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Abstract. We study the role of connectivity of communication networks in private
computations under information theoretical settings in the honest-but-curious model. We
show that some functions can be 1-privately computed even if the underlying network
is 1-connected but not 2-connected. Then we give a complete characterisation of non-
degenerate functions that can be 1-privately computed on non-2-connected networks.

Furthermore, we present a technique for simulating 1-private protocols that work on
arbitrary (complete) networks on k-connected networks. For this simulation, at most
(1 − k/(n − 1)) · L additional random bits are needed, where L is the number of bits
exchanged in the original protocol and n is the number of players.

Finally, we give matching lower and upper bounds for the number of random bits
needed to compute the parity function on k-connected networks 1-privately, namely
�(n − 2)/(k − 1)� − 1 random bits for networks consisting of n players.
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1. Introduction

Consider a set of players, each knowing an individual secret. The goal is to compute a
function depending on these secrets such that after the computation none of the players
knows anything about the secrets of the other players that cannot be derived from the
function value and its own secret. An example for such a computation is the “secret
ballot problem”: The members of a committee wish to decide whether the majority votes
for yes or no. However, after the vote nobody should know anything about the opinions
of the other committee members, not even about the exact number of votes for yes and
no, except for whether the majority has voted for yes or no. To come to a decision, any
two members can talk to each other in private. If however the members are distributed
in a network, then only those members that are connected by a link can talk to each
other. In this work we investigate the influence of the underlying network on the ability
to perform private computations.

Let f be an n-ary Boolean function and let x1, . . . , xn be bits distributed among n
players. A protocol for computing f (x1, . . . , xn) is called t-private if after executing
the protocol all players know f (x1, . . . , xn), but no group of at most t players learns
anything about the bits of the other players except for what they can deduce from the
function value and their own bits.

Depending on the computational power of the players we distinguish between crypto-
graphically secure privacy and information theoretically secure privacy. In the first case
we assume that no player is able to gain any information about the input bits of the other
players within polynomial time [28], [29]. In the second case we do not restrict the com-
putational power of the players. This notion of privacy (sometimes called unconditional
privacy) has been introduced by Ben-Or et al. [3] and Chaum et al. [8]. Private compu-
tation has been examined with two different types of players. Malicious players (also
called Byzantine players) may arbitrarily deviate from the protocol in order to jam the
correctness or the privacy constraint [19], [28], [29]. Honest-but-curious players follow
the protocol precisely but are allowed to “gossip” afterwards [19], [23].

We are concerned with 1-privacy in the information theoretically secure setting with
honest-but-curious players.

1.1. Previous Results

Private computation has been the subject of a considerable amount of research. In the
information theoretically secure model, all n-ary Boolean functions can t-privately be
computed if t < n/2 in the case of honest-but-curious players and if t < n/3 in the case
of malicious players [3], [8]. In the cryptographically secure model, this holds for t ≤ n in
the case of honest-but-curious players and t < n/2 in the case of malicious players [19],
[28] (assuming that trapdoor functions exist). Canetti and Ostrovsky [7] proved that in
the cryptographically secure setting, it can be tolerated that all parties deviate from the
protocol under the restriction that most parties do not risk being detected by other parties.
(Malicious players do not care about being detected.)

Traditionally, one investigates the number of rounds and random bits as complexity
measures for private protocols. According to Canetti et al. [6], the quantification of the
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amount of randomness needed in cryptographically secure privacy is not meaningful,
since it can be reduced using pseudorandom generators [4], [21].

The following papers deal with information theoretical private computation with
honest-but-curious players: Chor and Kushilevitz [12] have studied the number of rounds
necessary for privately computing the sum modulo an integer. This function has also been
investigated by Blundo et al. [5] and Chor et al. [10]. The number of random bits needed
for privately computing the parity function has been examined by Kushilevitz and Man-
sour [25] and Kushilevitz and Rosén [27]. Gál and Rosén [16] have shown that the parity
function cannot be computed by any private protocol in o(log n/log d) rounds using d
random bits. They have also given an almost tight randomness-round tradeoff for private
computations of arbitrary Boolean functions depending on their sensitivity. Bounds on
the maximum number of rounds needed for privately computing a function have also
been given by Bar-Ilan and Beaver [2] and by Kushilevitz [24]. Gál and Rosén [17] have
proved an upper and lower bound for the number of random bits needed for t-privately
computing parity.

The number of random bits necessary for privately computing a Boolean function is
closely related to its circuit size. Kushilevitz et al. [26] have shown that every function
can be computed with linear circuit size if and only if it can be privately computed with
a constant number of random bits.

Chor and Kushilevitz [11] have characterised the class of Boolean functions that can
be t-privately computed for some t ≥ n/2. Any such function can already be n-privately
computed.

Chor et al. [9], [10] have extended the field of private computation to functions defined
over finite domains. Kilian et al. [22], [23] have introduced a notion of reduction and
completeness in private computation.

All the papers mentioned above do not restrict the communication capabilities of
the players. In other words, they use complete graphs as underlying communication
networks. However, most realistic parallel architectures have a restricted connectivity
and nodes of bounded degree. Franklin and Yung [15] have been the first who studied
the role of connectivity in private computations. They have presented a protocol for
k-connected bus networks that simulates communication steps of a private protocol
that was originally written for a complete graph. To simulate a single communication
step, their protocol uses O(n) additional random bits. Franklin and Wright [14] have
examined which functions are still privately computable, if the players are malicious and
the network connectivity is low.

1.2. Our Results

As mentioned above, we are concerned with 1-privacy in the information theoretically
secure setting with honest-but-curious players. In the following we use the term “private”
for “1-private”.

In this paper we investigate the number of random bits needed to compute functions
by private protocols on k-connected networks. We present a simulation of private pro-
tocols designed for arbitrary networks on arbitrary k-connected networks (for k ≥ 2) in
Section 3. For this simulation, only (1 − k/(n − 1)) · min{L , (k − 2)/(k − 1) · (n2 −
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n)+ L/(k − 1)} additional random bits are needed, where L is the total number of bits
sent in the original protocol.

In Section 4 we study the parity function to a greater extent. For every k-connected
graph with k ≥ 2, we design a private protocol for computing the parity function that
uses only �(n − 2)/(k − 1)� − 1 random bits. This considerably reduces the number of
random bits compared with the general simulation technique of Section 3 for the specific
case of the parity function. This result is tight: There are k-connected graphs on which
every private protocol needs that many random bits to compute the parity function.

All of the above results hold for k ≥ 2. In Section 5 we investigate graphs that are not
2-connected. Our first insight is the following: The parity function over n > 2 bits cannot
be computed by a private protocol on any network that is not 2-connected. This can be
generalised to a large class of non-degenerate functions. An n-ary Boolean function
is called non-degenerate if it depends on all of its n input bits. It turns out that there
are functions that can be privately computed, even if the underlying network is not 2-
connected. An example is the following non-degenerate function f : {0, 1}2n+1 → {0, 1}
(for n ≥ 2):

f (x, y, z) =
(

x ∧
n∧

i=1

yi

)
∨

(
x ∧

n∧
i=1

zi

)
.

Here, x is a single bit and both y and z are bit strings of length n. We construct a
communication network G for f as follows: Let G y and Gz be complete networks with
n players each. Then connect another player Px with all players in both G y and Gz .
The network obtained is not 2-connected. Using a slight modification of the protocol
presented by Kushilevitz et al. [26], one can privately compute the subfunctions

fy(x, y) = x ∧
n∧

i=1

yi and

fz(x, z) = x ∧
n∧

i=1

zi

on the networks G y with Px and Gz with Px , respectively. Overall, the protocol is private
as will be shown in Section 5.

We fully characterise the class of non-degenerate functions that can be privately com-
puted on non-2-connected networks. It turns out that the above example is fairly rep-
resentative: Each such function has this if-then-else structure. The corresponding
non-2-connected network consists of two 2-connected components of appropriate sizes.

2. Preliminaries

For n ∈ N let [n] = {1, . . . , n}. A graph G is called k-connected if, after deleting
an arbitrary subset of at most k − 1 nodes, the resulting node-induced graph remains
connected. Equivalently, for any two nodes u and v of G, there are at least k pairwise
node-disjoint paths between u and v. A block of G is a maximum node-induced subgraph
of G that is 2-connected.
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We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a network
of n players. In the beginning each player knows a single bit of the input x . The players
can send messages to other players using secure links where the link topology is given
by an undirected graph G = (V, E). When the computation stops, all players know the
value f (x). The goal is to compute f (x) such that no player learns anything about the
other input bits in an information theoretical sense, i.e. with unbounded computational
power, except for the information he can deduce from his own bit and the result. Such a
protocol is called private. (Recall that private in this paper means 1-private and that we
are considering honest players.)

Definition 2.1. Let Ci be a random variable of the communication string seen by player
Pi and let Ri be his random string. A protocol A for computing a function f is private
with respect to player Pi if for every pair of input vectors x and y with f (x) = f (y)
and xi = yi , the following conditions hold:

1. for all r , Pr(Ri = r | x) = Pr(Ri = r | y), and
2. for all r with Pr(Ri = r | x) > 0 and for all c,

Pr(Ci = c | Ri = r, x) = Pr(Ci = c | Ri = r, y).

(The probabilities are taken over the random strings of all other players.) A protocol A
is private if it is private with respect to all players.

If the number of random bits each player uses is independent of the input, we can
omit the first condition since in this case all these probabilities are equal. However, if the
number of random bits a player uses depends on the input of the other players and on
their random bits, this player might be able to learn something from his random string
if Pr(Ri = r | x) �= Pr(Ri = r | y).

In all the protocols presented here it is known in advance how many random bits a
player uses. The lower bound for the number of random bits needed for computing parity
however holds also for the more general case when this is not known in advance.

We call a protocol oblivious if the communication takes place in rounds, each message
consists of a single bit, and the number of bits (which is then either zero or one) that Pi

sends to Pj in round t depends only on i , j , and t , but not on the input and the random
strings. For an oblivious protocolA let L(Pi , Pj ,A) be the total number of bits sent from
Pi to Pj in A and

L(A) =
∑
i∈[n]

∑
j∈[n]\{i}

L(Pi , Pj ,A).

We distribute the input bits among the nodes of the graph. For convenience, we call the
node that gets bit xi player Pi . The players Pi and Pj can communicate directly with
each other if and only if they are connected by an edge in the graph.

3. Private Computation on k-Connected Networks

Most known private protocols are written for specific networks. A simulation of such a
private protocol on a different network can be done in such a way that each player of the
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new network simulates a player of the original network step-by-step. Hence, we have to
find a way to realise the communication steps between all players that are not directly
connected. Franklin and Yung [15] have presented a strategy to simulate a transmission
of one single bit on a hypergraph by using O(n) additional random bits. Thus, the whole
simulation presented by them requires O(m+nL(A)) random bits where m is the number
of random bits used by the original protocol. If we consider 2-connected graphs we can
simulate each communication step between two players Pi and Pj by one additional
random bit r as follows: Assume Pi has to send bit b to Pj . Then Pi chooses two disjoint
paths to Pj and sends r to Pj along the first path and r ⊕ b, the parity of r and b, along
the second path. In this way, m+L(A) random bits are sufficient. To reduce the number
of random bits even further, we consider the following optimisation problem.

Definition 3.1 (Max-Neighbour-Embedding). Let G = (V, E) be a complete graph
with edge weights σ : E → N and let G ′ = (V ′, E ′) be a graph with |V | = |V ′|. Let
π : V → V ′ be a bijective mapping. Then the performance of π is defined as

ρ(π) =
∑

{π(u),π(v)}∈E ′
σ({u, v}).

The aim is to find a bijection π : V → V ′ that maximises ρ(π) over all bijections.

By reduction from 3-Dimensional-Matching [18, SP1], it can be shown that the de-
cision problem corresponding to Max-Neighbour-Embedding is NP-hard, even if σ
is {0, 1}-valued, the graph consisting of the weight one edges of G has maximum de-
gree four, and G ′ has maximum degree four. In the following lemma we estimate the
performance for the case that G ′ is k-connected.

Lemma 3.2. Let G = (V, E) be a graph with n nodes and edge weights σ . Let
G ′ = (V ′, E ′) be a k-connected graph with n nodes. Then we have

max
π : V → V ′, π is bijective

ρ(π) ≥ k

n − 1
·
∑
e∈E

σ(e).

Proof. The graph G ′ is k-connected. Thus, every node in V ′ has degree at least k.
Let � be a random bijection from V to V ′. Since every node in V ′ has degree at
least k, the probability that two arbitrary nodes u and v are neighbours under �, i.e.
{�(u),�(v)} ∈ E ′, is at least k/(n − 1). Thus, the edge e = {u, v} ∈ E yields weight
σ(e)with probability at least k/(n−1) and its expected weight is at least k/(n−1)·σ(e).
Hence, the expected performance ρ(�) fulfils

E(ρ(�)) ≥
∑
e∈E

k

n − 1
· σ(e) = k

n − 1
·
∑
e∈E

σ(e).

Thus, there exists a bijection with performance at least k/(n − 1) ·∑e∈E σ(e).

A bijection that fulfils the requirements of the above lemma can be computed in
polynomial time using the method of conditional expectation (see, e.g. [1]).
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In the simulation described below, the graph G is the network for which a given
protocol was designed. The edge weights are the number of bits exchanged over each
edge (with weight zero if there is no edge in the original network). The graph G ′ is the
k-connected network on which we want to simulate the protocol.

The main idea is that for all nodes Pi and Pj in a k-connected graph, we have k node-
disjoint paths connecting these two nodes. Thus, we can simulate k − 1 bits sent from
Pi to Pj as follows: First, Pi sends a random bit to Pj on one path. Then he uses this
random bit to encode k − 1 bits sent along the other k − 1 paths.

Theorem 3.3. Every oblivious private protocol A using m random bits can be simu-
lated with m + (1− k/(n− 1)) ·min{L(A), (k − 2)/(k − 1) · (n2− n)+ L(A)/(k − 1)}
random bits on every k-connected graph.

Proof. Let G = (V, E) be the network used in protocol A and let G ′ = (V ′, E ′)
be the k-connected network. To simulate A we first choose a bijection between the
players in G and the players in G ′. For every edge {Pi , Pj } ∈ E let σ({Pi , Pj }) =
L(Pi , Pj ,A) + L(Pj , Pi ,A). In Lemma 3.2 we have seen that there exists a bijection
π : V → V ′ with performance ρ(π) ≥ (k/(n − 1))L(A). Using this bijection, at least
k/(n − 1) · L(A) bits of the total communication in A are sent between players that are
also neighbours in G ′. Thus, this part of the communication can be simulated directly
without additional random bits.

For the remaining (1 − k/(n − 1)) · L(A) bits we proceed as follows: Let Pi and Pj

be two players that are not directly connected in G ′. Then Pi partitions the bits he will
send to Pj into blocks B1, . . . , B�L(Pi ,Pj ,A)/(k−1)� of size at most k − 1. Furthermore, Pi

chooses k node-disjoint paths from Pi to Pj . Pi uses a separate random bit r
 for each
block B
. He sends r
 along the first path and b⊕ r
 for each b ∈ B
 along the remaining
paths, each bit on a separate path.∑

i∈[n], j∈[n]\{i}�L(Pi , Pj ,A)/(k − 1)� ≤ (k − 2)/(k − 1) · (n2 − n)+ L(A)/(k − 1)
holds, since we round at most n2− n fractions with denominator k− 1. (This is a worst-
case estimate. Given a concrete protocol, additional knowledge about the distribution of
the bits on the links may be used to get a better bound.) However, we never need more
than (1− k/(n− 1)) · L(A) bits altogether. Both observations together imply the bound
proposed.

4. Computing Parity on k-Connected Networks

It is well known that the parity function of n bits can be privately computed on a
Hamiltonian cycle by using only one random bit. On the other hand, using our simulation
presented in Section 3 we get an upper bound of n − 1 random bits for arbitrary 2-
connected networks. The aim of this section is to close this gap. We present a private
protocol for parity that uses �(n − 2)/(k − 1)� − 1 random bits and show that there are
k-connected networks on which parity cannot be computed with less than �(n−2)/(k−
1)� − 1 random bits.

Note that in the proof of the following lemma, we make no assumptions about how
many random bits any player uses or that the number of random bits is known in advance.
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Thus, the lower bound holds also for the more general case where the number of random
bits each player uses can depend on the input and the other player’s random tapes.

Lemma 4.1. There exist k-connected networks with n ≥ 2k players on which the parity
function cannot be computed by a private protocol with less than �(n− 2)/(k − 1)�− 1
random bits.

Proof. We consider the bipartite graph Kk,n−k , which is k-connected, and show that
every private protocol that computes the parity function on this network needs at least
�(n − 2)/(k − 1)� − 1 random bits. Let {P1, P2, . . . , Pk} and {Pk+1, Pk+2, . . . , Pn} be
the two sets of nodes of Kk,n−k . For every i = 1, . . . , k and j = k+1, . . . , n we have an
edge {Pi , Pj } in Kk,n−k . Now assume to the contrary that there exists a private protocol
A on Kk,n−k using less than �(n − 2)/(k − 1)� − 1 random bits.

Let r = 〈r1, . . . , rn〉 be the contents r1, . . . , rn of all random tapes. For a string
x ∈ {0, 1}n and i ∈ [n], let Ci (x, r) be a full description of the communication received
by Pi during the execution of A with random bits r on input x . Moreover, let

C(x) = {〈c1, c2, . . . , ck〉 | ∃r ∀i ∈ [k] : ci = Ci (x, r)} and

Ci (x) = {c | ∃r : c = Ci (x, r)}.
We consider computations of A on inputs

X =
{

x | x1 = x2 = · · · = xk = 0 and
n⊕

i=1

xi = 0

}
.

For every x ∈ X and every communication c1 we define

C(c1, x) = {〈c2, . . . , ck〉 | 〈c1, c2, . . . , ck〉 ∈ C(x)}.

Claim 4.2. ∃c1 ∀x ∈ X : C(c1, x) �= ∅.

Proof. Let x ∈ X . Because x is a valid input for the protocol A, there exists at least
one tuple 〈c1, . . . , ck〉 in C(x). Hence, there exists at least one c1 with C(c1, x) �= ∅. If
for some y ∈ X the set C(c1, y) is empty, then this violates the privacy constraint.

We also need the following claim, which follows from work by Kushilevitz and
Rosén [27]. For the sake of completeness we give a proof though.

Claim 4.3. Let d be the maximum number of random bits used. Then for all i ∈ [k],
we have |⋃x∈X Ci (x)| ≤ 2d .

Proof. We start by considering any fixed x ∈ X and show that |Ci (x)| ≤ 2d . We view
the execution ofA such that in each round first P1, then P2, . . . , and finally Pn performs
his computation. This can be done, since these computations do not depend on each
other. Viewing the computation this way, only one random bit is read at any time. The
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claim follows from the following observations: Any random bit has two outcomes, the
player who reads the next random bit is determined by the previous random bits and x ,
and the players read at most d random bits.

Finally, we haveCi (x) = Ci (y) for all x, y ∈ X , since Pi must not be able to distinguish
x and y.

Since the number of random bits used by the protocol is less than (n− k−1)/(k−1),
we have |⋃x∈X Ci (x)| < 2(n−k−1)/(k−1). Hence, we have∣∣∣∣∣

⋃
x∈X

C(c1, x)

∣∣∣∣∣ ≤
k∏

j=2

∣∣∣∣∣
⋃
x∈X

Cj (x)

∣∣∣∣∣ < 2n−k−1.

Since |X | = 2n−k−1 and by Claim 4.2, we get

∃c1, c2, . . . , ck ∃x, y ∈ X : x �= y and 〈c2, . . . , ck〉 ∈ C(c1, x) ∩ C(c1, y).

This means that there are two different strings x, y ∈ X such that on either string the
players P1, . . . , Pk receive c1, . . . , ck , respectively. Let i , with k + 1 ≤ i ≤ n, be a
position where xi �= yi . Let r = 〈r1, . . . , rn〉 and r ′ = 〈r ′1, . . . , r ′n〉 be the contents of the
random tapes such that ci = Ci (x, r) = Ci (y, r ′) for all 1 ≤ i ≤ k.

During a computation of protocol A on input x1 · · · xi−1 yi xi+1 · · · xn with random
strings 〈r1, . . . , ri−1, r ′i , ri+1, . . . , rn〉 the players P1, P2, . . . , Pk again receive the com-
munication strings c1, c2, . . . , ck . This is because the graph is bipartite and Pi can only
communicate with P1, . . . , Pk . Hence, for this input they compute the same result as for
x , a contradiction.

Now we show that this bound is best possible. To obtain a private protocol that com-
putes the parity function with �(n − 2)/(k − 1)� − 1 random bits, we use the following
result by Egawa et al. [13].

Lemma 4.4 [13]. Let G be a k-connected graph, k ≥ 2, with minimum degree d and
at least 2d vertices. Let V ′ be an arbitrary set of k vertices of G. Then G has a cycle of
length at least 2d that contains every vertex of V ′.

Lemma 4.5. Let G = (V, E) be a k-connected graph with |V | ≥ 2k and k ≥ 2. Then
for every subset V ′ ⊆ V with |V ′| = k, there exists a simple cycle of length at least 2k
containing all nodes in V ′.

Proof. Since G is k-connected, every node has degree at least k. Thus, G contains a
simple cycle of length at least 2k running through all nodes in V ′ by Lemma 4.4.

Lemma 4.6. Let G = (V, E) be a k-connected graph, k ≥ 2, with |V | ≥ 2k. Then for
every subset V ′ ⊆ V with |V ′| = k + 1, there exists a simple path containing all nodes
in V ′.
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Proof. By Lemma 4.5, G contains a cycle C running through k of the nodes in V ′.
If the last node v of V ′ is also on C , we simply delete one edge of C and are done.
Otherwise, since G is connected there is a path from v to a node u of C such that each
internal node of this path is not in C . By deleting one edge of C incident with u, we
obtain the desired path.

Lemma 4.7. Let G = (V, E) be a k-connected graph, k ≥ 2, with |V | ≥ 2k+1. Then
G has a simple path with at least 2k + 1 nodes.

Proof. By Lemma 4.5, G has a cycle C of length at least 2k. If this length is strictly
greater than 2k, we delete one of its edges and are done. Otherwise, there is a node v not
in C . Since G is connected there is a path from v to a node u of C such that each internal
node of this path is not in C . By deleting one edge of C incident with u, we obtain the
desired path.

Now we present a protocol for computing parity on arbitrary k-connected networks G.
We first assume that G has at least 2k+1 nodes. Basically, our protocol works as follows.
Each player is either red or black. Initially, all players are red. A player is red as long
as he holds some (input or random) bit that has not contributed to parity yet. Otherwise,
he is black. Using Lemmas 4.5–4.7, we find paths or cycles containing a certain number
of red players, who then contribute their bits. For each such path or cycle, we need one
random bit.

1. Mark all nodes in G red. Set zi := xi for each player Pi .
2. Choose a path in G of length 2k + 1. According to Lemma 4.7 such a path exists.

The first player Pi in the path generates a random bit r . Then Pi computes r ⊕ zi ,
sends the result to the next player in the path, and sets zi := r .

Each internal player Pj on the path receives a bit b from his predecessor in the
path, computes b ⊕ zj , sends this bit to his successor, and changes his colour to
black.

The last player P
 on the path receives a bit b from his predecessor and computes
z
 := z
 ⊕ b.

After this step, 2k − 1 players have changed their colour.
3. We repeat the following step �(n − 3k + 1)/(k − 1)� times.

Choose k + 1 red nodes and a path in G containing all these nodes. According
to Lemma 4.6 such a path exists. We can assume that the start and the end node
of the path are among the k + 1 given players, hence both are red. Then the first
player Pi on this path generates a random bit r , computes r ⊕ zi , sends the result
to the next player in the path, and sets zi := r .

Each internal player of the path Pj receives a bit b from his predecessor in the
path. If Pj is a black player, he sends b to his successor. If Pj is red, he computes
b ⊕ zj , sends this bit to his successor, and changes his colour to black.

The last player P
 on the path receives a bit b from its predecessor and computes
z
 := z
 ⊕ b.
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After this step, at least k − 1 players have changed their colour. Hence, after
�(n − 3k + 1)/(k − 1)� iterations of this step we have at least⌈

n − 3k + 1

k − 1

⌉
· (k − 1)+ 2k − 1 ≥ n − k

black players. Thus, at most k are red.
4. Choose a cycle in G containing all red nodes. According to Lemma 4.5 such a

cycle exists. Let Pi0 be a red player. Then Pi0 generates a random bit r , computes
r ⊕ zi0 , and sends the result to the next player in the cycle.

Each other player Pj on the cycle receives a bit b from its predecessor. If Pj is
black, he sends b to its successor. If Pj is red, he computes b⊕ zj , sends this bit to
his successor, and changes his colour to black.

If Pi0 receives a bit b, he computes b ⊕ r . The result of this step is the result of
the parity function.

Let us count the number of random bits used in the protocol above. In the second and
in the last step we use one random bit. In the third step we need �(n − 3k + 1)/(k − 1)�
random bits. Hence, the total number of random bits is⌈

n − 3k + 1

k − 1

⌉
+ 2 =

⌈
n − 2

k − 1

⌉
− 1.

It remains to show that the protocol is private and computes the parity function. Correct-
ness follows from the fact that each input bit xi is stored by exactly one red player and
each random bit is stored by either none or two players that are red after each step. By
storing a bit b we mean that a player Pi knows a value zi that depends on b. Since Pi0 is
the last red player, he knows the result of the parity function.

Every bit received by some player in the second and third steps is masked by a separate
random bit. Hence, none of these players can learn anything from these bits. The same
holds for all players except for player Pi0 in the last step. So we have to analyse the bits
sent and received by Pi0 more carefully. In the last step zi0 is either xi0 , a random bit, or
the parity of a subset of input bits masked by a random bit. In neither case does Pi0 learn
anything about the other input bits from the bit he receives and the value of zi0 except
for what can be derived from the result of the function and xi0 .

Theorem 4.8. Let G be an arbitrary k-connected network, k ≥ 2, with n nodes such
that n ≥ 2k. Then the parity of n bits can be computed by a private protocol on G using
at most �(n − 2)/(k − 1)� − 1 random bits. If n < 2k, then the parity can be computed
with one random bit.

For all k ≥ 2 and n > k, there exists a k-connected network on n nodes for which this
bound is best possible.

Proof. The case n ≥ 2k + 1 has already been demonstrated. If n ≤ 2k, then every
node in G has degree at least n/2. Thus, G contains a Hamiltonian cycle due to Dirac’s
theorem, see, e.g. [20], and parity can be computed using one random bit.
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The lower bound follows from Lemma 4.1 for n ≥ 2k. For n < 2k, only one random
bit is needed, which is optimal.

5. Private Computation on Non-2-Connected Networks

In this section we characterise the class of non-degenerate Boolean functions that can
be privately computed on networks that are 1-connected but not 2-connected.

A function f : {0, 1}n → {0, 1} is non-degenerate if for all 1 ≤ i ≤ n, there are
x, y ∈ {0, 1}n that differ only at the i th position and f (x) �= f (y).

Let f be a non-degenerate n-ary Boolean function. We say that a variable xi dominates
f if there is a partition Y, Z of the variables {x1, . . . xn}\{xi } with Y, Z �= ∅, such that
f (x1, . . . , xn) depends only on variables in Y if xi = 0 and only on variables in Z if xi =
1. (This partition is unique, since f is non-degenerate.) We call balf (xi ) = min{|Y |, |Z |}
the balance of xi in f . If f is dominated by a variable x , then we can reorder the variables
of f and find g0 and g1 such that

f (x, y, z) =
{

g0(y) if x = 0 and
g1(z) if x = 1.

For k ≤ n/2, we denote by Bn,k the class of all networks with n nodes and with exactly
two blocks such that one block consists of k + 1 and the other block consists of n − k
nodes. (The bridge node belongs to both components.)

Lemma 5.1. Let f be a non-degenerate Boolean function. Then f cannot be both x-
and y-dominated.

Proof. Let f depend on x , y, and z1, . . . , zn . Assume that f is dominated by x and y.
Then for x = 0, f depends on variables X0 ⊆ {y, z1, . . . , zn}, and for x = 1, f depends
on variables X1 = {y, z1, . . . , zn}\X0, since f is non-degenerate. Similarly, we have
two disjoint sets Y0 and Y1 of variables with Y0 ∪ Y1 = {x, z1, . . . , zn}.

Without loss of generality we assume that x ∈ Y0 and y ∈ X0. Now consider x = 1.
Since y /∈ X1, f does not depend on y when setting x = 1. Hence, f depends only on
X1 = Y0 ∩ Y1 = ∅ for x = 1, because we assumed that f is y-dominated. Thus, x does
not dominate f .

Lemma 5.2. Let f be a non-degenerate n-ary Boolean function, n ≥ 3. Let G be a
network in Bn,k . Assume that either

1. x does not dominate f or
2. x dominates f but balf (x) �= k or
3. x dominates f with partition Y and Z , balf (x) = k but both blocks hold input bits

from both Y and Z .

Then f cannot be privately computed on G when the bridge player Px holds x .

Proof. Let G y and Gz be the two blocks of G. The vectors of input bits for G y without
Px and Gz without Px are y and z, respectively. In all three cases, f (0, y, z) or f (1, y, z)
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depends on both y and z. Without loss of generality assume that f (0, y, z) depends on
both y and z. Then there exist y′ and z′ such that f (0, y′, z) depends on z and f (0, y, z′)
depends on y. Thus, there exist y′′ and z′′ such that

f (0, y′, z′′) = f (0, y′′, z′) �= f (0, y′, z′).

Now consider any protocol for computing f on the given network. We fix some arbitrary
content of Px ’s random tape and x = 0.

In the following, mt
y denotes a message received by Px from G y in round t . Analo-

gously, mt
z denotes a message received by Px from Gz in round t . We assume that in any

round first Px receives mt
y , then Px receives mt

z , and finally Px sends messages to G y and
Gz . (Formally, this means splitting up one round into three.) Then mt

y does not depend
on mt

z and mt
z does not depend on mt+1

y . Let ct
y = (m1

y, . . . ,mt
y) and ct

z = (m1
z , . . . ,mt

z).
We call a certain ct

y undecided if Px can observe ct
y both on input y′ and y′′ for G y .

Otherwise, we call ct
y decided. For ct

z , the terms decided and undecided are analogously
defined. The intuition behind these terms is as follows: If ct

y is decided, then Px has
learned that either y′ or y′′ is not G y’s input. On the other hand, if ct

y is undecided, then
we can change G y’s input from y′ to y′′ or vice versa and modify its random bits such
that Px does not perceive any differences. Clearly, c0

y and c0
z are undecided.

We start our protocol on y′, z′ as input for G y , Gz . Now we prove two things: First, if
both ct

y and ct
z are undecided for all t , then we can fool the protocol such that it computes

a wrong function value. Second, if eventually ct
y or ct

z is decided, then the protocol is not
private with respect to Px .

Assume that ct
y and ct

z are undecided for all t . Our protocol eventually outputs
f (0, y′, z′) and ct

y and ct
z are still undecided. Then we can replace y′ by y′′ and ad-

just G y’s random bits such that Px does not notice a difference. Thus, our protocol has
computed f (0, y′, z′) �= f (0, y′′, z′), but f (0, y′′, z′) would have been the right value.

So consider the first t on which ct
y or ct

z is decided. Due to symmetry, we restrict
ourselves to considering the first case. Px has learned that y′′ is no longer possible as
input for G y . Since Px receives mt

z after mt
y , the current ct−1

z is still undecided. Thus,
we can replace z′ with z′′. When the protocol terminates, Px knows the function value
f (0, y′, z′′) = f (0, y′′, z′). In addition, he knows that (y′′, z′) has not been the input.
Thus, the protocol is not private.

Lemma 5.3. Let f be a non-degenerate n-ary Boolean function that is dominated by
x with balf (x) = 1. Then f cannot be privately computed on any non-2-connected
network.

Proof. Due to Lemma 5.2, the only possibility for computing f is a network from Bn,1

with bridge node Px . Let Py be the other player of the block of size 2. Without loss of
generality we assume that for x = 0, f (x, y, z) = g(z), and for x = 1, f (x, y, z) is
either y or y. We assume that f (1, y, z) = y.

We show how to compute the conjunction of two variables (namely x and y) privately.
Consider f on some input z0 with g(z0) = 0. Then f (x, y, z0) = x ∧ y. If Px and Py

could compute f privately, then a single player would be able to simulate the behaviour
of the large block on input z0 and Px on x while another player would be able to simulate
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Py on y. This would yield a protocol for privately computing x ∧ y, which is impossible
for two players [24].

Theorem 5.4. Let f be a non-degenerate n-ary Boolean function, n ≥ 3, and let G be
a connected network of n nodes. Then f cannot be privately computed on G, if one of
the following conditions holds:

1. G ∈ Bn,k , but there is no variable x that dominates f with balf (x) = k.
2. G consists of more than two blocks.
3. f is x-dominated with balf (x) = 1.

Proof. Items 1 and 3 follow immediately from Lemmas 5.2 and 5.3, respectively.
Now assume that G consists of more than two blocks. There are two possibilities:

either all blocks share one bridge node or we have at least two bridge nodes. In both
cases our aim is to apply Lemma 5.2. This is not directly possible since Lemma 5.2
only speaks about networks with two blocks. Note however that if one cannot privately
compute a function on a given network H , then one cannot privately compute it on any
subnetwork of H . Hence, if we cannot privately compute a function on a network H with
two blocks, we cannot privately compute it on any network that is obtained by splitting
up each of the two blocks into several new blocks.

First, we treat the case that there is only one bridge node Px holding variable x . Since
f is non-degenerate, for either x = 0 or x = 1 the function value depends on input bits
of at least two blocks B1 and B2. Let G ′ be the network with two blocks such that one
block is B1 and the other block is the complete graph on the remaining nodes with the
bridge node Px . If f could be privately computed on G, then f could also be privately
computed on G ′, but this contradicts Lemma 5.2.

Second, assume that there are two bridge nodes. If f could be privately computed
on G, then there must be two variables x and x ′ that dominate f due to Lemma 5.2.
(Here, we again unite blocks to end up with two blocks as above.) This contradicts
Lemma 5.1.

Many well-known Boolean functions like and, or, majority, and parity are not domi-
nated and thus cannot be privately computed on non-2-connected networks.

Theorem 5.5. Let f be a non-degenerate n-ary Boolean function, n ≥ 5, that is
dominated by x with balf (x) = k > 1. Then f can be privately computed on Bn,k .

Proof. The protocol works the same as the one presented in Section 1.2. Let f be of
the form

f (x, y, z) =
{

g0(y) if x = 0 and
g1(z) if x = 1

for some g0 and g1. Then f (x, y, z) = (x∧g0(y))∨ (x∧g1(z)). Assume that y contains
k variables and z contains n − k − 1 variables. Let the bridge player Px , which is part
of both components, hold x . We share the k variables of y among the k remaining nodes
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of the first component and the n − k − 1 variables of z among the remaining nodes of
the second component. Then we privately compute (x ∧ g0(y)) within the first block
and (x ∧ g1(z)) within the second block. This can be done since both blocks consist of
at least three nodes. (Every Boolean function can be privately computed on a complete
network of at least three players [3] and henceforth on any 2-connected network with at
least three players.) Finally, Px knows the result.

It remains to prove the protocol is private. It is clearly private with respect to all players
except for Px , since no players needs to learn anything about (x ∧ g0(y)) or (x ∧ g1(z)).
Let x = 0 (x = 1 follows analogously due to symmetry). Then (x ∧ g1(z)) = 0 and thus
Px does not learn anything about z. Furthermore, Px only learns (x ∧ g0(y)) = g0(y)
about y, which is just f (x, y, z).

Note that when the conditions of Theorem 5.5 are not fulfilled, we can always apply
Theorem 5.4. Furthermore, there is no function on three or four variables that can be
privately computed on a non-2-connected network: either the function is not dominated
or the balance is one.

6. Conclusions and Open Problems

We have investigated the relation between the connectivity of networks and the possibility
of computing functions by private protocols on these networks. Special emphasis has
been put on the amount of randomness needed.

We have presented a general simulation technique that allows us to transfer every
oblivious private protocol on an arbitrary network into an oblivious private protocol on
a given k-connected network of the same size, where k ≥ 2. The new protocol needs
(1− k/(n− 1)) ·min{L , (k− 2)/(k− 1) · (n2− n)+ L/(k− 1)} additional random bits,
where L is the total number of bits sent in the original protocol. A future goal is either to
reduce the number of additional random bits further or to prove general lower bounds.

The parity function can be computed on a cycle using only one random bit and only
one message per link. (Strictly speaking, an additional message per link is necessary
to broadcast the result in the end. However, we do not need to use any random bits
to encode this broadcast, hence we can assume that n bits are sent altogether.) Thus,
1+n−kn/(n−1) ≤ n−k+1 random bits are sufficient to compute the parity function
on an arbitrary k-connected graph by a private protocol using our simulation. We have
strengthened this bound by showing that on every k-connected graph, parity can be
computed by an oblivious private protocol using at most �(n − 2)/(k − 1)� − 1 random
bits. Furthermore, there exist k-connected networks for which this bound is tight.

While every Boolean function can be computed on a 2-connected network by a private
protocol, this is no longer true for 1-connected networks. Starting from this observation,
we have completely characterised the functions that can be computed by a private protocol
on non-2-connected networks.

Our simulation results focus on the extra amount of randomness needed. It would also
be interesting to bound the number of rounds of the simulation in terms of the number
of rounds of the original protocol and, say, the diameter of the new network.
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[8] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In
Proc. 20th Ann. ACM Symp. on Theory of Computing (STOC), pages 11–19, 1988.
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[10] Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. Private computations over the integers. SIAM
J. Comput., 24(2):376–386, 1995.

[11] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete Math., 4(1):36–
47, 1991.

[12] Benny Chor and Eyal Kushilevitz. A communication–privacy tradeoff for modular addition. Inform.
Process. Lett., 45(4):205–210, 1993.

[13] Yoshimi Egawa, Rainer Glas, and Stephen C. Locke. Cycles and paths through specified vertices in
k-connected graphs. J. Combin. Theory Ser. B, 52:20–29, 1991.

[14] Matthew Franklin and Rebecca N. Wright. Secure communication in minimal connectivity models.
J. Cryptology, 13(1):9–30, 2000.

[15] Matthew Franklin and Moti Yung. Secure hypergraphs: privacy from partial broadcast. In Proc. 27th
Ann. ACM Symp. on Theory of Computing (STOC), pages 36–44, 1995.

[16] Anna Gál and Adi Rosén. A theorem on sensitivity and applications in private computation. SIAM J.
Comput., 31(5):1424–1437, 2002.

[17] Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in private computation. In Proc.
35th Ann. ACM Symp. on Theory of Computing (STOC), pages 659–666, 2003.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, 1979.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Proc. 19th Ann. ACM Symp. on Theory of Computing
(STOC), pages 218–229, 1987.

[20] Frank Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
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