Abstract. Security analysis of multi-party cryptographic protocols distinguishes be-
tween two types of adversarial settings: In the non-adaptive setting the set of corrupted
parties is chosen in advance, before the interaction begins. In the adaptive setting the
adversary chooses who to corrupt during the course of the computation. We study
the relations between adaptive security (i.e., security in the adaptive setting) and non-
adaptive security, according to two definitions and in several models of computation.

∗ Work partially done while the third author was a PhD student at BRICS and while he was a post-doc at
ETH Zurich. He was supported in part by Polish KBN Grant 4 T11C 042 25 and by the Foundation for Polish
Science (FNP). Work done in part while the fourth author was at DIMACS and AT&T Labs, and while visiting
IBM Watson. Work done while the fifth author was at MIT and AT&T Labs, and while visiting IBM Watson.

153

154 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

While affirming some prevailing beliefs, we also obtain some unexpected results. Some
highlights of our results are:

• According to a more basic definition (due to Canetti), for honest-but-curious ad-
versaries, adaptive security is equivalent to non-adaptive security when the number
of parties is logarithmic, and is strictly stronger than non-adaptive security when
the number of parties is super-logarithmic. For Byzantine adversaries, adaptive
security is strictly stronger than non-adaptive security, for any number of parties.

• According to an augmented definition which is cast in an information-theoretic
setting (due to Dodis, Micali, and Rogaway), adaptive and non-adaptive security
are essentially equivalent. This holds for both honest-but-curious and Byzantine
adversaries, and for any number of parties.

Key words. Multi-party protocols, Definitions of security, Adaptive security.

1. Introduction

Security analysis of cryptographic protocols is a delicate task. A first and crucial step
towards meaningful analysis is coming up with an appropriate definition of security of the
protocol problem at hand. Formulating good definitions is non-trivial: They should be
comprehensive and stringent enough to guarantee security against a variety of threats
and adversarial behaviors. On the other hand, they should be as simple, workable, and
as permissive as possible, so as to facilitate design and analysis of secure protocols, and
to avoid unnecessary requirements.

Indeed, in contrast with the great advances in constructing cryptographic protocols for
a large variety of protocol problems, formalizing definitions of security for cryptographic
protocol problems has been progressing more slowly. The first protocols appearing in
the literature use only intuitive and ad hoc notions of security, and rigorous security
analysis was virtually non-existent. Eventually, several general definitions of security
for cryptographic protocols have appeared in the literature. Most notable are the works
of Goldwasser and Levin [GL], Micali and Rogaway [MR], Beaver [B1], Canetti [C1],
and Dodis and Micali [DM] that concentrate on the task of secure function evaluation
[Y1], [Y2], [GMW], and Pfitzmann and Waidner [PW], Pfitzmann et al. [PSW], and
Canetti [C2] that discuss general reactive tasks. In particular, only recently do we have
precise and detailed definitions that allow rigorous study of “folklore beliefs” regarding
secure protocols.

This work initiates a comparative study of notions of security, according to different
definitions. We concentrate on secure function evaluation, and in particular the following
aspect. Adversarial behavior of a computational environment is usually modeled via a
single algorithmic entity, the adversary, the capabilities of which represent the actual
security threats. Specifically, in a network of communicating parties the adversary is
typically allowed to control (or corrupt) some of the parties. Here the following question
arises: How are the corrupted parties chosen? One standard model assumes that the set of
corrupted parties is fixed before the computation starts. This is the model of non-adaptive
adversaries. Alternatively, the adversary may be allowed to corrupt parties during the
course of the computation, when the identity of each corrupted party may be based on
the information gathered so far. We call such adversaries adaptive.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 155

Indeed, attackers in a computer network (hackers, viruses, insiders) may break into
computers during the course of the computation, based on partial information that was
already gathered. Thus the adaptive model seems to represent realistic security threats
better, and so provide a better security guarantee. However, defining and proving security
of protocols is considerably easier in the non-adaptive model. One quintessential exam-
ple for the additional complexity of guaranteeing adaptive security is the case of using
encryption to transform protocols that assume ideally secure channels into protocols
that withstand adversaries who hear all the communication. In the non-adaptive model
standard Chosen-Ciphertext-Attack secure encryption [DDN], [CS], [S] (or even plain
semantically secure encryption against chosen plaintext attacks [GM], if used appropri-
ately) is sufficient. To obtain adaptively secure encryption, it seems that one needs either
to trust data erasure [BH] or use considerably more complex constructs [CFGN], [B2],
[DN].

Clearly, adaptive security implies non-adaptive security, under any reasonable defini-
tion of security. However, is adaptive security really a stronger notion than non-adaptive
security? That is, do there exist protocols that are non-adaptively secure and at the
same time adaptively insecure? Some initial results, indicating clear separation in some
settings, are provided in [CFGN]. On the other hand, it is a folklore belief that in an
“information-theoretic setting” adaptive and non-adaptive security should be equivalent.
Providing more complete answers to this question, in several models of computation,
is the focus of this work. While some of our results affirm common beliefs, other re-
sults are quite surprising, and may considerably simplify the design and analysis of
protocols.

Models of computation. We study the additional power of adaptive adversaries in a
number of standard adversary models, and according to two definitions: The definition
of Canetti [C1] (which we call the basic definition) and the definition of Dodis and
coworkers [MR], [DM] (which we call the augmented definition). To develop the nec-
essary terminology for presenting our results we very briefly outline the structure of the
definitions of security of protocols.

As mentioned above, both definitions concentrate on the task of Secure Function
Evaluation. Here the parties wish to evaluate jointly a given function at a point whose
value is the concatenation of the inputs of the parties. In a nutshell, protocols for se-
cure function evaluation are protocols that “emulate” an ideal process where all par-
ties privately hand their inputs to an imaginary trusted party who privately computes
the desired results, hands them back to the parties, and vanishes. A bit more pre-
cisely, it is required that for any adversary A, that interacts with parties running a
secure protocol π and induces some global output distribution, there exists an “ideal-
process” adversary S, that manages to obtain essentially the same global output distri-
bution in the ideal process. The global output contains the adversary’s output (which
may be assumed to be his entire view of the computation), together with the identi-
ties and outputs of the uncorrupted parties. (Adversary S is often called a simulator,
since it typically operates by simulating a run of A.) The following parameters of
the adversarial models turn out to be significant for our study. Let k be the security
parameter.

156 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

ADVERSARIAL ACTIVITY: The adversary may be either passive (where even corrupted
parties follow the prescribed protocol, and only try to gather additional informa-
tion) or active (where corrupted parties are allowed to deviate arbitrarily from their
protocol). Passive (resp., active) adversaries are often called honest-but-curious
(resp., Byzantine).

NUMBER OF PARTIES: We distinguish among the following three cases. First is the case
where n, the number of parties, is large, or ω(log k). Second is the case of a small
number of parties, where is n = O(log k). Third is the case of two parties.

COMPLEXITY OF ADVERSARIES: We consider three cases. Information-Theoretic (IT)
security does not take into account any computational complexity considera-
tions. That is, both adversaries A and S have unbounded resources and S’s re-
sources do not depend on A’s. Universal security allows A unbounded resources,
but requires S to be efficient (i.e., expected polynomial) in the complexity of
A. Computational security restricts both A and S to expected polynomial time (in
the security parameter). Note that universal security implies both IT security and
computational security (all other parameters being equal). However, IT security
and computational security are incomparable. See [C1] for more discussion on the
differences between these notions of security and their meaning.

QUALITY OF EMULATION: We consider either perfect emulation (where the output dis-
tributions of the real-life computation and of the ideal process must be identically
distributed), statistical emulation (where the output distributions should be statisti-
cally indistinguishable), or computational emulation (where the output distributions
should be computationally indistinguishable).

The rest of the Introduction overviews the state of affairs regarding the added power of
adaptivity, as discovered by our investigation. We do not attempt here to explain “why”
things are as they are. Such (inevitably subjective) explanations require more familiarity
with the definitions and are postponed to the body of the paper.

Our results: the basic definition. This definition is stated for several models of computa-
tion. We concentrate by default on the secure channels model, where the communication
channels are perfectly secret and universal security is required. Essentially the same re-
sults hold also for the open channels setting, where the adversary sees all communication
but only computational security is required. (The only exception is the two-party case,
as described below.)

The definition of adaptive security from [C1] requires a so-called post-execution cor-
ruptibility (PEC) property, geared towards allowing composition of adaptively secure
protocols (see Section 2.1.2). Using the PEC requirement we can show a separation
between adaptive and non-adaptive security for all settings except IT security (where
adaptive and non-adaptive security are equivalent). However, as we will argue, our re-
sults indicate that PEC is an overkill requirement in some cases. We thus also investigate
the basic definition without the PEC requirement, as follows. To give a more complete
picture, we also consider two relaxed variants of the basic definition that are not explic-
itly addressed in [C1]. The first variant requires only IT security (in the secure channels
model). The second variant allows the ideal-process adversary to send an explicit input

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 157

to and receive output from the trusted party, modeling, respectively, the adversary’s al-
lowed influence on the outputs of uncorrupted parties, and the tolerable “information
leakage” to the adversary.

We now outline our results. The most distinctive parameter here (when the PEC
requirement is ignored) seems to be whether the adversary is active or passive. If
the adversary is active (i.e., Byzantine), then, for three or more parties, adaptive se-
curity is strictly stronger than non-adaptive security, regardless of the values of all
other parameters. We show this via a protocol for three parties, that is non-adaptively
universally secure with perfect emulation, but adaptively insecure, even if the adver-
sary is computationally bounded and we are satisfied with computational emulation.
This is the first such example involving only a constant number of parties, for any
constant.

The case of two parties with active adversaries is somewhat more involved. In the
secure channels model, adaptive and non-adaptive security are always equivalent. How-
ever, in the open channels model, a variant of the example for three parties demonstrates
that adaptive security is strictly stronger than non-adaptive security, as long as the ideal-
process allows the adversary to receive an output from the trusted party. It remains open
whether such a separation exists for the case of strict function evaluation where the
ideal-process adversary has no output or input.

In the case of passive adversaries the situation is as follows. Out of the nine settings
to be considered (IT, universal, or computational security, with perfect, statistical, or
computational emulation), we show that for one—IT security and perfect emulation—
adaptive and non-adaptive security are equivalent, for any number of parties. In all other
eight settings we show that, roughly speaking, adaptive security is equivalent to non-
adaptive security when the number of parties is small, and is strictly stronger when the
number of parties is large. We elaborate below.

For a large number of parties, it follows from an example protocol shown in [CFGN]
that for statistical or computational emulation, adaptive security is strictly stronger than
non-adaptive security. We show separation also for perfect emulation, where universal
or computational security is required. We complete the picture by showing that for a
small number of parties and perfect emulation, adaptive and non-adaptive security are
equivalent. Equivalence holds even in the case of statistical or computational emulation,
if n is O(log k/log log k).1

Equivalence of adaptive and non-adaptive security for the case of passive adversaries
and a small number of parties is very good news: many protocol problems (for instance,
those related to threshold cryptography) make most sense in a setting where the number
of parties is fixed. In such cases one can thus concentrate on non-adaptive security, and
adaptive security comes “for free.” This significantly simplifies the construction and
analysis of these protocols.

1 Notice that there is a small gap between this equivalence result and the known separating example for
n ∈ ω(log k). To close this gap, we also show that if one relaxes slightly the demands to the complexity of
simulators and allows them to be expected polynomial time except with negligible probability, then this gap
can be closed: equivalence holds for all n ∈ O(log k). In many cases this definition of “efficient simulation”
seems to be as reasonable as the standard one.

158 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

Table 1. A summary of our main results.∗

Adversary Number of parties Adaptive vs. non-adaptive

Basic definition Active Three and above Non-equivalent
Two Model-dependent

Passive Large = ω(log k) Non-equivalent
Small = O(log k) Equivalent

Augmented definition Any Any Equivalent

∗Equivalence results under the basic definition only hold without the PEC requirement. Some additional
results and subtleties, depending on which variation of the model is used in the definition, are omitted from
this table.

Our results: the augmented definition. This definition is formulated only for the case
of IT security. It is strictly stronger (i.e., more restrictive) than the IT version of the
basic definition. Here, to our surprise, adaptive and non-adaptive security turn out to be
essentially equivalent, even for active adversaries, and regardless of the number of parties.
Here, by “essentially,” we mean that non-adaptive security implies adaptive security for
all protocols, except for a class of degenerate cases. This class of protocols is easy to
characterize but is not empty. More details are given within.

Two properties of the augmented definition are essential for our proof of equivalence
to work. The first is that only IT security is required. The second property may be roughly
sketched as follows. It is required that there exists a stage in the protocol execution where
all the parties are “committed” to their contributed input values; this stage must occur
strictly before the stage where the output values become known to the adversary. (In
order to state this requirement formally one needs to make some additional technical re-
strictions, amounting to what is known in the jargon as “one-pass black-box simulation.”
See more details within.)

Our main results are summarized in Table 1.

Additional definition variants. We note that the equivalence and separation results of
Table 1 also hold for the following two variants of our basic definition considered in
the literature. A first such variant, used in [BH] to obtain adaptive security, assumes that
uncorrupted parties can be trusted to properly erase their internal data. (In contrast, our
basic definition assumes that an adaptive adversary learns everything that was viewed by
a newly corrupted party before the corruption occurred.) A second variant of the basic
definition allows an active adversary to “abort,” namely, to decide whether uncorrupted
parties obtain an output from the computation. Such a variant, used in [G1] and elsewhere,
allows one to obtain general feasibility results for (computationally) secure function
evaluation even when an active adversary can corrupt half or more of the parties, and is
particularly useful in the two-party case.2

2 The basic definition (without abort), where both parties should generate output, cannot be realized in the
case of two parties and active adversaries and can corrupt one party. However, this definition does allow one
to evaluate functions in which only one player receives an output.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 159

On the ability to evaluate functions adaptively. This paper concentrates on the question
of the existence of protocols that are adaptively insecure but non-adaptively secure. A
related question is whether, and under which computational assumptions, there exist
functions that can be securely computed non-adaptively, but cannot be adaptively securely
computed. We leave this interesting question out of the scope of this paper.

Organization. Section 2 presents our results relating to the basic definition. Section 3
presents our results relating to the augmented definition.

2. Adaptivity versus Non-Adaptivity in the Basic Definition

This section describes our results relative to the [C1] definition of security. A more
detailed review of the definition is provided in Section 2.1. The main parameters used
for distinguishing among the different cases were briefly described in the Introduction.

First, in Section 2.2 we present a simple example that shows separation between non-
adaptive and adaptive security for two or more parties, for either universal or computa-
tional security, and for both passive and active adversaries. This example demonstrates
separation almost across the board. However, it strongly relies on the post execution
corruptibility (PEC) property required by the adaptive definition. As argued later (Sec-
tion 2.3), in some cases the PEC property is not necessary, and it is interesting to in-
vestigate the relations between non-adaptive and adaptive security without PEC. This is
done next.

Section 2.3 proves equivalence of non-adaptive and adaptive security without PEC,
for passive adversaries and a small number of parties. Section 2.4 shows equivalence for
passive adversaries and any number of parties, in the setting of IT security and perfect
emulation. (This result holds even with PEC.)

Next, we demonstrate some separating examples that work even without PEC. Sec-
tion 2.5 describes separating examples for passive adversaries and a large number of
parties. Section 2.6 shows a separating example for the case of an active adversary with
at least three parties. Finally, Section 2.7 discusses the case of active adversaries and two
parties.

2.1. Review of the Definition

For self containment, this section briefly sketches the definitions of [C1] for the relevant
settings. As stated in the Introduction, the following settings are considered. The adver-
sary may be either non-adaptive or adaptive. It can also be either passive or active. We
distinguish between perfect, statistical, and computational emulation, and also between the
cases of universal, IT, and computational security. Finally, we distinguish between the case
of ideally secure channels, where the adversary has no access to information exchanged
between uncorrupted parties, and the case of open channels, where the adversary learns
all the communication among the parties. (We assume that the adversary cannot modify
the communication among uncorrupted parties.)

In Section 2.1.1 we present the definition for the case of non-adaptive adversaries
(both passive and active), and introduce universal, IT, and computational security. In
Section 2.1.2 we present the definition for the case of adaptive adversaries.

160 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

Preliminaries. We start by reviewing the notions of equal distribution and statistical and
computational indistinguishability. A distribution ensemble X = {X (k, a)}k∈N,a∈{0,1}∗ is
an infinite sequence of probability distributions, where a distribution X (k, a) is associated
with the values of k ∈ N and a ∈ {0, 1}∗. The distribution ensembles considered in what
follows are outputs of computations where the parameter a corresponds to various types
of inputs, and the parameter k is a security parameter. All complexity characteristics of
our constructions are measured in terms of the security parameter. In particular, we are
interested in the behavior of our constructions when the security parameter tends to
infinity.

Definition 1. We say that two distribution ensembles X and Y are equally distributed

(and write X
d= Y) if, for all sufficiently large k and all a, the distributions X (k, a) and

Y (k, a) are identical.

Ensembles X and Y are statistically indistinguishable (written X
s≈ Y) if for all c > 0,

and for all large enough k we have SD(X (k, a), Y (k, a)) < k−c where SD denotes
statistical distance, defined by SD(Z1, Z2) = 1

2

∑
a |Prob(Z1 = a)− Prob(Z2 = a)|.

Ensembles X and Y are computationally indistinguishable (written X
c≈ Y) if for all

polynomial-time algorithms D, for all c > 0 and for all large enough k we have
|Prob(D(1k, a, x) = 1) − Prob(D(1k, a, y) = 1)| < k−c, where x is chosen from
distribution X (k, a), y is chosen from distribution Y (k, a), and the probabilities are
taken over the choices of x , y, and the random choices of D.

The functions to be evaluated by the parties are formalized as follows. An n-party function
(for some n ∈ N) is a probabilistic function f : N×({0, 1}∗)n+1×{0, 1}∗ → ({0, 1}∗)n+1,
where the first input is the security parameter k and the last input is taken to be the random
input. The second input is taken to be the input of the adversary, and the first output is
taken to be the output of the adversary (see more details below). When f is specified
by a function from ({0, 1}∗)n to ({0, 1}∗)n , it should be interpreted as a deterministic
function mapping the n parties’ inputs to their outputs.

Note that n, the number of parties, is treated as an unrelated quantity to the security
parameter k. This allows capturing different relations between n and k, such as a constant
n, n which is polynomial in k, or n = ω(log k).

2.1.1. Non-Adaptive Security

We first formalize the “real-life” model of computation. Next we formalize the ideal
process. Finally we formalize the notion of emulation and state the definition. We develop
the definitions for the cases of active and passive adversaries side by side, noting the
differences throughout the presentation.

The real-life model. An n-party protocol π is a collection of n interactive, probabilistic
algorithms. We use the term party Pi to refer to the i th algorithm. Each party Pi starts
with value k for the security parameter, input xi ∈ D, and random input ri ∈ {0, 1}∗.
Let an adversary structure B ⊂ 2{1···n} be a monotone collection of subsets of {1, . . . , n};

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 161

that is, if B ∈ B and B ′ ⊂ B, then B ′ ∈ B.3 A B-limited real-life adversary, A, is another
algorithm determining the behavior of the corrupted parties. Adversary A starts off
with security parameter k and input that contains the identities of the corrupted parties
(some set in B), together with their inputs and random inputs. In addition, A receives
an auxiliary input z. The auxiliary input is a standard tool aimed to allow proving the
composition theorem. (Intuitively, the auxiliary input captures information gathered by
the adversary from other interactions occurring before the current interaction.)

The computation proceeds in rounds, where each round proceeds as follows. First the
uncorrupted parties generate their messages of this round, as described in the protocol.
(That is, these messages appear on the outgoing communication tapes of the uncorrupted
parties.) The messages addressed to the corrupted parties become known toA (i.e., they
appear on the adversary’s incoming communication tape). If the communication model
is that of open channels, then all the messages exchanged among the parties become
known to A. Next the adversary generates the messages to be sent by the corrupted
parties in this round. If the adversary is passive, then these messages are determined by
the protocol. An active adversary determines the messages sent by the corrupted parties
in an arbitrary way. Finally each uncorrupted party receives all the messages addressed
to it in this round.

At the end of the computation all parties locally generate their outputs. The uncor-
rupted parties output whatever is specified in the protocol. The corrupted parties output a
special symbol, ⊥, specifying that they are corrupted. In addition, the adversary outputs
some arbitrary function of its view of the computation. The adversary’s view consists of
its auxiliary input and random input, followed by the corrupted parties’ inputs, random
inputs, and all the messages sent and received by the corrupted parties during the com-
putation. Without loss of generality, we can imagine that the real-life adversary’s output
consists of its entire view.

Let ADVRπ,A(k, �x, z, �r) denote the output of real-life adversary A with security pa-
rameter k, auxiliary input z, and when interacting with parties running protocol π on
input �x = x1, . . . , xn and random input �r = rA, r1, . . . , rn as described above (rA for
A, xi and ri for party Pi). Let EXECπ,A(k, �x, z, �r)i denote the output of party Pi from
this execution. Recall that if Pi is uncorrupted, then this is the output specified by the
protocol; if Pi is corrupted, then EXECπ,A(k, �x, z, �r)i =⊥. Let

EXECπ,A(k, �x, z, �r)
= ADVRπ,A(k, �x, z, �r), EXECπ,A(k, �x, z, �r)1, . . . , EXECπ,A(k, �x, z, �r)n.

Let EXECπ,A(k, �x, z) denote the probability distribution of EXECπ,A(k, �x, z, �r) where
�r is uniformly chosen. Let EXECπ,A denote the distribution ensemble
{EXECπ,A(k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

The ideal process. The ideal process is parameterized by the function to be evalu-
ated. This is an n-party function f : N × ({0, 1}∗)n+1 × {0, 1}∗ → ({0, 1}∗)n+1, as

3 This standard requirement models the assumption that if a certain set of parties can be corrupted, then so
can all of its subsets. In the setting of adaptive security, it allows us to assume that a single additional party is
corrupted in each step.

162 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

defined above. Each party Pi has security parameter k and input xi ∈ D; no random
input is needed for the parties in the ideal process (if f is a probabilistic function,
then the needed randomness will be chosen by the trusted party). The parties wish to
compute f (k, x0, �x, r f)1, . . . , f (k, x0, �x, r f)n , where k is the security parameter, x0 is
the adversary’s input, r f is an appropriately long random string, the adversary learns
f (k, x0, �x, r f)0, and Pi learns f (k, x0, �x, r f)i (where f (k, x0, �x, r f)i denotes the i th
component of f (k, x0, �x, r f)).4 An ideal-process-adversary S is an algorithm describing
the behavior of the corrupted parties. Adversary S starts off with security parameter k,
the identities and inputs of the corrupted parties (i.e., the parties Pi in the set C of cor-
rupted parties), random input, and auxiliary input. In addition, there is an (incorruptible)
trusted party, T . The ideal process proceeds as follows:

INPUT SUBSTITUTION: The ideal-process-adversary S sees the inputs of the corrupted
parties. If S is active, then it may also alter these inputs. Let �b be the |C |-vector of
the altered inputs of the corrupted parties, and let �y be the n-vector constructed from
the input �x by substituting the entries of the corrupted parties by the corresponding
entries in �b. If S is passive, then no substitution is made and �y = �x .

COMPUTATION: Each party Pi hands its (possibly modified) input value, yi , to the
trusted party T . In addition, S hands an arbitrary value x0 to T . (If S is passive,
then even the corrupted parties hand their original inputs to T .) Next, T chooses
a value r f uniformly from {0, 1}k , hands f (k, �y, r f)0 to S, and hands each Pi the
value f (k, �y, r f)i .

OUTPUT: Each uncorrupted party Pi outputs f (�y, r f)i , and the corrupted parties output
⊥. In addition, the adversary outputs some arbitrary function of the information
gathered during the computation in the ideal process. This information consists
of the adversary’s random input, the corrupted parties’ inputs, and the resulting
function values { f (�y, r f)i : Pi is corrupted}.

Let ADVR f,S(k, �x, z, �r), where �r = (r f , r), denote the output of the ideal process
adversary S on random input r and auxiliary input z, when interacting with parties
having input �x = x1, . . . , xn , and with a trusted party for computing f with random
input r f . Let the (n + 1)-vector

IDEAL f,S(k, �x, z, �r)
= ADVR f,S(k, �x, z, �r), IDEAL f,S(k, �x, z, �r)1, . . . , IDEAL f,S(k, �x, z, �r)n

denote the outputs of the parties on inputs �x , adversary S, and random inputs �r as
described above (Pi outputs IDEAL f,S(k, �x, z, �r)i). Let IDEAL f,S(k, �x, z) denote the dis-
tribution of IDEAL f,S(k, �x, z, �r) when �r is uniformly distributed and let IDEAL f,S be the
ensemble {IDEAL f,S(k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

Definition of security. We require that protocol π emulates the ideal process for eval-
uating f , in the following sense. For any real-life adversary A there should exist an

4 In [C1] the adversary is not allowed to provide explicitly input to f nor to receive output from f . See
more discussion on this issue at the end of this section.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 163

ideal-process adversary S, such that for any input vector �x and any auxiliary input z, the
global outputs IDEAL f,S(�x, z) and EXECπ,A(�x, z) are similarly distributed.

We distinguish the following variants of this security requirement. First, if IDEAL f,S
(�x, z) and EXECπ,A(�x, z) are identically distributed (resp., statistically or computation-
ally indistinguishable), then we say that the emulation is perfect (resp., statistical or
computational). If bothA and S are allowed unbounded computational resources, regard-
less of each other, then the security is information theoretic (IT). IfA is allowed unbounded
computational resources, and S is required to be polynomial in the complexity of A,
then the security is universal. If bothA and S are restricted to expected polynomial time,
then the security is computational.

Definition 2. Let f be an n-party function and let π be a protocol for n parties.
We say that π non-adaptively, B-securely evaluates f with IT security and perfect (resp.,
statistical, computational) emulation if for any B-limited real-life adversary A there ex-

ists a (probabilistic) ideal-process adversary S such that IDEAL f,S
d= EXECπ,A (resp.,

IDEAL f,S
s≈ EXECπ,A or IDEAL f,S

c≈ EXECπ,A). If A and S are passive adversaries, then
we say that π B-privately evaluates f .

If the expected running time of S is polynomial in the expected running time of A
and k, then we say that π has universal security.5

IfA is limited to polynomial time in the security parameter, and the expected running
time of S is polynomial, then we say that π has computational security.

Spelled out, the definition requires that for any value of the security parameter k, for
any input vector �x , and any auxiliary input z, the global outputs IDEAL f,S(k, �x, z) and
EXECπ,A(k, �x, z) should be identically distributed.

Remark: On the trusted party’s input from and output to the adversary. Allowing the
ideal-process adversary to give explicit input to the trusted party (to be included in
the computation of f) models the allowed adversarial influence on the outputs of the
uncorrupted parties, and is only meaningful when the adversary is active. Allowing
the ideal-process adversary to receive explicit output from the trusted party models the
allowed information that the adversary may obtain on the inputs and outputs of the
uncorrupted parties (even without corrupting any party).

We note that in [C1] the ideal process does not allow the adversary to provide the
trusted party directly with input, nor can it receive output directly from the trusted party.
Similarly, the definition of f does not allow for explicit adversarial input and output.
Indeed, in the multi-party case, extending the ideal process to allow explicit adversarial

5 The expected running time of an interactive algorithm I is measured as a function of k and is defined
as follows. For any input x , random tape r of I, and a computationally unbounded algorithm E interacting
with I (i.e., playing the role of all parties with whom I communicates), let TI(k,E, x, r) denote the total
running time of I on input k, x throughout the interaction with E . The expected running time of I is defined
as TI(k) = maxE,x Er [TI(k,E, x, r)].

164 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

input and output is not necessary from a technical point of view, since one can always turn
any n-party function in the extended model into an equivalent (n + 1)-party function in
the original model (i.e., without adversarial input/output) by designating a special party
(say P1) to be always corrupted and thus provide the adversary with the ability to give
input to and get output from the trusted party.

Still, we choose to present here the more general formalization for two reasons. First,
it allows for more direct and natural formalization of multi-party functions, thus it seems
appropriate for a general definitional framework. Second, in the case of two parties and
active adversaries the more general formalization simplifies our treatment (see more
details in Section 2.7). In all other sections our results hold whether or not the adversary
is allowed input to and output from the trusted party.

2.1.2. Adaptive Security

As in the non-adaptive case, we develop the definitions for the cases of active and passive
adversaries side by side. One obvious difference from the definition of non-adaptive
security is that here the adversary chooses the identities of the corrupted parties in an
adaptive way; upon corruption, it sees the internal data of the corrupted party. This
includes its input, random input, and all messages it received and sent up to the point of
corruption. This is contrasted with the model of [BH] which assumes trusted erasures.
(See more discussion on this point in [C1].)

An additional, more “technical” difference is the way in which the interaction between
the outside environment and a single protocol execution is captured. Capturing this
interaction is useful for demonstrating that security is preserved under (non-concurrent)
protocol composition.6 In the non-adaptive case this interaction is captured by the parties’
inputs and outputs, plus an auxiliary input z given to the adversary before the computation
starts. In the adaptive case a more involved construct is used. An additional entity,
representing the external environment, is introduced to both the real-life model and the
ideal process. This entity, called the environment and denoted Z , is an algorithm that
interacts with the adversary and the parties in a way described below. The notion of
emulation is extended to include the environment.

The real-life model. Multi-party protocols are defined as in the non-adaptive case.
An adaptive real-life adversary A is an algorithm that starts off with some random input.
The environment is another algorithm, denotedZ , that starts off with input z and random
input. At certain points during the computation the environment interacts with the parties
and the adversary. These points and the type of interaction are specified below. Let an
adversary structure B ⊂ 2{1···n} be a monotone collection of subsets of {1 · · · n}. An
adversary is B-limited if at all times the set of corrupted parties appears in B.

At the onset of the computation, A receives some initial information from Z . (This
information corresponds to the auxiliary information seen byA in the non-adaptive case.)
Next, the computation proceeds according to the following (synchronous, with rushing)
model of computation. The computation proceeds in rounds; each round proceeds in

6 By “non-concurrent composition” we mean modular composition as in [C1], where at each moment in
time there is only a single protocol copy running (and all other copies are suspended).

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 165

mini-rounds, as follows. Each mini-round starts by allowing A to corrupt parties one
by one in an adaptive way. (The behavior of the system upon corruption of a party is
described below.) Next A chooses an uncorrupted party, Pi , that was not yet activated
in this round and activates it. Upon activation, Pi receives the messages sent to it in the
previous round, generates its messages for this round, and the next mini-round begins.A
learns the messages sent by Pi to already corrupted parties. (In the open channels model
A learns all the messages sent by Pi .) Once all the uncorrupted parties were activated,
A generates the messages to be sent by the corrupted parties that were not yet activated
in this round, and the next round begins.

Once a party is corrupted, the party’s input, random input, and the entire history of
the messages sent and received by the party become known to A. In addition, Z learns
the identity of the corrupted party, and hands some additional auxiliary information to
A. (Intuitively, this information represents the party’s internal data from other protocols
run by the newly corrupted party.) From this point onA learns all the messages received
by the party. If A is passive, then the corrupted parties continue running protocol π . If
A is active (Byzantine), then once a party becomes corrupted it follows the instructions
of A, regardless of protocol π .

At the end of the computation (say, at some predetermined round) all parties locally
generate their outputs. The uncorrupted parties output whatever is specified in the pro-
tocol. The corrupted parties output ⊥. In addition, adversary A outputs some arbitrary
function of its internal state.

Next, a “post-execution corruption process” begins. (This process models the leakage
of information from the current execution to the environment, caused by corrupting
parties after the execution is completed. This process is necessary to guarantee secure
composability of protocols in the adaptive setting.) First, Z learns the outputs of all the
parties and of the adversary. Next Z and A interact in rounds, where in each round Z
first generates a “corrupt Pi ” request (for some Pi), and hands this request toA. Upon
receipt of this request, A may corrupt more parties as before (in which case Z learns
their identity), and hands Z some arbitrary information. (Intuitively, this information is
interpreted as Pi ’s internal data.) It is stressed that the set of corrupted parties is always
in B, even if Z requests to corrupt more parties; in this case A ignores the requests of
Z . The interaction continues untilZ halts, with some output. Without loss of generality,
this output can be Z’s entire view of its interaction with A and the parties. Finally, the
global output is defined to be the output of Z . We use the following notation. Let the
global output EXECπ,A,Z(k, �x, z, �r) denote Z’s output on input z, random input rZ, and
security parameter k, and after interacting with adversaryA and parties running protocol
π on inputs �x = x1, . . . , xn , random input �r = rZ, r0, . . . , rn , and security parameter
k as described above (r0 for A; xi and ri for party Pi). Let EXECπ,A,Z(k, �x, z) denote
the random variable describing EXECπ,A,Z(k, �x, z, �r) where �r is uniformly chosen. Let
EXECπ,A,Z denote the distribution ensemble EXECπ,A,Z(k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .7

7 The formalization of the global output EXECπ,A,Z is different than in the non-adaptive case, in that here
the global output contains only the output of the environment. We remark that the more complex formalization,
where the global output contains the concatenation of the outputs of all parties and adversary, would yield an
equivalent definition; this is so since the environment Z sees the outputs of all the parties and the adversary.
We choose the current formalization for its simplicity.

166 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

The ideal process. As in the non-adaptive case, the ideal process is parameterized by the
n-party function f to be evaluated. Each party Pi has security parameter k and input xi ∈
{0, 1}∗; no random input is needed. The model also involves an adaptive ideal-process-adversary
S, which is an algorithm that has random input r0 and security parameter k, and an en-
vironment Z which is an algorithm that starts with input z, random input rZ, and the
security parameter. In addition, there is an (incorruptible) trusted party, T . The ideal
process proceeds as follows:

FIRST CORRUPTION STAGE: First, as in the real-life model,S receives auxiliary informa-
tion from Z . Next, S proceeds in iterations, where in each iteration S may decide
to corrupt some party, based on S’s random input and the information gathered so
far. Once a party is corrupted its input becomes known to S. In addition, Z learns
the identity of the corrupted party and hands some extra auxiliary information to
S. Let B denote the set of corrupted parties at the end of this stage.

COMPUTATION STAGE: Once S completes the previous stage, each party Pi hands its
(possibly modified) input value, yi , to the trusted party T . In addition, S hands an
arbitrary value x0 to T . (If S is passive, then even the corrupted parties hand their
original inputs to T .) Next, T chooses a value r f uniformly from {0, 1}k , hands
f (k, �y, r f)0 to S, and hands each Pi the value f (k, �y, r f)i .

SECOND CORRUPTION STAGE: Upon learning the corrupted parties’ outputs of the
computation, S proceeds in another sequence of iterations, where in each iteration
S may decide to corrupt some additional party, based on the information gathered
so far. Upon corruption, Z learns the identity of the corrupted party, S sees the
corrupted party’s input and output, plus some additional information from Z as
before.

OUTPUT: Each uncorrupted party Pi outputs f (k, �y, r f)i , and the corrupted parties
output ⊥. In addition, the adversary outputs some arbitrary function of the infor-
mation gathered during the computation in the ideal process. All outputs become
known to Z .

POST-EXECUTION CORRUPTION: Once the outputs are generated, S engages in an in-
teraction withZ , similar to the interaction ofAwithZ in the real-life model. That
is, Z and S proceed in rounds where in each round Z generates some “corrupt
Pi ” request, and S generates some arbitrary answer based on its view of the com-
putation so far. For this purpose, S may corrupt more parties as described in the
second corruption stage. The interaction continues until Z halts with an arbitrary
output.

Let IDEAL f,S,Z(k, �x, z, �r), where �r = rZ, r0, r f , denote the output of environment Z
on input z, random input rZ, and security parameter k, after interacting as described above
with an ideal-process adversary S and with parties having input �x = x1 · · · xn and with
a trusted party for evaluating f with random input r f . Let IDEAL f,S,Z(k, �x, z) denote
the distribution of IDEAL f,S,Z(k, �x, z, �r)when �r is uniformly distributed. Let IDEAL f,S,Z
denote the distribution ensemble {IDEAL f,S,Z(k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

Comparing computations in the two models. As in the non-adaptive case, we require
that protocol π emulates the ideal process for evaluating f . Yet here the notion of emula-
tion is slightly different. We require that for any real-life adversaryAand any environment

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 167

Z there should exist an ideal-process adversary S, such that IDEAL f,S,Z
d= EXECπ,A,Z .

Note that the environment is the same in the real-life model and the ideal process. This
may be interpreted as saying that “for any environment and real-life adversary A, there
should exist an ideal-process adversary that successfully simulates A in the presence
of this specific environment.” As in the non-adaptive case, we distinguish perfect and
statistical emulation, as well as universal, IT, and computational security.

Definition 3. Let f be an n-party function and let π be a protocol for n parties. We
say that π adaptively, B-securely evaluates f with IT security and perfect (resp., statistical,
computational) emulation if for anyB-limited real-life adversaryA and any environmentZ
there exists a (probabilistic) ideal-process adversaryS such that IDEAL f,S,Z

d= EXECπ,A,Z

(resp., IDEAL f,S,Z
s≈ EXECπ,A,Z or IDEAL f,S,Z

c≈ EXECπ,A,Z). If A and S are passive
adversaries, then we say that π B-privately evaluates f .

If the expected running time of S is polynomial in that ofA and in k, then we say that
π has universal security.

If A and Z are limited to expected polynomial time in k, and the expected running
time of S is polynomial, then we say that π has computational security.

Finally we also distinguish between the case of security with PEC, where the interaction
proceeds as described above, and the case of security without PEC, where the PEC stage
is omitted, both in the real-life model and in the ideal process.

2.2. Separation Relying on PEC

This section demonstrates that, assuming the existence of (two-round, perfectly hiding)
bit commitment, adaptive and non-adaptive security are not equivalent in the case of
two or more parties, in all settings except IT security. Specifically, we show a separation
between adaptive and non-adaptive security with any type of emulation, either universal
or computational security, and either passive or active adversaries. This is done using
the full requirements of the basic definition, including PEC.

Recall that the PEC requirement states that the simulator S in the adaptive setting
first outputs a completed view of the protocol, and then is able to receive requests to
post-execution corrupt a party. It should then respond with inputs, random choices and
internal data of the corrupted party. These data should of course be consistent with the
view that was output earlier.8

Our example uses the concept of a perfectly hiding bit commitment scheme,9 which
we briefly recall here. (See [G2] for more complete definitions.) A first ingredient in
the definition of such a scheme is a probabilistic poly-time algorithm G, which takes
1k as input, where k is a security parameter, and outputs a public key pk. The second
ingredient is a poly-time computable function commit which takes as input pk, a bit b,

8 Formally speaking, the PEC requests are issued by the environment, as described in Section 2.1, but this
is not so important here.

9 If instead we use statistically hiding or computationally hiding bit commitment, we obtain a separation
for the setting with statistical or computational emulation, respectively.

168 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

and a random bit string r of length polynomial in k, and outputs a bit string called a
commitment to b.

The way to use such a scheme is that a committer will be given a public key, and will
commit to a bit b by evaluating the commit function and give the result to a verifier.
Later, the committer may open the commitment by revealing b and the random choices
he used. The two central properties required for this to work are:

hiding For any pk, the distributions of commit(pk, 0, r) and commit(pk, 1, r),
where r is uniformly chosen, are identical.

binding Let A be any probabilistic poly-time algorithm. Let pA(k) be the probability
that A on input pk produced by G(1k) returns a commitment c and strings r, s such
that c = commit(pk, 0, r) = commit(pk, 1, s). Then pA(k) is negligible in k.

It is well known (see [BC], [CDG], [P], and [CHP]) that (two-round) perfectly hiding
commitment schemes exist under standard complexity assumptions such as hardness of
discrete log, and in general existence of claw-free pairs of permutations

Given such a two-round perfectly hiding bit commitment scheme, consider the fol-
lowing function. There are two parties C and V , where C has as input a bit b and V
has input pk ∈ {0, 1}∗ that is interpreted as a public key for a commitment scheme. C
should output pk and V should output nothing. The protocol proceeds as follows:

1. V sends pk to C .
2. C computes c = commit(pk, b, r), where r is uniformly chosen, and sends c to V .

C outputs pk. V outputs nothing.

We allow an adversary to corrupt any subset of parties. It is then easy to verify that
this protocol is secure against an active adversary in a non-adaptive setting: if only V is
corrupted, let pk ′ be the value prepared by the adversary to be sent to C in the first step.
Then a correctly distributed c can be constructed by using pk ′ to compute a commitment
to an arbitrary value (this works by the hiding property). If only C is corrupted, the
simulator obtains pk from the trusted party. If both parties are corrupted, the simulation
can just follow the adversary’s instructions.

We claim that on the other hand, this protocol is adaptively insecure, even for pas-
sive adversaries. Assume for contradiction that it is adaptively secure, and consider the
adversary that corrupts V from the start, but lets the protocol finish without corrupting
C . Let S be an (adaptive and poly-time) simulator for this adversary. Now consider the
following probabilistic polynomial-time algorithm for breaking the binding property of
the commitment scheme. It gets as input a public key pk for the scheme:

1. Run the simulator S. When S corrupts V in the ideal process, give it pk as the
input for V . Note that in the view output by S, a commitment c (with respect to
pk) must occur.

2. Issue a request to S to post-execution corrupt C . When S corrupts C in the ideal
process, give it 0 as input for C . Save the output produced.

3. Rewind S to its state at the start of Step 2. Issue again a request to post-execution
corrupt C , this time giving it 1 as input for C . Output the data obtained from S in
this and the previous step.

It should be clear that internal data of C consistent with c and input b must contain

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 169

a string rb such that c = commit (pk, b, rb), and consequently the above algorithm
contradicts the binding property we assumed. Note that the above adaptive adversary is
passive, namely, we have proved that the protocol is adaptively insecure even for passive
adversaries, while we have seen that the protocol is non-adaptively secure even for active
adversaries. We thus have:

Theorem 4. Assume that two-round perfectly hiding bit commitment schemes exist.
Then for the case of two parties in the setting of universal or computational security with
perfect emulation, if the PEC requirement is imposed in the definition, then adaptive
security is strictly stronger than non-adaptive security, both for active adversaries and
for passive adversaries.

We stress that Theorem 4 does not apply to the case of IT security (which is addressed
in Section 2.4).

2.3. Equivalence for Passive Adversaries and a Small Number of Parties (No PEC)

This section proves that, when the PEC requirement is not imposed, adaptive and non-
adaptive security against a passive adversary are equivalent when the number of parties
is small.

As previously discussed, the technical requirement of PEC is part of the [C1] definition
of adaptive security (as well as [B1] and [MR], in different ways). This requirement is
in general needed in order to guarantee secure composition of protocols in the adaptive
setting. However, in the particular setting of this section, i.e., passive adversaries and a
small number of parties, it turns out that PEC is an “overkill” requirement for guarantee-
ing non-concurrent composability of secure function evaluation protocols. Informally,
the argument for this is the following. Let π and ρ be secure function evaluation proto-
cols that are adaptively secure without the PEC property. These protocols are (of course)
also non-adaptively secure. Since the non-adaptive definition of security is closed under
(non-concurrent) composition [C1], it follows that the “composed” protocol, π ◦ ρ, is
non-adaptively secure. By our result given below, the composed protocol is also adap-
tively secure (no PEC).

We conclude that whenever non-adaptive security is equivalent to adaptive security
without PEC, then PEC is not needed for guaranteeing adaptively secure non-concurrent
composition.10 In this section we show that this is the case for passive adversaries and a
small number of parties.11

As a first step towards the proof, we note that the general definition detailed in Sec-
tion 2.1 takes a simpler form in the passive case. In particular, in the passive case we may

10 One should note that the PEC requirement allows a secure non-concurrent composition of an arbitrary
protocol π (not necessarily a secure function evaluation protocol) with a secure protocol ρ [C1]. Thus, in
the general case the properties that can be proved about the composed protocol in the non-adaptive setting
may not be implied in the adaptive setting. The above discussion refers only to the (important) special case of
composing secure function evaluation protocols.

11 We remark that in the case of concurrent (and also universal) composition, a requirement that implies
PEC is necessary for guaranteeing secure composition even in the case of non-adaptive adversaries [C2].
Thus, adaptive and non-adaptive security are not equivalent in that framework.

170 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

assume without loss of generality that the real-life adversary waits until the protocol ter-
minates, and then starts to corrupt the parties adaptively; corrupting parties at an earlier
stage is clearly of no advantage in the passive case. Similarly, the ideal-process adver-
sary may be assumed to corrupt parties after the ideal function evaluation terminates.
To further ease the exposition of the remainder of this section, we make the following
simplifying assumptions: (1) assume that the real-life model adversary is deterministic;
(2) assume that the function computed by the protocol is deterministic and gives no out-
put to the adversary; and (3) ignore auxiliary inputs. The results in this section generalize
to hold without the above assumptions.

The card game
In attempting to prove equivalence between non-adaptive and adaptive security, it may be
helpful to picture the following game. Let B ⊆ 2[n] be a monotone adversary structure.
The game involves two parties, the adversary A and the simulator S, and n distinct
cards. The two parties are bound to different rules, as specified below.

ADVERSARY. When the adversary plays, the faces of the n cards are picked from some
(unknown) joint distribution V = (V1, . . . , Vn) and are initially covered. The adversary
proceeds by sequentially uncovering cards according to a fixed deterministic strategy;
that is, the choice of the next card to be uncovered is determined by the contents of
previously uncovered cards. Moreover, the index set of uncovered cards should always
remain within the confines of the structure B. After terminating, the adversary’s output
consists of the identity and the contents of all uncovered cards.

SIMULATOR. The simulator plays in a different room. It is initially given n distinct blank
cards, all of which are covered. Similarly to the adversary, it is allowed to uncover cards
gradually, as long as the set of uncovered cards remains in B. Its goal is to fill the blank
uncovered cards with content, so that the final configuration (including the identity and
contents of uncovered cards) is “similarly” distributed to the adversary’s output. (The
precise sense of this similarity requirement will depend on the specific security setting.)
Note that unless the simulator has some form of access to the unknown distribution V ,
the game would not make much sense. Indeed, we grant the simulator the following type
of restricted access to V . At each stage, when the set of uncovered cards is some b ∈ B,
the simulator may freely sample from some fixed distribution Ṽb which is guaranteed to
be “similar” to Vb, the restriction of V to b. (Again, the type of this similarity depends
on the setting.) The |B| distributions Ṽb may be arbitrarily (or adversarially) fixed, as
long as they conform to the above similarity condition.

We briefly explain the analogy between the above game and the question of non-
adaptive versus adaptive security. Fix some n-party protocolπ computing a deterministic
function f , and suppose that π is non-adaptively secure against a passive B-limited
adversary. The n cards correspond to the n parties. The distribution V corresponds to the
parties’ joint view under an input x , which is a priori unknown. Uncovering the i th card
by the adversary and learning Vi corresponds to corrupting the i th party Pi in the real-life
model and learning its entire view: its input, random input, communication messages,
and output. Uncovering the i th card by the simulator corresponds to corrupting Pi in
the ideal process. Finally, the simulator sampling from Ṽb corresponds to the adaptive

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 171

ideal-process adversary invoking the non-adaptive ideal-process adversary; by the non-
adaptive security of π , the produced distribution Ṽb is similar to Vb. Note that the
simulator can access Ṽb only when all cards in b are uncovered; this reflects the fact that
the non-adaptive simulation cannot proceed without learning the inputs and outputs of
corrupted parties.

The types of similarity between Vb and Ṽb we consider are perfect, statistical, and
computational, corresponding to the type of non-adaptive emulation we assume. We also
consider the relation between the computational complexity of the adversary and that of
the simulator, addressing the security variants in which the simulator is computationally
bounded. To prove equivalence between non-adaptive and adaptive security, it suffices
to show that for any adversary strategy A there exists a simulator strategy S, such that
under any admissible distribution V, Ṽb the simulator wins.

Remark. The above game models a secure channels setting, in which the adversary
has no information before corrupting a party. To model open channels (or a “broadcast”
channel), the distribution V should be augmented with an additional entry V0, whose
card is initially uncovered. The analysis that will follow can be easily adapted to deal
with this more general setting.

In the rest of this section we adopt the simplified random variable notation from the
game described above, but revert to the original terminology of corrupting parties rather
than uncovering cards.

Our simulation paradigm
We now give some intuition for the simulator constructions that is presented next. Before
doing so, it is instructive to explain why some simpler approaches fail. The simplest
conceivable approach for simulating a given adversary strategy A is to let the simulator
S “guess” the set b eventually corrupted by A, corrupt the parties in b, and output a
view sampled from Ṽb. However, one obvious problem with this approach is that the
correct distribution of the set b is not known a priori, as it may depend on the unknown
distribution V . Thus, we cannot simulate Ṽb without first corrupting parties in b, and
on the other hand we cannot corrupt parties without knowing that the adversary would
corrupt them (since parties cannot be “uncorrupted”).

Next, consider a “straight line” simulator which proceeds as follows. It starts by cor-
rupting b = ∅. At each iteration, it samples Ṽb and runs the adversary on the produced
view to find the first party outside b it would corrupt. The simulator corrupts this party,
adds it to b, and proceeds to the next iteration (or terminates with the adversary’s output
if the adversary would terminate before corrupting a party outside b). This simulation
approach fails for the following reason. When sampling Ṽb, the produced view is inde-
pendent of the event which has lead the simulator to corrupt b. This makes it possible,
for instance, that the simulator corrupts a set which cannot be corrupted at all in the
real-life execution.

Our simulators are similar to the above in the sense that they incrementally expand
a corrupted set b based on a view sampled from Ṽb. However, in contrast to the above,
they also carry some state information from one iteration to the next, and insist that the
sample from Ṽb used for expanding b be consistent with this state information. In our

172 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

main simulator construction (described in Section 2.3.1), this state information is simply
the set b itself; to find the next party to corrupt, the simulator will attempt to sample a
view from Ṽb conditioned on the event that this view leads the adversary to corrupts b.
A refinement of this state information is used in Section 2.3.2 for the case of imperfect
emulation.

Black-box simulation. Instead of obtaining a different simulator S for every adversary
A, we present a single simulator S having a black-box access to A. More specifically,
S uses both the adaptive adversary A and a non-adaptive simulator (generating the
distributions Ṽb) as “oracles.” Each call to the non-adaptive simulator on input b will
produce a sample from the distribution Ṽb, independently of all other samples. In each
call to A on input v = (v1, . . . , vn), the simulator S may learn the full sequence of
parties corrupted by A given the fixed view v.12 By convention, the running time of a
black-box simulator S will be measured as the number of oracle calls made by S. The
actual expected running time after implementing all oracle calls can be analyzed using
the following lemma, which is a variant of Wald’s equality (see Problem 22.9 in [B3]).

Lemma 5. Let S be an algorithm which makes an expected number of s calls to a
randomized procedure P . Each invocation of P uses independent random coins, and its
expected running time (on every input) is bounded by t . Then the expected total time S
spends on its calls to P is bounded by st .

Note that Lemma 5 holds regardless of the stopping rule of S; in particular, the number
of calls to P may depend on the internal random coins (or the running time) of these
calls.

The above convention for measuring the running time of a black-box simulator S is
particularly useful for proving universal security. Indeed, suppose that a protocol π is
universally non-adaptively secure (hence each call to Ṽb can be implemented in expected
poly(k)-time). To prove that π is universally adaptively secure, it suffices to construct a
black-box adaptive simulator S (with the required emulation quality), such that:

• The expected running time of S (i.e., the expected number of calls to A or Ṽb) is
polynomial in k.

• The additional work of S per oracle call is at most polynomial in k and linear in the
length of the oracle’s output (hence also linear in the time of its implementation).

The second requirement, which is met by all of our simulators, allows us to absorb the
additional work of S into the cost of implementing the oracle calls. Thus, in our analysis
we ignore this additional work and only focus on counting the number of oracle calls.

2.3.1. Perfect Emulation

We first deal with perfect emulation, i.e., the case where Ṽb = Vb for all b ∈ B. In
this setting we show how to construct a black-box adaptive simulator S whose expected

12 Recall that in this section we make the simplifying assumption that A is deterministic. In the general
case,A uses an independent random tape for each call.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 173

running time is linear in the size of the adversary structure. The construction from this
section allows us to prove equivalence of non-adaptive and adaptive security both in the
IT case (see Section 2.4) and, when the adversary structure is small, in the universal
case.

In the description and analysis of S we use the following notation. By vb, where
v is an n-tuple (presumably an instance of V) and b ⊆ [n] is a set, we denote the
restriction of v to its b-entries. For notational convenience, we assume that the entries
of a partial view vb, obtained by restricting v or by directly sampling from Ṽb or Vb,
are labeled by their corresponding b-elements (so that b can be inferred from vb). We

write v
A→ b if the joint view v leads the adversary A to corrupt the set b at some stage.

For instance, v
A→ ∅ always holds. An important observation is that whether v

A→ b holds
depends only on vb.13 This follows from our assumption thatA starts corrupting parties
only after the protocol terminates and from the fact that corrupted parties cannot be

uncorrupted. Hence, we also use the notation v′ A→ b, where v′ is a |b|-tuple representing

a partial view. Note that, by the above conventions, each test whether v
A→ b (for some

fixed view v and set b) is counted as a single oracle call to A.

Algorithm of S

1. Initialization:
Let b0 = ∅. The set bi will contain the first i parties corrupted by the simulator.

2. For i = 0, 1, 2, . . . do:

(a) Repeatedly sample v′ R← Ṽbi until v′ A→ bi (i.e., the sampled partial view would
lead A to corrupt bi).14 Let vi be the last sampled view.

(b) Invoke A on vi to find the index pi+1 of the party which A is about to corrupt
next (if any). If there is no such party (i.e.,A terminates), output vi . Otherwise,
corrupt the pi+1th party, let bi+1 = bi ∪ {pi+1}, and iterate to the next i .

In the remainder of this section we analyze the performance of the simulator S. To this
end, let B̃i , Ṽi be random variables containing the corrupted set bi and the partial view
vi in the i th iteration of S. Similarly, let Bi , Vi be the corresponding random variables
induced by the real-life execution ofA. In the event that an execution terminates before
the i th iteration, the random variables indexed by i will be set to a special value “⊥.”

Lemma 6. In the case of a perfect non-adaptive emulation, for every iteration i and
set bi ∈ B, the distribution Ṽi conditioned on B̃i = bi is identical to Vi conditioned on
Bi = bi .

Proof. If bi =⊥, then both Vi conditioned on Bi = bi and Ṽi conditioned on B̃i = bi

are forced to be ⊥. Otherwise, it follows from the description ofS that Ṽi given B̃i = bi is

13 The general form of this statement (for the case of a randomized A) is that Prob[v
A→ b] depends only

on vb .
14 Recall that sampling from Ṽbi corresponds to invoking the non-adaptive simulator on the inputs and

outputs of parties in bi . These are known to S because all parties in bi have already been corrupted.

174 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

sampled from the distribution Vbi (
d= Ṽbi) conditioned on the event Vbi

A→ bi . On the other
hand, the distribution Vi (= VBi) conditioned on Bi = bi is the same as Vbi conditioned

on Bi = bi , which in turn is the same as Vbi conditioned on V
A→ bi (since Bi = bi and

V
A→ bi are two names for the same event).

Lemma 7. In the case of a perfect non-adaptive emulation, Ṽi
d= Vi for every i .

Proof. It follows from Lemma 6 that if B̃i
d= Bi then Ṽi

d= Vi . It thus suffices to show

that B̃i
d= Bi for all i . Clearly, both B̃0 and B0 are deterministically the empty set. Now,

suppose that B̃i
d= Bi and hence also Ṽi

d= Vi . We show that B̃i+1
d= Bi+1 by conditioning

on the i th iteration’s view vi . The crucial observation is that B̃i+1 is determined by the
simulator from vi in the same way that Bi+1 is determined by the adversary from vi . In
particular, if vi =⊥ or if vi leadsA or S to terminate, then B̃i+1 and Bi+1 are both set to
⊥. It follows that the conditional distribution of B̃i+1 given Ṽi = vi is the same as Bi+1

given Vi = vi , from which it follows that B̃i+1
d= Bi+1.

Claim 8. In the case of a perfect non-adaptive emulation, S perfectly emulates A.

Proof. We need to show that the output distributions of S and A are identical. Note
that the joint distribution (Ṽ1, Ṽ2, . . . , Ṽn) may be different from (V1, V2, . . . , Vn). In
particular, the path S takes in arriving at a set bi may be impossible for A to take in
the real-life process.15 However, from Ṽi (resp., Vi) alone, one may determine: (1) the
probability of S (resp.,A) terminating in the i th iteration; and (2) the output distribution
of S (resp.,A) given that it terminates in the i th iteration. Using Lemma 7 it follows that
the outputs are identically distributed.

We turn to analyze the complexity of S, still for a perfect non-adaptive emulation. A
trivial observation is that the number of iterations is bounded by the number of parties
(or, more precisely, by the maximal size of a set in B). The complexity of each iteration,
however, may be unbounded. The following claim establishes a bound on the total
expected running time of S.

Claim 9. In the case of perfect non-adaptive emulation, the expected running time of
S (measured as the number of calls to A and Ṽb) is linear in |B|.

Proof. We count the expected number of times a view v′ is sampled (in Step 2(a))
throughout the execution of S. Let T̃i be a random variable counting the number of
samples taken in the i th iteration, and let T̃ = ∑

i T̃i be the total number of samples. To
bound E[T̃i], we condition this expectation on the set bi corrupted by the simulator in the

15 This is a consequence of the fact that S does not keep track of the order by which it corrupted the parties
in bi . For instance, if the possible corruption sequences byA in the real-life model are (1, 2, 3) and (2, 1, 4),
then S will also allow the sequences (1, 2, 4) and (2, 1, 3).

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 175

i th iteration. Given that B̃i = bi (bi �=⊥), T̃i is distributed as the number of independent
samples taken from Ṽbi until obtaining one that would lead the adversary to bi . The
success probability of a single sampling attempt is

Prob[Ṽbi

A→ bi] = Prob[Vbi

A→ bi] = Prob[Bi = bi] = Prob[B̃i = bi],

where the first equality relies on the perfect emulation assumption, the second on equality
of the relevant events, and the third on Lemma 7. Hence E[T̃i |B̃i = bi] = 1/Prob[B̃i =
bi]. Letting sup(B̃i) denote the support set of the random variable B̃i (excluding ⊥) we
obtain

E[T̃i] =
∑

bi ∈sup(B̃i)

E[T̃i |B̃i = bi] · Prob[B̃i = bi]

=
∑

bi ∈sup(B̃i)

(1/Prob[B̃i = bi]) · Prob[B̃i = bi] = |sup(B̃i)|.

Finally, since all sets in sup(B̃i) are of size i , we have E[T̃] = ∑
i E[T̃i] = ∑

i |sup(B̃i)|
≤ |B| as required.

If n = O(log k), |B| is guaranteed to be polynomial in k. We may thus conclude the
following froms Claims 8 and 9:

Theorem 10. In the case of protocols for secure function evaluation, universal perfect
security against passive adversaries, and n = O(log k) parties, adaptive and non-
adaptive security are equivalent.

2.3.2. Imperfect Emulation

We next address the cases of statistical and computational security against a passive
adversary. Suppose that we are given an imperfect (statistical or computational) non-
adaptive simulator and attempt to construct an adaptive one. If we use exactly the same
approach as before, some technical problems arise: with imperfect non-adaptive emu-
lation, it is possible that a real life adversary A corrupts some set with a very small
probability, whereas this set is never corrupted in emulated views. As a result, the loop
in Step 2(a) of the algorithm of S will never terminate, and the expected time will be in-
finite. Consequently, it is also unclear whether S will produce a good output distribution
when given access to imperfect non-adaptive simulation oracles Ṽb.

We start by showing that when the size of the adversary structure is polynomial in k,
the simulator S will produce a (statistically or computationally) good output distribution
even when given access to (statistically or computationally) imperfect non-adaptive
simulators. Moreover, it turns out that when the adversary structure is polynomial in
size, the expected running time of S is polynomial except with negligible probability.
Later, we define a more sophisticated simulator S ′ which strictly achieves expected
polynomial-time simulation, at the expense of making a stronger assumption on the size
of the adversary structure.

A main tool in the following is a technical lemma referred to in what follows as the
adaptive sampling lemma. For simplicity we use a non-uniform notion of computational

176 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

indistinguishability. The lemma and its corollaries can be extended to the uniform setting
as well. The lemma uses the following terminology and notation. Let D = {D(k)}k∈N
be a distribution ensemble. An adaptive sampling algorithm S is an algorithm which,
given oracle access to D and an input 1k , may take a variable number of independent
samples from D(k). At each stage, based on all previous samples, the algorithm decides
whether to take an additional sample or to terminate. Upon termination, the algorithm
outputs some function of all samples it took. Let SD(k) denote the output distribution of
S running with oracle access to D and let Time(SD(k)) be a random variable measuring
the running time of the corresponding execution, where an oracle call is counted as a
single step.

We first state and prove the computational version of the lemma, and then state its
statistical version.

Lemma 11 (Adaptive Sampling Lemma: Computational Version). Let C = {C(k)},
D = {D(k)} be two distribution ensembles such that C

c≈ D, and let S be an adaptive
sampling algorithm such that SC runs in expected polynomial time. Then:

1. SC c≈ SD;
2. SD runs in expected polynomial time except with negligible probability. That is,

in the execution of SD there exists an event occurring with negligible probability,
such that conditioned on the complement of this event the expected running time
is polynomial.

Proof. Assume towards contradiction that P is an efficient distinguisher between
SC , SD . That is, there exists a constant c > 0 such that for some infinite K ⊆ N ,

|Prob[P(SC(k)) = 1] − Prob[P(SD(k)) = 1]| > k−c (1)

for all k ∈ K . Let p(k) be a polynomial bounding the expected running time of SC . Define
a non-adaptive sampling algorithm S0 which first samples its oracle q(k) = 3p(k)kc

times, and then simulates S on the samples it generated. If S terminates, then S0 outputs
the same output as S. If S attempts to make an additional sample beyond the q(k)
samples S0 can provide, then S0 terminates and outputs a special symbol. By the Markov
inequality, for all k ∈ K we have Prob[Time(SC)(k) > q(k)] ≤ 1

3 k−c, hence

SD(SC(k), SC
0 (k)) ≤ 1

3 k−c. (2)

It follows from the robustness of computational indistinguishability under multiple non-

adaptive samples (see [G2]) that SC
0

c≈ SD
0 and hence

|Prob[P(SC
0 (k)) = 1] − Prob[P(SD

0 (k)) = 1]| ≤ k−ω(1). (3)

From the computational indistinguishability of SC
0 , SD

0 it also follows that

|Prob[Time(SC(k)) > q(k)] − Prob[Time(SD(k)) > q(k)]| ≤ k−ω(1),

from which we can conclude that for every k ∈ K , Prob[Time(SD)(k) > q(k)] ≤
1
3 k−c + k−ω(1) and

SD(SD
0 (k), SD(k)) ≤ 1

3 k−c + k−ω(1). (4)

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 177

Finally, combining (2), (3), and (4), we have that for every k ∈ K ,

|Prob[P(SC(k)) = 1] − Prob[P(SD(k)) = 1]| ≤ 1
3 (k

−c + k−ω(1))+ (1
3 k−c + k−ω(1)),

contradicting (1). This concludes the proof of the first part of the lemma.

Towards proving the second part, define the distribution ensembles TC
def=

{Time(SC(k))} and TD
def= {Time(SD(k))}. We first argue that TC , TD are statistically

indistinguishable. Otherwise, by a similar Markov bound argument as above, there ex-
ists a non-adaptive sampling algorithm S0 such that {Time(SC

0 (k))} and {Time(SD
0 (k))}

are both polynomially bounded in the worst case and are statistically distinguishable
(i.e., not indistinguishable) from each other. Since the two distribution ensembles have
polynomial-size support, their statistical distinguishability implies computational dis-
tinguishability by an efficient non-uniform distinguisher, contradicting the assumption

that C
c≈ D.

Now, let

T (k) = {t ∈ N: Prob[Time(SD(k)) = t] > 2 · Prob[Time(SC(k)) = t]}.

Since TC
s≈ TD , the event Time(SD(k)) ∈ T (k) must occur with negligible probability.

It remains to show that the expected running time of SD conditioned on the complement
of this event is polynomial. Since Time(SD(k)) ∈ T (k) occurs with small probability,
we may conclude that for all sufficiently large k and t �∈ T (k),

Prob[Time(SD(k)) = t | Time(SD(k)) �∈ T] ≤ 2 · Prob[Time(SD(k)) = t]

and so

E[Time(SD(k)) | Time(SD(k)) �∈ T] ≤ 2
∑
t �∈T

t · Prob[Time(SD(k)) = t]

≤ 4
∑
t �∈T

t · Prob[Time(SC(k)) = t]

≤ 4 · E[Time(SC(k))]

≤ kO(1)

as required.

A proof of the following statistical version of the adaptive sampling lemma proceeds
similarly to the proof for the computational case.

Lemma 12 (Adaptive Sampling Lemma: Statistical Version). Let C = {C(k)} and

D = {D(k)} be two distribution ensembles such that C
s≈ D. Let S be an adaptive

sampling algorithm which, in addition to its distribution oracle, has access to an (arbi-
trarily powerful) oracle A. Suppose that SC,A runs in expected polynomial time. Then:

1. SC,A s≈ SD,A.
2. SD,A runs in expected polynomial time except with negligible probability.

178 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

The adaptive sampling lemma can be used to analyze the quality of the simu-
lator S from Section 2.3.1 when given access to imperfect non-adaptive simulator
oracles.

Corollary 13. Suppose that the simulator S is run with oracle access to non-adaptive
simulators Ṽb that provide computational (resp., statistical) emulation, and an expected-
polynomial time (resp., unbounded) adaptive adversary A. Moreover, suppose that the
size of the adversary structure B is polynomial in the security parameter. Then:

1. Ignoring the running time of S, it produces a computational (resp., statistical)
emulation of A.

2. S runs in expected polynomial time except with negligible probability.

Proof. Let S be the simulator S running an expected polynomial-time implementation
of A (resp., with oracle access to A), let C be a concatenation of all perfect non-
adaptive simulator oracles (Vb)b∈B, and let D be a concatenation of all imperfect oracles

(Ṽb)b∈B. Since |B| is polynomial, we have C
c≈ D (resp., C

s≈ D). From an analysis of
the simulator S in the perfect case, we have that: (1) SC perfectly emulatesA; and (2) SC

runs in expected polynomial time. Noting that SD corresponds to the execution of S with
access to the imperfect non-adaptive simulators, the corollary follows by applying the
adaptive sampling lemma to S,C, D defined above.

An alternative simulation strategy. The expected running time of the above simulator
S may be unbounded even if the non-adaptive simulators are arbitrarily close to being
perfect. In the rest of the section we describe and analyze a modified simulator S ′ which
attempts to remedy this situation. While the efficiency and security of S were analyzed
in terms of |B|, the number of possible sets the adversary may corrupt, those of S ′ will
be analyzed in terms of the number of possible corruption paths an adversary may take.
Formally, let

�B def= {(b0, b1, . . . , bi): 0 ≤ i ≤ n, b0 = ∅, |bj\bj−1| = 1, bj ∈ B (1 ≤ j ≤ i)}

be the directed structure corresponding to B. The simulator S ′ will enjoy the following
properties. When | �B| is polynomial, S ′ will output a good emulation of A, similarly
to S. However, in this case S ′ will be guaranteed to run in expected polynomial time
regardless of the quality of the non-adaptive simulators.

Before describing S ′, it will be helpful to consider the following modification of

S. For any path π ∈ �B, view v, and adaptive adversary A, we write v
A→π if the

view v leads A to corrupt all parties in π in the order prescribed by π . Now, let �S
denote a variant of S which keeps track of an entire path πi = (b0, b1, . . . , bi) in

addition to the currently corrupted set bi . The condition v
A→ bi in Step 2(a) of S is

replaced by v
A→πi , and after adding pi+1 to bi in Step 2(b) to form bi+1, the set bi+1 is

concatenated to πi . A slight modification of the analysis from the previous section gives
the following:

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 179

Lemma 14. In the case of perfect non-adaptive emulation (Vb
d= Ṽb), the emulation of

�S is perfect. Moreover, its expected running time is linear in | �B|.

We turn to describing the new simulator S ′. The underlying idea is the following.
Similarly to �S, the simulator will keep track of the current corruption path. However,
before extending the current path πi , it will try to obtain significant evidence that the

path is good, in the sense that the probability of the event Ṽbi

A→πi is not much smaller
than that of S ′ arriving at πi . This is done by repeatedly rerunning the simulation history
in parallel to sampling from Ṽbi , and verifying that before history repeats itself k times

(i.e., the same path πi is taken in k reruns) the event Ṽbi

A→πi occurs at least k/2 times.
Unless such evidence is obtained, the simulation terminates. This careful path extension
policy will guarantee that the contribution of each path to the expected running time is
small.

However, rerunning the entire simulation from scratch is too costly, as it would make
the running time grow by (at least) a factor of k for each corrupted party. Consequently,
this approach can only be used in a case where the number of corrupted parties is constant.
To get around this difficulty, we replace a rerun of the entire simulation history by a lighter
procedure, which attempts to arrive at the corrupted path πi without verifying that its
sub-paths are good. This is where we utilize the fact that the simulator keeps track of
the entire corruption path (as in �S) rather than just the set of corrupted parties (as in S).
Otherwise, the rerunning procedure could potentially loop forever while trying to follow
a path which is different from the one originally taken, even if this path eventually leads
to corrupting the same set of parties.

The simulator S ′ is described in detail below. Somewhat abusing notation, given a
path πi we denote by πi ′ , for i ′ < i , the length-i ′ prefix of πi .

Algorithm of S ′

1. Initialization:
Let b0 be the empty set and let π0 = (b0) be the initial path (πi is the currently
corrupted path thereafter).

2. For i = 0, 1, 2, . . . do:
(a) Initialize counters c, c′ to 0;

Given the currently corrupted path πi :
Repeat

(i) Call procedure Rerun(πi), defined below; if it returns success incre-
ment the counter c.

(ii) Sample v′ R← Ṽbi ; if v′ A→πi , increment the counter c′.
Until c = k

(b) If c′ < k/2, terminate the simulation and output fail;
(* This will only happen with negligible probability, and should warn

us that it is not a good idea to proceed. *)
(c) Using the view v′ which led first to incrementing c′ in Step (a.(ii)), run A to

determine the next party pi+1 to corrupt. If A decides to terminate, terminate
the simulation outputting v′. Otherwise, let bi+1 be bi plus pi+1, let πi+1 be the
path obtained by concatenating bi+1 to the end of πi , and iterate to the next i .

180 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

Procedure Rerun(πi = (b0, . . . , bi))

For i ′ = 0 to i − 1 do
Sample v′ R← Ṽbi ′ until v′ A→πi ′ ;
Run A to determine the next party to corrupt;
If this party is inconsistent with πi ′+1, return fail;

Return success.

Analysis of S ′. We begin by analyzing the running time. Let #pathsi denote the number
of paths of length i in �B, let �̃′

i be a random variable taking the value of the corrupted
path in the i th iteration of S ′, and let T̃ ′

i be the running time of the i th iteration. It is
helpful to compare the execution of S ′ on the imperfect distributions Ṽb to the execution
of its simpler variant �S described above on the same distributions. We let �̃i denote a
random variable taking the value of the corrupted path in the i th iteration of �S.

We will show that the expected running time of the i th iteration of S ′ is polynomial
in k and #pathsi . Conditioning on the path πi and using Lemma 5, we have

E[T̃ ′
i] =

∑
πi

E[T̃ ′
i | �̃′

i = πi] · Prob[�̃′
i = πi]

=
∑
πi

k · E[#calls to Rerun(πi) until success]

· O(E[Time(Rerun(πi))]) · Prob[�̃′
i = πi]. (5)

We bound the above expression using the following lemmas.

Lemma 15. Prob[�̃′
i = πi] ≤ Prob[�̃i = πi].

Proof. It is clear from the description of S ′ that unless it prematurely terminates, it
produces the same path distribution as �S.

Lemma 16. The expected number of calls to Rerun(πi) until it returns “success” is
1/Prob[�̃i = πi].

Proof. Procedure Rerun(πi) emulates �S, truncating its execution only when it is clear
that it will not lead to πi . We may therefore conclude that

Prob[Rerun(πi) = success] = Prob[�̃i = πi]

from which the lemma follows.

Lemma 17. E[Time(Rerun(πi))] = ∑
i ′<i Prob[�̃i ′ = πi ′]/Prob[Ṽbi ′

A→πi ′].

Proof. For each 0 ≤ i ′ < i , the probability that Rerun(πi) gets to the stage where it
samples Ṽbi ′ (until it is consistent with πi ′) is exactly Prob[�̃i ′ = πi ′]. The expected
contribution of the i ′th segment to the run time of Rerun(πi) is therefore Prob[�̃i ′ =
πi ′]/Prob[Ṽbi ′

A→πi ′].

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 181

Lemma 18. For any path πi such that Prob[�̃′
i = πi] > 0,

Prob[�̃′
i = πi] · (1/Prob[�̃i = πi]) · E[Time(Rerun(πi))] = O(i).

Proof. First note that when the above expression is undefined, i.e., when either
Prob[�̃i = πi] = 0 or E[Time(Rerun(πi))] is unbounded, then Prob[�̃′

i = πi] = 0
(since a path is extended only after there is evidence that it is reachable by �S).

From Lemma 15, Prob[�̃′
i = πi] · (1/Prob[�̃i = πi]) ≤ 1. It therefore suffices to

show that, for sufficiently large m, k, if E[Time(Rerun(πi))] > mi , then Prob[�̃′
i =

πi] < Prob[�̃i = πi]/m. This will imply that the survival probability of a bad path is
(at most) inverse proportional to the time penalty it incurs on Rerun.

Suppose that E[Time(Rerun(πi))] > mi . Then, by Lemma 17, there is i ′ < i such
that

Prob[�̃i ′ = πi ′]/Prob[Ṽbi ′
A→πi ′] > m. (6)

To analyze the probability of passing the i ′th test in Step 2(b), let p1 = Prob[�̃i ′ = πi ′]

and p2 = Prob[Ṽbi ′
A→πi ′]. By (6), p2 < p1/m. In the following we show that when

flipping in parallel two coins with success probabilities p1, p2 such that p2 < p1/m, the
probability that the p2-trials will have k/2 successes before the p1-trials have k successes
is less than 1/m (for sufficiently large m, k). We refer to the above event as a success of
the test. Let s = k

√
m/p1 be a number of trials. The probability of the test succeeding

is bounded by the probability that either there are less than k successes in s independent
p1-trials, or there are at least k/2 successes in s independent p2-trials (for otherwise the
test clearly fails). We show that both of these probabilities are asymptotically smaller
than 1/m. The first experiment has expectationµ = k

√
m and a relative deviation greater

than a constant. The tail probability is bounded by F−(δ, µ) < e−�(µ) which is o(1/m).
The second experiment has expectation µ < k/

√
m and relative deviation δ = �(

√
m).

The tail probability is bounded by F+(δ, µ) < (e/(1 + δ))(1+δ)µ = (1/
√

m)�(k). For k
greater than some constant, this probability is again o(1/m). We may conclude that for
m, k greater than some absolute constant, Prob[�̃′

i = πi] < 1/m · Prob[�̃i = πi] as
required.

We are now ready to bound the expected running time of the i th iteration of S ′.

Lemma 19. E[T̃ ′
i] = O(k · i · #pathsi).

Proof. Substituting Lemma 16 in (5) and applying Lemma 18, we get

E[T̃ ′
i] = O

(∑
πi

k · i

)
= O(k · i · #pathsi).

From the last lemma we may conclude the following:

Claim 20. Regardless of the non-adaptive emulation quality, the expected running time
of S ′ is polynomial in | �B| and the security parameter.

182 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

We turn to analyze the emulation quality of S ′.

Claim 21. Suppose that | �B| is polynomial in k, and that the non-adaptive simulators
Ṽb provide computational (resp., statistical) emulation. Then the simulator S ′ provides
computational (resp., statistical) emulation.

Proof. It follows from Lemma 14 and the adaptive sampling lemma that when | �B|
is polynomial, �S provides computational (resp., statistical) emulation. We will argue
that the output produced by S ′ is statistically close to that of �S. Since an execution of
S ′ produces the same output distribution as �S except for the event that S ′ terminates
prematurely and outputs fail, it suffices to show that this event occurs with negligible
probability. Consider a termination test performed byS ′ in Step 2(b) withπi as the current
path, and let p1, p2 be the two relevant probabilities from the proof of Lemma 18. That is,

p1(πi) = Prob[�̃i = πi] and p2(πi) = Prob[Ṽbi

A→πi]. The difference |p1 − p2| must
be bounded by some negligible function ε(k). Indeed, both probabilities are negligibly

close to Prob[Vbi

A→πi]. Now, call πi good if p1(πi) > 3ε(k) and bad otherwise. Since
by Lemma 15 the probability of S ′ arriving at πi is at most p1(πi), the probability of
S ′ arriving at any bad path during its execution is negligible in k. Finally, since for any
good path πi we have p2(πi) ≥ p1(πi)− ε(k) > 2

3 p1(πi), the probability of premature
termination at a good path πi is negligible in k (as the probability of having k successes
of p1-trials before k/2 successes of p2-trials).

Noting that | �B| is polynomial when n = O(log k/log log k), the results of this section
can be summarized by the following theorem.

Theorem 22. For function evaluation protocols and n = O(log k/log log k) parties,
adaptive and non-adaptive security against passive adversaries are equivalent under any
notion of security. Moreover, with a relaxed notion of efficiency allowing a negligible
failure probability, the bound on the number of parties can be improved to n = O(log k).

We remark that Theorem 22 is essentially tight in the following sense: when n =
ω(log k), adaptive security is separated from non-adaptive security even if the adap-
tive simulator is allowed to be computationally unbounded.

2.4. Equivalence for Passive Adversaries and Perfect IT Security

In the case of IT security and perfect emulation, Claim 8 immediately implies the
following:

Theorem 23. For function evaluation protocols with passive adversary and perfect IT
security, adaptive and non-adaptive security are equivalent.

Note that there is no dependence on the number of parties in the above theorem. We also
remark that this result holds even if the adaptive definition is augmented to require PEC.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 183

2.5. Separation for Passive Adversaries and a Large Number of Parties

In [CFGN] Canetti et al. show an example protocol that separates adaptive and non-
adaptive security for passive adversaries and a large number of parties, when only statis-
tical or computational emulation is required. This separation holds for universal, IT, and
computational security. Very roughly, the protocol is based on sharing a secret among a
large set of parties, making the identity of the set very hard to guess for a non-adaptive
adversary, but easy for an adaptive one. We refer the reader to [CFGN] for details of the
example.

To complete the picture, we show an example that, under standard complexity as-
sumptions, separates adaptive and non-adaptive security even when perfect emulation is
required, for universal or computational security. This example holds even when PEC is
not required.

Our example relies on the existence of perfectly hiding bit commitment schemes and
collision-intractable hash functions.16 For n parties, we need to hash n commitments
in a collision-intractable manner. Thus, the number of parties required depends on the
strength of the assumption: for n that is polynomial in the security parameter k, this is a
standard assumption, whereas for n = ω(log k) this requires a sub-exponential hardness
assumption. For simplicity, we refer below to a large number of parties, instead of making
the explicit distinction based on the quality of computational assumption.

The protocol involves parties P0, P1, . . . , Pn , where the input of P0 is a function h
from a family of collision-intractable hash functions, and a public key pk for a perfectly
hiding bit commitment scheme. The input of each other Pi is a bit bi . The output of each
party is h, pk. The protocol proceeds as follows:

1. P0 sends h, pk to all parties.
2. Each Pi , i ≥ 1, computes a commitment ci = commit(pk, bi , ri) and sends ci to

all parties.
3. All parties output h, pk.

We allow the adversary to corrupt P0 and in addition any subset of size n/2 of the other
parties.

It is straightforward to check that this protocol is non-adaptively secure: the simulator
asks to compute the function in the ideal process immediately, learns h, pk, and by the
perfect hiding of the commitment scheme it can now perfectly simulate any message
from non-corrupted parties.

On the other hand, consider an adaptive adversaryA, who will first corrupt P0, listen to
the messages from the first two steps, and then compute h(c1, . . . , cn). ThenA interprets
the result in some fixed efficient deterministic way as a subset of the parties P1, . . . , Pn

of size n/2, and corrupts this subset.
We will show that an adaptive simulator S for A can be used to break either the

commitment scheme or the hash function family. The high-level argument is as follows.
The simulator S must decide on the identity of the corrupted set b before having full
access to the inputs of the parties in b. (In particular, the input of the last party corrupted

16 This example is an extension of another example given in [CFGN], which uses only bit commitment, and
works only for one-pass black-box simulators.

184 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

by S does not affect the identity of b.) Thus, given inputs h, pk for P0, the simulator
S can be used to produce efficiently two simulated views v0, v1 (consistent with h, pk)
such that the same set b is corrupted in the two views, but the inputs of the corrupted
parties differ. By the perfect emulation requirement, the messages c1, . . . , cn in the two
views should be consistent with b, so by the security of the hash function these messages
will almost always be the same in v0 and v1. However, since the random inputs rj (j ∈ b)
are included in the views, v0 and v1 allows us to open the commitments (cj)j∈b in two
different ways, corresponding to the difference between the inputs in these two views.
We thus get a contradiction to the security of the commitment scheme.

An algorithm which uses S to break either of the two primitives is formally described
as follows. The algorithm gets input h, pk and then proceeds as follows:

1. Run S on random input r .
2. When S corrupts P0, give it pk, h as the input.
3. When S corrupts a party Pi , i ≥ 1, give it 0 as an input bit for Pi .
4. Let v0 be the view forA output by S and let Pj be the last party S corrupted when

generating v0.
5. Rewind S to its state just after Step 1. Run S forward again, and give it the same

input values for corrupted parties, except for Pj where we give a 1 as an input bit.
Let v1 be the view produced this time.

6. Use v0, v1 to either break the hash function or the commitment scheme.

The reason why this works as required is that the set of corrupted parties must be the
same in v0 and v1. This is so since A always corrupts P0 and n/2 parties of the rest,
and all of S’s input in the two runs is the same until after the last corruption happens.
Therefore the hash values computed from round 2 messages in the two views are the
same. Now, it may be that the commitments c1, . . . , cn appearing in v0 are not the same
as those in v1, in which case we have a collision for h. Otherwise cj appears in both
views, and these contain information on how to open it as both 1 and 0.

We thus have the following theorem.

Theorem 24. For passive adversaries and a large number of parties, adaptive security
(even without the PEC requirement) is strictly stronger than non-adaptive security, under
all notions of security except IT with perfect emulation. This holds unconditionally for
either statistical or computational emulation, and under the assumption that a perfectly
hiding bit commitment scheme and a collision intractable hash function family exist, for
perfect emulation.

2.6. Separation for Active Adversaries with at Least Three Parties

This section shows that when three or more parties are present, adaptive and non-adaptive
security are not equivalent in the case of active adversaries, for all settings considered
here: IT, universal, and computational security, with perfect, statistical, or computational
emulation. This is proved via a simple three-party protocol for secure function evaluation
which is non-adaptively secure, but adaptively insecure, in all above settings. This sepa-
ration applies also to other variations in the model, such as open channels, and whether
we require security with or without PEC.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 185

Our separating protocol involves three parties D, R1, R2, where R1, R2 have no input,
and D’s input consists of two bits s1, s2 ∈ {0, 1}. The function fact to be computed is the
function that returns no output for D, s1 for R1, and s2 for R2. The adversary structure
B (the collection of party subsets that can be corrupted) contains any possible subset of
parties. The protocol πact proceeds as follows:

1. D sends s1 to R1.
2. D sends s2 to R2.
3. Each Ri outputs the bit that was sent to it by D, and terminates. D outputs nothing

and terminates.

Claim 25. Protocol πact non-adaptively, B-securely evaluates fact with universal se-
curity and perfect emulation.

Proof. Consider a non-adaptive real-life adversaryA that corrupts D. The ideal-process
simulator S proceed as follows. S corrupts D in the ideal model, and provides A with
the inputs s1, s2 of D. A generates s ′

1 to be sent to R1 and s ′
2 to be sent to R2. S gives

s ′
1, s ′

2 to the trusted party as D’s input, outputs A’s output, and terminates. It is easy to
see that the global output generated by S in the ideal model is identical to the global
output with the real-life A.

The above simulator can be easily modified for the case that A breaks into D and R1

(resp., D and R2): Here S may hand in to the trusted party 0, s ′
2 (resp., s ′

1, 0) as the input
of D, where s ′

2 (resp., s ′
1) is the message prepared by A to be sent to R2 (resp., to R1).

Next, consider A that corrupts R1 (and/or R2). The simulator S proceeds as follows.
S corrupts R1 (and/or R2) in the ideal model, hands the empty input to the trusted party,
and obtains the output s1 (and/or s2) in the ideal model. S then hands s1 (and/or s2) to
A as the message that was sent from D to R1 (and/or to R2), outputs A’s output, and
terminates. Again it is easy to see that the global output generated by S is identical to
the global output with A.

Finally, if A corrupts all parties D, R1, R2, a simulator S may simply corrupt all
parties, hand the inputs to A, and proceed to follow A’s instructions, thus inducing an
identical global output.

Claim 26. Protocol πact does not adaptively B-securely evaluate function fact, with
either universal, IT, or computational security.

Proof. We show an adaptive efficient real-life adversaryA, such that there is no (even
computationally unbounded) adaptive ideal-model adversary (simulator) S that can em-
ulate the global view induced byA (even if the emulation is only required to be compu-
tational).

Intuitively, the goal of our adversary is to ensure that whenever s1 = 1, R2 will output
0, while at the same time corrupting D only when “necessary” (i.e., when s1 = 1),
and never corrupting R2. While each of the above goals (influencing the output, and the
identity of the parties corrupted) can be achieved separately by an (active and adaptive)
adversary in the ideal model, their combination cannot, implying the adaptive insecurity.

186 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

A is defined as follows. A starts by corrupting R1 and receiving s1 in the first stage
of the protocol. If s1 = 0, then A terminates. If s1 = 1, then A corrupts D and sends
s ′

2 = 0 to R2 in the second stage of the protocol.
To prove that this A cannot be simulated in the ideal world, note that in the real

world, whenever s1 = 1, R2 always outputs 0. At the same time, A never corrupts R2,
and, moreover, A never corrupts D when D’s input contains s1 = 0. Now let S be an
arbitrary unbounded adaptive ideal-process simulator, which never corrupts R2. (Below
“overwhelming probability” refers to 1 − neg for some negligible function neg.) If,
when interacting with S in the ideal model, R2 outputs 0 with overwhelming probability
whenever s1 = 1, then it must be that with overwhelming probability, whenever s1 = 1,
S corrupts D in the first corruption stage (before the function is computed by the trusted
party). However, recall that in the first corruption stage in the ideal process, corrupting
a party provides only its input, and no other information. Thus, in our case, before D
is corrupted S cannot gain any information. It follows that S corrupts D in the first
corruption stage with the same probability for any input s1, s2, and in particular D is
corrupted with overwhelming probability when the input is s1 = 0. However, in the
real world, A never corrupts D in this case, and so the global views are significantly
different.

Since Claim 25 asserts the security of πact for all types of security and all types of
emulation, and Claim 26 asserts the insecurity of πact for all types of security and all
types of emulation, together the two claims separate adaptive security from non-adaptive
security for active adversaries in all settings considered. We have:

Theorem 27. For active adversaries, adaptive security is strictly stronger than non-
adaptive security, for any type of security, and any type of emulation, as long as there
are at least three parties.

Discussion. The above separating example captures in a natural way the essence of the
difference between non-adaptive and adaptive security. Indeed, πact is a straightforward
implementation of the function fact, which just “mimics” the ideal-world computation,
replacing the trusted party passing input from one party to the output of another party,
by directly sending the message between the parties. For the non-adaptive setting, this
intuition translates into a proof that any adversaryA can be simulated by an adversary S
in the ideal world. However, as we have shown, the protocol is susceptible to an attack
by an adaptive adversary.

At the heart of this separation is the idea that some information in the protocol (the
value of s1 in our example) is revealed prematurely before the parties have “committed”
to their inputs. An adaptive active adversary may then use this information to decide
whether to corrupt a party (and which one), and then change the party’s input to influence
the global output of the execution.

On the other hand, as we have shown, for a passive adversary and IT security, non-
adaptive security is equivalent to adaptive security. This may suggest the intuition that
even for active adversaries, in the IT setting, adaptive and non-adaptive security may be
equivalent for a subclass of protocols that excludes examples of the above nature; that is,
for protocols where “no information is revealed before the parties have committed to their

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 187

inputs”. This is in fact the case for many existing protocols (see [BGW] and [CDM]), and,
furthermore, the augmented definition [MR], [DM] requires this condition. In Section 3
we indeed formalize and prove this intuition, showing equivalence for the augmented
definition.

2.7. Active Adversaries: The Case of Two Parties

While for three parties and active adversaries the separating example above holds in
all settings, for two parties and active adversaries the situation is more involved, and
depends on the details of the model. Note that in the two-party case we are generally
only interested in the case where the adversary is computationally bounded. (Indeed, if
the adversary is computationally unbounded, then only trivial functions can be computed
securely, see, e.g., [CK], [K], and [KKMO].)

As we have already seen in Section 2.2, with the PEC requirement there is a separating
example relying on bit-commitment. Without PEC, we distinguish two main cases,
depending on whether the communication channel between the two parties is secure
or open. In Section 2.7.1 we show that if the channel is secure, then adaptive and non-
adaptive security are equivalent. In Section 2.7.2 we show that if the channel is open,
then adaptive security is strictly stronger than non-adaptive security, as long as we allow
the function to provide an output to the adversary in the ideal model even when none of
the parties is corrupted.

2.7.1. Equivalence with Secure Channel (no PEC)

In this section we show equivalence in the model where the adversary is active and the
communication between the two parties remains unknown to the adversary as long as he
did not corrupt any party. Let P0 and P1 be two parties executing a protocol π . Without
loss of generality assume that the adversary structure B consists of all the subsets of
{P0, P1}, and that the adversary and the environment are deterministic. Also, as before
we assume that the function f to be evaluated takes no input from and gives no output
to the adversary. The proofs extend in a straightforward way to the general case.

For clarity we first analyze the case of perfect emulation, although in the two-party
setting it is of little interest by itself. We then proceed to the more interesting case of
imperfect (i.e., statistical or computational) emulation.

Perfect emulation. Suppose that protocol π non-adaptively B-securely evaluates some
function f (x0, x1) with perfect emulation. Let A be an adaptive adversary and let Z be
an environment. We will construct an adaptive simulator S which perfectly emulates the
interaction ofA with the parties and Z (i.e., such that (8) below holds). We first present
a high-level description of S and then proceed to the details. At the beginning (Step 2
below), S checks whether A corrupts any party at all. If it does not, then the simulation
is trivial. Otherwise let Pi be the party thatA corrupts first. In this case S constructs (in
Step 4) a non-adaptive adversary Ana that also corrupts Pi and then repeats the actions
of A. The adversary Ana can do it as long as A does not request corrupting P1−i (in
this case Ana outputs error). Then, S runs a non-adaptive simulator Sna of Ana. If Sna

outputs a non-error message then S outputs this message and terminates. Otherwise it
knows thatA (whose actionsAna is repeating) requested corrupting P1−i , and therefore

188 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

corrupts it as well. Now both parties are corrupted and the simulation can be done by
simply executing the protocol (Step 6). We now present S in detail.

Simulator S

1. Input a security parameter k and receive auxiliary information aux from the envi-
ronment Z .

2. StartA with a security parameter k, and pass aux to it (acting as the environment).
Since the channel between P0 and P1 is secure, A does not expect to get any
information until he corrupts some party. Therefore the execution ofAworks until
one of the following happens:
(a) A requests corrupting some party, or
(b) A halts with some output w.
If (b) happened, then output w and halt. Otherwise let Pi (with i ∈ {0, 1}) be the
party that A requested to corrupt.

3. Corrupt Pi . Let auxi be the message received from Z after corrupting Pi and let xi

be the input of Pi .
4. Construct a non-adaptive adversaryAna that corrupts Pi and then repeats the actions

of A. More precisely, he does it by simulating A in the following way:17

Adversary Ana

(a) Ana takes an auxiliary input zna. In our contexts zna will always be
equal to (aux, i, auxi).

(b) Start A. Pass auxiliary information aux to A (acting as the environ-
ment).

(c) Corrupt Pi . Let x ′
i be the input of Pi . Until A requests corrupting Pi

force Pi to behave according to the protocol π (with an input x ′
i and

some randomly chosen random input).
(d) WhenA requests corrupting Pi (we know that it has to happen sinceA

is deterministic) pass the internal state of the simulated Pi and (acting
as the environment) the message auxi to A. Give to the simulated
adversary A full control over Pi . The simulation continues until one
of the following happens:
(i) A requests corrupting P1−i , or

(ii) A halts with some output w.
If (ii) happened, then output w, otherwise output a message error.
Then halt.

From the non-adaptive security of π we know that there exists a simulator Sna

that simulates Ana (i.e., such that (7) below holds). Next, run Sna (with a security
parameter k and auxiliary input (aux, i, auxi)). Sna will corrupt Pi and expect to
receive the input of Pi . Send xi to Sna. As long as Sna does not go to the compu-
tation stage, stay in the first corruption stage. Once Sna goes to the computation

17 The reader may observe thatAna could be constructed beforehand, i.e., before the start of S.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 189

stage, receive the input yi of the corrupted Pi (acting as a trusted party), enter the
computation stage and send yi to the trusted party. Then go to the second corruption
stage, receive from the trusted party the output of Pi and send it to Sna.

If the Sna outputs error then go to the next step. Otherwise output the output
of Sna.

5. Corrupt P1−i (let aux1−i be the message received from the environment).
6. Now we know the inputs x0 and x1 of P0 and P1, resp. (we also know the auxiliary

messages sent by the environment when P0 and P1 get corrupted). Execute the
following procedure sim bothS :

sim bothS

(a) Simulate the execution of π withA and Z , providing P0 and P1 with
randomly chosen random inputs and with inputs x0 and x1, and (acting
as Z) sending to A the values aux, auxi and aux1−i if needed.

(b) If in this simulation both players got corrupted then output the output
of A and halt.
Otherwise (i.e. when P1−i remained honest) restart the procedure, i.e.
go to (a).

This completes the description of S. We now prove that S provides a perfect emulation
of A.

Lemma 28. Let f, π,A,Ana,S,Sna and Z be as above. Suppose

IDEAL f,Sna

d= EXECπ,Ana . (7)

Then

IDEAL f,S,Z
d= EXECπ,A,Z . (8)

Proof. For simplicity we assume that A always corrupts at least one party (the proof
can be easily extended to cover the general case). For every k, z, and �x = (x0, x1),
consider the real-life experiment producing EXECπ,A,Z(k, �x, z), and define the random
variable

CE(k, �x, z)
def=

{
1 if A corrupts both parties,
0 otherwise (i.e., A corrupts one party).

Similarly, consider the ideal process experiment producing IDEAL f,S,Z(k, �x, z), and let

CI(k, �x, z)
def=

{
1 if S corrupts both parties,
0 otherwise (i.e., S corrupts one party).

Since the probability of Sna outputting error is equal to the probability ofA corrupting
both parties, we have

CE
d= CI . (9)

190 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

To simplify notation, let E(k, �x, z)
def= EXECπ,A,Z(k, �x, z) and I(k, �x, z)

def=
IDEAL f,S,Z(k, �x, z). Using this notation, we need to prove that E d= I.

Observe that the adversaryAna, constructed in Step 4, behaves exactly likeA as long
as A does not corrupt both parties (in which case Ana outputs error). Therefore, from
the fact that Sna is a (non-adaptive) simulator ofAna (satisfying (7)) we get the following
equality of conditional distributions:

[E | CE = 0]
d= [I | Sna does not output error]
d= [I | CI = 0] (10)

(where [X | E] denotes the ensemble containing the distribution X (k, �x, z) conditioned
on the event E(k, �x, z)). Now, suppose that CI = 1, i.e., S has corrupted both parties
and entered Step 6. In this step S simply simulates the experiment E repeatedly until it
finds an execution in which both parties get corrupted. Therefore we get

[E | CE = 1]
d= [I | S has entered Step 6]
d= [I | CI = 1]. (11)

Combining (9), (10), and (11) we obtain (8).

Theorem 29. Consider the model with active adversary, secure channels, and no PEC.
Suppose that a two-party protocol π non-adaptively B-securely evaluates f with IT
(resp., universal, computational) security and perfect emulation. Then π adaptively
B-securely evaluates f with IT (resp., universal, computational) security and perfect
emulation.

Proof. From (8) we get that for every A and Z there exists S such that IDEAL f,S,Z
d=

EXECπ,A,Z . It remains to show that the expected running time of S is polynomial in that
of A.

The only non-trivial part is to prove that the expected number of restarts in the
sim bothS procedure is small. Let p be the probability that Sna outputs error. From
the fact that Sna perfectly emulatesAna (and from the construction ofAna) we know that
p is equal to the probability thatA corrupts both parties. Hence, similarly to the analysis
in Claim 9, the expected number of restarts of sim bothS is equal to p · (1/p) = 1 (the
probability of executing sim bothS times the expected number of restarts given that
sim bothS is executed).

Statistical and computational emulation. The case of imperfect emulation is slightly
more involved. Similarly to the passive model (see Section 2.3.2), there may be situations
where sim bothS is restarted forever with non-zero (though negligible) probability. To
guarantee bounded (expected) running time also in the case of imperfect emulation, we
modify the simulator S in the spirit of the modified simulator from Section 2.3.2.18

18 In fact, the current two-party setting allows for a considerably simpler modification of S than in Sec-
tion 2.3.2.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 191

We denote the modified simulator by S ′. The only difference between S and S ′ is in
Step 6, which now attempts to limit the number of restarts of the sim both procedure.
Before each restart we execute the simulator Sna. If Sna outputs error k times, then S ′

decides not to restart anymore and outputs loop. We later show that S ′ outputs loop
with negligible probability (equation (14)).

The new sim both procedure is described as follows.

sim bothS ′

(a) Set c := 1.
(b) Simulate the execution of π with A and Z , providing P0 and P1 with

randomly chosen random inputs and with inputs x0 and x1, and (acting as
Z) sending to A the values aux, auxi , and aux1−i if needed.

(c) If in this simulation both players got corrupted, then output the output ofA
and halt.
Otherwise execute Sna (with fresh randomness and auxiliary inputs
(aux, i, auxi)). Recall that Sna interacts with the trusted party. Therefore
we need to simulate it (we can do it since we know the inputs x0 and x1).
If Sna outputs error, then increase c by 1.

(d) If c > k, then output loop and halt. Otherwise go to (b) (we refer to it as
“restarting” the procedure).

We now prove the main lemma.

Lemma 30. Let f , π , A, Ana, S ′, Sna, and Z be as above. Suppose

IDEAL f,Sna

c≈ EXECπ,Ana . (12)

Then

IDEAL f,S ′,Z
c≈ EXECπ,A,Z . (13)

Proof. Again, for simplicity assume thatA always corrupts at least one party, where the
party first corrupted is Pi . We define the random variables E, I, CE , CI as in the proof of
Lemma 28, where in the definitions of I, CI we replace the original simulator S with the
modified simulator S ′. Finally, we define an additional random variable corresponding
to the ideal-process experiment I:

L(k, �x, z)
def=

{
1 if S ′ outputs loop,
0 otherwise.

We first prove that the probability of S ′ outputting loop is negligible. That is,

Prob[L(k, �x, z) = 1] ≤ k−ω(1). (14)

The argument is similar to the one from Claim 21, and thus we only sketch it below

for completeness. Let pE(k, �x, z)
def= Prob[CE(k, �x, z) = 1] be the probability that A

192 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

corrupts both parties (equivalently, the probability that Ana outputs error). Similarly,

let pI(k, �x, z)
def= Prob[CI(k, �x, z) = 1] be the probability that S ′ corrupts both parties

(equivalently, the probability that Sna outputs error). It follows from (12) that

CE
s≈ CI, (15)

and in particular |pE − pI | is negligible. We now consider two cases, depending on
the ratio between these probabilities. If this ratio is large, say pI > 2pR, then pI
must be negligible, and therefore the probability of sim bothS ′ being invoked (let alone
outputting loop) is negligible. Otherwise (pI ≤ 2pE), the probability of sim bothS ′

outputting loop is negligible, as the probability of getting k successes of a pI-trial
before the first success of a pE -trial is negligible. Thus, in both cases we can bound
Prob[L(k, �x, z) = 1] by a negligible function of k, concluding the proof of (14).

Next, observe that Ana behaves exactly as A as long as player P1−i remains honest.
SinceS ′ runs the simulatorSna ofAna (in Step 4) we get that conditioned on the event that
P1−i remains honest, the distributions E and I are computationally indistinguishable,
i.e.,

[E | CE = 0]
c≈[I | CI = 0]. (16)

On the other hand, conditioned on the event that both players get corrupted, the
distributions of E(k, �x, z) and I(k, �x, z) are statistically indistinguishable. Indeed,

[E | CE = 1]
d= [I | CI = 1,L = 0]
s≈ [I | CI = 1], (17)

where the first transition follows from the description of S ′ and the second from (14). We
now show our goal (13), using (15), (16), and (17). Consider an arbitrary polynomial-
time algorithm D and arbitrary c > 0. From (16) we get that for sufficiently large k and
every (�x, z) we have

Prob[D(1k, (�x, z), E(k, �x, z)) = 1|CE(k, �x, z) = 0]

≤ Prob[D(1k, (�x, z), I(k, �x, z)) = 1|CI(k, �x, z) = 0] + k−2c, (18)

and from (17) we have

Prob[D(1k, (�x, z), E(k, �x, z)) = 1|CE(k, �x, z) = 1]

≤ Prob[D(1k, (�x, z), I(k, �x, z)) = 1|CI(k, �x, z) = 1] + k−2c. (19)

It is also easy to see that (15) implies that for sufficiently large k and every (�x, z),

Prob[CE(k, �x, z) = 0] ≤ Prob[CI(k, �x, z) = 0] + k−2c. (20)

Clearly, Prob[D(1k, a, E(k, �x, z)) = 1] is equal to

Prob[D(1k, (�x, z), E(k, �x, z)) = 1|CE(k, �x, z) = 0] · Prob[CE(k, �x, z) = 0]

+ Prob[D(1k, (�x, z),E(k, �x, z))=1|CE(k, �x, z) = 1] · Prob[CE(k, �x, z)=1],

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 193

which (by (18), (19), and (20)) is at most

(Prob[D(1k, (�x, z), I(k, �x, z)) = 1|CI(k, �x, z) = 0] + k−2c)

· (Prob[CI(k, �x, z) = 0] + k−2c)

+ (Prob[D(1k, (�x, z), I(k, �x, z)) = 1|CI(k, �x, z) = 1] + k−2c)

· (Prob[CI(k, �x, z) = 1] + k−2c),

which is at most

Prob[D(1k, (�x, z), I(k, �x, z)) = 1] + 4k−2c + 2k−4c

≤ Prob[D(1k, (�x, z), I(k, �x, z)) = 1] + k−c

(for sufficiently large k). Therefore, for sufficiently large k,

Prob[D(1k, (�x, z), I(k, �x, z)) = 1] − Prob[D(1k, (�x, z), E(k, �x, z)) = 1] ≤ k−c.

The same argument, starting from inequality (18), can be applied in a symmetric way
(i.e., swapping E and I). Thus we get∣∣Prob[D(1k, (�x, z), E(k, �x, z)) = 1] − Prob[D(1k, (�x, z), I(k, �x, z)) = 1]

∣∣ ≤ k−ω(1).

This completes the proof of Lemma 30.

From Lemma 30 we get the following.

Theorem 31. Consider the model with an active adversary, secure channels, and no
PEC. Suppose that a two-party protocolπ non-adaptivelyB-securely evaluates f with IT
(resp., universal, computational) security and computational emulation. Then π adap-
tively B-securely evaluates f with IT (resp., universal, computational) security and
computational emulation.

Proof. From Lemma 30 we get that for every efficient (i.e., expected polynomial time)

A and Z there exists an efficient S ′ such that IDEAL f,S ′,Z
c≈ EXECπ,A,Z . Thus, as in the

proof of Theorem 29, the only non-trivial part is to prove that the expected number of
restarts of sim bothS ′ procedure is small. Let p = pI , the probability that Sna outputs
error. If p = 0, then sim bothS ′ is never executed, and thus we are done. Otherwise,
the expected number of iterations that we need to wait until c is increased by 1 (after it
was set to 1 in Step (a) or increased by 1 last time) is equal to 1/p. Thus the expected
number of iterations until c reaches k + 1 is at most k/p. Since the probability of S ′

entering Step 6 is p, the expected number of iterations of sim bothS ′ is at most k. Thus
we are done.

Along the same lines one can prove a similar theorem for the statistical indistinguish-
ability.

194 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

Theorem 32. Consider the model with an active adversary, secure channels, and no
PEC. Suppose that a two-party protocol π non-adaptively B-securely evaluates f with
IT (resp., universal, computational) security and statistical emulation. Thenπ adaptively
B-securely evaluates f with IT (resp., universal, computational) security and statistical
emulation.

Proof. The proof is very similar to the proof of Theorem 31. Specifically, one can
prove the following “statistical” version of Lemma 30:

if IDEAL f,Sna

s≈ EXECπ,Ana , then IDEAL f,S ′,Z
s≈ EXECπ,A,Z (21)

(where S ′ is identical to the one in Lemma 30). A proof of (21) may be obtained from
the proof of Lemma 30 by replacing computational indistinguishability with statistical
indistinguishability and dropping the assumption that D is computationally bounded.

2.7.2. Separation with Insecure Channel (with Output to Adversary)

This section considers the model where the adversary can eavesdrop the channel between
the parties even when he did not corrupt any of them. In this model we show a protocol
that is non-adaptively secure, but adaptively insecure, as long as the adversary may
receive an output from (or give an input to) the trusted party in the ideal model. The
example is of a similar nature as the one in the three-party case (Section 2.6). Again, the
example holds for any type of emulation.

Consider two parties: a dealer D and a receiver R. Suppose the adversary can corrupt
only D, i.e., the adversary structure B consists of sets {∅, {D}}. Define function f2 as
follows. The only input that it takes is D’s input x ∈ {0, 1}. It returns no output for D
and it outputs x to R and to the adversary. The protocol π2 works as follows:

1. D sends x to R.
2. D sends x to R.
3. R outputs what he received in Step 2 (ignoring what he received in Step 1).

Claim 33. The protocol π2 non-adaptively, B-securely evaluates f2 with universal
security and perfect emulation.

Proof. Consider a non-adaptive adversary A. There are two possibilities:

• A does not corrupt D. In this case S can simply wait until the output stage in which
he learns x . He can then simulate the real-life execution ofA against π2 (and output
the output of the simulated A).

• A corrupts D. In this case S learns x at the beginning of the ideal execution and
again he can simulate the real-life execution.

Claim 34. The protocol π2 is adaptively insecure for evaluating the function f2, with
either universal, IT, or computational security, against active adversary structure B.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 195

Proof. We show a real-life adversaryA that cannot be simulated by any ideal-process
adversaryS. Intuitively the aim of the adversaryA is to make R always output 1. In order
to do this it waits until in Step 1 the dealer D sends x . If x = 1, then it does nothing,
otherwise he corrupts D and makes him send 1 in Step 2. Using this strategyA corrupts
D only if it is necessary (i.e., when x = 0).

On the other hand suppose that any ideal-process adversary S wants to achieve the
same. Then he has to decide whether to corrupt D before he sends x to the trusted party.
However, at this moment S has no information on x . Therefore he has to do it always
(also when x = 1). Thus no ideal-process adversary can simulate A.

We can conclude with the following.

Theorem 35. If there are exactly two parties, then in the insecure channels setting, for
active adversaries, adaptive security is strictly stronger than non-adaptive security.

Remark: Other separating examples. The above separating example relies heavily on
the fact that the simulator obtains an explicit output from the trusted party, even if none
of the parties are corrupted. Below we briefly sketch a separating example where the
adversary receives no explicit output from the trusted party. However, for this example
it is important that the adversary be able to provide the trusted party with its own input,
even if none of the parties are corrupted.

Consider the following function f , that takes no inputs from the parties, and an input
bit b from the adversary. First, f tosses a coin r . If r = 1, then the output is b. Otherwise,
the output is set to a new random bit s. In any case, both parties receive the same output
bit, and the adversary receives no output.

Next, consider the following sketchy description of a protocol, π . First, the parties run
a standard coin-tossing protocol to obtain a public, common random bit r . Next, party P1

sends (encrypted) a randomly chosen bit b to P2, and P2 sends (encrypted) a randomly
chosen bit s to P1. Finally, if r = 1, then both parties output b. Otherwise, both parties
output s.

It can be readily seen that if the adversary is non-adaptive, then π securely evaluates
f .19 On the other hand, consider the following adaptive adversary A. First, A monitors
the conversation between the parties until the bit r is known. Next, it corrupts Pr and
sets the output bit of the computation to 0. Clearly, this adversary cannot be emulated in
the (adaptive) ideal process.

Remark: The setting without input or output to adversary. We leave open the question
whether there exists a separating example for the restricted case where the adversary
does not provide the trusted party with input nor does it receive explicit output from the
trusted party (that is, the original [C1] definition without the PEC requirement). We note

19 As mentioned in footnote 2, two-party coin-tossing can only be securely realized under a relaxed definition
that allows the adversary to abort, namely, stop the computation at any time, possibly after learning its output.
(Technically, this relaxation is achieved by modifying the ideal process so as to allow the simulator to decide
whether the uncorrupted party (parties) receive their outputs from the trusted party.) This standard relaxation
of the definition in the two-party case was adopted also in [G1].

196 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

that if the simulator is required to be a one-pass black-box simulator, then we can in fact
show an equivalence.

3. Adaptivity versus Non-Adaptivity in the Augmented Definition

3.1. Review of the Definition

For completeness, we start with a very short summary of the definition of secure multi-
party computation by Micali and Rogaway, more specifically the version that appears in
the paper by Dodis and Micali [DM]. For additional details, please refer to [DM].

We have n parties, each party Pi starts with a value xi as input and auxiliary input ai .
We set a = (a1, . . . , an); x = (x1, . . . , xn).

To satisfy the definition, a protocol π must have a fixed committal round CR, the point
at which inputs become uniquely defined, as follows: The traffic of a party consists of all
messages he sends and receives. However, since without loss of generality the adversary
never sends a message from a corrupted player to another corrupted player, the traffic of
a corrupted player consists only of messages exchanged with honest players.
π must specify input and output functions that map traffic to input and output values

for the function f computed. The effective inputs x̂π1 , . . . , x̂πn are determined by applying
the input functions to the traffic of each party up to and including CR. So these values
are the ones that parties “commit to” as their inputs. The effective outputs ŷπ1 , . . . , ŷπn
are determined by applying the output functions to the entire traffic of each party.

For adversaryA (taking random input and auxiliary inputα), random variable View(A, π)
is the view of A when attacking π . We define:

History(A, π) = View(A, π), x̂π , ŷπ .

The way A interacts with the protocol is as follows: in each round, A sees all messages
from honest parties in this round. He may then issue some number of corruption requests
adaptively, and only then must he generate the messages to be sent to the remaining
honest parties, on behalf of the corrupted ones. Note that, in particular, this means that
the traffic of a corrupted party consists only of messages sent to/received from parties
who are honest at the time the message is sent/received.

The definition calls for the existence of a simulator S which may depend on the
protocol in question, but not the adversary. The goal of the simulator is to sample the
distribution of History(A, π). To do so, it is allowed to interact withA, but it is restricted
to one-pass black-box simulation with no bound on the simulator’s running time, i.e.,A
interacts with S in the same way it interacts with π , and S is not allowed to rewind A.
The simulator S gets an oracle O as help (where the oracle knows x, a):

• If Pj is corrupted before CR, the oracle sends xj , aj to S.
• At CR, S applies the input functions to the view of A it generated so far to get

effective inputs of corrupted parties x̂Sj . It sends these values to O . O computes
the function choosing random input r and using as input the values it got from
S for corrupted parties and the real xj ’s for honest parties. The result is ŷS =
(ŷS1 , . . . , ŷSn). O sends the results for corrupted parties back to S.

• If Pj is corrupted in or after CR, then O sends xj , aj , ŷj to S.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 197

The random variable View(A,S) is the view of A when interacting with S. The
effective inputs x̂S are as defined above, i.e., if a Pj is corrupted before CR, then his
effective input x̂Sj is determined by the input function on his traffic, else x̂ j = xj . The
effective outputs ŷS are defined as what the oracle outputs, i.e., ŷS = f (x̂S , r).

History(A,S) = View(A,S), x̂S , ŷS .

We can now define that π computes f securely iff there exists a simulator S such that
for every adversary A, and every x , a, α,

History(A,S) ≡ History(A, π)

i.e., the two variables have identical distributions.
At first sight it may seem strange that the definition does not explicitly require that

parties who are honest up to CR actually commit to their real inputs, or that parties
who are never corrupted really receive “correct” values. However, this follows from the
definition:

Lemma 36. If π computes f securely, then the input and output functions are such
that if Pj remains honest up to CR, then x̂πj = xj . If Pj is never corrupted, then ŷπj is the
j th component of f (x̂π , r), for a random r .

Proof. Consider an adversary Aj that never corrupts Pj . Then the first claim fol-
lows from xj = x̂Sj and History(Aj ,S) ≡ History(Aj , π). The second follows from
History(Aj ,S) ≡ History(Aj , π) and the fact that the correlation ŷSj = f (x̂S , r)j

between x̂S and ŷS always holds.

Note that this lemma continues to hold, even if we only assume static security.

3.2. Equivalence of Adaptive and Non-Adaptive Security

3.2.1. Preliminaries

Our goal in this section is to take a non-adaptively secure protocol and look at how
it behaves against an adaptive adversary. To do this, we first have to deal with three
preliminary issues:

First, one that concerns the input/output functions: if we are given a protocol that is
non-adaptively secure, we are of course also given some input/output functions. How-
ever, these functions can only be assumed to be defined on traffic that could occur under
a non-adaptive attack, in particular traffic where the corrupted set is constant over time.
Under an adaptive attack, in each round the traffic consists (for corrupted players) of
messages exchanged with the set of parties that are honest at that particular time, and so
the input/output functions we are given are not defined on all such traffic-values. This is
resolved as follows: say A is the corrupted set at the end of the CR. Then to compute the
effective inputs and outputs, we delete from all traffic-values all messages exchanged
between players in A, and then evaluate the (non-adaptive) input/output functions on

198 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

what remains. The output functions are handled in a similar way. In other words, we
pretend that A was corrupted from the beginning and evaluate effective input/outputs
accordingly. This is natural and seems to be the only meaningful solution that is also gen-
eral. We assume throughout that input/output functions are transplanted to the adaptive
setting in this way.

Second, it turns out to be convenient in the following to define the notion of a partial
history, of an adversary A that either attacks π or interacts with a simulator. A partial
history constrains the history up to a point at the start of, or inside, round j for some j .
That is, round j − 1 has been completed but round j has not. If j ≤ C R, then such a
partial history consists of a view of the adversary up to round j , and possibly including
some part of round j . If j > C R, but the protocol is not finished, a partial history
consists of a partial view of A as described before plus the effective inputs. Finally, if
the protocol is finished at round j , the history is as defined earlier: a complete view of
A plus the effective inputs and outputs.

Note that if S is such that History(A, π) ≡ History(A,S), then trivially it also
holds that the partial histories of A, π and of A,S ending at any point are identically
distributed. Moreover, since S never rewinds, the value of the partial history of A,S at
some point in time will be fixed as soon as S has reached that point in the simulation.

We can then slightly extend the actions an adversary can take: a halting adver-
sary A′ is one that interacts with the protocol or simulator in the normal way, but
may at any point output a special halting symbol and then stop. In the simulation, if
the simulator receives such a symbol, the simulation process also stops. The histories
History(A′, π),History(A′,S) are defined to be whatever the partial history is at the
point whenA stops. Note that a halting adversary does not necessarily halt prematurely,
it only has the option to do so.

If protocol π is secure in the above definition, then the simulator guaranteed by
the definition can also simulate the (possibly partial) history generated by any halt-
ing adversary, since no rewinding occurs. Conversely, an ordinary adversary is also a
halting one (which happens to never halt prematurely). So we see that protocol π is
secure according to the above definition if and only if, for any halting adversary A′,
History(A′, π) ≡ History(A′,S). Note that this extension of the definition does not
capture any new security properties, it is simply a “hack” that turns out to be convenient
in the proof of the following theorem.

A third a final preliminary issue is that we need one more concept that does not appear
in the original definition. To explain this, consider the following two scenarios for a
non-adaptively secure protocol π :

• Non-adaptive adversary A attacks the protocol, corrupting set A.
• Non-adaptive adversary A′ attacks the protocol, corrupting set A′ where A ⊂ A′.

However,A′ follows the strategy ofA, i.e., he lets the parties in A′\A play honestly,
ignoring completely their internal data.

For each given set of random coins used in the protocol, all parties make exactly the same
moves in the two scenarios. It therefore seems intuitively reasonable that the effective
inputs should also be the same. Indeed, this is the case for all known examples of general
multi-party computation protocols. However, the original definition does not ensure
this: for players in A′\A, for instance, the input functions are evaluated on messages

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 199

exchanged with all players in the first scenario, and in the second only on a smaller set
of messages, namely, those exchanged with parties outside A′.

In order to prove that non-adaptive security implies adaptive, we will need that effective
inputs are indeed the same in such cases, so we now define a condition on the input
functions that precisely ensures this:

Definition 37. Consider a protocol π and any non-adaptive adversaryA. Consider any
possible partial history H of A, π that runs until the end of the committal round. Let A
be the corrupted set in H , and let x be the set of effective inputs defined by H . Let A′

be any corruptible set with A ⊂ A′, and let x ′ be the set of effective inputs obtained by
applying the input functions to the traffic obtained by ignoring all messages exchanged
between players in A′. The input functions are said to be consistent iff it always holds
that x = x ′.

Based on the above discussion, the consistency requirement seems very natural, and
indeed one might argue that consistency should be required in the definition. However,
this is a quite subjective question. What is important for us is that consistency is a property
that can be easily verified for a concrete protocol, and that assuming consistency, non-
adaptive security implies adaptive security, as we shall see.

Nevertheless, for completeness, we show that some consistency requirement is nec-
essary by showing an example protocol with inconsistent input functions that separates
non-adaptive and adaptive security:

We have three parties called D, P1, P2. D has input bit b, and the function to be
computed outputs b for P1, no one else has output. D or P1 or both can be corrupted.
The protocol goes as follows:

1. D chooses at random b1, b2 such that b = b1 ⊕ b2. He sends b1 to P1 and b2 to P2.
P1 sends a 0 to D. This round is also the committal round.

2. P2 sends b2 to P1, who sends a 0 to D and computes the XOR of b1,b2 as his result.
D sends a 0 to P1.

The input function is defined as follows: first recall that these functions generally get
the traffic of a player P as input, where the traffic is the messages exchanged with all
players if P is honest, and otherwise only messages exchanged with honest players.
Since in each round, we have a message from D to P1 and from P1 to D, we can tell
from D’s traffic in round 1 and P1’s traffic in round 2, whether {D, P1} or a smaller set
is corrupted, just by checking if data exchanged between D and P1 is present or not in
the traffic.

So we can define D’s input function as follows: If only D, only P1, or no one is
corrupt, then the input is the XOR of what D sent to P1 and P2. If P1 and D are corrupt,
then the input is always 0. The output function of P1 is defined by: if only P1, only D,
or no one is corrupt, then the output is the XOR of what P1 received from D and from
P2. Else the output is always 0.

This example is slightly counterintuitive because it is (and must be) based on defin-
ing the in and output functions in a somewhat unreasonable way, which is neverthe-
less allowed by the definition. In particular, we note that these functions are indeed

200 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

inconsistent according to Definition 37: if D is corrupt and sends 1 to P1 and 0 to P2,
then the effective input is 1, but if we restrict to what P2 receives, the effective input is
0. Moreover, the output function is defined such that P1’s effective output is forced to 0
if both D and P1 are corrupt at round 2. Therefore, an adaptive adversary can corrupt D,
make the effective input be 1, and then afterwards corrupt P1 and create a mismatch with
the input. However, because this strategy can only be used by an adaptive adversary, the
protocol is still non-adaptively secure.

In more detail, we can argue as follows. The protocol is non-adaptively secure: if no
one is corrupted, then security is trivial. If only D is corrupt, then the simulator only
has to generate the 0’s sent to D in rounds 1 and 2, and the effective inputs and outputs
match as they should. If only P1 is corrupt, then the simulator sends a random bit to P1

on behalf of D in the first round, gets the result from the oracle, and sends a bit to P1

on behalf of P2 in the second round such that the XOR of what P1 has seen is the right
result (and a 0 on behalf of D). If P1 and D are corrupt, then the simulator looks at what
D sends to P2 in round 1 and sends this to P1 in round 2. Effective input and output are
always 0 and in particular are equal as they should be.

However, the protocol is adaptively insecure: consider an adversary who corrupts D
from the start and sends bits bi to Pi , such that b1 ⊕b2 = 1. Then after the CR he corrupts
P1. Clearly, in an attack on the real protocol, the effective input of D is 1, whereas the
effective output of P2 is 0. Hence any simulator is forced to to give 1 as the effective
input to the oracle, who will compute 1 as output, so this never matches the effective
output of the real protocol.

3.2.2. The Equivalence Proof

In the following we assume that there exists a static (non-adaptive) simulator S0 such
that for every static adversary A0, and every x, a, α,

History(A0,S0) ≡ History(A0, π).

We want to make a general simulator S that shows that π in fact is secure against any
adaptive adversary A, in other words, we claim

Theorem 38. Let π be a protocol which is non-adaptively secure under the augmented
definition, and which has consistent input functions. Then π is adaptively secure.

To this end, we construct a static adversary AB (of the halting type) for every set B
that it is possible for A to corrupt. AB plays the following strategy, where we assume
thatAB is given black-box access to (adaptive) adversaryA, running with some random
coins rA and auxiliary input α:20

20 We could also have given rA, α as input toAB , letting it simulate the algorithm ofA, but the set-up we
use is more convenient in the following.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 201

Algorithm of AB

1. Corrupt the set B initially. For each Pj ∈ B, initialize the honest algorithm for Pj ,
using as input xj , aj learned from corrupting Pj (and fresh random input).

2. Start executing the protocol, initially letting the parties in B play honestly, but
keeping a record of their views. At the same time, start running A.

3. Whenever A issues a corruption request for party Pj , we do the following: if
Pj ∈ B, we provide A with xj , aj and all internal data of Pj . After this point, all
messages for Pj are sent to A, and we let A decide the actions of Pj from this
point. If Pj �∈ B, output a halt symbol and stop.

The idea in the following is to use the assumed ability (by S0) to generate histories of
AB attacking π to generate histories of A attacking π . Note that in any round of π , the
current history of AB contains both the (so far honest) history of 0 or more parties that
A has not yet corrupted, plus the view so far ofA. So for any such (partial) history u of
AB , we let Aview(u) be the view of A that can be extracted from u in the natural way.

In particular, if u is a history of AB that ends after the final round of the protocol,
then Aview(u) is a complete view of A where A corrupted only parties in B, whereas
if u ends before the protocol is complete, Aview(u) ends in the some round where A
requested corrupting some party outside B.

We are now ready to describe the algorithm of S. We assume S interacts with an
adaptive adversary A who starts from some random coins and is given some arbitrary
auxiliary input α. Also we are given an oracle O , that knows the actual inputs x and
makes some random choice r when computing the function.

We first give an intuitive explanation of the idea behind the simulation: From the
beginning, A has not corrupted any parties. So we can create the start of a history by
running (A∅, S0) (recall that A∅ runs A “in the background”). This will stop as soon as
A corrupts the first party Pj . Say this happens in round i . Let v be the view of A we
obtain from this. Recall that S0 provides perfect emulation. This means that in real life
when A attacks π , we could (with the same probability) obtain a history where, up to
round i , A has seen view v and all parties including Pj have been honest.

Now, by construction of A{Pj } this same history up to round i can also be realized by
A{Pj } attacking F : the only difference is that from the beginning A{Pj } and not the j th
party runs the honest algorithm of Pj . Again by assumption on S0, the history can also
be realized by A{Pj } interacting with S0.

We can therefore (by exhaustive search over the random coins) generate a random
history of S0 interacting with A{Pj }, conditioned on the event that the view v for A is
produced in the first i rounds (and, moreover, this can be done without rewinding A).
This process may be inefficient, but this is no problem since we consider IT security
here. Once we succeed, we let (S0,A{Pj }) continue to interact until they halt, i.e., we
extend the history until the protocol is finished orA corrupts the next party (say Pj ′). In
the former case we are done, and otherwise we continue in the same way with A{Pj ,Pj ′ }.

Once we finish the CR, the effective inputs will be determined, and we will get
resulting outputs from the oracle. Note here that since we only consider one-pass black-
box simulation, we will never need to rewind back past the CR, which might otherwise
create problems since then A could change its mind about the effective inputs. Thus the
one-pass black-box requirement is also essential for the proof.

202 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

Here follows a more formal description of the algorithm of S:

Algorithm of S

1. Initialization:
Set B = ∅. B will contain the current set of corrupted parties.
Set v = the empty string. v will contain the (simulated) view of A so far.
Set aB, xB, and ŷSB = the empty string, these variables will contain the inputs,
auxiliary inputs, and effective outputs of parties in B.

2. The purpose of this step is to obtain a random sample of the output of S0 when
interacting with AB , conditioned on the event that the history u produced, is such
that v is a prefix of Aview(u).
We do this by repeatedly executing S0,AB until a useful u is obtained (this may
take more than polynomial time, but we consider unbounded simulation here). We
will not always run S0,AB until they halt; in cases where it is clear that there is
no hope of getting a useful u, we will stop immediately, as described below. Note
that, in order to execute S0, we need to provide the access it needs to an oracle
(which we call O0 to distinguish from the oracle O that S uses), AB also needs
black-box access toA. We describe how to emulate O0 below. Thus, the following
subroutine for sampling S0,AB is repeated until a history u is produced such that
v is a prefix of Aview(u):
(a) Initialize the algorithms of AB and S0 using random coins chosen uniformly

among those we have not used before (but note that we do not restartA). Send
xB, aB to S0 (on behalf of O0). The variable u will at all times hold the current
history ofS0,AB we have produced so far. It is initially empty, and we maintain
the following invariant: either v is a prefix of Aview(u) (which includes the
case v = Aview(u)) or Aview(u) is a proper prefix of v.

(b) Do the following for each round:
Get messages for parties in B from S0 and send these to AB . Now we simply
want to run the algorithm ofAB to compute the actions in this round of parties
in B. However, recall that AB needs black-box access to A. At this point,
however, A thinks that it is in the middle of an attack on the protocol and
we are not allowed to rewind. Fortunately, since we are only interested in
generating views with v as the prefix, we can do something else:
• If Aview(u) is a proper prefix of v, look at the set of messages thatAB sends

to A at this point. Check if this equals the set of messages sent to A at this
point according to the view v. If so, we take the response of A from v and
send it toAB . This response may be a corruption request, in which case we
check if the reaction to this from AB is consistent with v, and continue to
process the next response fromA (again taken from v). If any inconsistencies
with v are discovered, we stop the current run of (AB,S0), and go back to
Step 2(a) (since it is then clear that the history u we are generating will not
be consistent with v). Otherwise, we keep going, extending the contents of
u until either the interaction betweenAB andA in this round is finished, or
we reach a point where Aview(u) = v (in the latter case continue with the
next item).

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 203

• If we are not finished with the current round and if v is a prefix of Aview(u),
send the messages generated byAB at this point toA, and letAB conduct its
interaction directly withA starting from whatever stateA is in at this point.
Note that this may cause AB (and hence S0) to halt if A tries to corrupt a
party outside B.

We reach this point if S0,AB completed the current round without halting. If
we are in the CR at this point, we must also emulate the behavior of O0 in the
CR. We do as follows:
• If we have not queried O in CR before, send the effective inputs produced

by S0 and send them to O to get ŷSj , Pj ∈ B, we save these values in ŷSB
and also send them to S0.

• If we have queried O before, send the current value of ŷSB to S0.
3. At this stage, the previous step has produced a history u of AB , such that w =

Aview(u) has v as a prefix. Now, ifw extends all the way to the end of the protocol,
we output w and stop. Otherwise, go to the next step.

4. If we reach this step, w ends prematurely because A requested corrupting a party
Pj �∈ B. Then get xj , aj and possibly ŷSj from O .
Set B = B ∪ {Pj }.
Set v = w.
Set aB = a ∪ {aj }, xB = x ∪ {xj }, and ŷSB = ŷSB ∪ ŷSj .

5. Go to Step 2.

To show Theorem 38 it is clearly enough to show the following:

Claim. For any (non-halting) adversary A, any fixed random coins and auxiliary
input for A, and for any fixed input x and random coins r for the oracle O , the algo-
rithm for S terminates; furthermore, conditioned on the data we fixed, History(A, π) ≡
History(A,S).

In the entire following discussion, we assume that the data mentioned in the claim are
fixed. The fact that S terminates is one consequence of the following lemma:

Lemma 39. Fix any B, v, aB, xB, ŷSB that may occur as values at the start of some
iteration i of the algorithm of S. Then the following iteration terminates and produces
a value u of History(AB,S0), where the distribution of u equals that of the history of S0

when interacting with AB conditioned on the values B, v, aB, xB, ŷSB , and on v being a
prefix of Aview(u).

Proof. If i = 1, the lemma is trivially true: in this case all the variables B, v, aB, xB, ŷSB
are empty, so we are not conditioning on anything, andAB andS0 are executed according
to their respective algorithms with black-box access to the correct data. Termination is
also trivial because the first attempt to run AB and S0 will always result in a useful u.

For i > 0, let B ′ be the value of B in iteration i − 1. Since iteration i is executed,
we may assume that the view v ends by A corrupting a party Pj �∈ B ′. The view v

204 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

was produced in the previous iteration by S0 interacting with AB ′ . Since S0 is a perfect
simulator, there exists an execution of the real protocol, where A’s view is v and where
Pj has some honest view vj until the end of v. Then by definition of AB , a possible
(partial) view of AB is one where its interaction with A results in view v and honest
view vj for Pj . Again, sinceS0 is a perfect simulator, it must be possible to generate these
same views by having AB interact with S0. Since the algorithm of S in the i th iteration
searches exhaustively through the random inputs of S0,AB , a history u consistent with
v will eventually be found.

Finally, for the claim on the distribution of u, note that the algorithm for the i th
iteration chooses uniformly among those random inputs for S0,AB that will produce a
u consistent with v. The claim therefore follows if we show that the data obtained from
our simulated black-box access to A and our simulation of oracle O0 are distributed as
in a normal execution. This is clear for the black-box access to A because we just force
the output view for A to have v as the prefix, and otherwise query the real adversary A.
For the simulation of O0, we split the two cases considered also in the algorithm of S,
according to what the situation is when S0 queries O0:

• If we have not queried O in CR before, it is clear that the view v must end in or
before CR. So therefore, the effective inputs supplied byS0 is a random set of values
as S0,AB would choose them, conditioned on B, v, aB, xB . Hence the results are
also correctly distributed because we obtain them from O .

• If we have queried O before, suppose we are doing iteration i currently, and suppose
we queried O the first time in iteration i ′. Let B ′ ⊂ B be the corrupted set in
iteration i ′.

Note that we cannot have i = i ′: the first time we queried O we must have had
the current v as a proper prefix of the current view forA since the simulation is one-
pass. This guarantees that we finished that run of S0,AB successfully extending v,
and so we would not need to run S0,AB again in the same iteration.

So i ′ < i . Let v′ be the view output by iteration i ′, this view must of course
extend to the end of or beyond the CR, and determines some effective inputs x̂ ′,
namely, the input functions applied to v′ for parties in B ′ and the real inputs for
the other parties. Moreover, v′ is a prefix of v, so if we let u be the current history
produced by S0 when the query to O0 is made, it is clear that u is consistent with
v′ in the sense that Aview(u) equals v′ truncated after the CR.

Now, u determines some effective inputs of parties in B ′, from messages they
exchange with parties outside B, since this is the currently corrupted set. Similarly,
v′ determines some effective inputs of parties in B ′, from messages they exchange
with parties outside B ′. However, since u is consistent with v′, B ′ ⊂ B and by the
consistency of the input functions, these two sets of effective inputs are the same.
All parties outside B ′ play honestly until the end of the CR, and so their effective
inputs equal the real inputs in all cases, by Lemma 36. Hence the inputs on which
the oracle would compute the function are exactly the same as the ones it used in
iteration i ′, so it is correct to return the results we already know.

Lemma 40. Fix any corruptible set B. Let DistrB be the distribution obtained from
the distribution of History(A, π) by truncating every history such that it ends at the

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 205

first point where A corrupts a party not in B (no truncation if A never corrupts a party
outside B). Then the distribution of History(AB,S0) is DistrB .

Proof. Follows immediately from History(AB,S0) ≡ History(AB, π) and by defini-
tion of AB .

We now return to the proof of the main claim above. Let Distri be the distribution
obtained from the distribution of History(A, π) by truncating every history such that it
ends at the point where A corrupts the i th party (no truncation if A corrupts less than
i parties). Then Distrn+1 is the distribution of History(A, π), since A cannot corrupt
more than the total number of parties. Therefore our claim follows once we show the
following lemma:

Lemma 41. Running the algorithm for S for at most i iterations produces a history
with Distri as distribution, for any i ≥ 1.

Proof. Some notation first. Let X be any of the distributions of histories we considered
so far—so X may be, for instance, DistrB , Distri , or History(AB,S0); and let v be a
possible (partial) view of A. Then X (v) means X conditioned on the event that v is a
prefix of the view of A specified by an outcome of X .

To prove the lemma, we use induction on i . The basis of the reduction (i = 1) follows
immediately from Lemmas 39 and 40 with B = ∅, and v = aB = xB = ŷSB = the empty
string (note that Distr1 = Distr∅).

So consider the induction step for some i > 1. By the induction hypothesis, the
cases where S halts after i − 1 steps produce with the right distribution those histories
where A completes the protocol having corrupted at most i − 2 parties. In the cases
where the i th iteration is executed, the induction hypothesis also implies that the values
of B, v, aB, xB, ŷSB we have going into the i th iteration are distributed exactly as they
would be in a real protocol execution in a case where A has just corrupted the (i − 1)th
party. Note that we actually only have to focus on the value of v, since v, being the
complete view of A, determines the values of B, aB, xB, ŷSB .

We therefore only have to show that this i th iteration of S will produce a history that
is distributed according to Distri (v).

It is clear that Distri (v) = DistrB(v)—namely both equal the distribution over (partial)
histories in whichA’s view has v as a prefix and continue untilA corrupts the next party
or completes the protocol.

Now, by Lemma 40, DistrB(v) = History(AB,S0)(v) (the distribution produced byS0

interacting withAB when we condition on v). Finally by Lemma 39, History(AB,S0)(v)

in turn equals the distribution produced by the i th iteration of S, when that iteration starts
from values B, v, aB, xB, ŷSB .

Acknowledgment

We are grateful to an anonymous referee for comments and suggestions that greatly
improved this paper.

206 R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin

References

[B1] D. Beaver, Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty
Minority, J. Cryptology, vol. 4, pages 75–122, 1991.

[B2] D. Beaver, Plug and Play Encryption, Proc. CRYPTO ’97, pages 75–89, 1997.
[B3] P. Billingsley, Probability and Measure, 2nd edition, Wiley, New York, 1986.
[BC] G. Brassard and C. Crepeau, Nontransitive Transfer of Confidence: A Perfect Zero-Knowledge

Interactive Protocol for SAT and Beyond, Proc. 27th FOCS, pages 188–195, 1986.
[BGW] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic

Fault-Tolerant Distributed Computation, Proc. 20th STOC, pages 1–10, 1988.
[BH] D. Beaver and S. Haber, Cryptographic Protocols Provably Secure Against Dynamic Adversaries,

Proc. Eurocrypt ’92, pages 307–323, 1992.
[C1] R. Canetti, Security and Composition of Multiparty Cryptographic Protocols, J. Cryptology, vol. 13,

no. 1, pages 143–202, 2000. On-line version at http://philby.ucsd.edu/cryptolib/1998/98-18.html.
[C2] R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic Protocols, Proc.

42nd FOCS, pages 136–145, 2001. Full version available at http://eprint.iacr.org/2000/067.
[CCD] D. Chaum, C. Crepeau, and I. Damgaard, Multi-Party Unconditionally Secure Protocols, Proc. 20th

STOC, pages 11–19, 1988.
[CDG] D. Chaum, I. Damgaard, and J. van de Graaf, Multi-Party Computations Ensuring Privacy of Each

Party’s Input and Correctness of the Result, Proc. CRYPTO ’87, pages 87–119, 1987.
[CDM] R.Cramer, I. Damgaard, and U. Maurer, General Secure Multi-Party Computation from Any Linear

Secret-Sharing Scheme, Proc. EuroCrypt 2000, pages 316–334, 2000.
[CFGN] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively Secure Computation, Proc. 28th STOC,

pages 639–648, 1996. Fuller version in MIT-LCS-TR #682, 1996.
[CHP] D. Chaum, E. v. Heijst, and B. Pfitzmann, Cryptographically Strong Undeniable Signatures, Uncon-

ditionally Secure for the Signer, Proc. CRYPTO ’91, pages 470–484, 1991.
[CK] B. Chor and E. Kushilevitz, A Zero-One Law for Boolean Privacy, SIAM J. Disc. Math., vol. 4, pages

36–47, 1991. Preliminary version in Proc. 21st STOC, pages 62–72, 1989.
[CS] R. Cramer and V. Shoup, A Practical Public-Key Cryptosystem Provably Secure Against Adaptive

Chosen Ciphertext Attack, Proc. CRYPTO ’98, pages 13–25, 1998.
[DDN] D. Dolev, C. Dwork, and M. Naor, Non-Malleable Cryptography, SIAM J. Computing, vol. 30, no. 2,

pp. 391–437, 2000. Preliminary version in STOC’91.
[DM] Y. Dodis and S. Micali, Parallel Reducibility for Information-Theoretically Secure Computation,

Proc. CRYPTO 2000, pages 74–92, 2000.
[DN] I. Damgaard and J. Nielsen, Improved Non-Committing Encryption Schemes Based on a General

Complexity Assumption, Proc. CRYPTO 2000, pages 432–450, 2000.
[G1] O. Goldreich, Secure Multi-Party Computation, 1998. Available at http://philby.ucsd.edu.
[G2] O. Goldreich, Foundations of Cryptography, Cambridge University Press, Cambridge, 2001.
[GL] S. Goldwasser and L. Levin, Fair Computation of General Functions in Presence of Immoral Majority,

Proc. CRYPTO ’90, pages 77–93, 1990.
[GM] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. Systems Sci., vol. 28, no. 2, pages

270–299, April 1984.
[GMW] O. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental Game, Proc. 19th STOC, pages

218–229, 1987.
[K] E. Kushilevitz, Privacy and Communication Complexity, SIAM J. Discrete Math., vol. 5, no. 2, pages

273–284, 1992. Preliminary version in Proc. 29th FOCS, 1989.
[KKMO] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and Completeness in Private

Computations, SIAM J. Computing, vol. 29, pages 1189–1208, 2000. Preliminary versions by Kilian
in Proc. 23rd STOC, 1991, and by Kushilevitz, Micali, and Ostrovsky in Proc. 35th FOCS, 1994.

[MR] S. Micali and P. Rogaway, Secure Computation, unpublished manuscript, 1992. Preliminary version
in Proc. CRYPTO ’91, pages 392–404, 1991.

[P] T. P. Pedersen, Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing, Proc.
CRYPTO ’91, pages 129–140, 1991.

[PSW] B. Pfitzmann, M. Schunter, and M. Waidner, Secure Reactive Systems, IBM Technical Report RZ
3206 (93252), May 2000.

Adaptive versus Non-Adaptive Security of Multi-Party Protocols 207

[PW] B. Pfitzmann and M. Waidner, A General Framework for Formal Notions of Secure Systems,
Hildesheimer Informatik-Berichte, ISSN 0941-3014, April 1994.

[S] A. Sahai, Non-Malleable, Non-Interactive Zero Knowledge and Adaptive Chosen Ciphertext Secu-
rity, Proc. 40th FOCS, pages 543–553, 1999.

[Y1] A. Yao, Protocols for Secure Computation, Proc. 23rd FOCS, pages 160–164, 1982.
[Y2] A. Yao, How to generate and exchange secrets, Proc. 27th FOCS, pages 162–167, 1986.

