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Abstract. We present a fast algorithm for building ordinary elliptic curves over finite
prime fields having arbitrary small MOV degree. The elliptic curves are obtained using
complex multiplication by any desired discriminant.
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1. Introduction

Beginning with the independent works of Sakai et al. [30] and Joux [23], the Weil and
Tate pairings on elliptic curves have recently found numerous applications in the design
of cryptosystems, such as identity-based encryption [4], short signatures [5], identity-
based signatures [8], [22], [29], [30], non-interactive key distribution [12], [30] and
authenticated key agreement [34].

In order to implement such protocols, one needs curves over which the Weil or Tate
pairings can be efficiently computed, i.e. curves with a sufficiently small MOV degree.
Supersingular curves have received particular attention in this context since it has been
proved [25] that their MOV degree k is always less than or equal to 6. However, the
security of pairing-based protocols depends on the hardness of the discrete logarithm
problem in an extension of degree k of the base field of the curve. Thus, k must not be
too small, and it is of interest to generate ordinary elliptic curves with a k of moderate
size, but which is not restricted to {1, 2, 3, 4, 6} (in [5] Boneh et al. leave it as an open
problem to build curves with k = 10).

∗ The third author is on leave from the French Department of Defense, Délégation Générale pour
l’Armement.
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In [27] Miyaji et al. give explicit conditions to obtain ordinary curves with specified
k. Their method leads to solving a Diophantine equation whose genus increases with the
value of Euler’s totient function ϕ(k). They treat the case where ϕ(k) = 2 (that is k = 3,
4 and 6) by showing that the Diophantine equation reduces to Pell’s equation.

Recently Barreto et al. [3] proposed two methods of construction. Their curves have
complex multiplication by a prescribed quadratic order of discriminant −D. The first
method is for D = 3 only, and k of the form 3i 2 j k ′, k ′ a prime greater than 3. The curves
they obtain have a subgroup of large prime order �. If k is very large, then the ratio of
log p/log � is close to 1. The second method is more general and works for any D. It
can be shown that the ratio log p/log � for the produced curves is close to 2.

We present an alternative method for achieving the same goal, but using a different
parameterisation of (p, �). Our idea is to use maximal curves built via complex multipli-
cation. Our curves also suffer from the fact that the ratio log p/log � is usually 2. Since
their security will depend on � and not on the cardinality of the curve, the use of such
curves in existing protocols will often result in an increase in the size of the ciphertexts
or signatures generated.

Section 2 contains classical facts on complex multiplication. In Section 3 we present
our approach, and we provide numerical examples in Section 4.

2. Building an Elliptic Curve with Given Cardinality

We briefly summarise the relevant elements of complex multiplication needed for our
purpose. References are [10] and [33]; [1] and [24] provide a more computational
perspective.

Suppose we want to build an elliptic curve E/Fq having q + 1− t points, for given q
and t satisfying the Hasse bound |t | ≤ 2

√
q . If we write � = t2 − 4q = −g2 D, where

−D is a fundamental quadratic discriminant, then the curve E can be obtained as a curve
having complex multiplication by−D. The construction, as described for instance in [1]
and [15], has a time complexity depending on the class number h(−D), which grows as
D1/2+o(1) by Siegel’s theorem [32].

To our knowledge, the currently best algorithms, using the constructions of [1], [15],
and [13], can handle class numbers of up to a few thousands (our implementation com-
putes a curve with associated class number h(−D) = 5000 in about 40 min on a
Pentium III clocked at 800 MHz).

Keeping the class number h(−D) of manageable size amounts to keeping D relatively
small, and this imposes serious restrictions on the choice of q and t . One possible
approach, which we adopt here, is directly to force� = t2 − 4q to be of small absolute
value. To obtain � of reasonable size, we need |t | = �2√q�. To see why, write |t | =
2
√

q − u to obtain

t2 − 4q = −4u
√

q + u2.

As already observed in [28], for u ≥ 1 the class number associated to t2−4q then grows
as O(q1/4).

The only possible alternative to having |t | = �2√q� is to force � to have a large
square factor, so that D may be small even if |�| is large. Barreto et al. have suggested
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such an approach in [3]. Their technique leads to rather small values of t , so that they
end up with curves close to the centre of the Hasse interval instead of on its border.

3. Curves with Small MOV Degree

3.1. The Problem

Let E/Fq have cardinality m and let � be a prime factor of m such that � � q − 1.
The MOV degree of E/Fq relative to � is defined to be the smallest integer k such that
� | qk − 1, i.e. it is the order of q in the group F×� . A theorem by Balasubramanian and
Koblitz [2] then states that E/Fqk contains �2 points of �-torsion, which implies that the
Weil pairing e� is defined on the following groups:

e�: E/Fqk [�]× E/Fqk [�]→ F×qk .

Alternatively, the computationally preferable Tate pairing can be defined on the same
groups.

For cryptographic applications, the prime � should be large (typically the largest factor
of m), and from now on we omit � when talking about MOV degrees. For the pairing
to be efficiently computable, the MOV degree k should be relatively small since the
algorithm used to compute pairings, due to Miller [26], runs in time O(M(qk) log �),
where M(qk) is the time needed for a multiplication in Fqk .

Now since k is the order of q modulo � it must divide �− 1, and in this case, the prob-
ability of q having order k should heuristically be proportional to k/(�− 1). This means
that for a random curve, k is unlikely to be small, and we have to force it in some way.

Writing m = q + 1− t , the problem we have to solve is the following: find integers
(�, q, t) such that � is prime, q is a power of a prime, � | q + 1 − t and q is of order k
modulo �.

3.2. Our Solution

We suppose k is fixed and explain how we can achieve examples of curves having this
value of k as MOV degree.

Any prime power q can be written uniquely as

q = n2 + a with n ≥ 1 and 0 ≤ a ≤ n

or

q = n2 + n + a with n ≥ 1 and 1 ≤ a ≤ n.

As discussed in Section 2, we build curves via the CM method with |t | = �2√q�, that
is,

t = ±2n for q = n2 + a

and

t = ±(2n + 1) for q = n2 + n + a,

respectively.
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To simplify the exposition, we assume for the time being that q = n2+a and t = +2n,
and come back to the other cases further below. Then m = q + 1 − t = (n − 1)2 + a,
which should be divisible by the unknown �. Thus, the order of q modulo � being k is
equivalent to

	k(t − 1) ≡ 0 mod �,

where 	k is the kth cyclotomic polynomial, and k | �− 1. (This last condition ensures
that the order of q is indeed k and not a proper divisor of k. Indeed, it implies that there are
ϕ(k) elements of order k modulo �, which must be given by the roots of	k . In practice,
the condition will usually be fulfilled automatically, see the examples of Section 4.)

Combining these equations, we see that n, a and � are related by{
	k(2n − 1) ≡ 0 mod �,
(n − 1)2 + a ≡ 0 mod �.

(1)

Conversely, any natural numbers n, a and � satisfying this system and such that � is
prime, q = n2 + a is a prime power and k | �− 1 lead to a solution of our problem.

To eliminate one of the three unknowns, we consider the polynomials Pk(X) =
	k(2X − 1) and Q(X, a) = (X − 1)2 + a and their resultant

Rk(a) = ResX (Pk(X), Q(X, a)).

The first few values of Rk(a) are given in Table 1.

Proposition 3.1. Rk(X) ∈ Z[X ] is irreducible. Its leading term is 4ϕ(k)Xϕ(k). Its con-
stant coefficient is p2 if k is a power of the prime p and 1 otherwise. The content of Rk

is 1, unless k is a power of 2, in which case the content is 4.

Proof. Suppose that k > 2, since for k = 2 the assertion is trivial. Writing the resultant
of a polynomial f with leading coefficient c and a polynomial g as cdeg g

∏
α root of f g(α)

(see for instance [18]), we obtain

Rk(X) = (2ϕ(k))2
∏(

X +
(
ζ i − 1

2

)2
)
,

Table 1. Values of the resultant Rk .

k Rk(a)

2 4a + 4
3 16a2 + 12a + 9
4 16a2 + 4
5 256a4 + 320a3 + 160a2 + 25
6 16a2 − 4a + 1
7 4096a6 + 7168a5 + 5376a4 + 2240a3 + 784a2 − 196a + 49
8 256a4 + 256a3 + 128a2 − 32a + 4
9 4096a6 + 6144a5 + 2304a4 + 192a3 + 576a2 − 108a + 9

10 256a4 + 64a3 + 96a2 − 16a + 1
11 1048576a10 + 2883584a9 + 3604480a8 + 2703360a7+

1351680a6 + 473088a5 + 123904a4 + 17424a2 − 2420a + 121
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where ζ is a primitive kth root of unity and the product is taken over the integers
i ∈ {1, . . . , k − 1} coprime to k. In particular, Rk is of degree ϕ(k), and all of its
coefficients, except possibly for the constant one, are divisible by 4. Furthermore, its
constant coefficient is the square of the norm of ζ − 1, which equals 1 or p (see [11])
according to the condition given in the proposition.

Let α = ((ζ − 1)/2)2 be a root of Rk(X). Then either α still generates Q(ζ )/Q, in
which case Rk is irreducible, or Q(α) is a subfield of index 2 of Q(ζ ). In the latter case,
α is of degree ϕ(k)/2 over Q, whence there exists a monic polynomial P ∈ Q[X ] of
degree ϕ(k)/2 such that P(4α) = P((ζ − 1)2) = 0. Since P((X − 1)2) is monic and of
degree ϕ(k), it follows that

	k(X) = P((X − 1)2).

However, the coefficient of Xϕ(k)−1 of P((X − 1)2) is−ϕ(k), while the same coefficient
of 	k is the negative sum of ϕ(k) roots of unity different from 1 and −1 for k > 2, a
contradiction.

To obtain a solution to (1), we now fix values of a. Notice that this leads to � =
t2 − 4q = −4a = −g2 D with some fundamental discriminant −D, and a must be
chosen such that D is not too large. We try to factor Rk(a) and to obtain sufficiently
large prime factors �. If we succeed, we compute gcd(Pk(X), Q(X, a)) mod � to get
n. Then we test whether n2 + a is a prime (obtaining a non-trivial prime power seems
hopeless), in which case we build the CM curve over Fq having complex multiplication
by the fundamental discriminant −D.

The other possible choices for q and the sign of t lead to the following systems:


	k(−2n − 1) ≡ 0 mod �,
(n + 1)2 + a ≡ 0 mod �,

t = −2n,
q = n2 + a,
� = −4a.

(2)




	k(2n) ≡ 0 mod �,
n(n − 1)+ a ≡ 0 mod �,

t = +(2n + 1),
q = n2 + n + a,
� = −4a + 1.

(3)




	k(−2n − 2) ≡ 0 mod �,
(n + 1)(n + 2)+ a ≡ 0 mod �,

t = −(2n + 1),
q = n2 + n + a,
� = −4a + 1.

(4)

The corresponding resultants have the same properties as found for Rk in Proposi-
tion 3.1, and the algorithm is completely analogous.
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3.3. Algorithm

Our procedure takes as input k and a security parameter L , corresponding to the minimal
size of an elliptic curve subgroup for which the discrete logarithm problem is computa-
tionally intractable. Further input is a listD of absolute values of suitable discriminants.
This list could simply consist of all small quadratic discriminants, or additional con-
straints such as a lower bound for the class number (see [17]) or a smoothness property
of the class number (see [21] and [14]) could be taken into account. It is also possible to fix
the discriminant completely. Again, we formulate the algorithm for the case q = n2+ a
and t = +2n only; the other three cases are obtained in a straightforward manner.

procedure SMALLK(k, L ,D)
for D ∈ D do

for g := gmin · · · gmax such that 4 | g2 D do
1. let a := g2 D/4;
2. factor Rk(a);
3. if Rk(a) has a prime factor � ≥ L such that k | �− 1 then

3.1 compute a root n of gcd(Pk(X), Q(X, a)) mod �;
3.2 for s := 0 · · · smax do

if a ≤ n + s� then
– let p := (n + s�)2 + a;
– if p is prime then compute E ;

Compared with the straightforward algorithm based on the observations of Section 3.2,
the procedure above contains two refinements:

• We generally do not start at g = 1; as a matter of fact, since Rk(a) ∼ (4a)ϕ(k) =
(g2 D)ϕ(k) and Rk is increasing, we first compute the minimal gmin such that Rk(a) ≥
L . In order to keep Rk(a) close to L , it may be necessary to impose an upper bound
gmax.
• Any number congruent to n modulo � may be used in its place. This is why we

replace n in Step 3.2 by n + s� for small values of s to obtain a higher yield of
suitable elliptic curves. Notice that in general, n will be of the order of � for s = 0,
so that the bitsize of p is about twice that of �. For other values of s, the field order
p will be larger by about 2 log2(s + 1) bits, which is negligible for small values
of s. Moreover, in situations with a low density of suitable elliptic curves, the higher
yield induced by having smax > 0 may lead to an overall smaller value of p, see the
example for k = 50 in Section 4.

If s is set to negative values, then the curve trace t will be on the opposite border
of the Hasse interval. Thus, it is possible to treat the two cases of positive and
negative trace at the same time.

Notice, by the way, that we do not make use of the fact that � is prime in Step 3.1. Indeed,
the algorithm can be used to obtain curves of given MOV degree also for composite �.

3.4. Heuristics

Let us sketch a rough analysis of our algorithm. We consider the situation where we
expect Rk(a) to be “as prime as possible”, that is, we look for values Rk(a) that are



Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields 85

prime or, if k is a power of 2, four times a prime; the cofactor 4 in the latter case cannot
be avoided according to Proposition 3.1. Heuristically, we assume that the values of the
polynomial Rk behave as random numbers of the same size. Then, if D and g are chosen
in a range where the values of Rk are around L , the probability of obtaining an (almost)
prime value is proportional to 1/log L . The integer n has a bit length of about 2 log2 L ,
and the chances of p being prime are proportional to 1/log L , too. This means that we
should find suitable elliptic curves after O(log2 L) trials.

4. Numerical Examples

To demonstrate our ideas, we have implemented the search for suitable CM parameters
of elliptic curves in MAGMA [9]. The corresponding CM curves Y 2 = X3 + AX + B
were then constructed with our own C++ program relying on GMP [19], MPFR [20], MPC

[16] and NTL [31]. If A is required to be of a special form (e.g. A = −3), this may be
achieved via isomorphisms or isogenies as explained in [7]. For each curve, we provide
the corresponding class number h, as well as the running time r for the curve construction
in seconds, measured on a Pentium 4 running at 1.8 GHz.

Factoring Rk(a) in Step 2 of the algorithm could be done with a large sieve, reminiscent
of the NFS algorithm. In practice, we content ourselves with using a bound B and trial
division to find values of Rk(a) which are composed of small primes below B and a
large prime cofactor. In our experiments, we chose B = 104.

We first provide a few examples for small prime values of k. For such small cases, it is
not necessary to loop over D and g; instead, we may directly loop over a, as the resulting
discriminants will be sufficiently small. Also, we may put smax = 0. We chose L = 1018.
Running the algorithm for p = n2+a and t = +2n for the first 10,000 possible values of
a, starting with the minimal value a = 7906, yields ten suitable parameter combinations
in 13 s. The first curve (for k = 5) is given by

a = 7984,

D = 499,

h = 3,

p = 91600022435668881297760819108273609,

� = 1040375393410195481,

A = 17400269694421412435880788357515251,

B = 81201258573966591367443679001737838,

r = 0.1 s.

For k = 7 and looking for curves with p = n2 + a and t = −2n, the first 10,000
values of a yield 33 suitable parameter combinations in 21 s. The last resulting curve is
given by

a = 10066,

D = 40264,

h = 72,
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p = 68232381434104442417727981407880784676003947,

� = 13532331455189147830139,

A = 12057707403882113978194713694285015015350790,

B = 30782598747289556791372469598816938235568509,

A = −3,

B = 62625802927525881688245544206408777151296438,

r = 0.6 s.

In the following, we provide examples of cryptographic size parameters. We choose
L = 2200. For k = 10, this yields a minimal value for a of 281474976710700. This
is by far too large to serve as a complex multiplication discriminant. Instead, we fix a
discriminant−D, say as the first discriminant of class number h = 4096, D = 4599839,
and loop over g in the range from gmin = 15646 to gmax = gmin+ 100000 to find curves
of the form p = n2 + a and t = +2n. As before, we put smax = 0. This yields three
curves after 190 s, the first of which is computed as follows:

a = 2851946178390000 = 249002 · 4599839,

D = 4599839,

h = 4096,

p = 26583877300690675075645839413139198533414446909174\
08606124019858001080573263503000190636119494020100\
36257572717554080849369 (407 bits),

� = 25621456065075422729511299019214902729542591998892\
393498858941 (204 bits),

A = 11200689934606448746623138995223367963405096267317\
28974086005718562911005540411220873407758621459544\
80380649393278070544308,

B = 23867609517085989149655010588871027980606985661378\
66582586490287914389875058399524997485380753096941\
4018710731376941443485,

r = 376 s.

The small yield of the algorithm in this case is an indication that it will be beneficial
to vary our remaining degree of freedom, the value of smax. Indeed, allowing s to take
values up to 10, we find for the same discriminant and the same range of g in about
the same computing time altogether 23 parameter combinations for smax = 5 (resp. 52
combinations for smax = 10).

For ϕ(k) large, it may become impossible to keep � close to L . For instance, if
4ϕ(k) � L , then all possible values of a will yield huge values of Rk(a), for which
finding prime factors of size L will be very difficult. For the same reason, one should not
fix a too large discriminant. However, the phenomenon does not occur even for medium
values of k that are beyond the practical range if the discriminant is not chosen too large.
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We provide as an example the case k = 50, where again we loop over the first
10,000 possible values of a. We let L = 2200, smax = 0 and look for curves of the form
p = n2 + n + a, t = +2n + 1. Then we find six parameter combinations in about 67 s.
The one with the smallest value of p is obtained for a = 697; it has p of 457 bits and �
of 229 bits. So while p is still about twice as large as �, we lose more than a factor of 2
with respect to our target L of 200 bits. Again, we may make use of the additional degree
of freedom and let smax = 10. In 88 s this yields 29 suitable parameter combinations, the
first of which (for a = 381) has p of 410 bits, � of 202 bits and s = 9. So while we lose in
the ratio log p/log �, which becomes a bit larger than 2, we obtain an absolutely smaller
value of p while keeping our elliptic curve security at the level of 200 bits. Another
possible approach of improving the yield of the algorithm, namely increasing the trial
division bound B, does not turn out to be very successful. With smax = 10 as before, but
B = 106 instead of B = 104, the number of curves found certainly becomes larger and
reaches 43. However, the running time also increases, and very much, to 2200 s.

5. Conclusions

We have described a method yielding elliptic curves E defined over a prime field Fp

having a given MOV degree k. Our curves have subgroups of prime order �, of size
O(
√

p). Roughly speaking, a secure � = 2200 implies a field of size 2400. Note that
we implicitly assume that our way of constructing E is not dangerous, hoping that CM
curves are not weak and that solving the discrete logarithm problem in an elliptic curve
subgroup of size � within a group of size �2 is not easier than in an elliptic curve group
of size �.

In any case, we doubt that the general problem of constructing elliptic curves over a
fixed field Fp and of fixed prime group order m can be solved.
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