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Abstract. The development of precise definitions of security for encryption, as well
as a detailed understanding of their relationships, has been a major area of research in
modern cryptography. Here, we focus on the case of private-key encryption. Extending
security notions from the public-key setting, we define security in the sense of both in-
distinguishability and non-malleability against chosen-plaintext and chosen-ciphertext
attacks, considering both non-adaptive (i.e., “lunchtime”) and adaptive oracle access
(adaptive here refers to an adversary’s ability to interact with a given oracle even after
viewing the challenge ciphertext). We then characterize the 18 resulting security notions
in two ways. First, we construct a complete hierarchy of security notions; that is, for ev-
ery pair of definitions we show whether one definition is stronger than the other, whether
the definitions are equivalent, or whether they are incomparable. Second, we partition
these notions of security into two classes (computational or information-theoretic) de-
pending on whether one-way functions are necessary in order for encryption schemes
satisfying the definition to exist.

Perhaps our most surprising result is that security against adaptive chosen-plaintext
attack is (polynomially) equivalent to security against non-adaptive chosen-plaintext
attack. On the other hand, the ability of an adversary to mount a (non-adaptive)
chosen-plaintext attack is the key feature distinguishing computational and information-
theoretic notions of security. These results hold for all security notions considered here.
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1. Introduction

The formulation and analysis of definitions of security for encryption has been a funda-
mental area of modern cryptographic research. Indeed, Shannon’s definition of perfect
security in the context of private-key encryption [34] and Goldwasser and Micali’s for-
mulation of semantic security in the public-key setting [18] can both arguably be said to
mark turning points (each in their own way) in the development of the field. Following
the seminal paper of Goldwasser and Micali, much work has focused on refining, ana-
lyzing, and extending definitions of computational security for encryption. Some work
has focused on giving alternate, but equivalent, characterizations of semantic security
[18], [37], [28], [1], [12], most notably in terms of indistinguishability (see Section 1.1).1

Other work includes extending security definitions to the uniform model of computation
[11], defining security under stronger adversarial attack models [31], [32], [27], [2],
[16], and investigating relations among the various resulting definitions [2], [36], [16].
An alternate definition of security, non-malleability, has also been proposed [10] and
the relation between this notion and semantic security/indistinguishability investigated
[10], [2], [6].

With the exception of [27] and [1], the above all focus predominantly on the case
of public-key encryption. In contrast, rigorous and systematic analysis of definitions of
security in the private-key setting has been mostly lacking. We are not the first to have
noticed this deficiency; see Section 5.5.4 of [13]. This relative lack of definitional work is
unfortunate since private-key cryptography is the method most often used in practice for
the encryption of bulk data. It warrants study separately from public-key cryptography for
a number of reasons: from a practical point of view, it introduces concerns not present
in the public-key setting (e.g., consideration of modes of encryption which are used
for efficient encryption of bulk data) while from a theoretical standpoint it has added
complications arising from an adversary’s potential access to an “encryption oracle”
(which is not an issue in the public-key case). As further evidence of the continuing
importance of definitional work in this setting, we mention recent research focused on
developing even “better” definitions of security for private-key encryption [25], [5], [8],
[26], [9], [29], [22] and also the recent resurgence of interest in the design and analysis of
modes of encryption (see http://csrc.nist.gov/encryption/modes/), especially those secure
under stronger definitions of security.

This paper presents a systematic study of notions of security in the private-key setting.
We present definitions of security in the sense of both indistinguishability and non-
malleability—under multiple forms of adversarial attack—and characterize the resulting
security notions in two ways. First, we explore the relations between these definitions;
that is, for every pair of definitions we show whether one definition implies the other
(so that any scheme secure under one notion is secure under the other) or whether the
definitions are incomparable. In doing so, we construct a complete hierarchy indicating
the relative strengths of the various notions. Second, we partition the security notions
into two classes which we refer to as computational and information-theoretic. The first
class comprises those definitions which can be satisfied only by assuming the existence

1 This notion has variously been termed “polynomial security” [18], “find-then-guess security” [1], and
“indistinguishability” [2].
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of one-way functions, while the second contains notions of security that can be satisfied
without any computational assumptions. (We do not claim that our second result is new;
however, we believe it represents another useful way to classify notions of security and
we are not aware of any previous systematic classification of this type.)

1.1. Notions of Security

We begin with an informal overview of the definitions of security considered here; formal
definitions appear in Section 2. We consider two types of security goals: indistinguisha-
bility (IND) [18], [28], [1], [2] and non-malleability (NM) [10], [2]. Indistinguishability
directly relates to the secrecy afforded by a scheme, and may be viewed as a formal-
ization of the requirement that an adversary not learn any information about a plaintext
from the corresponding ciphertext. This definition was introduced [18] as a simpler char-
acterization of semantic security, and the two have been proven equivalent in a variety
of settings [18], [28], [11], [1], [36], [16]. Another commonly used notion of security,
left-or-right indistinguishability [1], has also been shown to be equivalent to the notion
of indistinguishability considered here.2

Non-malleability, in contrast, relates to the resilience of the scheme against ciphertext
modifications; secrecy is no longer (explicitly) a concern. Definitions of non-malleability
have been proposed for a variety of primitives [10] and, for the case of public-key
encryption, simpler characterizations have been given [2], [6]. Informally, a scheme is
said to be non-malleable if an adversary—given a challenge ciphertext y representing an
encryption of an unknown value x—is unable to generate a second ciphertext y′ whose
underlying plaintext x ′ is meaningfully related to x .

Definitions of security for both goals proceed in a common framework [2]. An adver-
sary A is viewed as a pair of algorithms (A1, A2) corresponding to two “stages” of an
attack. In advance of the adversary’s execution, a random key sk is chosen; this key is
kept hidden from the adversary. In the first stage of the attack, A1 outputs a distribution
over the message space whose format depends on the type of attack under consideration.
Next, a message is selected at random according to the distribution and encrypted to give
the “challenge” ciphertext. The challenge ciphertext (and any state information output
by A1) is then given as input to A2, and the “success” of adversary A is determined
according to the goal of the attack.

In addition to the goals as outlined above, a notion of security is also characterized by
the external resources assumed to be available to an adversary attacking the scheme. Our
security notions are labeled according to whether an adversary has possible access to an
encryption oracle and/or decryption oracle during the two stages of its attack. When an
adversary never has access to the encryption oracle, we denote this by P0. A non-adaptive
chosen-plaintext attack indicates that an adversary has access to the encryption oracle
during only the first stage of its attack (“non-adaptive” here refers to the fact that oracle
queries cannot depend on the challenge ciphertext y); we denote this by P1. Finally, an

2 Technically, equivalence between indistinguishability, semantic security, and left-or-right indistinguisha-
bility in the private-key setting has only been fully shown for the case of chosen-plaintext attacks [1] (P2 attacks,
in the notation developed below). We conjecture that equivalence holds for all attack notions considered here,
but leave this for future work.
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Fig. 1. Hierarchy of private-key notions of security.
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adaptive chosen-plaintext attack implies that an adversary has access to an encryption
oracle during both the first and second stages of its attack. This is denoted by P2. Similar
notation is used for decryption oracle access: thus, C0 indicates no access to a decryption
oracle, C1 means non-adaptive access during the first stage only [31], and C2 implies
adaptive access [32]. We stress that while much previous work has considered C1 and
C2 attacks in the public-key setting, the additional complication of an encryption oracle
is present in the private-key setting only.

We consider the 18 notions of security determined by all possible combinations of
goals (IND, NM), encryption oracle access (P0, P1, P2), and decryption oracle access
(C0, C1, C2). We note that since the systems performing encryption and decryption are
different (and may represent different parties) it makes sense to consider adversaries
with different access to the different oracles.

1.2. Summary of Results

As stated earlier, the main contribution of this work is to classify completely the relative
strengths of the 18 notions of security mentioned above and thereby obtain a hierarchy
of security notions for private-key encryption. The resulting hierarchy is shown in Fig. 1.
(For comparison, we have included the known results from the public-key setting [2] in
Fig. 2.) In the figures, notions A and B boxed together are equivalent; i.e., any scheme
meeting notion of security A meets notion of security B and vice versa. A directed path
from notion A to notion B means that A is strictly stronger than B; that is, any scheme
meeting notion of security A also meets notion of security B but the converse is not
necessarily true. If no directed path exists between A and B in either direction then these

Fig. 2. Hierarchy of public-key notions of security [2].
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two notions are incomparable; a scheme meeting either definition of security need not
meet the other.

We highlight (informally) those results specific to the private-key setting:

• P1 ⇒ P2. This is our most surprising result, and the most challenging to prove. We
show that, for all security notions considered here, an encryption scheme secure
when an adversary has non-adaptive access to an encryption oracle is also secure
when an adversary is given adaptive access to an encryption oracle.

• P0 �⇒ P1. On the other hand, for all the security notions considered here there
exist encryption schemes which are secure when the adversary has no access to an
encryption oracle but which are insecure when the adversary has (non-adaptive)
access to an encryption oracle. This is to be expected, as security against P0 attacks
only requires (informally) the scheme to be secure when used to encrypt a single
message: namely, the message that is encrypted to give the challenge ciphertext.

• NM �⇒ IND. For some notions of security considered here, there exists an encryp-
tion scheme secure in the sense of non-malleability which is insecure in the sense
of indistinguishability. This is in contrast to the public-key setting where non-
malleability always implies indistinguishability [2].

Each of the above results holds unconditionally (however, the first result is vacuous
unless one-way functions exist).

Our classification of security notions as either computational or information-theoretic
(described earlier) highlights the adversary’s access to an encryption oracle as the specific
feature separating these two classes. More precisely, any security notion in which the
adversary has no access to an encryption oracle falls into the “information-theoretic”
class and is thus achievable without any computational assumptions. In contrast, every
security notion in which the adversary has (non-adaptive) access to an encryption oracle
lies in the “computational” class, and is achievable if and only if one-way functions exist.

1.3. Other Related Work

Most previous definitional work related to encryption (referenced earlier) has focused
on the public-key setting. There are, however, some notable exceptions. Luby [27, Chap-
ter 14] describes the security notions IND-P1-C0 and IND-P1-C1 and gives constructions
of cryptosystems secure with respect to these definitions. Dolev et al. [10] mention the
security notion IND-P1-C2 and present a scheme secure in this sense. Bellare et al. [1] con-
sider security in the sense of IND-P2-C0 and show concrete security reductions between
this notion and various other formulations of indistinguishability. We stress, however,
that they do not consider non-adaptive access to an encryption oracle, issues related to
non-malleability in the private-key setting, or potential access to a decryption oracle. In
fact, all notions of security discussed in [1] are polynomially equivalent to IND-P2-C0.

Our work largely follows the presentation and style of [2] which considers relations
between notions of security for public-key encryption and gives a hierarchy of the six
resulting security notions in that setting. Indeed, our work was inspired by the open
question mentioned in the full version of that work [2, Section 1.6]. We confirm their
conjecture that relations analogous to theirs hold in the private-key setting as long as
adaptive chosen-plaintext attacks are assumed. Our most interesting results, however,
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arise from consideration of other attacks: namely, non-adaptive chosen-plaintext attacks
(which we show—somewhat surprisingly—are equivalent to adaptive chosen-plaintext
attacks) and no-plaintext attacks (where different relations hold between the correspond-
ing notions of security).

1.4. Open Questions

As mentioned earlier, a number of new notions of security for private-key encryption
have recently been proposed; these include various flavors of unforgeability or “authen-
ticated encryption” [25], [5] (focusing on an adversary’s inability to generate new, valid
ciphertexts) as well as different definitions of “secure channels” [8], [26], [9], [29] (here,
the goal is to distill those properties of encryption needed for secure message trans-
mission). New attack models have also been considered [22]. It will be interesting to
develop this research further, and to relate the new definitions and attack models to the
ones considered here.

This work considers only the case of stateless encryption schemes; however, new
concerns and attacks may arise in the case of stateful encryption [4]. It will be useful to
characterize security notions in this setting as well, and in fact it seems that our results do
not carry over unchanged (for example, it appears that in the case of stateful encryption
security against P1 attacks does not imply security against P2 attacks).

2. Preliminaries

We use the standard notation for describing probabilistic algorithms and experiments,
following [19]. Denote by A(x1, x2, . . . ; r) the result of running probabilistic algorithm
A on inputs x1, x2, . . . using randomness r . The notation y ← A(x1, x2, . . .) denotes the
experiment in which r is chosen uniformly at random and y is set equal to the output of
A(x1, x2, . . . ; r). If S represents a distribution, then b ← S denotes assigning to b an
element chosen according to S; when S is a (finite) set, b ← S simply denotes assigning
to b a uniformly selected element of S. If p(x1, x2, . . .) is a predicate, the notation

Pr[x1 ← S; x2 ← A(x1, y2, . . .); · · · : p(x1, x2, . . .)]

denotes the probability that p(x1, x2, . . .) is true after ordered execution of the listed
experiments.

We use both “|” and “◦” to denote concatenation of strings. A function ε : N→ [0, 1]
is negligible if for all c > 0 there exists an integer Nc such that ε(N ) ≤ N−c for
all N > Nc. For simplicity, we consider only uniform algorithms in this work (both
for honest players and for the adversary) and refer to a probabilistic, polynomial time
Turing machine (where the running time is measured as a function of the length of its
first input) as a “PPT algorithm”; however, all our results extend in the natural way to the
case of non-uniform adversaries. Finally, “encryption scheme” refers to a probabilistic,
stateless, private-key encryption scheme unless stated otherwise.

We begin with a formal definition of private-key encryption. Our definition is mostly
standard, but we stress that we explicitly allow encryption over arbitrary message spaces
and, in particular, over message spaces containing different-length messages. This is, in
particular, meant to model the practical case of modes of encryption for which variable-
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size messages may typically be encrypted. We also assume without loss of generality
that for a given security parameter k the sender and receiver share a uniformly distributed
key of length k.3

Definition 1. A probabilistic, stateless, private-key encryption scheme � is a pair of
algorithms (E,D) defined over a sequence of message spaces {Mk}k≥1 such that:

• There exists some polynomial p and some collection of index sets {Ik}k≥1, with Ik

a non-empty subset of {1, . . . , p(k)}, such thatMk =⋃
i∈Ik

{0, 1}i . For a particular
k, we call Ik the set of legal message lengths. We further require that, given 1k and
	, one can efficiently determine whether 	 ∈ Ik .

• E , the encryption algorithm, is a PPT algorithm that takes as input a secret key sk
and a message x ∈ M|sk| and returns a ciphertext y. (For concreteness, we let
Esk(x) =⊥ if x �∈M|sk|.)

• D, the decryption algorithm, is a deterministic, poly-time algorithm that takes as
input a secret key sk and a ciphertext y and returns either x ∈M|sk| or a special
symbol ⊥ �∈M|sk|.

We require that for all k, for all sk ∈ {0, 1}k , for all x ∈Mk , and for all y which can be
output by Esk(x), we have Dsk(y) = x .

We remark that one may extend the definition to consider infinite message spaces and
allow, for example, encryption of arbitrary-length messages. (In this case we must allow
E andD to take time polynomial in the length of their entire inputs and not merely poly-
nomial in 1k .) All our results continue to hold as long as {Ik} is non-trivial in the following
sense: there exists a polynomial p such that, for all k, Ik ∩ {0, 1}≤p(k) is non-empty.

The above definition only deals with the semantics of private-key encryption. In the
next section we define notions of security for private-key encryption for the cases of both
indistinguishability and non-malleability.

A note on concrete security. The definitions given below are all phrased in terms of
asymptotic security; i.e., we say a scheme is secure if all PPT adversaries have negligible
“advantage” in some appropriate sense, where an adversary’s running time and advantage
are measured as a function of the security parameter k. We note, however, that it is easy
to reformulate all our definitions in terms of concrete security (as in, e.g., [3] and [1]),
where one is interested in an explicit bound on the advantage of any adversary expending
a specified amount of resources. Although we recognize the importance of concrete
security—especially in the case of private-key encryption—we feel that in the current
paper a concrete security treatment would obscure the presentation and become overly
cumbersome to the reader.4 We stress that it is straightforward to derive the corresponding
“concrete security” versions of all our theorems from the detailed proofs given here.

3 This is in contrast to the usual definition which allows for an arbitrary key generation algorithm K. In
the context of private-key encryption, however, it is easy to see that any such scheme may be converted to a
scheme in which the sender and receiver simply share the randomness used by K.

4 Indeed, for a full treatment we would need to consider the number of times an adversary accesses both the
encryption and decryption oracles in both the first and the second stages of the experiment!
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2.1. Indistinguishability

We refer to Section 1.1 for a discussion of indistinguishability and an intuitive explanation
of the type of security it seeks to model. For an adversary A = (A1, A2), we may describe
the adversary’s attack in this context as follows: at the end of the first stage of the attack,
A1 outputs a triple (x0, x1, s) consisting of two plaintext messages and state information
s. One of x0 or x1 is chosen at random and encrypted to give the challenge ciphertext y.
In the second stage of the attack, A2 is given y and s and we say that A succeeds if it
correctly determines whether y is an encryption of x0 or x1. Different types of attacks
are modeled by giving A1 or A2 access to an encryption oracle and/or a decryption
oracle; this gives rise to multiple security notions. Informally, an encryption scheme
is indistinguishable (with respect to a particular type of attack) if every PPT adversary
succeeds with probability only negligibly different from 1/2. More formally:

Definition 2. Let� = (E,D) be an encryption scheme over message space {Mk} and
let A = (A1, A2) be an adversary. For X, Y ∈ {0, 1, 2} and security parameter k, we
define the advantage of A as

AdvIND-PX-CY
A,� (k)

def=
∣∣∣2 · Pr

[
sk←{0, 1}k; (x0, x1, s)← A

O1,O′
1

1 (1k); b←{0, 1}; y←Esk(xb) :

A
O2,O′

2
2 (1k, s, y) = b

]
− 1

∣∣∣ ,

where:

if X = 0 then O1(·) = ε and O2(·) = ε,
if X = 1 then O1(·) = Esk(·) and O2(·) = ε,
if X = 2 then O1(·) = Esk(·) and O2(·) = Esk(·),

and

if Y = 0 then O′
1(·) = ε and O′

2(·) = ε,
if Y = 1 then O′

1(·) = Dsk(·) and O′
2(·) = ε,

if Y = 2 then O′
1(·) = Dsk(·) and O′

2(·) = Dsk(·).
We insist that A1(1k) outputs x0, x1 ∈Mk with |x0| = |x1|. Furthermore, when Y = 2
we insist that A2 does not ask for the decryption of challenge ciphertext y. We say
that � is secure in the sense of IND-PX-CY if AdvIND-PX-CY

A,� (·) is negligible for any PPT

adversary A.

As usual in definitions of this sort [18], [1], [2], we require that |x0| = |x1| since
encryption does not hide the length of the plaintext.

2.2. Non-Malleability

We refer to Section 1.1 for a discussion of non-malleability and various definitions
thereof. In the present work we extend the definition introduced by Bellare et al. [2]
in the public-key setting. Here, we may describe the adversary’s attack as follows: at
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the end of the first stage of the attack, A1 outputs a distribution M over messages in
the legal message space along with state information s. Two messages x, x̃ are cho-
sen at random according to M , and x is encrypted to give ciphertext y. In the sec-
ond stage of the attack, A2 is given y and s and outputs a relation R and a vector
of ciphertexts �y. Let �x correspond to the decryption of ciphertexts in �y (i.e., if x[i]
represents the i th component of vector �x , then x[i] = Dsk(y[i]) for 1 ≤ i ≤ |�x |). Infor-
mally, we say an encryption scheme is non-malleable if for every PPT A the probability
that R(x, �x) is true is at most negligibly different from the probability that R(x̃, �x) is
true.

In the above, both M and R are assumed to be (boolean) circuits, described using some
standardized encoding. Since A is a PPT algorithm, note that that M and R may both
be evaluated in polynomial time. (More formally, if the running time of A for security
parameter k is bounded by p(k) for some polynomial p, then the descriptions of M, R
are of length at most p(k) and hence can be evaluated in time at most p(k).)

As above, different attacks are modeled by giving adversaries A1 or A2 access to
encryption/decryption oracles; this gives rise to multiple notions of security. Formally:

Definition 3. Let� = (E,D) be an encryption scheme over message space {Mk} and
let A = (A1, A2) be an adversary. For X, Y ∈ {0, 1, 2} and security parameter k, we
define the advantage of A as

AdvNM-PX-CY
A,� (k)

def=
∣∣∣ExptNM-PX-CY

A,� (k)− RandNM-PX-CY
A,� (k)

∣∣∣ ,

where

ExptNM-PX-CY
A,� (k)
def= Pr

[
sk←{0, 1}k; (M, s)← A

O1,O′
1

1 (1k); x ←M; y←Esk(x);

(R, �y)← A
O2,O′

2
2 (1k, s, y); �x =Dsk(�y) : y �=⊥ ∧y �∈ �y∧ ⊥�∈ �x ∧ R(x, �x)

]
,

RandNM-PX-CY
A,� (k)
def= Pr

[
sk←{0, 1}k; (M, s)← A

O1,O′
1

1 (1k); x, x̃ ←M; y←Esk(x);

(R, �y)← A
O2,O′

2
2 (1k, s, y); �x =Dsk(�y) : y �=⊥ ∧y �∈ �y∧ ⊥�∈ �x ∧ R(x̃, �x)

]
,

and O1(·),O2(·),O′
1(·),O′

2(·) are as in Definition 2 for the corresponding values of
X, Y .

In the above, M is a circuit representing a distribution over strings and R is a circuit
computing some relation. We require that |x | = |x ′| for all x, x ′ in the support of M .
We also require that the vector of ciphertexts �y output by A2 be non-empty (but see
the remark below). Furthermore, when Y = 2 we insist that A2 does not ask for the
decryption of y. We say that � is secure in the sense of NM-PX-CY if AdvNM-PX-CY

A,� (·)
is negligible for any PPT adversary A.
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Note that if sampling M results in x �∈ Mk then Esk(x) =⊥ and the adversary’s
advantage will not increase in this case. For the same reason mentioned in the previous
section, we require that all messages in the support of M have the same length. We
disallow y ∈ �y so the adversary does not get credit for simply “copying”.

Alternate definitions of non-malleability. The above definition of non-malleability was
adapted directly from the work of [2] and [6] in the public-key setting, and seems to
capture most closely the intuition of an adversary’s “being unable to generate a ciphertext
decrypting to a related message” when given an encryption y of some message x . We
remark, however, that alternate definitions are also possible and may be more appropriate
for certain applications. One possibility is to modify the definition so that A2 is allowed
to output an empty vector �y. (If the adversary must always output an empty vector �y
then we obtain a definition similar to “semantic security with respect to relations” as
considered by [10].) Notice that such a definition is equivalent to the above definition
for X ∈ {1, 2}: informally, given some adversary A who (sometimes) outputs an empty
�y and relation R, we may construct an adversary A′ who in this case outputs an arbitrary
ciphertext y′ �= y (obtained using its encryption oracle, possibly in the first stage) and
relation R′ such that R′(x, x ′) = R(x). Clearly, the advantage of A′ with respect to
Definition 3 is the same as the advantage of A under the modified definition. On the
other hand, when X = 0 the definitions are not equivalent: the encryption scheme
constructed in the proof of Theorem 7 gives an example of a scheme secure in the sense
of NM-P0-C2 (with respect to Definition 3) which is not secure in the sense of NM-P0-C0
(with respect to the modified definition). Furthermore, following Theorem 2.4 of [10], it
is not hard to show that any scheme which is non-malleable with respect to the modified
definition (where the adversary is allowed to output an empty vector of ciphertexts) is
also indistinguishable; this is in contrast to what is shown in Theorem 7 with respect to
the definition of non-malleability used here.

Another possibility is to remove the requirement in the above definition that ⊥ �∈ �x
(recall, �x is the vector of plaintexts that result from decrypting �y); in fact, doing so would
somewhat simplify the proof of Theorem 5. We have decided against this formulation
both in order to parallel previous work in this area [2], [6] and also because the current
definition more closely corresponds to our intuitive notion of “producing a ciphertext
decrypting to a (meaningful) related message”. Again, however, a modified definition
in which an adversary may “succeed” even when ⊥∈ �x may be more appropriate for
certain applications.

3. Relation between Private-Key Encryption and One-Way Functions

Here, we briefly discuss the relationship between private-key encryption and one-way
functions. Although some of these results have previously appeared and others may be
considered “folklore”, we believe it is instructive to study the relation between one-way
functions and each of the definitions presented in the previous section systematically,
and to present the results in a unified way.

Much work has focused on exploring the connections between one-way functions and
“higher-level” cryptographic primitives such as encryption, authentication, etc. It has
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been established that one-way functions imply the existence of pseudorandom generators
[20], pseudorandom functions [14], message authentication and private-key encryption
[15], bit commitment [30], and digital signature schemes [33]. Conversely, all of the
above primitives imply the existence of one-way functions [21], [33]. One must be
careful, however, in interpreting this last result since, for example, a construction of
secure private-key encryption without any computational assumptions is known (namely,
the one-time pad [35])!

In fact, the precise statement of [21] is that private-key encryption in which the en-
crypted message is longer than the shared key implies the existence of one-way functions.
Our aim in this section is to reformulate this result in terms of the definitions given in
Section 2. In this spirit, we present three results which—together with the hierarchy
of Fig. 1—completely characterize the relationship between private-key encryption and
one-way functions; namely:

• One-way functions are sufficient to construct an encryption scheme secure in the
sense of IND-P2-C2. Given the hierarchy of Fig. 1, this implies that one-way functions
are sufficient for any of the notions considered here.

• The existence of an encryption scheme secure in the sense of IND-P1-C0 implies the
existence of one-way functions.

• An encryption scheme secure in the sense of IND-P0-C2 may be constructed without
any computational assumptions (we do, however, assume that the adversary makes
only polynomially many queries to the decryption oracle).

Figure 1 shows that all notions considered here are either strictly stronger than (or equiv-
alent to) IND-P1-C0 or strictly weaker than (or equivalent to) IND-P0-C2. Thus, the above
results completely partition the present security notions into two classes: (1) computa-
tional notions of security for which the existence of an encryption scheme satisfying
such a notion is equivalent to the existence of a one-way function; and (2) information-
theoretic notions of security for which an encryption scheme satisfying such a notion
may be constructed without any computational assumptions. It thus emerges that the
key difference between computational and information-theoretic notions is the adver-
sary’s access to an encryption oracle or, equivalently, whether the encryption scheme is
required to be secure for the encryption of a single message only (i.e., secure against
P0 attacks) or whether it remains secure even when an adversary sees encryptions of
multiple messages (e.g., via P1 attacks).

We now formally state and prove the results stated above. We begin with our working
definition of a collection of one-way functions [17], [12].

Definition 4. Let {Dk}k≥1 and {Rk}k≥1 be collections of finite sets. We say F = { fk :
Dk → Rk}k∈N is a collection of one-way functions (informally, a one-way function) if:

• There exists a PPT algorithm Sample such that Sample(1k) outputs a uniformly
distributed element of Dk . (Thus, “x ← Dk” is equivalent to “x ← Sample(1k)”.)

• There exists a deterministic, poly-time algorithm Eval such that for all k and all
x ∈ Dk , the output of Eval(1k, x) is fk(x).

• For all PPT algorithms A, the following is negligible (in k):

Pr[x ← Dk; y = fk(x) : fk(A(1
k, y)) = y].
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This definition is equivalent to the one which considers a single function f defined over
a fixed (infinite) domain D [17].

We first note that encryption schemes secure under the strongest definition of security
may be constructed from any one-way function; this was first explicitly noted by Dolev
et al. [10].

Theorem 1. Assuming the existence of a one-way function, there exists an encryption
scheme secure in the sense of IND-P2-C2.

Proof. We repeat the construction given in [10]. Let F = {Fk}k≥1 be a pseudorandom
function family where Fk = {Fs : {0, 1}k → {0, 1}k}s∈{0,1}k is a collection of functions
indexed by a key s ∈ {0, 1}k , and let (MAC,Vrfy) be a message authentication code. Both
of these primitives may be constructed from any one-way function: the existence of
one-way functions implies the existence of (length-doubling) pseudorandom generators
[20] which in turn imply the existence of pseudorandom functions [14]; the latter may
be used to construct secure message authentication codes [15]. We now construct the
following encryption scheme (E,D) over message spaceMk = {0, 1}�k/2�:

Esk(m)
parse sk as s1 ◦ s2

with |s1| = �|sk|/2�
r ← {0, 1}|s1|

c = Fs1(r)⊕ m
t = MACs2(r ◦ c)
return 〈r, c, t〉

Dsk(〈r, c, t〉)
parse sk as s1 ◦ s2

with |s1| = �|sk|/2�
if Vrfys2

(r ◦ c, t) = 1
return Fs1(r)⊕ c

else return ⊥

We briefly sketch the proof that this scheme is secure in the sense of IND-P2-C2. First
note that, by security of the message authentication code, the decryption oracle is of no
help to the adversary. More formally, with all but negligible probability the decryption
oracle will return ⊥ for all new ciphertexts (i.e., those not returned by the encryption
oracle) submitted by the adversary. Thus, it suffices to consider security against an
adaptive chosen-plaintext attack (see [25]). However, it is well known that this scheme
is secure against such an attack [15], since the probability that a nonce r repeats is
negligibly small.

We now characterize which notions of security require the existence of a one-way
function in order to be satisfied. Recall that Impagliazzo and Luby [21] have shown that
any encryption scheme where the message is longer than the key implies the existence
of a one-way function. We recast their result in terms of the definitions of the previous
section. Furthermore, their proof is quite complicated (their proof first constructs a
function with false entropy which is then shown to imply the existence of a pseudorandom
generator); we give a simpler and more direct proof here which may be of independent
interest.

Theorem 2. The existence of an encryption scheme secure in the sense of IND-P1-C0
implies the existence of a one-way function.
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Proof. Let � = (E,D) be an encryption scheme over message space {Mk} which is
secure in the sense of IND-P1-C0. For a given k, let M′

k ⊆ Mk denote some arbitrary
pair of distinct, equal-length strings (for concreteness, letM′

k = {0	, 1	} for the smallest
	 ∈ Ik ; note that Definition 1 ensures thatM′

k can be found in polynomial time). Slightly
abusing notation, we letM′

k refer to the uniform distribution overM′
k as well. Consider

the modified encryption scheme �′ = (E ′,D′) over message space {(M′
k)

2k} in which
encryption of a message m = m1 ◦ · · · ◦ m2k (with mi ∈ M′

k) is done by simple
concatenation (i.e., E ′sk(m) = Esk(m1) ◦ · · · ◦ Esk(m2k)) and decryption is done in the
obvious way. Since � is secure in the sense of IND-P1-C0, a standard hybrid argument
shows that �′ is secure in the sense of IND-P0-C0 (actually, it is also secure in the sense
of IND-P1-C0 but we do not use this fact).

Define F = { fk}k∈N as follows: fk(sk,m, ω) = E ′sk(m;ω) ◦ m, where sk ∈ {0, 1}k ,
m ∈ (M′

k)
2k , and ω represents the random coins used by E ′ when encrypting. We claim

that F is a collection of one-way functions. Note that the domain of F is efficiently
sampleable since sk and ω are arbitrary strings of the appropriate length and M′

k is
efficiently sampleable. Furthermore, F is efficiently evaluable. Finally, we show that fk

is one-way. Assume toward a contradiction that there exists a PPT algorithm A which
inverts fk with some probability δ(k). We construct a PPT adversary B attacking �′ as
follows:

B1(1k)

x0, x1 ← (M′
k)

2k

return (x0, x1, {x0, x1})

B2(1k, {x0, x1}, y)
(sk ′, x, ω)← A(1k, y ◦ x0)

if E ′sk ′(x;ω) = y and x = x0

return 0
else return 1

Clearly, if y is an encryption of x0, then B2 outputs 0 with probability exactly δ(k). On
the other hand, if y is an encryption of x1, then the probability δ′(k) that B2 outputs 0 is
bounded as follows:

δ′(k) ≤ Pr[sk ← {0, 1}k; x0, x1 ← (M′
k)

2k; y ← E ′sk(x1) : ∃sk ′ s.t. D′
sk ′(y) = x0]

≤
∑
sk ′

Pr[sk ← {0, 1}k; x0, x1 ← (M′
k)

2k; y ← E ′sk(x1) : D′
sk ′(y) = x0]

≤
∑
sk ′

2−2k = 2−k,

where the last inequality holds because
∣∣(M′

k)
2k
∣∣ = 22k . The advantage of B is then at

least δ(k)− 2−k and therefore δ(k) must be negligible, as desired.

Finally, we demonstrate that all security notions weaker than IND-P1-C0 can be satisfied
without any computational assumptions.

Theorem 3. (Without any computational assumptions) there exists an encryption
scheme secure in the sense of IND-P0-C2.

Proof. We are unaware of any previous explicit statement of this form; however, such
a scheme is easy to construct. Consider the following encryption scheme � = (E,D)
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defined over message space {0, 1} (for simplicity, we define the scheme for odd k
only):

Esk(m)
parse sk as a ◦ b ◦ s,

where |a| = |b| = 	
def= �k/2�

c = m ⊕ s
view a, b, c as elements of F2	

return 〈c, ac + b〉

Dsk(〈c, t〉)
parse sk as a ◦ b ◦ s,

where |a| = |b| = 	
def= �k/2�

view a, b, c as elements of F2	

if t = ac + b return c ⊕ s
else return ⊥

As in the proof of Theorem 1, decryption oracle queries cannot “help” the adversary since
the response to all such queries will be⊥with all but negligible probability. Furthermore,
conditioned on all such queries being answered with⊥, the adversary has no information
about s and therefore no information about m. (More general proofs of a similar result
have also been given in the context of authenticated encryption [25], [5].)

We note that� is secure even against an unbounded adversary, as long as the adversary
is limited to only polynomially many queries to the decryption oracle.

4. Relations Among the Notions of Security

In this section we state and prove the results which give rise to the hierarchy of Fig. 1.

4.1. Adaptive Access to an Encryption Oracle: the Case of Indistinguishability

Here, we show that adaptive access to the encryption oracle does not help an adversary
in the case of indistinguishability.

Theorem 4 (IND-P1-CY ⇒ IND-P2-CY). If encryption scheme � is secure in the sense
of IND-P1-CY then � is secure in the sense of IND-P2-CY, for Y ∈ {0, 1, 2}.

Proof. Let � be an encryption scheme secure in the sense of IND-P1-CY, and assume
we have some adversary A attacking � in the sense of IND-P2-CY. At a high level, our
proof proceeds in the following two stages:

1. We define an oracle $sk(·)which returns encryptions of random plaintext, and show
that replacing (in the second stage of A’s attack) the “real” encryption oracle Esk(·)
with $sk(·) does not change A’s advantage by more than a negligible amount.

2. We show that� is secure in the sense of IND-P1-CY even if an adversary additionally
has access to $sk(·) in the second stage of its attack.

When Esk(·) is replaced with $sk(·) in the second stage of A’s attack, A is simply attacking
� in the sense of IND-P1-CY with the added capability of accessing $sk(·) in the second
stage. Thus, once we have proven the stated claims we will have proved the desired
result.

Our oracle $sk(·) is exactly the “random encryption” oracle introduced by Bellare et al.
in their treatment of private-key encryption [1] which, on input x , returns the encryption
of a random plaintext of length |x |. More precisely, for x ∈Mk , $sk(x) returns Esk(r),
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where r ← {0, 1}|x | ∩Mk (i.e., r is uniformly chosen from elements ofMk of length
|x |). If x �∈Mk , then the output of $sk(x) is ⊥.

Define AdvIND-P$-CY
A,� (k) as the advantage of A = (A1, A2) when its access to Esk(·)

in the second stage is replaced with access to $sk(·). More formally,

AdvIND-P$-CY
A,� (k)

def=
∣∣∣2 · Pr

[
sk←{0, 1}k; (x0, x1, s)← A

Esk ,O′
1

1 (1k); b←{0, 1}; y←Esk(xb) :

A
$sk ,O′

2
2 (1k, s, y) = b

]
− 1

∣∣∣ ,
where oracles O′

1,O′
2 depend on the value of Y as in Definition 2. We now prove our

first claim from above:

Claim 1. For Y ∈ {0, 1, 2}, if� is secure in the sense of IND-P1-CY then the following
is negligible for any PPT adversary A:

∣∣∣AdvIND-P$-CY
A,� (k)− AdvIND-P2-CY

A,� (k)
∣∣∣ .

Proof. The proof of this claim is via a hybrid argument where, in the qth hybrid,
the adversary’s first q − 1 queries to the encryption oracle are answered correctly, its
qth query to the encryption oracle is either answered correctly or “at random” (more
precisely, by returning the encryption of a random string), and its remaining queries are
answered at random. Let A = (A1, A2) be a PPT adversary attacking � in the sense of
IND-P2-CY. We construct an adversary B attacking� in the sense of IND-P1-CY. Relating
the advantage of B to the difference above will give the stated result.

Let 	(·) be a polynomial bound on the number of queries made by A2 to its encryption
oracle, and let {Ik} denote the set of legal message lengths for � (see Definition 1).
Without loss of generality, we make the following assumptions: (1) A2 always makes
exactly 	(k) queries to its encryption oracle for a given security parameter k; (2) A2 never
submits to its decryption oracle (if it has access to one) a ciphertext it received from its
encryption oracle; and finally, (3) all queries A2 makes to its encryption oracle are valid
messages inMk . We now define adversary B = (B1, B2) as follows:

B
Esk ,O′

1
1 (1k)

c ← {0, 1}; q ← {1, . . . , 	(k)}
(x0, x1, s)← A

Esk ,O′
1

1 (1k)

ỹ ← Esk(xc)

run A
Esk ,O′

2
2 (1k, s, ỹ) until

A2 makes its qth query Xq to Esk(·);
let s ′ be the state of A2

X$ ← {0, 1}|Xq |

for q + 1 ≤ i ≤ 	(k)
for j ∈ Ik

ri, j ← {0, 1} j ; yi, j ← Esk(ri, j )

return (Xq , X$, (s ′, c, {yi, j }))

B
O′

2
2 (1k, (s ′, c, {yi, j }), y)

run A
Esk ,O′

2
2 using state s ′ until it outputs b,

answering current Esk(·) query with y
and remaining Esk(·) queries using {yi, j }

if b = c output 0
else output 1
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To clarify the description of B2, when algorithm A2 makes its i th query to $sk(·) (for
q +1 ≤ i ≤ 	(k)), denote this query by Xi ; we have B2 respond to this query with yi,|Xi |.
We may note the following about the execution of B:

• If y is an encryption of Xq , then B simulates an execution of A in which plaintext
xc was encrypted to give ciphertext ỹ, the first q queries of A2 to its encryption
oracle were answered by Esk(·) and the last 	(k)− q queries of A2 to its encryption
oracle were answered by $sk(·).

• If y is an encryption of X$, then B simulates an execution of A in which plaintext
xc was encrypted to give ciphertext ỹ, the first q − 1 queries of A2 to its encryption
oracle were answered by Esk(·) and the last 	(k) − q + 1 queries of A2 to its
encryption oracle were answered by $sk(·).

In each case the simulation of B is perfect (with regard to the stated experiment); in
particular, B has no difficulty responding to the decryption oracle queries of A in either
stage. It can also be verified easily that B is a PPT algorithm.

For brevity, we let Pri [A = b′|b] denote the probability that A outputs b′ when xb is
encrypted and the first i queries of A2 to its encryption oracle are answered by Esk(·) and
the last 	(k) − i queries to its encryption oracle are answered by $sk(·). Furthermore,
let Pr[B = b′|Xq ] denote the probability that B outputs b′ when Xq is encrypted and let
Pr[B = b′|X$] denote the probability that B outputs b′ when X$ is encrypted. (In the
above, we drop the explicit dependence of these probabilities on k for convenience.) We
then have

AdvIND-P1-CY
B,� (k)

def=
∣∣∣Pr[B = 0|Xq ] + Pr[B = 1|X$] − 1

∣∣∣
=
∣∣∣Pr[B = 0|Xq ] − Pr[B = 0|X$]

∣∣∣

=
∣∣∣∣∣

1

2	(k)

	(k)∑
i=1

Pri [A = 0|0] + 1

2	(k)

	(k)∑
i=1

(1 − Pri [A = 0|1])

− 1

2	(k)

	(k)−1∑
i=0

Pri [A = 0|0] − 1

2	(k)

	(k)−1∑
i=0

(1 − Pri [A = 0|1])

∣∣∣∣∣

=
∣∣∣∣

1

2	(k)
· (Pr	(k)[A = 0|0] − Pr	(k)[A = 0|1]

)

− 1

2	(k)
· (Pr0[A = 0|0] − Pr0[A = 0|1])

∣∣∣∣

≥ 1

2	(k)
·
∣∣∣AdvIND-P2-CY

A,� (k)− AdvIND-P$-CY
A,� (k)

∣∣∣ .

The proof of the claim concludes by noting that � is secure in the sense of IND-P1-CY,

so that AdvIND-P1-CY
B,� (k) is negligible.

We now continue with a proof of our second claim from above:
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Claim 2. For Y ∈ {0, 1, 2}, if � is secure in the sense of IND-P1-CY then, for any PPT

adversary A, AdvIND-P$-CY
A,� (k) is negligible.

Proof. Given a PPT adversary A attacking � in the sense of IND-P$-CY, we construct
a PPT adversary B attacking� in the sense of IND-P1-CY; furthermore, the advantage of
B will be polynomially related to that of A. Since� is secure in the sense of IND-P1-CY,
this will give the result of the claim.

Let 	(·) be a polynomial bound on the number of queries made by A2 to $sk(·), and
let Ik be as above. We define adversary B = (B1, B2) as follows:

B
Esk ,O′

1
1 (1k)

(x0, x1, s)← A
Esk ,O′

1
1 (1k)

for 1 ≤ i ≤ 	(k)
for j ∈ Ik

ri, j ← {0, 1} j

yi, j ← Esk(ri, j )

return (x0, x1, (s, {yi, j }))

B
O′

2
2 (x0, x1, (s, {yi, j }), y)

run A
$sk ,O′

2
2 (x0, x1, s, y),

answering its $sk(·) queries using {yi, j },
until it outputs b

return b

To clarify the description of B2: when A2 makes its i th query to $sk(·), denote this query
by Xi . If Xi ∈ Mk , B2 responds with yi,|Xi |; otherwise, B2 responds with ⊥. Note
that this perfectly simulates a response from $sk(·). Also, B1 and B2 have no trouble
responding to the other oracle queries of A1 and A2. Finally, the running time of B2 is
that of A2, while B1 incurs an additional overhead resulting from the 	(k)µ(k) queries
to its encryption oracle. Since 	(k)µ(k) is polynomial, B is a PPT algorithm.

It is easy to see that B provides a perfect simulation for A and hence

AdvIND-P1-CY
B,� (k) = AdvIND-P$-CY

A,� (k).

The claim follows.

The preceding claims show that both AdvIND-P$-CY
A,� (k) and |AdvIND-P$-CY

A,� (k) −
AdvIND-P2-CY

A,� (k)| are negligible. Thus, AdvIND-P2-CY
A,� (k) is negligible and � is secure

in the sense of IND-P2-CY. This completes the proof of the theorem.

4.2. Adaptive Access to an Encryption Oracle: the Case of Non-Malleability

Intuitively, one might expect that adaptive access to an encryption oracle might help
in the context of security in the sense of non-malleability. After all, in this setting an
adversary must output a valid ciphertext, and not “just” a bit (as in the case of security
in the sense of indistinguishability). However, the following theorem shows that this
intuition is wrong.

Before giving the proof of the theorem, we provide a high-level overview. First,
we define a notion of security which may be viewed as an “indistinguishability-based”
characterization of non-malleability. This definition is based on a similar definition given
by Bellare and Sahai [6] in the public-key setting. Our definition (as in [6]) makes use
of a “parallel decryption oracle” D‖

sk(·) which functions as a standard decryption oracle
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except that queries to this oracle may be submitted in parallel; i.e., on input a vector of
ciphertexts �y = (y1, . . . , y	), oracleD‖

sk(·) returns �x = (x1, . . . , x	)where xi = Dsk(yi ).
As in [6], we consider only definitions of security in which the adversary has access

to D‖
sk(·) in the second stage and may query this oracle only once. The corresponding

notions of security (see below for precise definitions) are denoted IND-PX-C‖Y (note,
however, that IND-PX-C‖2 is equivalent to IND-PX-C2). We stress two differences between
our definitions and those of [6]: (1) We require that the adversary access D‖

sk(·) only
after all queries to the encryption oracle have been made (of course, this only matters
when the adversary has access to Esk(·) in the second stage). Furthermore, (2) let �y be
the query submitted to D‖

sk(·) and let �x be the corresponding response. Informally, we
do not consider the adversary “successful” if ⊥∈ �x .

Theorem 5 (NM-P1-CY ⇒ NM-P2-CY). If encryption scheme � is secure in the sense
of NM-P1-CY then � is secure in the sense of NM-P2-CY, for Y ∈ {0, 1, 2}.

Proof. We first formalize our definition of security in the sense of IND-PX-C‖Y. Let
A = (A1, A2) be an adversary and consider the following experiment:

ExptIND-PX-C‖Y
A,� (k)

sk ← {0, 1}k

(x0, x1, s)← A
O1,O′

1
1 (1k)

b ← {0, 1}; y ← Esk(xb)

b′ ← A
O2,O′

2,D
‖
sk

2 (1k, s, y)
let �y be the query submitted to D‖

sk
and let �x be the corresponding response
if ⊥∈ �x

b′′ ← {0, 1}; output b′′

if ⊥ �∈ �x and b′ = b output 1
if ⊥ �∈ �x and b′ �= b output 0

(Oracles O1,O′
1,O2,O′

2 are instantiated as in Definitions 2 and 3 depending on the
values of X and Y .) As discussed in the paragraph preceding the theorem, we require
that A2 submit only a single query to D‖

sk(·) and furthermore that A2 not access the
encryption oracle Esk(·) (in case A2 has access to this oracle) after it has submitted its
query to D‖

sk(·). We also require, as usual, that A1 outputs two messages x0, x1 of equal
length and that A2 does not ask for decryption of the challenge ciphertext y. We let

AdvIND-PX-C‖Y
A,� (k)

def=
∣∣∣2 · Pr[ExptIND-PX-C‖Y

A,� (k) = 1] − 1
∣∣∣

and say that � is secure in the sense of IND-PX-C‖Y if AdvIND-PX-C‖Y
A,� (k) is negligible

for all PPT adversaries A.
We stress that, in contrast to the definition of [6], the definition above does not consider

the adversary “successful” in case ⊥∈ �x . This is so by definition of ExptIND-PX-C‖Y
A,� (k):

in case ⊥∈ �x , a random bit b′′ is output. Thus (informally), it does not “help” the
adversary to submit a query to D‖

sk containing potentially invalid ciphertexts. We do
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not claim that our definition corresponds to any natural notion of security that one
would want to achieve in practice (in fact, it is well known that decryption oracle queries
containing invalid ciphertexts can often help an adversary [7], [23]); rather, the definition
is introduced merely to facilitate the proof of the theorem. On the other hand, Claims 3
and 5, below, show that this definition might also be useful as an “indistinguishability-
based” characterization of non-malleability.

With the above definition in hand, our proof proceeds in the following stages:

1. We show that if� is secure in the sense of NM-P1-CY then� is secure in the sense
of IND-P1-C‖Y.

2. We show that if� is secure in the sense of IND-P1-C‖Y then� is secure in the sense
of IND-P2-C‖Y.

3. We show that if� is secure in the sense of IND-P2-C‖Y then� is secure in the sense
of NM-P2-CY.

The proofs of the first and third claims, above, are similar to the proofs of the analogous
claims in [6]; we note, however, that extending their proofs to the private-key setting
takes some work (in particular, we must take careful account of access or lack of access
to the encryption oracle). The proof of the second claim, above, is similar to the proof
of Theorem 4. We begin with a proof of the first claim above.

Claim 3. If � is secure in the sense of NM-P1-CY then � is secure in the sense of
IND-P1-C‖Y, for Y ∈ {0, 1, 2}.

Proof. Note that security in the sense of IND-P1-C‖2 is equivalent to security in the
sense of IND-P1-C2. Thus, Theorem 8 (below) implies the claim for the case of Y = 2.
We therefore focus here on the case of Y ∈ {0, 1}.

Let A = (A1, A2)be an adversary attacking� in the sense of IND-P1-C‖Y. We construct
the following adversary B attacking � in the sense of NM-P1-CY:

B
Esk ,O′

1
1 (1k)

(x0, x1, s)← A
Esk ,O′

1
1 (1k)

M = {x0, x1}
y′0 ← Esk(x0)

y′1 ← Esk(x1)

return (M, (y′0, y′1, s))

B2(1k, (y′0, y′1, s), y)

run A
D‖

sk
2 (1k, s, y) until it submits �y to Dsk

let σ be the random coins of A2

let y′ ∈ {y′0, y′1} be s.t. y′ �= y
return (Rx0,x1,1k ,s,y,σ , y′|�y)

(We assume without loss of generality, above, that x0 �= x1.) Relation Rx0,x1,1k ,s,y,σ is
defined as

Rx0,x1,1k ,s,y,σ (x, �p)
parse �p as x ′|�x
let b ∈ {0, 1} be s.t. x = xb

(if no such b exists, return 0)
run A2(1k, s, y) using coins σ
respond to its query to D‖

sk with �x
let b′ be the final output of A2

return 1 iff b′ = b
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(from now on, we simply write R for convenience). It is clear that R is efficiently
computable.

In the description of adversary B, above, ciphertexts y′0, y′1 are necessary for the
following technical reason: if A2 does not submit any parallel decryption query, then �y is
empty; however, B2 must output some non-empty vector of ciphertexts (see Definition 3
and the discussion there). Indeed, in the definition of R the first component of the
“message vector” is simply ignored and, in particular, R is independent of its second
argument if this argument contains only a single message. We remark that the choice
to encrypt x0, x1 is entirely arbitrary; indeed, it would be simpler (in general) to have
B1 simply choose a single x ∈ Mk with x �∈ {x0, x1}. However, we use the current
formulation because we do not wish to make any assumptions aboutMk and in particular
do not wish to assume thatMk contains more than two messages.

Let InitA,�(k) denote the following experiment:



sk ← {0, 1}k; (x0, x1, s)← A
Esk ,O′

1
1 (1k); b ← {0, 1};

y ← Esk(xb); b′ ← A
D‖

sk
2 (1k, s, y);

let �y denote the query A2 makes to D‖
sk

and let �x denote the corresponding response


 .

By making the appropriate substitutions for B and relation R, we see that:

ExptNM-P1-CY
B,� (k) = Pr[InitA,�(k) :⊥�∈ �x ∧ b′ = b]

and

RandNM-P1-CY
B,� (k)

= 1
2 · (Pr[InitA,�(k) :⊥�∈ �x ∧ b′ = b] + Pr[InitA,�(k) :⊥�∈ �x ∧ b′ �= b]

)

= 1
2 − 1

2 · Pr[InitA,�(k) :⊥∈ �x].

Therefore,

AdvIND-P1-C
‖
Y

A,� (k)

def=
∣∣∣2 · Pr[ExptIND-P1-C

‖
Y

A,� (k) = 1] − 1
∣∣∣

= ∣∣2 · Pr[InitA,�(k) :⊥�∈ �x ∧ b′ = b] + Pr[InitA,�(k) :⊥∈ �x] − 1
∣∣

= 2 ·
∣∣∣ExptNM-P1-CY

B,� (k)− RandNM-P1-CY
B,� (k)

∣∣∣
def= 2 · AdvNM-P1-CY

B,� (k).

Since � is secure in the sense of NM-P1-CY, AdvNM-P1-CY
B,� (k) is negligible and hence

AdvIND-P1-C
‖
Y

A,� (k) is negligible. This concludes the proof of the claim.

We now prove the second claim from above.

Claim 4. If � is secure in the sense of IND-P1-C‖Y then � is secure in the sense of
IND-P2-C‖Y, for Y ∈ {0, 1, 2}.
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Proof. Note that security in the sense of IND-PX-C‖2 is equivalent to security in the
sense of IND-PX-C2. Thus, Theorem 4 immediately implies the claim for the case of
Y = 2. For the case of Y ∈ {0, 1} the proof is almost exactly the same as the proof of
Theorem 4 and we therefore omit the details. We do, however, mention one subtlety: it
will be crucial in the proof of the analogue to Claim 1 that A2 make its query to D‖

sk
after all queries (if any) it makes to the encryption oracle. Of course, this is exactly in
accordance with our definition of security in the sense of IND-PX-C‖Y.

We conclude with a proof of the final claim from above.

Claim 5. If � is secure in the sense of IND-P2-C‖Y then � is secure in the sense of
NM-P2-CY, for Y ∈ {0, 1, 2}.

Proof. Note that security in the sense of IND-PX-C‖2 is equivalent to security in the
sense of IND-PX-C2. Thus, Theorem 9 (below) immediately implies the claim for the case
of Y = 2. We therefore focus on the case of Y ∈ {0, 1}.

Let A = (A1, A2) be an adversary attacking� in the sense of NM-P2-CY. We construct
the following adversary B attacking � in the sense of IND-P2-C‖Y:

B
Esk ,O′

1
1 (1k)

(M, s)← A
Esk ,O′

1
1 (1k)

x0, x1 ← M
return (x0, x1, (x0, x1, s))

B
Esk ,D‖

sk
2 (1k, (x0, x1, s), y)

(R, �y)← AEsk
2 (1k, s, y)

�x = D‖
sk(�y)

if (⊥�∈ �x ∧ R(x0, �x))
return 0

else return 1

(We assume here, without loss of generality, that A2 never outputs �y with y ∈ �y.)
Let InitB,�(k) be the experiment as defined in the proof of Claim 3 (with B substituted

for A). Then we have

Pr[InitB,�(k) : b′ = 0∧ ⊥ �∈ �x |b = 0] = ExptNM-P2-CY
A,� (k)

and:

Pr[InitB,�(k) : b′ = 1∧ ⊥ �∈ �x |b = 1]

= Pr[InitB,�(k) : R(x0, �x)∧ ⊥ �∈ �x |b = 1]

= 1 − RandNM-P2-CY
A,� (k)− Pr[InitB,�(k) :⊥∈ �x |b = 1].

Noting that Pr[InitB,�(k) :⊥∈ �x |b = 1] = Pr[InitB,�(k) :⊥∈ �x], we then have

AdvNM-P2-CY
A,� (k)

def=
∣∣∣ExptNM-P2-CY

A,� (k)− RandNM-P2-CY
A,� (k)

∣∣∣
= ∣∣Pr[InitB,�(k) : b′ = 0∧ ⊥�∈ �x |b = 0]

+Pr[InitB,�(k) : b′ = 1∧ ⊥ �∈ �x |b = 1] + Pr[InitB,�(k) :⊥∈ �x] − 1
∣∣
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= ∣∣2 · Pr[InitB,�(k) : b′ = b∧ ⊥ �∈ �x] + Pr[InitB,�(k) :⊥∈ �x] − 1
∣∣

= AdvIND-P2-C
‖
Y

B,� (k).

Since� is secure in the sense of IND-P2-C‖Y, AdvIND-P2-C
‖
Y

B,� (k) is negligible and hence

AdvNM-P2-CY
A,� (k) is negligible.

Claims 3–5 imply the result stated in the theorem.

4.3. On Non-Adaptive Access to an Encryption Oracle

We show here that non-adaptive access to an encryption oracle can sometime help an
adversary break the security of an encryption scheme. Indeed, it is well known that
an encryption scheme secure in the sense of IND-P0-C0 is not necessarily secure in the
sense of IND-P1-C0; in particular, there exist deterministic schemes secure in the sense
of IND-P0-C0 but no deterministic scheme can be secure in the sense of IND-P1-C0. Here,
we show a slightly stronger result: namely, that even security in the sense of IND-P0-C2
against an unbounded adversary (who is limited only in the number of oracle queries
he may ask) does not necessarily imply security in the sense of IND-P1-C0.

Theorem 6 (IND-P0-C2 �⇒ IND-P1-C0). There exists an encryption scheme which is se-
cure in the sense of IND-P0-C2 (without any computational assumptions) but which is
insecure in the sense of IND-P1-C0.

Proof. Let � be the scheme given in the proof of Theorem 3. (Recall, � encrypts
message m deterministically using a one-time pad, and then applies an unconditionally
secure message-authentication code to the resulting ciphertext.) In the proof of Theorem 3
we show that � is secure in the sense of IND-P0-C2. On the other hand, since � is
deterministic it is clear that it cannot be secure in the sense of IND-P1-C0.

4.4. On the Relation between Non-Malleability and Indistinguishability

In contrast to the case for public-key encryption [2], non-malleability does not necessarily
imply indistinguishability in the private-key setting. In particular, the next theorem shows
that there exists an encryption scheme secure in the sense of NM-P0-C2 (even against an
adversary with unbounded running time) which is not secure even in the weakest sense
of IND-P0-C0.

Theorem 7 (NM-P0-C2 �⇒ IND-P0-C0). There exists an encryption scheme which is se-
cure in the sense of NM-P0-C2 (without any computational assumptions) but which is
insecure in the sense of IND-P0-C0.

Proof. Our construction of the desired encryption scheme� is simple: we simply send
the plaintext in the clear but append an unconditionally secure MAC. Decryption succeeds
only if the given tag on the message is valid. In detail, let � be the following scheme
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defined over message space {0, 1}�(k−1)/2�:

Esk(m)
let |sk| = k, and parse sk as a|b|s,

where |a| = |b| = 	
def= �(k − 1)/2�

and |s| ∈ {0, 1}
view a, b,m as elements of F2	

return 〈m, am + b〉

Dsk(〈m, t〉)
let |sk| = k, and parse sk as a|b|s,

where |a| = |b| = 	
def= �(k − 1)/2�

and |s| ∈ {0, 1}
view a, b,m as elements of F2	

if t
?= am + b return m

else return ⊥
Clearly, � is not secure in the sense of IND-P0-C0 since the message is sent in the
clear. However, we claim that � is secure in the sense of NM-P0-C2 even against an
adversary with unbounded running time (but who can make only polynomially many
queries to the decryption oracle). As a sketch of a proof, note that (as in the proof of
Theorem 6) all decryption oracle queries are answered with ⊥ with all but negligible
probability. Furthermore, for any vector of ciphertexts �y output by the adversary we will
have⊥∈ Dsk(�y)with all but negligible probability. The advantage of any such adversary
must therefore be negligible.

As noted following Definition 3, the above theorem depends very strongly on the exact
definition of non-malleability considered here. See there for further discussion.

4.5. Completing the Picture

Theorems 4–7 are not by themselves enough to describe the hierarchy of security notions
completely. To determine the hierarchy fully, we must extend results from the public-key
setting [2] to the private-key setting; we do this now.

Theorem 8 (NM-PX-CY ⇒ IND-PX-CY). If encryption scheme � is secure in the sense
of NM-PX-CY then� is secure in the sense of IND-PX-CY, for X ∈ {1, 2} and Y ∈ {0, 1, 2}.

Proof. This theorem is the analogue of Theorem 3.1 of [2]. We stress, however, that in
the private-key setting the theorem holds only if X �= 0 (see Theorem 7).

Let A be an adversary attacking� in the sense of IND-PX-CY. We construct an adversary
B = (B1, B2) attacking � in the sense of NM-PX-CY as follows (if x is a string, then x̄
denotes the ones complement of x):

B
Esk ,O′

1
1 (1k)

(x0, x1, s)← A
Esk ,O′

1
1 (1k)

M = {x0, x1}
y0 ← Esk(x0)

y1 ← Esk(x1)

return (M, (s, x0, x1, y0, y1))

B
O2,O′

2
2 (1k, (s, x0, x1, y0, y1), y)

b ← A
O2,O′

2
2 (1k, s, y)

let y′ ∈ {y0, y1} be s.t. y′ �= y
return (R, y′)

where R(x, x ′) = 1 iff x = xb

It is not hard to see that RandNM-PX-CY
B,� (k) = 1

2 so that

AdvNM-PX-CY
B,� (k) = 1

2 · AdvIND-CX-PY
A,� (k).
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Since � is secure in the sense of NM-PX-CY, AdvIND-CX-PY
A,� (k) is negligible and the

theorem follows.

Theorem 9 (IND-PX-C2 ⇒ NM-PX-C2). If encryption scheme � is secure in the sense
of IND-PX-C2 then � is secure in the sense of NM-PX-C2, for X ∈ {0, 1, 2}.

Proof. This theorem is the exact counterpart of Theorem 3.3 of [2], and we repeat
essentially the same proof here for completeness. Let A be an adversary attacking � in
the sense of NM-PX-C2. We define an adversary B attacking� in the sense of IND-PX-C2
as follows:

BO1,Dsk
1 (1k)

(M, s)← AO1,Dsk
1 (1k)

x0, x1 ← M
return (x0, x1, (x0, s))

BO2,Dsk
2 (1k, (x0, s), y)

(R, �y)← AO2,Dsk
2 (1k, s, y)

�x = Dsk(�y)
if (y �∈ �y∧ ⊥�∈ �x ∧ R(x0, �x))

return 0
else return 1

We may note that the probability that B returns 0 given that y is an encryption of x0

is exactly ExptNM-PX-C2
A,� (k) while the probability that B returns 0 given that y is an

encryption of x1 is exactly RandNM-PX-C2
A,� (k). Thus,

AdvIND-PX-C2
B,� (k) = AdvNM-PX-C2

A,� (k)

and hence AdvNM-PX-C2
A,� (k) is negligible.

Theorem 10 (IND-P2-C1 �⇒ NM-P0-C0). Assuming the existence of a one-way function,
there exists an encryption scheme� which is secure in the sense of IND-P2-C1 but which
is insecure in the sense of NM-P0-C0.

Proof. This theorem is the analogue of Theorem 3.5 of [2]. We give here an explicit
construction of a scheme which is secure in the sense of IND-P2-C1 (assuming the exis-
tence of a one-way function5) but insecure in the sense of NM-P0-C0.

Let F = {Fk}k≥1 be a pseudorandom function family [14] where Fk = {Fs :
{0, 1}k → {0, 1}k}s∈{0,1}k is a finite collection of functions indexed by a key s ∈ {0, 1}k ;
we note that such F may be constructed assuming one-way functions exist [14], [20].
One may then define [14] the following encryption scheme � over message space
Mk = {0, 1}k :

Esk(m)
let |sk| = k
r ← {0, 1}k

return 〈r, Fsk(r)⊕ m〉

Dsk(〈r, c〉)
return c ⊕ Fsk(r)

5 We note that our assumption is minimal, since the existence of an encryption scheme secure even in the
sense of IND-P1-C0 implies the existence of a one-way function [21]. See Section 3.
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It is easy to verify that this scheme is indeed secure in the sense of IND-P2-C1. Infor-
mally, let r be the first half of the challenge ciphertext and let Used denote the event
that this same value is either used (by the encryption oracle) in one of the adversary’s
queries to Esk(·) or submitted (by the adversary) in one of the adversary’s non-adaptive
queries to Dsk(·). Clearly, the probability that event Used occurs is negligible. Further-
more, conditioned on the event that Used does not occur, Fsk(r) “looks random” to the
adversary (by security of the pseudorandom function family) and hence the adversary
has negligible advantage in this case.

It is even easier to see that � is insecure in the sense of NM-P0-C0. To wit, consider
the adversary (A1, A2) in which A1(1k) outputs M = {0k, 1k} and A2—given ciphertext
〈r, c〉—outputs 〈r, c ⊕ 1k〉 along with relation R for which R(x, y) is true iff x = ȳ. For
this adversary, we have ExptNM-PX-CY

A,� (k) = 1 while RandNM-PX-CY
A,� (k) = 1

2 , and thus
the advantage of A is not negligible.

Theorem 11 (NM-P2-C0 �⇒ IND-P0-C1, NM-P0-C1). Assuming the existence of a one-
way function, there exists an encryption scheme � which is secure in the sense of NM-
P2-C0 but which is insecure in the sense of IND-P0-C1 and also insecure in the sense of
NM-P0-C1.

Proof. This is the analogue of Theorem 3.6 of [2], although we give a different proof
here. We give an explicit construction of a scheme secure in the sense of NM-P2-C0
(assuming the existence of a one-way function; see footnote 5 and Theorem 8) which is
insecure both in the sense of IND-P0-C1 and in the sense of NM-P0-C1.

Let (MAC,Vrfy) be a secure message authentication code (see [3] for a definition)
for which key generation simply consists of choosing a uniformly distributed key of
the appropriate length. Furthermore, for concreteness, assume that for keys of length
k the scheme authenticates messages of length 2k. We note that such a scheme may
be constructed based on any one-way function [14], [15]. Let F be a pseudorandom
function family as in the proof of Theorem 10. We then define the following encryption
scheme � over message space Mk = {0, 1}k/3 (for simplicity, we define the scheme
only for k a multiple of 3, but it is easy to make the necessary modifications to allow
arbitrary k):

Esk(m)
let |sk| = k and parse sk as s1|s2|v,

where |s1| = |s2| = |v| = k/3
r ← {0, 1}k/3; c = Fsk1(r)⊕ m
t ← MACs2(r |c)
if m

?= v

return 〈1,m,m, t〉
else return 〈0, r, c, t〉

Dsk(〈b, r, c, t〉)
let |sk| = k and parse sk as s1|s2|v,

where |s1| = |s2| = |v| = k/3
if b = 1 return v
if b = 0 and Vrfys2

(r |c, t) = 1
return Fsk1(r)⊕ c

otherwise return ⊥

We now examine the security properties of this scheme.

Claim 6. � is secure in the sense of NM-P2-C0.
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Proof. It is not difficult to see that� is secure in the sense of IND-P2-C0 (an adversary’s
advantage is negligible unless one of (x0, x1) is equal to v, and this occurs with negligible
probability). We use this to show that the scheme is secure in the sense of NM-P2-C0. Let
A be an adversary attacking � in the sense of NM-P2-C0; we construct an adversary B
attacking � in the sense of IND-P2-C0.

Adversary B is constructed much the same as in the proof of Theorem 9; we sketch
only the differences here. The proof of Theorem 9 only requires that B2 can decrypt
the vector of ciphertexts �y output by A2 at the end of the second stage. There, this was
easily done since B2 had access to the decryption oracle. Here, of course, B2 does not
have access to a decryption oracle; however, we show how B2 can simulate decryption
anyway. Let Find denote the event that a ciphertext 〈0, r, c, t〉 is ever received in response
from the encryption oracle, or as the challenge ciphertext. If Find ever occurs (whether
in the first or second stage), B2 simply outputs a random bit. Otherwise, B2 simulates
decryption of a given ciphertext 〈b, r, c, t〉 ∈ �y as follows:

• If 〈b, r, c, t〉 was previously output by the encryption oracle on query m, let the
message be m.

• If b = 0, let the message be a random v′ ∈ {0, 1}k/3 (once such a v′ is chosen, it is
used as the decryption of any other ciphertexts in �y with b = 0).

• Otherwise, let the message be ⊥.

Assuming Find does not occur, this simulation of the decryption of �y is perfect unless
A was able to forge a tag t on a new “message” r |c; this happens with only negligible
probability. Finally, noting that the probability that event Find occurs is negligible, we

conclude that AdvIND-P2-C0
B,� (k) is negligible close to AdvNM-P2-C0

A,� (k) and hence � is
secure in the sense of NM-P2-C0.

It is easy to show, however, that� is insecure under a non-adaptive chosen-ciphertext
attack.

Claim 7. � is insecure in the senses of IND-P0-C1 and NM-P0-C1.

Proof. We show an adversary for the case of NM-P0-C1; the case of IND-P0-C1 is even
simpler. A1 submits query ỹ = 〈1, r, r̄ , t〉 to the decryption oracle and receives in return
v. Then A1 outputs M = {v, v̄}. When A2 gets the challenge ciphertext y = 〈b, r ′, c′, t ′〉
it does the following:

• If b = 1, it outputs ỹ and relation R such that R(x, x ′) is true iff x ′ = x ′.
• If b = 0, it outputs ỹ and relation R such that R(x, x ′) is true iff x ′ = x̄ .

It should be clear that ExptNM-P0-C1
A,� (k) = 1 while RandNM-P0-C1

A,� (k) = 1
2 , and hence

� is not secure in the sense of NM-P0-C1.

This completes the proof of the theorem.

Theorem 12 (NM-P2-C1 �⇒ NM-P0-C2). Assuming the existence of a one-way function,
there exists an encryption scheme� which is secure in the sense of NM-P2-C1 but which
is insecure in the sense of NM-P0-C2.
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Proof. This theorem is the exact counterpart of Theorem 3.7 of [2]; we therefore only
sketch a proof here and refer the reader to [2] for details. Let� = (E,D) be a private-key
encryption scheme over message space {0, 1}k which is secure in the sense of NM-P2-C1;
assume furthermore—for convenience—that ciphertexts are strings of length 2k (such
schemes may be constructed assuming the existence of one-way functions; see [10]).
Let F = {Fk}k≥1 be a pseudorandom function family where Fk = {Fs : {0, 1}2k →
{0, 1}k}s∈{0,1}k is a finite collection of functions indexed by a key s ∈ {0, 1}k ; we note that
such F may be constructed assuming one-way functions exist [14], [20]. We construct
scheme�′ = (E ′,D′) over message space {0, 1}k/2 as follows (for simplicity, we define
�′ only for k even, but it is easy to make the necessary changes to allow arbitrary k):

E ′sk(m)
let |sk| = k and parse sk as s1|s2,

where |s1| = |s2| = k/2
c ← Es1(m)
return 〈0, c, ε〉

D′
sk(〈b, c, z〉)

let |sk| = k and parse sk as s1|s2,
where |s1| = |s2| = k/2

if (b = 0) ∧ (z = ε) return Ds1(c)
if (b = 1) ∧ (z = ε) return Fs2(c)
if (b = 1) ∧ (z = Fs2(c)) return Ds1(c)
otherwise return ⊥

It is easy to see that �′ is not secure in the sense of NM-P0-C2. Namely, consider the
adversary (A1, A2) for which A1(1k) outputs M = {x, x ′}, where x, x ′ are any distinct
messages in {0, 1}k/2. On input challenge ciphertext 〈0, c, ε〉, A2 submits 〈1, c, ε〉 to its
decryption oracle and receives in return a value z such that z = Fs2(c). The final output
of A2 is ciphertext 〈1, c, z〉 along with the equality relation. Clearly, the advantage of
this adversary is not negligible.

A proof of the following claim exactly follows the proof of Claim 3.15 of [2], and we
therefore do not repeat it here.

Claim 8. �′ is secure in the sense of NM-P2-C1.

This concludes the proof of the theorem.

4.6. Obtaining Fig. 1

At this point, the reader may—somewhat tediously—convince him- or herself that The-
orems 4–12 indeed yield the characterization of Fig. 1. To ease this process, we note the
following:

• Theorems 4 and 5 show that XXX-P1-CY is equivalent to XXX-P2-CY for either notion
of security XXX and any level of chosen-ciphertext attack Y. This generates most
of the equivalences (security notions boxed together) in Fig. 1. The equivalence
between NM-P2-C2 and IND-P2-C2, and the implications of this equivalence, follow
from Theorems 8 and 9.

• Theorem 6 indicates that XXX-P1-CY is strictly stronger than XXX-P0-CY for either
notion of security XXX and any level of chosen-ciphertext attack Y. Similarly, The-
orems 11 and 12 indicate that XXX-PY-C2 is strictly stronger than XXX-PY-C1 which
is, in turn, strictly stronger than XXX-PY-C0.
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