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Abstract. The Weil pairing, first introduced by André Weil in 1940, plays an important
role in the theoretical study of the arithmetic of elliptic curves and Abelian varieties. It
has also recently become extremely useful in cryptologic constructions related to those
objects. This paper gives the definition of the Weil pairing, describes efficient algorithms
to calculate it, gives two applications, and describes the motivation to considering it.
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1. Introduction

The security of the Diffie–Hellman key exchange protocol (and closely related protocols,
such as El-Gamal) are closely related to the difficulty of the discrete logarithm problem
in the multiplicative group of a finite field. The author [18] and Koblitz [13] suggested
using the group of points on an elliptic curve in these protocols, instead of the multi-
plicative group. If one abstracts these protocols, it is easy to see that one can replace the
multiplicative group with any group whose group law is easy to compute. A large class
of such groups is the class of algebraic groups. These are groups which are subsets of
an n-dimensional space over a field, whose group law is given by rational functions in
the coordinates. There are two basic classes of algebraic groups—the “affine” groups
(subgroups of matrix groups) and “projective” groups. An elliptic curve is the simplest
example of the latter. These two classes have quite different qualitative behaviors. One
particular feature of elliptic curves defined over the rational numbers (or over a number
field) was used to show that the index-calculus attacks of Adleman et al. on the discrete
logarithm problem could not be easily generalized to elliptic curves (see [18] for details).

Elliptic curves (and their higher-dimensional generalization—“Abelian varieties”)
possess another feature which multiplicative groups lack: the Weil pairing on points
of order n. This pairing—introduced by Weil in 1940 [22]—has been of essential use
in the theory of elliptic curves (e.g., see [20]). The author [17] in 1985 gave a fast
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algorithm for calculating this pairing, and applied it to the problems of calculating the
group structure of an elliptic curve over a finite field, and the reduction of the elliptic curve
discrete logarithm problem to the multiplicative group discrete logarithm problem (see
also [16]). Subsequently other authors have applied it to the Decision Diffie–Hellman
problem (DDH) on elliptic curves, and to the construction of identity-based encryption
(IBE) using elliptic curves. In addition the closely related Tate pairing on elliptic curves
has been used for the reduction of the ECDL to the DL problem [6].

Problem 1 (DL). Given a finite group G, written multiplicatively, and an element
1 �= P ∈ G, the discrete logarithm problem (DL) for 〈P〉 is:

Given the element Pa ∈ 〈P〉 find a mod ord(P). If we write the group law
additively this becomes, given the element a P ∈ 〈P〉 find a mod ord(P).

When the group G is E(K ) for some elliptic curve E over a finite field K (see below),
we refer to the DL problem as the Elliptic Curve Discrete Logarithm problem (ECDL).
Other related problems are the Diffie–Hellman Problem and the Decision Diffie–Hellman
Problem, whose cryptographic uses are described in [3].

2. Elliptic Curves

For our purposes1 an elliptic curve E/K is given by an equation

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6, (1)

where a1, . . . , a6 ∈ K , whose discriminant (a particular polynomial in the ai ) does not
vanish.

This is called the Weierstrass form for an elliptic curve. If L is a field containing K ,
the set E(L) is the set of solutions of (1) with coordinates in L along with the point
at infinity which we denote by O (since it will be the 0 for the group law). The set of
points E(L) forms a group under the “chord and tangent process.” If P, Q ∈ E(L) we
draw the line passing through P and Q (or the line tangent to the curve at P if P = Q).
This line must intersect the curve in precisely three points (because the curve is cubic).
Denote the third point of intersection by P ∗ Q. We then define P + Q = (P ∗ Q) ∗ O .
The operation P �→ P ∗ O is accomplished by mapping (x, y) �→ (x, a1x + a3 − y).
Note that if P, Q ∈ E(L) then so is P + Q. As something of a miracle, the operation
(P, Q) �→ P + Q is associative. The operation of addition gives us two families of
rational maps from the curve to itself:

τP : Q �→ P + Q,

[n] : Q �→ nQ,

where P is a point on E , n is an integer, and nQ denotes the sum of n copies of Q.

1 The most general definition of an elliptic curve over a field K is a curve of genus 1 together with a rational
point, both defined over K . Any such curve is birationally equivalent to a curve in generalized Weierstrass
form. In particular, it includes other useful models such as the Hessian model.
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3. The Weil Pairing

The points of finite order on an elliptic curve are two-dimensional. More specifically,
suppose that K is a field of characteristic p, which is perfect (i.e., K p = K ),� is a fixed
algebraic closure of K , and n is a positive integer, relatively prime to p. As an Abelian
group, we have

E[n](�) ∼= Zn × Zn,

where Zn denotes the cyclic group of order n. The Weil pairing is a non-degenerate inner
product defined on points of E[n](�). Unlike the more familiar inner product defined
on vector spaces, it is alternating (i.e., for all v we have 〈v, v〉 = 0). We now give more
details.

In order to define the Weil pairing we need a number of standard definitions from the
theory of curves (see [7] or [20] for details). For the reader’s convenience we recall the
results that we need in Appendix B. In the following we denote by � an algebraically
closed field which contains any of the other fields that we work with. If G is a commutative
algebraic group, we denote by G[n] the subgroup of G of elements whose order divides
n. We denote by µn the algebraic group of nth roots of unity (this isGm[n] whereGm is
the multiplicative group).

Definition 1. The Weil pairing on an elliptic curve E defined over a field K is a family
of maps en each defined over K , one for each positive integer n relatively prime to p (=
characteristic of K ):

en : E[n]× E[n] −→ µn (2)

with the following properties:

1. Linearity: If P, Q, R ∈ E[n], then

en(P + Q, R) = en(P, R)en(Q, R),

en(P, Q + R) = en(P, Q)en(P, R).

2. Alternating: If P ∈ E[n], then en(P, P) = 1. This, along with linearity, implies
that if P, Q ∈ E[n], then en(Q, P) = en(Q, P)−1, which is usually called skew-
symmetry or anti-symmetry.

3. Non-degeneracy: If O �= P ∈ E[n](�), there exists Q ∈ E[n](�) such that
en(P, Q) �= 1.

4. Compatibility: If P ∈ E[mn] and Q ∈ E[n], then emn(P, Q) = en(m P, Q).
5. Galois action: Let P, Q ∈ E[n] and σ ∈ Gal(�/K ), then

en(P, Q)σ = en(P
σ , Qσ ).

4. Divisors and Weil Functions

We now give the formula for the Weil pairing, from the original paper of Weil, and
then discuss “Weil Functions” (an ingredient in the Weil pairing) and their efficient
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calculations. In Section 4.2 we give the proofs that the definition given below is well-
defined and that it has the asserted properties.

The Weil pairing is first defined on divisor classes of degree 0, and since every such
divisor class on E has a unique representative of the form [P] − [O], we transfer that
definition to points on the curve.

Definition 2. If C is a curve, D a divisor (see Definition 25) on C , and f ∈ K (C) such
that supp(D) ∩ supp(div( f )) = ∅, then we define f (D) :=∏

P∈C f (P)vP (D).

Note that if D has degree 0, then f (D) depends only on div( f ), since if we multiply
f by a constant b, we multiply f (D) by

∏
P∈C bvP (D) = 1.

Definition 3 (Weil Pairing). Let n > 1 be an integer and let D1,D2 be divisors on an
elliptic curve, E , with disjoint supports, such that nD1, nD2 ∼ 0. This means that there
are functions f1 and f2 such that nDi = div( fi ) for i = 1, 2. We define the Weil pairing

en(D1,D2) = f1(D2)

f2(D1)
. (3)

In Section 4.2 we show that the value en(D1,D2) depends only on the divisor classes
of D1 and D2.

We also need

Proposition 1 (Weil Reciprocity). If C is a curve and 0 �= f, g ∈ K (C) have disjoint
supports, then

f (div(g)) = g(div( f )).

Proof. See Exercise 2.11 of [20].

In order to calculate en(D1,D2) we do not need to construct f1 and f2 explicitly as
rational functions in x and y. We only need to be able to evaluate them at points in the
support of the Di . It is this observation that is at the heart of the fast algorithm for the
Weil pairing.

A classical result is

Theorem 1 (Abel–Jacobi). If E is an elliptic curve and D = ∑
j n j [Pj ] is a divisor

of degree 0, then D is principal if and only if
∑

j n j Pj = O (using the addition on the
elliptic curve).

The forward implication is due to Jacobi, and the backward implication is due to Abel.

Below we give a constructive proof of this theorem, by means of an efficient algorithm.
Note the following corollary.

Corollary 1. If E is an elliptic curve and 0 �= D is a divisor of degree 0 on E , then
there is a unique point P on E such that D ∼ [P] − [O]. This gives a one-to-one
correspondence between divisor classes of degree 0 and points on the elliptic curve.
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4.1. Explicit Constructions

In order to calculate the Weil pairing using (3) we need to be able to evaluate quickly
things like f (D), where div( f ) = n([P]−[O]). We now describe an algorithm for doing
that. Along the way we give a constructive version of the Abel part of the Abel–Jacobi
theorem.

From now on when we are given an elliptic curve E we fix a uniformizer u P at the
point P . There are many ways to do this. One is to fix a uniformizer uO at point O—the
0 for the group—and then set u P := uO ◦ τ−P . When the elliptic curve is in Weierstrass
form we may take uO = −y/x . In that case we may also take u P := x − x(P) except
when the point P has order 2, in which case we may take u P := y − y(P) (note: this
is not the same choice as described in the previous sentence). Once we have fixed a
uniformizer at P , for any function f we may talk about ltP( f ) the leading term of the
Laurent series for f in u P . If f has neither a zero nor a pole at P , then ltP( f ) = f (P).
Note that ltP( f g) = ltP( f ) ltP(g).

Definition 4. A non-zero function f on E is normalized if the leading coefficient of
f as a Laurent series in uO is 1.

Note that if D is a principal divisor there is exactly one normalized function f such that
div( f ) = D. Also, the product of two normalized functions is normalized. Subsequently
all of the functions on E that we consider are normalized.

The goal is to calculate the values of a function f such that div( f ) = n([P]− [O]). We
build up such an f inductively by constructing the function fm,P satisfying div( fm,P) =
m[P]− [m P]− (m − 1)[O], for suitable m < n.

Proposition 2. Let E be an elliptic curve and let P, Q ∈ E . Let L P,Q be the normalized
function, such that L P,Q = 0 is the equation of the line passing through P and Q (or
the equation of the tangent line to the curve if P = Q). Then

div(L P,Q) = [P]+ [Q]+ [−(P + Q)]− 3[O].

Proof. Straightforward from the definition of addition.

Definition 5. If P, Q ∈ E , then define

gP,Q := L P,Q

L P+Q,−(P+Q)
.

Lemma 1. We have

div(gP,Q) = [P]+ [Q]− [P + Q]− [O]. (4)

Definition 6. If P ∈ E , then define f0,P = f1,P = 1, the constant function 1. Induc-
tively, for n > 0, define

fn+1,P := fn,P gP,n P (5)
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and

f−n,P := 1

fn,P gn P,−n P
. (6)

By calculating divisors, it is straightforward to see that

Lemma 2. Let P, Q ∈ E and let m, n be integers. Then we have

div( fn,P) = n[P]− (n − 1)[O]− [n P], (7)

fm+n,P := fm,P fn,P gm P,n P , (8)

fmn,P = f n
m,P fn,m P = f m

n,P fm,n P . (9)

We see that with the property given in (8), calculation of fn,P(Q) resembles expo-
nentiation. We can use any of the fast exponentiation methods (see [8]) to calculate this
value (with some care), and also use (9) sometimes to speed things up further. We thus
shall see that we can calculate fn,P(Q) in O(log n) point additions on E(K ).

In [5] Frey et al. interpret the above algorithm for evaluating fn,P(Q) in terms of the
“theta groups” of Mumford. In concrete terms, for each divisor D on E(K ) of degree 0
one can define a group law on K× × E(K ), by

(a1, P1) · (a2, P2) := (a1a2gP1,P2(D), P1 + P2).

It is not hard to see that this does define a group law, with (1, O) as the unit (provided
that O, P1, P2, P1 + P2 are not in the support of D), and

(a, P)−1 = (a−1gP,−P(D)
−1,−P).

Furthermore, by (5) we have

(1, P)m = ( fm,P(D),m P),

where we take D = [Q + R]− [R] for some R such that O, P �= Q + R, R. Thus the
calculation of fm,P(D) amounts to exponentiation in this group.

Definition 7. An addition–subtraction chain, A, is a sequence of positive integers,
1 = v0, v1, . . . , vt , and for each 0 < i ≤ t , integers 1 ≤ ri , li < i, and a sign εi = ±1,
such that vi = vri + εivli . The value of the addition–subtraction chain v(A) is vt . The
length of the addition–subtraction chain, �(A), is t . If the εi are all 1, then the chain is
called an addition chain.

Addition chains and addition–subtraction chains are fundamental tools in fast methods
for exponentiation. A good recent survey of fast exponentiation methods is found in [8].
A fairly comprehensive reference for addition chains is Section 4.6.3 of [12].

Proposition 3. Given a positive integer n, there is an addition chain whose value is n
and whose length is ≤ 1+ 2 log2 n.
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Proof. We prove this by induction on n. If n = 1, there is a unique addition chain 1
whose value is n. If n > 1, set m = �n/2�. By induction, there is an addition chain whose
value is m, and whose length t ≤ 1+ 2 log2 m. If n is even, we can set rt+1 = lt+1 = t
and at+1 = n. If n is odd, set rt+1 = lt+1 = t , at+1 = 2m, rt+2 = 1, lt+2 = t + 1, and
at+2 = n. Thus we have constructed a new chain whose value is n and whose length is
at most 2 greater than the chain whose value is m. In other words, the length is

≤ 2+ 1+ 2 log2�n/2� ≤ 3+ 2 log2 n − 2 = 1+ 2 log2 n.

Algorithm 1.

• Input: An elliptic curve E over a field K , points O �= P, Q ∈ E(K ) and a positive
integer n.
• Output: The value of ltQ( fn,P). If P �= Q, O , then ltQ( fn,P) = fn,P(Q).
• Method:

— Fix an addition–subtraction chain A whose value is n.
— Set w1 = 1, L1 = P , i = 1.
— For i ← 1 to t do
∗ Set Lt = Lli + εi Lri , wt = wliwri ltQ(gLli ,εi Lri

) (here we use (7)).
— Return the value wt .

We can now use (8) and induction to give a constructive proof of

Theorem 2 (Abel). Let

D =
∑

i

ni [Pi ]

be a divisor of degree 0 on an elliptic curve E , such that∑
i

ni Pi = O.

Then D is a principal divisor.

Proof. Write D as ∑
i

ni [Pi ]−
(∑

i

ni

)
[O],

where Pi �= O . Now div( fni ,Pi ) = ni [Pi ] − [ni Pi ] − (ni − 1)[O]. So by subtracting
div(

∏
i fni ,Pi ) from D we get the divisor

∑
i ([ni Pi ]− [O]). We now use induction on the

number of terms of this sum. If there is exactly one term in the sum, then, by hypothesis,
n1 P1 = O , so there are not any terms. Thus we may assume that there are at least two
terms. However, [n1 P1]+ [n2 P2]−2[O]−div(gn1 P1,n2 P2)+div(gn1 P1+n2 P2,−n1 P1−n2 P2) =
[n1 P1 + n2 P2] − [O], so we may reduce the number of terms in the sum of the form
[ni Pi ]− [O] by at least one. This completes the induction.

The above proof shows, in fact, that if D ∼ 0, we may construct a function f so that
div( f ) = D, as a product of at most N = supp(D) factors of the form fn,P , and at most
2N factors of the form gP,Q .



242 V. S. Miller

Proposition 4. Given an elliptic curve E/K , a point P ∈ E[N ](K ), and an addition-
subtraction chainAwhose value is N , we may construct a function fN ,P given in factored
form: fN ,P =

∏�(A)
i=1 gai

Pi ,Qi
gbi

Qi ,−Qi
, where Pi = vri P and Qi = εivli P , and ai , bi are

integers satisfying |ai | < 2�(A)−i and |bi | ≤ �(A)− i .

Proof. Define the functions fi := fvi ,P , gi := gvri P,εivli P , and hi := g(εi−1)/2
vli P,−vli P . Then

using (8), with m = vri and n = εivli (also using (6)), we get

fi = fri f εi
li

gi hi .

This suggests that there are integer wi, j and zi, j such that

fi =
i∏

j=1

g
wi, j

j h
zi, j

j ,

for all i . By equating exponents we see that it would suffice if wi, j and zi, j satisfy

wi, j = wri , j + εiwli , j + δi, j ,

zi, j = zli , j + δi, j ,

w0, j = z0, j = 0.

From the first of these recurrences, we see that

|wi, j | ≤ |wri , j | + |wli , j | + 1.

By induction, using the fact that ri , li ≤ i − 1 and wi, j = zi, j = 0 when i < j , we see
that |wi, j | ≤ 2max(0,i− j) − 1. Also by induction 0 ≤ zi, j ≤ max(0, i − j). Finally we set
ai := w�(A),i and bi := (εi − 1)/2z�(A),i .

4.2. Proof of the Properties of the Weil Pairing

We have initially defined the Weil pairing only on divisors of degree 0. We show that
its value depends only on the divisor class of the divisor, and thus, since every divisor
class of degree 0 has a unique representative of the form [P]− [O], for some point P ,
we may transfer the definition to points on the elliptic curve.

Proposition 5. The value of the Weil pairing en(D1,D2) depends only on the divisor
classes of D1 and D2.

Proof. If f is a function such that D1 + div( f ) has disjoint support from D2, then

en(D1 + div( f ),D2) = f (D2) f1(D2)

f2(D1) f2(div( f ))

= f (D2) f1(D2)

f2(D1) f (div( f2))
= en(D1,D2).

We have used Weil reciprocity in the last line. The proof for D2 goes similarly.
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This means that we may extend the definition of en to all divisors D1,D2 such that
nDi ∼ 0, by translating by a principal divisor. In particular, if P, Q ∈ E[n], then we
may define

en(P, Q) := en([P]− [O], [Q]− [O]).

Because [P]− [O] ∼ [P + T ]− [T ] for any point T on E (by Abel–Jacobi), we only
consider divisors of the latter form when we translate to get disjoint supports.

We give an expression for the Weil pairing which is convenient to use:

Proposition 6. Suppose that T is a point on E different from P, Q, Q − P , and O .
Then [P]− [O] ∼ [P + T ] − [T ], and the supports of [Q]− [O] and [P + T ] − [T ]
are disjoint. We have

en(P, Q) = fn,Q(T )

fn,P(−T )

fn,P(Q − T )

fn,Q(P + T )
. (10)

Proof. From the definition of en we have

en(P, Q) = f1(Q)/ f1(O)

fn,Q(P + T )/ fn,Q(T )
,

where f1 is a function such that div( f1) = n[P + T ] − n[T ]. However, div( f1) =
div( fn,P ◦ τ−T ). Inserting this into the formula gives the asserted result.

Proposition 7. The Weil pairing satisfies the properties given in Definition 3.

Proof. Values in µn: Let D1,D2 have disjoint supports and satisfy nDi = div( fi ) for
i = 1, 2, where fi are functions. Then

en(D1,D2)
n = f1(nD2)

f2(nD1)
= f1(div( f2))

f2(div( f1))
= 1,

using Weil reciprocity.
Linearity: Let D1,D2,D3 have disjoint supports and satisfy nDi = div( fi ) for i =

1, 2, 3, where fi are functions on E . By definition

en(D1 +D2,D3) = f1 f2(D3)

f3(D1 +D2)
= en(D1,D3)en(D2,D3)

as asserted. The proof for the second coordinate goes the same way.
Alternating: By (10), for T �= O,±P ,

en(P, P) = fn,P(T )

fn,P(−T )

fn,P(P − T )

fn,P(P + T )
.

If T is a point of order 2, then T = −T . Substituting that in the above shows that
en(P, P) = 1. If n is odd, then such a T is always distinct from O,±P . If n is even,
then we must be in the odd characteristic case (we are not definining the Weil pairing
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when the characteristic divides n), so there are three points of exact order 2 in E[2](�).
At least one of them is �= ±P . We take that one as T .

Compatibility: Suppose that mn P = O , nQ = O , and div( f1) = mn([P] −
[O]), div( f2) = n([Q + T ]− [T ]), div( f3) = n([m P]− [O]). Then

emn(P, Q) = f1([Q + T ]− [T ])

f m
2 ([P]− [O])

and

en(m P, Q) = f3([Q + T ]− [T ])

f2([m P]− [O])
.

Note that

div( f3) = n([m P]− [O])

= n([m P]+ (m − 1)[O]− m[P])+ mn([P]− [O])

= div( f n
4 f1),

where div( f4) = [m P]+ (m − 1)[O]− m[P]. Thus

emn(P, Q) = f3 f −n
4 ([Q + T ]− [T ])

f m
2 ([P]− [O])

= f3([Q + T ]− [T ]) f4(− div( f2))

f m
2 ([P]− [O])

= f3([Q + T ]− [T ])

f2(div( f4)+ m([P]− [O]))

= f3([Q + T ]− [T ])

f2([m P]− [O])
.

Non-degeneracy:2 Let P ∈ E[n](�) satisfy en(P, Q) = 1 for all Q ∈ E[n](�). Fix
a point R ∈ E(�), R �= O, P . For any point X ∈ E(�) denote by ψX a function so that
div(ψX ) = n[X ]− (n−1)[R]− [Y ], where Y = nX − (n−1)R. Note that for any fixed
T ∈ E(�) the map X �→ ψX (T ) is a rational function of the coordinates of X , and so is
a function on E . There is a function f such that div( f ) = n([P]− [O]). Then we have

f (Y ) f (R)n−1 =
(

f (X)

ψX ([P]− [O])

)n

.

Namely, the right-hand side is

f n(X)

ψX (n[P]− n[O])
= f (n[X ])

ψX (div( f ))
= f (n[X ]− div(ψX )) = f ([Y ]+ (n − 1)[R]).

Let Q ∈ E[n](�), and let f2 be a function satisfying div( f2) = n([Q + X ]− [X ]). Note
that

div(ψX+Q)− div(ψX ) = n([X + Q]− [X ]) = div( f2),

2 Adapted from a proof on pp. 292–293 of [23].
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since n(X + Q) = nX . Thus

f (X + Q)

ψX+Q([P]− [O])
= f ([X + Q]− [X ])

f2([P]− [O])

f (X)

ψX ([P]− [O])

= en(P, Q)
f (X)

ψX ([P]− [O])
.

However, we have (by Corollary 4.11 on p. 77 of [20]) that if g is a function satisfying
g(X + Q) = g(X) for all Q ∈ E[n](�), then g = h ◦ [n] for some function h. Thus,
since, by hypothesis, en(P, Q) = 1 for all Q ∈ E[n](�), there is a function h such that

f (X)

ψX ([P]− [O])
= h(nX) = h(Y + (n − 1)R).

This shows that

f (Y ) f (R)n−1 = (h ◦ τ(n−1)R)
n(Y )

for all Y . Since R is constant, we have

n([P]− [O]) = div( f ) = n div(h ◦ τ(n−1)R).

Thus [P] ∼ [O], which shows that P = O .

Proposition 8. Let E/K be an elliptic curve, let P, Q ∈ E(K )[n], and let P �= Q.
Then

en(P, Q) = (−1)n
fn,P(Q)

fn,Q(P)
. (11)

Proof. We may see this by the following, heuristic, argument (which may be made
rigorous by using points in K ((z)), the ring of Laurent series in one variable over K ).

Consider (10),

en(P, Q) = fn,Q(T )

fn,P(−T )

fn,P(Q − T )

fn,Q(P + T )
.

Let T → O . (This is the heuristic, which is completely rigorous over R or C. To make
this into a proof we need to give it a meaning over fields of positive characteristic.) Then
the first factor goes to 1/(−1)n , giving the sign correction. The second factor goes to the
desired ratio.

In order to make the heuristic argument rigorous, we work in the field K ((z)) of formal
Laurent series in a transcendental element z. We define a point T ∈ E(K ((z))) by

x(T ) := 1

z2
− a1

z
− a2 − a3z + O(z2),

y(T ) := − 1

z3
+ a1

z2
+ a2

z
+ a3 + O(z),

we find that T := (x(T ), y(T )) is a point on E(K ((z))) (see p. 113 of [20]). Because
we know that en(P, Q) ∈ K , we see that it is enough to look at the leading terms of
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factors (which are Laurent series) in (11). We note that if u = −x/y (a uniformizer at
the point at∞), then

u ◦ [−1] = −u + O(u2).

The result is then true by inspection.

Warning: This formula is sometimes stated in the literature (e.g. [11] and [6]) but
omitting the factor of (−1)n . This is not correct!

See [4] for an alternative proof.

5. Reduction of Elliptic DL to Ordinary DL

Once we are armed with a fast algorithm for calculating the Weil pairing, we may try to
solve the discrete logarithm problem for an elliptic curve by the following strategy:

Given an elliptic curve E/K , where K is a finite field, calculate N = |E(K )| (say by
Schoof’s algorithm or one of the variants). If P ∈ E(K ) is used as a base for elliptic
discrete logarithms, find m := ord(P). Notice that P ∈ E(K )[m]. Find (by some
unspecified means) a point Q ∈ E(�)[m] such that ζ := em(P, Q) is a primitive mth
root of unity. Let L be the field generated by the coordinates of Q over K . Then the
map f from the cyclic group generated by P to L× given by R �→ em(R, Q) in an
injective homomorphism. So, to solve the equation r P = R for r is the same as solving
ζ r = f (R), which is the ordinary discrete logarithm problem. Notice that to use the
above approach we must perform arithmetic in the field L .

Thus, it would seem that the discrete log problem on elliptic curves would be no
harder than the discrete log problem on the multiplicative group of fields. This, however,
ignores the degree of the extension field L/K . One can be more precise: the best known
algorithm for solving the discrete logarithm problem in a finite field of cardinality q
has running time exp(c(log q)1/3(log log q)2/3), where c is an absolute constant. If the
extension field L/K is of degree d, it would have qd elements, so the time for solving
the elliptic curve discrete logarithm by the above outlined method would be at least

exp(c(log qd)1/3(log log qd)2/3).

If d ≥ c′ log2 q for some other absolute constant c′, then this quantity is ≥ q1/2 which
is the time for solving the discrete logarithm in any “generic group.” In fact, by Artin’s
conjecture on primitive roots (proved under the assumption of ERH [10]) one can show
that d will usually be of order q. In other words, the probability of this algorithm applying
to a random elliptic curve is negligible—and the possible applicability easy to check.
This analysis is made more precise in the paper by Balasubramanian and Koblitz [2].

There are particular cases, notably the case of supersingular elliptic curves, to which
this approach does give a reasonable algorithm, since in that case we have d ≤ 2 (except
when the characteristic is 2, in which case d ≤ 4, or 3, in which case d ≤ 6). See [16]
for details.
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6. The Group Structure of E(K)

In this section we discuss the group structure of the group E(K )where K is a finite field.
In particular we give a fast algorithm for determining the group structure which makes
essential use of the fast algorithm to calculate the Weil pairing.

The two basic ideas in this algorithm are the following:

1. Let G < E(K ) be a subgroup. Given a pair of points P, Q ∈ G, we can easily
decide whether or not these points generate the whole group G by means of cal-
culating a value of a Weil pairing. If such a pair does generate the group, then the
elementary divisors of the group also are determined by a calculation of the Weil
pairing.

2. The probability that a pair of random points (P, Q) ∈ G2 generates G is at least
C/log log|G|, where C > 0 is an absolute constant.

This yields a fast probabilistic algorithm by picking pairs of points in E(K ) randomly.
We now make these ideas more precise. We specify a straightforward algorithm first,

which requires that N = |E(K )| be completely factored. We then give a modification
of it which only requires the factorization of a divisor of N that, in most cases, is very
small.

Algorithm 2. Given input a finite field K and an elliptic curve E/K , output the ele-
mentary divisors, d,m, for the group E(K ). That is, find integers d and m such that

E(K ) ∼= Zd × Zdm .

1. Calculate N := |E(K )| by using any of the fast algorithms (such as Schoof [19],
SEA, HGSS, etc.).

2. Choose P, Q ∈ E(K ) uniformly and independently.
3. Find s := ord(P), t := ord(Q) (it is here that we need to know the prime factor-

ization of N ).
4. Set m := lcm(s, t), and calculate ζ := em(P, Q).
5. Calculate d := ord(ζ ). If md = N , output elementary divisors d and m, and

generators P and Q. If not, go back to step 3.

The above algorithm calculates both the elementary divisors for the group E(K ) and
a pair of generators. If one is only interested in the elementary divisors, then we can
avoid one of the most time-consuming parts of the above algorithm: determining the
complete prime factorization of N (this is necessary for computing orders of elements
in E(K ) and ζ ). We improve this by noting that it is only necessary to find the complete
factorization of gcd(N , q − 1).

Algorithm 3. Given input a finite field K and an elliptic curve E/K , output the ele-
mentary divisors, d, e for the group E(K ). That is find integers d and m such that

E(K ) ∼= Zd × Zdm .

1. Calculate N := |E(K )| by using any of the fast algorithms (such as Schoof, SEA,
HGSS, etc.).



248 V. S. Miller

2. Set r := gcd(N , q − 1). Decompose N = N0 N1 where gcd(N0, N1) = 1 and a
prime divides N0 if and only if it divides r .

3. Choose P, Q ∈ E(K )uniformly and independently. Write P ′ = N1 P, Q′ = N1 Q.
4. Find s := ord(P ′), t := ord(Q′) (it is here that we need to know the prime

factorization of r ).
5. Set m := lcm(s, t), and calculate ζ := em(P ′, Q′).
6. Calculate d := ord(ζ ). If md = N0, output elementary divisors d and N/d2. If not

go back to step 3.

We now prove that this algorithm correctly computes the elementary divisors of the
group E(K ), in expected time S(q) + F(gcd(q − 1, |E(K )|)) + O(log2 q), where
q = |K |, F(n) is the time to factor n, and S(q) is the time necessary to calculate
|E(K )|. Before doing this we specify and prove the correctness of a number of auxiliary
algorithms.

The following is the only known algorithm for calculating orders of elements in
finite groups. Its running time is usually dominated by the time to extract a complete
factorization for a multiple of the exponent of the group.

Algorithm 4. Given a finite group G, an integer M which is a multiple of the exponent
of G (i.e., gM = 1 for all g ∈ G), and an element a ∈ G, output ord(a).

1. Calculate a prime factorization of M = pe1
1 , . . . , per

r .
2. Set c := 1.
3. For i = 1, . . . , r do the following:
4. Let b = aM/p

ei
i . While b �= 1 set c := cpi ; b := bpi .

5. Output c.

Proposition 9. The above algorithm correctly calculates ord(a) in time F(M) +
O(log3 M)MG , whereMG is the time for multiplying two elements in the group G.

Proof. We have that r, e1, . . . , er ≤ log2 M , since all pi ≥ 2. The calculation of b is
step 4 takes O(log2 M − ei log2 pi ) multiplications in G by the usual “double and add”
method of exponentiation. For each i the iteration step in step 4 is performed at most
ei ≤ log2 M times, and the cost of each step is O(log2 pi )multiplications. Thus the cost
of each iteration on i is O(log2 M)multiplication in G. The correctness follows from the
fact that if we set bi = aM/p

ei
i , and fi satisfies

∑r
i=1 fi M/pei

i = 1, that
∏r

i=1 b fi

i = a,
ord(bi ) = ord(b fi

i ) | pei
i , and ord(a) =∏r

i=1 ord(bi ).

The following provides a useful decomposition of integers.

Algorithm 5. Given integers m, n ≥ 1, output integers n0, n1 ≥ 1 such that

• n = n0n1.
• gcd(n0, n1) = 1.
• gcd(r, n1) = 1.
• Any prime divisor of n0 divides r .
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1. Set n0 = 1, n1 = n.
2. Calculate s = gcd(r, n1). If s = 1 return n0, n1.
3. Set n0 = n0s, n1 = n1/s, and return to step 2.

Proposition 10. Algorithm 5 correctly computes the decomposition (n0, n1) given in
the specification in time O(log2 max(r, n)). The decomposition given is unique.

Proof. We first prove uniqueness. Suppose that n = n0n1 = n′0n′1 are two such de-
compositions. We may rewrite this as

n0

n′0
= n′1

n1
.

However, a prime which divides the numerator or denominator of the left-hand side
cannot divide r , but any prime which divides the numerator or denominator of the right-
hand side does divide r . The only possibility is then that both sides are 1.

Within each execution of step 3 there is at least one prime l | r , such that vl(n1) is
reduced by at least one. If vl(n) denotes the exact power of l dividing n, then

∑
l vl(n) ≤

log2 n. If s = 1 in step 2, then n0, n1 satisfy the exit conditions.

We also need to generate random points uniformly on E(K ). The method for doing
this is a special case of the following

Proposition 11. Let X, Y be finite sets, and let f : X −→ Y be a function. Suppose
that n is an integer such that n ≥ | f −1(y)| for all y ∈ Y . Further, suppose that we
are given an algorithm which will generate random uniform points on Y . The following
random algorithm will produce a uniform random point on X :

1. Repeat the following until an element is accepted: Generate a uniform y ∈ Y and
accept y with probability | f −1(y)|/n.

2. Choose an element of f −1(y) uniformly and output it.

The probability that the first step will accept some y is |X |/(n|Y |).

Proof. If y �= y′, then f −1(y) ∩ f −1(y′) = ∅. Thus n|Y | ≥ ∑
y | f −1(y)| = |X |.

This shows that the probability that some y will be chosen in one iteration of step 1 is
|X |/(n|Y |). Let A denote the event that x is output by the algorithm, let B be the event
that f (x) is chosen in step 1, and let C be the event that some y is chosen in step 1.
Then

Pr(A|C) = Pr(A|B)Pr(B|C)
= 1

| f −1( f (x))|
( | f −1( f (x))|

|X |
)
= 1

|X | .

If we have a curve C/K and a non-constant function f defined over K on C of degree
n, then we apply the above algorithm with X = C(K ), Y = P1(K ). For an elliptic
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curve in Weierstrass form, a convenient choice for f is the x-coordinate. This yields the
following algorithm:

Algorithm 6. Given a finite field K and an elliptic curve E/K , return a point P ∈ E(K )
chosen uniformly.

1. Choose x0 ∈ K ∪ {∞} uniformly.
2. If x0 = ∞, with probability 1/2 return the zero O of E(K ), otherwise return to

step 1.
3. If there is no y0 ∈ K such that (x0, y0) is on the curve, then return to step 1.
4. If there are two distinct roots to the quadratic in y, choose one of them uniformly,

say y0 and output (x0, y0).
5. If the quadratic has only one repeated root, x0, then with probability 1/2 output
(x0, y0), otherwise return to step 1.

Lemma 3. Let G be a finite Abelian group and let P, Q be independent generators
of G, with d = ord(P), e = ord(Q). Let N = lcm(d, e) be the exponent of G, and let
m | N . Then the subgroup G[m] is generated by d ′P and e′Q where d ′ := d/gcd(d,m)
and e′ := e/gcd(e,m).

Proof. Note that ord(d ′P) = gcd(d,m) is the largest integer dividing both m and d,
and similarly for ord(e′Q) = gcd(e,m). Thus if j P + k Q ∈ G is such that either j is
not divisible by d ′ or k is not divisible by e′, then ord( j P + k Q) does not divide m.

Corollary 2. Suppose that the subgroup of G < E(K ) satisfies G ∼= Zd × Zdd ′ .
Given P, Q ∈ G, set m = lcm(ord(P), ord(Q)) then ord(em(P, Q)) ≤ gcd(d,m) with
equality if and only if P and Q generate G[m].

Proof. Let P0, Q0 be an independent generating set for G where ord(P0) = d, and
ord(Q0) = dd ′. We set η := edd ′(P0, Q0) = ed(P0, d ′Q0), by compatibility. However,
since P0 and d ′Q0 are independent by non-degeneracy of the Weil pairing, we have
ord(η) = d . By the previous lemma the subgroup G[m] of elements of order dividing m
is generated by P1 := (d/gcd(d,m))P0 and Q1 := (dd ′/gcd(dd ′,m))Q0. We have

ηd/gcd(d,m) = edd ′(P1, Q0)

= egcd(d,m)

(
P1,

dd ′

gcd(d,m)
Q0

)

= egcd(d,m)

(
P1,

gcd(dd ′,m)

gcd(d,m)
Q1

)

by compatibility. Since dd ′ is the exponent of G, we have m | dd ′ so that gcd(dd ′,m) =
m. Define ζ := em(P1, Q1). Also by compatibility of the Weil pairing we have

ζ = egcd(d,m)

(
P1,

m

gcd(d,m)
Q1

)
.

Thus ζ = ηd/ gcd(d,m). So ord(em(P1, Q1)) = gcd(d,m).
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If P = a1 P1+b1 Q1 and Q = a2 P1+b2 Q1, we have, by linearity and skew symmetry,

em(P, Q) = ζ a1b2−a2b1 ,

which has order dividing ord(ζ ) = gcd(d,m), with equality if and only if gcd(a1b2 −
a2b1, gcd(d,m)) = 1. This last condition holds if and only if P, Q generate G[m].

Proposition 12. Let K be a finite field, let E/K be an elliptic curve, let G < E(K ) be
a subgroup, and let P, Q ∈ G. Then P, Q generate the group G if and only if

m ord(em(P, Q)) = |G|,

where m := lcm(ord(P), ord(Q)). Furthermore, if P, Q generate G, then G has prin-
cipal divisors ord(em(P, Q)),m.

Proof. Suppose that G ∼= Zd×Zdd ′ . Then m is a divisor of dd ′. Thus if m ord(em(P, Q))
= |G| = d2d ′, then ord(em(P, Q)) ≥ d. Because ord(em(P, Q)) is a divisor of
gcd(d,m) by the previous corollary, we see that we must have m = dd ′ and d =
gcd(d,m) = ord(em(P, Q)), so that d | m and P, Q generate G = G[m]. Con-
versely, if P, Q generate G, then dd ′ = lcm(ord(P), ord(Q)), since the latter quan-
tity is the exponent of the subgroup generated by P and Q. By the previous corollary
orddd ′(P, Q) = gcd(dd ′, d) = d .

6.1. The Probability that a Random k-Tuple Generates a Finite Abelian Group

We now discuss the probability that a random r -tuple of elements of a finite Abelian
group, A, generates A.

Definition 8. If A is an Abelian group, and a1, . . . , ar ∈ A, then a1, . . . , ar are indepen-
dent if for all integers nj such that n1a1+. . .+nr ar = 0 we have n1a1 = . . . = nr ar = 0.

Definition 9. If A is a finite Abelian group we define the torsion-rank of A to be the
minimum cardinality of a set of independent generators of A.

Our goal is to prove the following theorem.

Theorem 3. Let A be a finite Abelian group whose torsion rank is r . Then for s ≥ r
the probability that a random s-tuple of elements of A generates A is

≥ Cr

log log|A|

if s = r , and≥ Cs if s > r , where Cs > 0 is a constant depending only on s (and not on
|A|).
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We recall

Proposition 13 (Frobenius). If A is a finite Abelian group of torsion-rank r , then there
is a unique sequence of integers 1 < d1, . . . , dr such that di | dj for i < j and
A ∼= Zd1 × . . .× Zdr . The sequence di is called the sequence of elementary divisors of
A.

Remark 1. The torsion-rank of A is also maxp dimF[ p] A/p A.

Definition 10. Let A be a finite Abelian group and let p be a prime, then

Ap := {a ∈ A|ord(a) = p j for some integer j}

is the p-primary subgroup of A.

Definition 11. If k ≥ 1 is an integer and A is a finite Abelian group, then define

ϕk(A) := |{(a1, . . . , ak) ∈ Ak |{a1, . . . , ak} generates A}|.

Note that ϕk(A)/|A|k is the probability that a random k-tuple generates A.
We now find an expression for this probability which we can bound from below.

Lemma 4. Let A be a finite Abelian group and let p be a prime. Then the images of
a1, . . . , ak ∈ A generate Ap if and only if they generate A/p A.

Proof. Since A/p A ∼= Ap/p Ap, the only if part follows immediately. Note that if
r = vp(|A|), then Ap = A/pr A. We prove by induction on j ≥ 1 that if the images
of a1, . . . , ak generate A/p j A, then they also generate A/p j+1 A. Given a ∈ A, by
induction there are bj ∈ Z and c ∈ A such that

a =
k∑

j−1

bj aj + p j c.

However, by the induction basis, there are b′j ∈ Z and c′ ∈ A such that

c =
k∑

j−1

b′j aj + pc′.

Plugging this in gives

a =
k∑

j−1

(bj + p j b′j )aj + p j+1c′,

as desired.
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Corollary 3. If A is a finite Abelian group, k > 0 an integer, and p a prime, then

ϕk(Ap)

|Ap|k =
ϕk(A/p A)

|A/p A|k .

Proof. Because A/p A ∼= Ap/p Ap, without loss of generality we may assume that
A = Ap. If the images of a1, . . . , ak ∈ A generate A/p A, then, by the lemma, a1 +
pb1, . . . , ak + pbk generate Ap for some b1, . . . , bk ∈ Ap. This shows that

ϕk(A) = |p A|kϕk(A/p A) =
( |A|
|A/p A|

)k

ϕk(A/p A).

Corollary 4. Let A be a finite Abelian group and let a1, . . . , ak ∈ A. Then a1, . . . , ak

generate A if and only if their images generate A/p A for all primes p.

Proof. This follows from A =⊕
p Ap.

Corollary 5. If A is a finite Abelian group and k > 0 is an integer, then

ϕk(A) =
∏

p prime
ϕk(Ap).

Proposition 14. We have

ϕk(A)

|A|k =
∏

p prime

ϕk (A/p A)

|A/p A|k . (12)

Note that all but a finite number of factors on the right are 1, since if p does not divide
|A|, A/p A is trivial.

Proof. Since A =⊕
p Ap, we have

ϕk(A) =
∏

p

ϕk(Ap).

However, the previous lemma showed that

ϕk(Ap)

|Ap|k =
ϕk(A/p A)

|A/p A|k .

Note that A/p A is a vector space over F[ p], and that the number of k-tuples of vectors
in F[ p]n which generate F[ p]n is exactly the same as the number of k × n matrices with
coefficients in F[ p] of rank = n.

The following is classical [14]. We follow the exposition given on p. 28 of [21].

Proposition 15. The probability that m + n random vectors in F[q]n span F[q]n is

(1− q−(m+1))(1− q−(m+2)) · · · (1− q−(m+n)). (13)
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Proof. The number of (m + n)× n, F[q] matrices of rank n is

(qm+n − 1)(qm+n − q) · · · (qm+n − qn−1).

Dividing this by q(m+n)n—the total number of matrices—gives the result.

Note that if k < r , where r is the torsion-rank of A, then ϕk(A) = 0.

Theorem 4. Let A be a finite Abelian group of torsion-rank r . Then

ϕr (A)

|A|r ≥
ϕ(|A|)
|A|

r∏
j=2

1

ζ( j)
(14)

and, for k > 0,

ϕr+k(A)

|A|r+k
≥

k+r∏
j=k+1

1

ζ( j)
, (15)

where ϕ is Euler’s ϕ-function, and ζ(s) is the Riemann ζ -function.

Proof. The Riemann ζ -function is defined, for s > 1, by

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p prime

(1− p−s)−1.

Both the sum and the product converge absolutely for s > 1. We have∏
p prime,p|n

(1− p−s) ≥
∏

p prime

(1− p−s) = ζ(s)−1.

By (12) and the previous proposition, if n = |A|, and rp = dim(A/p A), we have

ϕk+r (A)

|A|k+r
=

∏
p|n

k+r∏
j=r−rp+k+1

(1− p− j )

≥
∏
p|n

k+r∏
j=k+1

(1− p− j ). (16)

If k = 0, then the last quantity is

≥
∏
p|n
(1− p−1)

r∏
j=2

ζ( j)−1 = ϕ(|A|)
|A|

r∏
j=2

ζ( j)−1.

If k > 0, the last quantity is

≥
k+r∏

j=k+1

ζ( j)−1.



The Weil Pairing, and Its Efficient Calculation 255

Corollary 6. Let A be a finite Abelian group whose torsion-rank is r . Then for s ≥ r
we have

ϕs(A)

|A|s ≥
Cs

log log|A| ,

where Cs > 0 is a constant depending only on s (and not |A|).

Proof. This follows from the theorem by using the inequality

ϕ(n)

n
≥ C

log log n
,

for an absolute constant C , where ϕ(n) denotes Euler’s ϕ-function, by using the formula

ϕ(n)

n
=

∏
p|n
(1− p−1).

This inequality is Theorem 328 in [9], or Theorem 8.8.7 of [1].

Theorem 5. Let K be a finite field of cardinality q , and let E/K be an elliptic curve.
Then Algorithm 2 correctly outputs a pair of generators for the group E(K )along with the
elementary divisors for the group. Its expected running time is S(q)+F(gcd(|E(K )|, q−
1))+ O(log2 q), where S(q) is the time necessary to calculate |E(K )|, and F(n) is the
time necessary to find a complete factorization of n.

Proof. The first part of the algorithm is to perform one of the fast algorithms to find
N := |E(K )|. This takes time S(q). It is known [20] that the group structure of E(K ) is
an Abelian group of torsion-rank 1 or 2. Thus, by the fundamental theorem on Abelian
groups (Theorem 6) there are unique integers d, d ′ such that

E(K ) ∼= Zd × Zdd ′ .

Let P0, Q0 be a generating set such that ord(P0) = d and ord(Q0) = dd ′. By compatibil-
ity and non-degeneracy of the Weil pairing, if ζ := edd ′(P0, Q0), then ζ is a primitive dth
root of 1. There are integer a0, a1, b0, b2 such that P = a0 P0+b0 Q0, Q = a1 P0+b1 Q0.
We then have

edd ′(P, Q) = ζ a0b1−a1b0 .

Because dd ′ is the exponent of E(K ) we must have m | dd ′. However, we also have
N = d2d ′, but m ord(em(P, Q)) ≤ md ′. If we set u = dd ′/m, by compatibility we have
edd ′(P, Q) = em(u P, Q) = em(P, Q)u .

7. Some History

In March 1985 the author lectured at the IBM T.J. Watson Research Center on what was
later presented at Crypto ’85 in August. Professor Manuel Blum was in the audience
and challenged the author to find a reduction of the discrete logarithm problem on the
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multiplicative group of a finite field to a discrete logarithm problem on an elliptic curve.
What would be needed for this would be an efficiently computed homomorphism from
the multiplicative group to some elliptic curve group. The Weil pairing (if it could be
efficiently computed) would supply a homomorphism, but it went in the wrong direction!
Thus it would seem that there might be a reduction of the discrete logarithm problem for
elliptic curves to the discrete logarithm problem on the multiplicative group. However,
a little reflection (see Section 5) showed that the calculations would almost always
necessarily need to be done in a field extension of extremely large degree (with one
major exception, which failed to be noted—the supersingular curves [16]), thus making
such an attack impractical. In September 1985 the author found the algorithm described
in Section 4.1, and wrote it up as a short note [17]—which has never been published,
though widely distributed and cited. In particular, in his Ph.D. thesis [11], Burt Kaliski
devotes a chapter to this algorithm for the calculation of the Weil pairing and was the
first to implement it.

Appendix A. Standard Results from Algebra

Theorem 6 (Kronecker). Given a finite Abelian group A there is a unique integer r
(the torsion-rank of A) and unique integers 1 �= d1 | . . . | dr such that

A ∼= Zd1 × Zd2 × · · · × Zdr .

The di are known as the elementary divisors of A.

Definition 12. If A is a finite Abelian group, and p is a prime, define

Ap := {a ∈ A| ord(a) is a power of p}.

The subgroup Ap is called the p-primary subgroup of A.

Proposition 16. If A is a finite Abelian group

A =
⊕

p prime

Ap.

Appendix B. Standard Results from Algebraic Geometry

Definition 13. An affine algebraic set V is specified as the set of solutions to a finite
system of polynomial equations in x1, . . . , xn . More specifically we say that V is defined
over K if the coefficients in the system of polynomial equations has coefficients in K .
If L is a field containing K , we write V (L) to mean the set of solutions to the system,
all of whose coordinates are in L .

Example 1. Affine n-space, denoted byAn is given by the empty system of polynomial
equations.
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Definition 14. A polynomial f (x1, . . . , xn) is homogeneous of degree d if for allλ �= 0
we have f (λx1, . . . , λxn) = λd f (x1, . . . , xn). If the value of d is not important, then
we omit the “of degree d” part.

Definition 15. A projective algebraic set V is specified as the set of non-zero solutions
to a finite system of homogeneous polynomial equations in x1, . . . , xn+1, modulo an
equivalence relation given by multiplying a solution vector by a non-zero scalar. More
specifically we say that V is defined over K if the defining polynomial equations have
coefficients in K . If L is a field containing K , we write V (L) to mean the set of solutions
to the system, all of whose coordinates are in L . Elements of V (K ) are called K -points.
A point P is called finite if any representative of it has xn+1 �= 0, otherwise it is called
infinite.

Example 2. Projective n-space, written as Pn , is given by the empty system of polyno-
mial equations. The space P1(K ) is given as K ∪ {∞}, where a ∈ K is the equivalence
class which contains (a, 1) and∞ is the equivalence class containing (1, 0).

Although we have defined algebraic sets in terms of a system of equalities, they may
also have inequalities like f (x) �= 0. The standard trick to getting these inequalities is
to introduce a new variable (coordinate) y for each such inequality, and then to add the
equation y f (x) = 1.

An algebraic group is an algebraic object which has a group law that can be computed
by algebraic maps.

Definition 16. An affine algebraic group G defined over K is an algebraic set defined
over K , such that G(L) is a group for all fields L ⊃ K , and that the map (x, y) �→ xy−1

is given by a system of polynomials in the coordinates of x and y, where the polynomials
have coefficients in K .

Example 3. The group GLn is the group of n× n matrices with non-zero determinant,
and the group law is matrix multiplication. In keeping with the above trick, GLn naturally
lives in (n2 + 1)-dimensional space, with coordinates (x1,1, . . . , x1,n, x2,n, . . . , xn,n, y),
the first n2 coordinates are the matrix coordinates, and the last is the inverse of the
determinant. The one defining relation is y det(x) = 1.

Definition 17. A projective algebraic group G defined over K is an algebraic set
defined over K , such that G(L) is a group for all fields L ⊃ K , and that the map
(x, y) �→ xy−1 is given by a system of homogeneous polynomials in the coordinates of
x and y, where the polynomials have coefficients in K .

A morphism between algebraic groups G and H is a homomorphism which is given
by polynomials in the coordinates.
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Definition 18. If n > 0 is an integer, and G is an algebraic group, we define the n-
torsion subgroup of G as the algebraic group, G[n], whose points are in G (i.e., satisfy
the defining polynomials for G) and which satisfy Pn = 1, where Pn means the nth
power using the multiplication in G. The group law is given by the same polynomials as
G. The condition Pn = 1 constitutes an additional set of defining equations. We denote
by µn the group Gm[n] (the nth roots of unity).

In order to give the recipe for computing the Weil pairing one needs to work with
divisors and functions.

Definition 19. A non-singular affine curve C in n-space is specified by a system of
r polynomial equations fi , i = 1, . . . , r , such that the matrix A whose i, j entry, for
1 ≤ i ≤ r, 1 ≤ j ≤ n, is

∂ fi (x)

∂xj

has rank exactly n−1 when evaluated at any point a = (a1, . . . , an) satisfying fi (a) = 0
for all i .

The simplest case of a non-singular curve is a plane curve specified by one equation,
f (x, y) = 0, whose partial derivatives do not vanish simultaneously.

Definition 20. A non-singular projective curve C in n-space is specified by a system of
r homogeneous polynomial equations fi , i = 1, . . . , r , in n + 1 variables x1, . . . , xn+1,
such that the matrix A whose i, j entry, for 1 ≤ i ≤ r, 1 ≤ j ≤ n + 1, is

∂ fi (x)

∂xj

has rank exactly n when evaluated at any point a = (a1, . . . , an) satisfying fi (a) = 0
for all i .

For the projective case we lose one dimension in rank because of the relation

n∑
i=1

xi
∂ f

∂xi
= d f (X),

where f is homogeneous of degree d. This is obtained by differentiating f (λx) =
λd f (x) with respect to λ and then setting λ = 1.

We now discuss the notions of uniformizers

Definition 21. Let C/K be a curve. The function field of C , denoted by K (C), is the
set of functions f : C −→ P

1 given by a rational function of the coordinates of C , with
coefficients in K . This set forms a field under addition and multiplication of functions.
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Definition 22. Let C/K be a curve and let P be a point on C . The set { f ∈ K (C)| f (P)
�= ∞} is called the local ring at P , and is denoted by OP . The set of functions in OP

which vanish at P (i.e., f (P) = 0) forms a maximal ideal of OP , denoted by MP . Any
element of MP\M2

P is called a uniformizer of C at P . We usually denote a uniformizer
at P by u P .

Definition 23. A Laurent series in a variable x is a power series in x in which we
allow a finite number of terms to have negative exponents in x . The degree of a Laurent
series is the smallest exponent of x which occurs. If f is a Laurent series in x , we
denote by ltx ( f ) = lt( f ) the leading term of f . That is, if deg( f ) = n, we have
f (x) = axn+bxn+1+· · · . Then lt( f ) = axn . The leading coefficient of f is lc( f ) = a
if lt( f ) = axn .

Proposition 17. If C is a curve, P ∈ C , and u P is a uniformizer at P , then any function
f ∈ K (C) may be written as a Laurent series in u P . The degree of this Laurent series
is vP( f ).

Definition 24. Let C be a curve and let P be a point on C . If f ∈ OP we define the
valuation of f at P , denoted by vP( f ) (also called the order of zero at P), as the smallest
integer k ≥ 0 such that f ∈ Mk

P but f �∈ M
k+1
P . If f �∈ OP , then 1/ f ∈ OP . In that

case define vP( f ) = −vP(1/ f ).

Proposition 18. Let C be a curve. If 0 �= f ∈ K (C), then there are only a finite
number of points P for which vP( f ) �= 0.

Definition 25. If C/K is a non-singular curve, then a divisor on C is a formal integer
linear combination of points on C . If Pj denote points on C , then a divisor is written as

D =
∑

j

n j [Pj ],

where the nj are integers. If P is a point and D is a divisor, then the valuation vP(D) is
the coefficient of [P] in D (and 0 if [P] is not present in D).

The degree of the divisor D is deg D :=∑
j n j .

Definition 26. Let C/K be a curve. If 0 �= f ∈ K (C) we define

div( f ) :=
∑
P∈C

vP( f )[P].

This sum has only a finite number of terms by the above proposition. Any divisor of the
form div( f ) for some 0 �= f ∈ K (C) is called a principal divisor.

Proposition 19. Let C/K be a curve and let 0 �= f ∈ K (C), then deg(div( f )) = 0.

Proposition 20. Let C be a curve, then the only functions f ∈ K (C) such that div( f ) =
0 are the constant functions.
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Definition 27. If C is a curve and D = ∑
P n P [P] is a divisor on C , then the polar

divisor of D, denoted by D∞, is
∑

P,n P<0−n P [P]. If 0 �= f ∈ K (C), then we define
deg( f ) := deg(div( f )∞). The support of D is supp(D) = {P ∈ C |vP(D) �= 0}.

Definition 28. Let C be a curve and let D1 and D2 be two divisors on C . Then D1 is
linearly equivalent to D2 if there is a 0 �= f ∈ K (C) such that D1 = D2 + div( f ).
We denote linear equivalence by D1 ∼ D2. Equivalence classes under ∼ are known as
divisor classes. Every element of a given divisor class has the same degree which we
call the degree of the class.

Proposition 21. Let C be a curve over an infinite field K , and let D1,D2 be divisors on
C . Then there is a principal divisor div( f ) such that supp(D1+div( f ))∩supp(D2) = ∅.
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[23] André Weil. Lettre à Artin. In André Weil: Oeuvres Scientifiques Collected Papers, Volume 1, pages
280–298. Springer-Verlag, Berlin, 1980. Letter dated July 10, 1942.


