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Abstract. We consider the problem of threshold secret sharing in groups with hier-
archical structure. In such settings, the secret is shared among a group of participants
that is partitioned into levels. The access structure is then determined by a sequence of
threshold requirements: a subset of participants is authorized if it has at least k0 mem-
bers from the highest level, as well as at least k1 > k0 members from the two highest
levels and so forth. Such problems may occur in settings where the participants differ
in their authority or level of confidence and the presence of higher level participants
is imperative to allow the recovery of the common secret. Even though secret sharing
in hierarchical groups has been studied extensively in the past, none of the existing
solutions addresses the simple setting where, say, a bank transfer should be signed by
three employees, at least one of whom must be a department manager. We present a
perfect secret sharing scheme for this problem that, unlike most secret sharing schemes
that are suitable for hierarchical structures, is ideal. As in Shamir’s scheme, the secret
is represented as the free coefficient of some polynomial. The novelty of our scheme is
the usage of polynomial derivatives in order to generate lesser shares for participants of
lower levels. Consequently, our scheme uses Birkhoff interpolation, i.e., the construc-
tion of a polynomial according to an unstructured set of point and derivative values. A
substantial part of our discussion is dedicated to the question of how to assign identities
to the participants from the underlying finite field so that the resulting Birkhoff inter-
polation problem will be well posed. In addition, we devise an ideal and efficient secret
sharing scheme for the closely related hierarchical threshold access structures that were
studied by Simmons and Brickell.

Key words. Secret sharing schemes, Threshold schemes, Hierarchical/multilevel ac-
cess structures, Ideal schemes, Birkhoff interpolation.

1. Introduction

A (k, n)-threshold secret sharing is a method of sharing a secret among a given set of n
participants, U , such that every k of those participants (k ≤ n) could recover the secret
by pooling their shares together, while no subset of less than k participants can do so [5],
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[17]. Generalized secret sharing refers to situations where the collection of permissible
subsets of U may be any collection � ⊆ 2U having the monotonicity property, i.e., if
A ∈ � and A ⊂ B ⊆ U then B ∈ �. Given such a collection, the corresponding secret
sharing scheme is a method of sharing a secret among the participants of U such that
only subsets in � (that is referred to as the access structure) may recover the secret,
while all other subsets cannot.

There are many real-life examples of threshold secret sharing. Typical examples in-
clude sharing a key to the central vault in a bank, the triggering mechanism for nuclear
weapons, or key escrow. We would like to consider here a special kind of generalized
secret sharing scenario that is a natural extension of threshold secret sharing. In all of the
above-mentioned examples, it is natural to expect that the participants are not equal in
their privileges or authorities. For example, in the bank scenario, the shares of the vault
key may be distributed among bank employees, some of whom are tellers and some of
whom are department managers. The bank policy could require the presence of, say,
three employees in opening the vault, but at least one of them must be a department
manager. In key escrow, the dealer might demand that some escrow agents (say, family
members) must be involved in any emergency access to his private files. Such settings
call for special methods of secret sharing. To this end, we define hierarchical secret
sharing as follows:

Definition 1.1. Let U be a set of n participants and assume that U is composed of
levels, i.e., U = ⋃m

i=0 Ui where Ui ∩ Uj = ∅ for all 0 ≤ i < j ≤ m. Let k = {ki }m
i=0

be a monotonically increasing sequence of integers, 0 < k0 < · · · < km . Then the
(k, n)-hierarchical threshold access structure is

� =
{
V ⊂ U :

∣∣∣∣∣V ∩
(

i⋃
j=0

Uj

)∣∣∣∣∣ ≥ ki , ∀i ∈ {0, 1, . . . ,m}
}
. (1)

A corresponding (k, n)-hierarchical threshold secret sharing scheme is a scheme that
realizes this access structure; namely, a method of assigning each participant u ∈ U a
share σ(u) of a given secret S such that authorized subsets V ∈ � may recover the secret
from the shares possessed by their participants, σ(V) = {σ(u): u ∈ V}, while the shares
of unauthorized subsets V /∈ � do not reveal any information about the value of the
secret. Viewing the secret S as a random variable that takes values in a finite domain S,
these two requirements may be stated as follows:

H(S | σ(V)) = 0, ∀V ∈ � (accessibility) (2)

and

H(S | σ(V)) = H(S), ∀V /∈ � (perfect security). (3)

Letting 
u denote the set of possible shares for participant u ∈ U , the information rate
of the scheme is

ρ = min
u∈U

log2|S|
log2|
u | .

If ρ = 1, the scheme is called ideal.
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The zero conditional entropy equality (2) should be understood in a constructive sense.
Namely, if it holds then V may compute S. Also note that conditions (2)+(3) imply that
the information rate is bounded from above by 1; hence, ρ = 1 represents the ideal
situation (all shares are of the minimal possible size, namely, the size of the secret).

Ito et al. [12] were the first to study secret sharing for general access structures.
They provided constructions illustrating that any monotone access structure can be re-
alized by a perfect secret sharing scheme. Their construction was simplified and ex-
tended by Benaloh and Leichter [3]. Those constructions are based on monotone formu-
las that realize the characteristic function of the access structure (namely, the function
f : {0, 1}n → {0, 1} such that f (x1, . . . , xn) = 1 if and only if the subset V ⊆ U that
corresponds to {1 ≤ i ≤ n: xi = 1} is in �). However, for threshold access structures
the resulting schemes are far from being ideal. Even for the simplest threshold prob-
lem of only one level (i.e., all participants are equal), an optimal formula is of size
O(n log n) [10], which implies an information rate of O(1/log n) for the corresponding
secret sharing scheme.

Using the monotone formula construction with threshold gates, where each threshold
gate is realized by Shamir’s threshold secret sharing scheme, we arrive at the following
solution to the problem [22]: The secret is an element of a finite field, S ∈ F; the dealer
generates m random and independent secrets Si ∈ F, 1 ≤ i ≤ m, and defines S0 =
S −∑m

i=1 Si . Then, for every 0 ≤ i ≤ m, the dealer distributes the secret Si among all
participants of

⋃i
j=0 Uj using Shamir’s (ki ,

∑i
j=0 |Uj |)-threshold secret sharing scheme.

The secret S may be recovered only if all Si , 0 ≤ i ≤ m, are recovered. As the recovery of
Si requires the presence of at least ki participants from

⋃i
j=0 Uj , the access requirements

are met by this scheme. This scheme is perfect since if V /∈ �, it fails to satisfy at least
one of the threshold conditions in (1) and, consequently, it is unable to learn a thing
about the corresponding share Si ; such a deficiency implies (3). However, this scheme
is not ideal: its information rate is 1/(m + 1) since the shares of participants from U0 are
composed of m + 1 field elements.

In this paper, we present a simple solution for the hierarchical secret sharing problem
that is both perfect and ideal. Our construction is a realization of the general vector space
construction of Brickell [6]. The idea of Brickell was as follows: Let F be a finite field
such that S ∈ F and let Fd be the d-dimensional vector space over that field, for some
integer d . Assume that there exists a function ϕ: U → F

d with the property

(1, 0, . . . , 0) ∈ Span{ϕ(u): u ∈ V} ⇔ V ∈ �. (4)

The dealer selects random and independent values ai ∈ F, 2 ≤ i ≤ d, and then

σ(u) = ϕ(u) · a where a = (S, a2, . . . , ad). (5)

This scheme is perfect and ideal. (In general linear secret sharing schemes or monotone
span programs [13], ϕ may assign more than one vector to each participant.) The main
problem is of course finding a mapping ϕ that satisfies condition (4). We find herein a
proper mapping ϕ for the case of hierarchical threshold secret sharing. Our idea is based
on Birkhoff interpolation (also known as Hermite–Birkhoff or lacunary interpolation).
The basic threshold secret sharing of Shamir [17] was based upon Lagrange interpolation,
namely, the construction of a polynomial of degree less than or equal to k from its values
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in k + 1 distinct points. There are two other types of interpolation that are encountered
in numerical analysis. In such problems, one is given data of the form

d j P

dx j
(xi ) := P ( j)(xi ) = ci, j (k + 1 equations) (6)

and seeks a polynomial of degree less than or equal to k that agrees with the given data
(6). If for each i (namely, at each interpolation point) the sequence of the derivative orders
j that are given by (6) is an unbroken sequence that starts at zero, j = 0, . . . , ji , then the
problem falls under the framework of Hermite interpolation. In that case the problem
always admits a unique solution P . The more general case is when the data is lacunary
in the sense that, at some sample points, the sequence of orders of derivatives is either
broken or does not start from j = 0. This case is referred to as Birkhoff interpolation
and it differs radically from the more standard Hermite or Lagrange interpolation. In
particular, Birkhoff interpolation problems may be ill posed in the sense that a solution
may not exist or may not be unique.

In our method, as in Shamir’s, the secret is the free coefficient of some polynomial
P(x) ∈ Fk−1[x], where F is a large finite field and k = km is the maximal threshold,
i.e., the total number of participants that need to collaborate in order to reconstruct the
secret. Each participant u ∈ U is given an identity in the field, denoted also by u, and a
share that equals P ( j)(u) for some derivative order j that depends on the position of u
in the hierarchy. The idea is that the more important participants (namely, participants
who belong to levels with lower index) will get shares with lower derivative orders,
since lower derivatives carry more information than higher derivatives. By choosing the
derivative orders properly, we are able to meet the threshold access requirements (1). As a
consequence, when an authorized subset collaborates and attempts to recover the secret,
they need to solve a Birkhoff interpolation problem. Hence, a great part of our analysis
is devoted to the question of how to assign participants with identities in the field so that,
on one hand, the Birkhoff interpolation problems that are associated with the authorized
subsets would be well posed, and, on the other hand, the Birkhoff interpolation problems
that are associated with unauthorized subsets do not leak any information on the secret.

1.1. Related Work

The problem of secret sharing in hierarchical (or multilevel) structures, was studied before
under different assumptions, e.g., [4], [6], [7], [8], [18], and [19]. Already Shamir, in
his seminal work [17], has recognized that in some settings it would be desirable to
grant different capabilities to different participants according to their level of authority.
He suggested accomplishing that by giving the participants of the more capable levels a
greater number of shares. More precisely, ifU has a hierarchical structure as in Definition
1.1, the participants in Ui , 0 ≤ i ≤ m, getwi shares of the form (u, P(u)), u ∈ F, where
w0 > w1 > · · · > wm , whence the information rate of the scheme is 1/w0. This way, the
number of participants from a higher level that would be required in order to reconstruct
the secret would be smaller than the number of participants from a lower level that would
need to cooperate toward that end.

Simmons [18] and Brickell [6] considered another hierarchical setting. Assume a
scenario where an electronic fund transfer (up to some maximum amount) may be
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authorized by any two vice presidents of a bank, or, alternatively, by any three senior
tellers. A natural requirement in such a scenario is that also a mixed group of one vice
president and two senior tellers could recover the private key that is necessary to sign
and authorize such a transfer. Motivated by this example, Simmons studied a general
hierarchical threshold secret sharing problem that agrees with the problem in Definition
1.1 with one difference: while we require in (1) a conjunction of threshold conditions,
Simmons studied the problem with a disjunction of the threshold conditions. Namely, in
his version of the problem,

� =
{
V ⊂ U : ∃i ∈ {0, 1, . . . ,m} for which

∣∣∣∣∣V ∩
(

i⋃
j=0

Uj

)∣∣∣∣∣ ≥ ki

}
. (7)

His solution to that version is based on a geometric construction that was presented
by Blakley [5]. Assume that the secret S is d-dimensional (typically d = 1; however,
Simmon’s construction may easily deal with the simultaneous sharing of d > 1 secrets
as well). Then the construction is embedded in Fr , where F is a large finite field and
r = km + d − 1. Simmons suggested constructing a chain of affine subspaces W0 ⊂
W1 ⊂ · · · ⊂ Wm of dimensions ki − 1, 0 ≤ i ≤ m, together with a publicly known
affine subspace WS of dimension d, with the property that Wi ∩WS = {S} for all
0 ≤ i ≤ m (i.e., eachWi intersectsWS in a single point whose d coordinates inWS are
the d components of the secret S). Then, each participant from level Ui gets a point in
Wi\Wi−1, 0 ≤ i ≤ m (W−1 = ∅), such that every ki points from

⋃i
j=0 Uj span the entire

subspaceWi . Hence, if a subset of participants V satisfies at least one of the threshold
conditions, say, |V ∩ (⋃i

j=0 Uj )| ≥ ki for some i , 0 ≤ i ≤ m, then the corresponding
Wi may be constructed and intersected withWS to yield the secret S. The information
rate of the scheme, assuming the typical setting in which d = 1, is 1/km since the shares
of the participants from Um are points in Fkm . It should also be noted that the selected
points must be in general position, and the verification of that may have an exponential
cost.

Brickell [6] offered two schemes for the same problem, both ideal. The first one suffers
from the same problem as Simmons’, in the sense that the dealer is required to check
(possibly exponentially) many matrices for non-singularity. In the second scheme this
difficulty is replaced by the need to find an algebraic number of some degree over a
prime order field. More specifically, if q is a prime number such that q > max0≤i≤m |Ui |
the dealer has to find α ∈ Fq that satisfies an irreducible polynomial over Fq of degree
m · k2

m .
Shamir’s version of the hierarchical setting is slightly more relaxed than Simmons’

and Brickell’s. In the former, the number of participants that are required for recovery is
determined by a weighted average of the thresholds that are associated with each of the
levels that are represented in the subset of participants. In the latter, the necessary number
of participants is the highest of the thresholds that are associated with the levels that are
represented. However, it is natural to expect that more rigid conditions will be imposed
in some scenarios. Namely, even though higher-level (i.e., important) participants could
be replaced by lower-level ones, a minimal number of higher-level participants would
still need to be involved in any recovery of the secret. For example, the common practice
of authorizing electronic fund transfers does call for the presence of at least one vice
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president or manager department. The above-described solutions of Shamir and Simmons
are incapable of imposing such restrictions since they allow the recovery of the secret
for any subset of lower-level participants that is sufficiently large. This difference in the
definition of the problem is manifested by the replacement of the existential quantifier ∃
in (7) with the universal quantifier ∀ in (1).

We proceed to examine the interrelation between the three above-mentioned types of
access structures. Fixing U , the set of participants, we let WTAS denote the class of all
weighted threshold access structures of Shamir’s type onU , HTAS∃ denote the class of all
hierarchical threshold access structures of the type that Simmons and Brickell studied,
and HTAS∀ denote the class of all hierarchical threshold access structures of the type
that we introduce and study herein. We note that

WTAS,HTAS∃,HTAS∀ ⊂ 22U .

The intersection of those three classes is the class of basic threshold access structures
(namely, WTAS with equal weights, or HTAS of either kind with only one level in the
hierarchy). Since all minimal subsets of a HTAS∀ access structure are of the same size
while this is not true for a HTAS∃ access structure (of more than one level), we deduce
that there is no inclusion between those two classes. The results of this paper and of [2]
imply that there is also no inclusion between WTAS and the two hierarchical threshold
classes (the fact that WTAS\HTAS∃ �= ∅ and WTAS\HTAS∀ �= ∅ stems from the fact that
there are WTAS access structures that are not ideal, while, as shown herein, all access
structures of either HTAS∃ or HTAS∀ are ideal; the fact that HTAS∃ and HTAS∀ are not
sub-classes of WTAS stems from the characterization of all ideal WTAS access structures
that is given in [2]).

If � is a monotone access structure over U , its dual is defined by �∗ = {V: Vc /∈ �}.
It is easy to see that the two types of hierarchical threshold access structures, HTAS∃ and
HTAS∀, are dual in that sense. In view of a result due to Gal [11], if an access structure
� may be realized by an ideal secret sharing scheme, so can its dual �∗. Therefore, the
ideality of the access structures that we study herein, (1), follows from the ideality of the
access structures (7), as established in [6], combined with the above-mentioned duality
result. The schemes that we offer herein for realizing (1) are different from the schemes
that one would get from combining the techniques presented in [6] and [11], and they
rely upon different ideas. Moreover, they have an explicit and simple closed form (as
opposed to the schemes that are implied by [6] and [11]), they do not present some
of the difficulties that appear in Brickell’s schemes (namely, needing to check possibly
exponentially many matrices for non-singularity or to find algebraic numbers of certain
degrees over a finite field), and, in typical settings, they require slightly smaller field
sizes (see the concluding remark of Section 4 for a detailed discussion of this issue).

Padró and Sáez [15] studied the information rate of secret sharing schemes with a bi-
partite access structure. A bipartite access structure is one in which there are two subsets
of participants, U = U0 ∪ U1, and all participants in the same subset play an equivalent
role in the structure. They showed that the ideal bipartite access structures are exactly
those that are vector space access structures, namely, those which are consistent with
Brickell’s construction [6]. Furthermore, they showed that all such ideal access structures
are quasi-threshold in the sense that a subset V ⊂ U is authorized if |V|, |V ∩ U0|, and
|V ∩ U1| satisfy some threshold conditions [15, Theorem 5]. They characterized four
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types of quasi-threshold access structures, denoted �i , 1 ≤ i ≤ 4. It may be shown that
when there are two levels, i.e., m = 1, our conjunctive threshold access structures, (1),
fall under types �2, �3, and �4, while Simmons’ disjunctive threshold access struc-
tures, (7), fall under type �1. What we show in this paper is that in the multipartite
case, the conjunctive threshold access structures, as well as their disjunctive counter-
part, are vector space access structures and that Birkhoff interpolation yields an explicit
construction.

We conclude this survey with a recent paper by Tassa and Dyn [21]. That paper studies
three types of multipartite access structures and introduces ideal perfect secret sharing
schemes for these types of access structures that are based on bivariate interpolation.
One of these families is the family of hierarchical threshold access structures that are the
subject of the present paper, and they are realized there by bivariate Lagrange interpola-
tion with data on lines in general position. Hence, while in the present study the desired
hierarchy between the different levels is achieved by using polynomial derivatives and
Birkhoff interpolation, the schemes in [21] show that the same hierarchical effect may
be obtained by introducing a second dimension.

1.2. Organization of the Paper

In Section 2 we review the basic terminology and results from the theory of Birkhoff
interpolation [14]. We present those results in the context of the reals, R, which is
the natural context in numerical analysis. However, as R is not the field of choice in
cryptography, one should be very careful when borrowing results from such a theory and
migrating them to the context of finite fields. The algebraic statements usually travel well
and survive the migration; the analytic ones, however, might not. Part of our analysis will
be dedicated to those issues. Section 3 is devoted to our scheme. After presenting the
scheme, we discuss in Section 3.1 conditions for accessibility, (2), and perfect security,
(3). Then, we proceed to examine strategies for allocating participant identities in the
underlying finite field so that accessibility and perfect security are achieved. In Section 3.2
we consider the strategy of random allocation of participant identities and prove that such
a strategy guarantees that both (2) and (3) hold with almost certainty. In Section 3.3 we
consider a simple monotone allocation of participant identities. Borrowing an interesting
result from the theory of Birkhoff interpolation, we prove that such an allocation is
guaranteed to provide both accessibility and perfect security, (2)+(3), provided that the
prime order of the field is sufficiently large with respect to n (number of participants)
and km (minimal number of participants in an authorized subset), Theorem 3.6. In order
to illustrate the discussion in Section 3.3, we list in Appendix 5 all possible scenarios
when km ≤ 4. In Section 4 we turn our attention to the closely related hierarchical
threshold access structures that were studied by Simmons [18] and Brickell [6]. Relying
on a duality result from the theory of monotone span programs, we show how the
ideality of those access structures follows from the ideality of the conjunctive threshold
access structures. We then show how the schemes that we proposed for the conjunctive
hierarchical threshold access structures may be modified in order to be suitable for
hierarchical threshold access structures of the disjunctive type. Finally, in Section 5 we
describe two closely related open problems.

A preliminary version of this paper appeared in [20].
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2. Birkhoff Interpolation

Let

• X = {x1, . . . , xk} be a given set of points in R, where x1 < x2 < · · · < xk ;
• E = (ei, j )

k
i=1

�
j=0 be a matrix with binary entries, I (E) = {(i, j): ei, j = 1} and

d = |I (E)| (we assume hereafter that the right-most column in E is nonzero); and
• C = {ci, j : (i, j) ∈ I (E)} be a set of d real values.

Then the Birkhoff interpolation problem that corresponds to the triplet 〈X, E,C〉 is the
problem of finding a polynomial P(x) ∈ Rd−1[x] that satisfies the d equalities

P ( j)(xi ) = ci, j , (i, j) ∈ I (E). (8)

The matrix E is called the interpolation matrix.
Lagrange and Hermite interpolations may be viewed as special cases of Birkhoff

interpolation: the interpolation matrix in Lagrange interpolation has only one column
(since all data corresponds to the zeroth-order derivative), while Hermite interpolation
matrices are those in which each row (that stands for an interpolation point xi ) begins
with 1s, followed by 0s (namely, the sequence of given values at that point is of the
form P ( j)(x), 0 ≤ j ≤ ji , for some ji ≥ 0). Unlike Lagrange or Hermite interpolation
that are unconditionally well posed, the Birkhoff interpolation problem may not admit
a unique solution. The system of equations (8) translates into a square linear system of
equations A�x = �b where the vector of unknowns �x consists of the coefficients of the
requested polynomial P , the matrix A is determined by X and E , and the right-hand
side �b consists of the data in C . The pair 〈X, E〉 is called regular if the resulting matrix
A is regular, so that the system (8) has a unique solution for any choice of C ; otherwise
it is called singular. The matrix E is called regular or poised if 〈X, E〉 is regular for all
X = {x1 < x2 < · · · < xk} ⊂ R.

The following lemma provides a simple necessary condition that E must satisfy, lest
〈X, E〉 would be singular for all X [16].

Lemma 2.1 (Pólya’s Condition). A necessary condition that the interpolation matrix
E must satisfy in order for the corresponding Birkhoff interpolation problem to be well
posed is that for each 0 ≤ t ≤ �, � being the highest derivative order in the data, there
are given at least t + 1 values of derivatives of P of order less than or equal to t ; i.e.,

|{(i, j) ∈ I (E): j ≤ t}| ≥ t + 1, 0 ≤ t ≤ �. (9)

Proof. Let P(x) = ∑d−1
s=0 as xs be the unknown interpolant. Assume that condition (9)

fails to hold for some 0 ≤ t ≤ �. Concentrating on the equations in (8) that correspond
to the pairs (i, j) ∈ I (E) where j ≤ t , we note that these are the only equations in (8)
that involve one of the first t + 1 unknowns, as , 0 ≤ s ≤ t (indeed, all other equations in
(8) correspond to derivative orders that are higher than t and, consequently, they do not
involve those unknowns). Hence, the restriction of the linear system in (a0, . . . , ad−1) to
a system in (a0, . . . , at ) yields a system where the number of equations is smaller than
the number of unknowns. Such systems are singular.
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Pólya’s is a necessary condition. Sufficient conditions, on the other hand, are scarce.
We continue to describe one such condition that will serve us later on in our application
to secret sharing. To this end we define the following.

Definition 2.1. A 1-sequence in the interpolation matrix E is a maximal run of con-
secutive 1s in a row of the matrix E ; namely, it is a triplet of the form (i, j0, j1)
where 1 ≤ i ≤ k, 0 ≤ j0 ≤ j1 ≤ �, such that ei, j = 1 for all j0 ≤ j ≤ j1 while
ei, j0−1 = ei, j1+1 = 0 (letting ei,−1 = ei,�+1 = 0). A 1-sequence (i, j0, j1) is called sup-
ported if E has 1s both to the northwest and southwest of the leading entry in the sequence;
i.e., there exist inw < i , isw > i , and jnw, jsw < j0 such that einw, jnw = eisw, jsw = 1.

The following theorem was first proved by Atkinson and Sharma [1].

Theorem 2.2. Assume that x1 < x2 < · · · < xk . Then the interpolation problem
(8) has a unique solution if the interpolation matrix E satisfies Pólya’s condition and
contains no supported 1-sequences of odd length.

Lemma 2.1, being algebraic, is not restricted to the reals and applies over any field.
Theorem 2.2, on the other hand, is more problematic. It relies upon the existence of order
inR. (That theorem is, in fact, a consequence of Rolle’s theorem.) Hence, as finite fields
are not ordered and have no equivalent to Rolle’s theorem, Theorem 2.2 does not apply
to them. As a counterexample, consider the interpolation problem with X = {1, 2, 4}
and

E =

1 0

1 0
0 1


 . (10)

Namely, we seek a polynomial P(x) = a2x2 + a1x + a0 that satisfies

P(1) = c1,0, P(2) = c2,0, P ′(4) = c3,1.

The corresponding system of linear equations in the unknowns (a0, a1, a2) has the fol-
lowing matrix of coefficients:

A〈X,E〉 =

1 1 1

1 2 4
0 1 8


 . (11)

It is easy to see that E , (10), satisfies the conditions of Theorem 2.2 and, indeed,
det(A〈X,E〉) = 5 �= 0. However, if we consider the same problem over the field F5,
(11) becomes singular.

Despite this problem, Theorem 2.2 will be of use if we impose further restrictions on
the set of points in X . This will be dealt with in Section 3.3.

3. An Ideal Hierarchical Secret Sharing Scheme

Consider the hierarchical secret sharing problem (k, n), k = {ki }m
i=0, as defined in

Definition 1.1. Let F be a finite field of size q which is at least as large as the number of
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possible secrets. Let k = km be the overall number of participants that are required for
recovery of the secret. Then:

1. The dealer selects a random polynomial P(x) ∈ Fk−1[x], where

P(x) =
k−1∑
i=0

ai x
i and a0 = S. (12)

2. The dealer identifies each participant u ∈ U with a field element. For simplicity,
the field element that corresponds to u ∈ U will be also denoted by u (whence U
may be viewed as a subset of F).

3. The dealer distributes shares to all participants in the following manner: Each
participant of the i th level in the hierarchy, u ∈ Ui , 0 ≤ i ≤ m, receives the
share P (ki−1)(u), i.e., the (ki−1)th derivative of P(x) at x = u, where k−1 = 0. (A
reminder: given a polynomial P(x) = ∑k−1

i=0 ai xi over any field F, its derivative is
defined formally as P ′(x) = ∑k−1

i=0 iai xi−1.)

For example, assume that there are three levels in the hierarchy, U = U0 ∪ U1 ∪ U2,
and that the thresholds are k = (k0, k1, k2) = (2, 4, 7); namely, V ⊂ U is authorized if
and only if it has at least seven participants, of whom at least four are from U0 ∪ U1, of
whom at least two are from U0. Then, as k = k2 = 7 in this example, the dealer selects a
random polynomial of degree 6, P(x) = ∑6

i=0 ai xi , where a0 = S. He then distributes
the shares as follows: participants u ∈ U0 will get the share P(u) (namely, the value of
P at the field element that identifies the corresponding participant); participants u ∈ U1

will get the share P ′′(u), since k0 = 2; and those of the lowest level, U2, will get P (4)(u),
since k1 = 4.

This scheme is of-course ideal, as every participant receives a share that is a field
element, just like the secret. Note that Shamir’s secret sharing scheme [17] is a special
case of our scheme since in that case all users belong to the same level (i.e., U = U0)
and, consequently, there are no derivatives and all users get shares of the form P(u).

3.1. Conditions for Accessibility and Perfect Security

The main questions that arise with regard to the scheme are whether it complies with
conditions (2) and (3). Let V = {v1, . . . , v|V|} ⊂ U and assume that

v1, . . . , v�0 ∈ U0,

v�0+1, . . . , v�1 ∈ U1,
...

v�m−1+1, . . . , v�m ∈ Um, where 0 ≤ �0 ≤ · · · ≤ �m = |V|.
(13)

V is authorized if and only if �i ≥ ki for all 0 ≤ i ≤ m. Let r: F → F
k be defined as

r(x) = (1, x, x2, . . . , xk−1) and, for all i ≥ 0, let r(i)(x) denote the i th derivative of that
vector. Using this notation, we observe that the share that is distributed to participants
u ∈ Ui is σ(u) = r(ki−1)(u) · a where a = (a0 = S, a1, . . . , ak−1) is the vector of
coefficients of P(x). Hence, when all participants of V , (13), pool together their shares,
the system that they need to solve in the unknown vector a is MVa = σ, where the



Hierarchical Threshold Secret Sharing 247

coefficient matrix is (written by its rows),

MV = (r(v1), . . . , r(v�0); r(k0)(v�0+1), . . . , r(k0)(v�1); . . . ;
r(km−1)(v�m−1+1), . . . , r(km−1)(v�m )), (14)

while

σ = (σ (v1), σ (v2), . . . , σ (v�m ))
T .

In view of the discussion in Section 2, the matrix MV is not always solvable, even if
V ∈ �. Our first observation is as follows.

Proposition 3.1. The Birkhoff interpolation problem that needs to be solved by an
authorized subset satisfies Pólya’s condition (9). Conversely, the Birkhoff interpolation
problem that needs to be solved by an unauthorized subset does not satisfy Pólya’s
condition.

Proof. Let V be an authorized subset and let t be any derivative order in the range
0 ≤ t ≤ km−1. As the thresholds are strictly increasing, k−1 = 0 < k0 < k1 < · · · < km ,
there exists 0 ≤ i ≤ m for which ki−1 ≤ t < ki . Hence, V has the values of P and
its derivatives up to and including P (t) in |V ∩ (⋃i

j=0 Uj )| points. But since V ∈ �,

|V ∩ (⋃i
j=0 Uj )| ≥ ki ≥ t + 1, as required by Pólya’s condition. Next, assume that V is

an unauthorized subset. Then there exists 0 ≤ i ≤ m for which |V ∩ (⋃i
j=0 Uj )| < ki .

Then Pólya’s condition fails to hold for t = ki − 1, since the shares of participants in V
from levels Uj , j ≥ i + 1, correspond to derivatives of order ki and up.

Next, assume that 0 ∈ U is a special phantom participant and that it belongs to the
highest level U0. This assumption enables us to answer both questions of accessibility
and perfect security by examining the regularity of certain matrices.

Theorem 3.2. Assume that 0 ∈ U0 and that for any minimal authorized subset V ∈ �
(namely, |V| = k), the corresponding square matrix MV , (14), is regular, i.e., det MV �= 0
in F. Then conditions (2) (accessibility) and (3) (perfect security) hold.

Proof. Let V be a “genuine” authorized subset, namely V ∈ � and 0 /∈ V . If V
is minimal, |V| = k, then MV is square and regular; therefore, V may recover the
polynomial P(x) and, consequently, the secret S. If V is not minimal, |V| > k, there
exists a subset V0 ⊂ V of size |V0| = k that is authorized. Since all |V| equations in
the linear system of equations MVa = σ are consistent and since, by assumption, the
sub-matrix MV0 is regular, then MVa = σ has a unique solution a, the first component
of which is the secret S. Therefore, the assumptions of the theorem imply accessibility.

Next, we prove that those assumptions also imply the perfect security of the scheme.
Let V ∈ 2U\{0}\� be an unauthorized subset and assume that V is as in (13). We aim at
showing that even if all participants in V pool their shares together, they cannot reveal a
thing about the secret S. Every unauthorized subset may be completed into an authorized
subset (though not necessarily minimal) by adding to it at most k participants. Without
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loss of generality, we may assume that V is missing only one participant in order to
become authorized. Therefore, if we add to V the phantom participant 0 we get an
authorized subset, V1 = {0} ∪ V ∈ �, since 0 belongs to the highest level U0.

Let us assume first that |V| = k − 1. Then |V1| = k and, consequently, MV1 is square
and regular. Therefore, the row in MV1 that corresponds to the user 0 is independent of
the rows that correspond to the original k − 1 members of V , i.e.,

r(0) = (1, 0, . . . , 0) /∈ row-space(MV).

Hence, the value of the secret S is completely independent of the shares of V .
Next, assume that |V| > k − 1. Assume that the single participant that V is missing in

order to become authorized is missing at the j th level for some 0 ≤ j ≤ m; i.e., using
the notations of (13),

�i ≥ ki 0 ≤ i ≤ j −1, �j = kj −1, and �i ≥ ki −1, j +1 ≤ i ≤ m. (15)

Since |V| = �m > k − 1, we conclude that �m − �j > k − kj . All �m − �j rows in MV
that correspond to the participants of V from levels Uj+1 through Um have at least kj

leading zeros, since they all correspond to derivatives of order kj or higher. Therefore,
those rows belong to a subspace of Fk of dimension k − kj . Hence, we may extract from
among them k − kj rows that still span the same subspace as the original �m − �j rows.
Let W denote the subset of V that corresponds to the (�m − �j ) − (k − kj ) redundant
rows from among the last �m − �j rows in MV and let V0 = V\W . By (15),

|V0| = |V| − |W| = �m − [(�m − �j )− (k − kj )] = �j + k − kj = k − 1.

Clearly, the removal from V of the participants in W cannot create new deficiencies,
whence, V0, like V , also lacks only a single participant at the j th level in order to
become authorized. Hence, we may apply to it our previous arguments and conclude
that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV0).

However, since

row-space(MV0) = row-space(MV),

we arrive at the sought-after conclusion that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV),

which implies perfect security.

3.2. Random Allocation of Participant Identities

The first strategy of allocating participant identities that we consider is the random one.
Namely, recalling that |U | = n and |F| = q, the random strategy is such that

Prob(U =W) = 1(q−1
n

) , ∀W ⊂ F\{0}, |W| = n. (16)
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Theorem 3.3. Assume a random allocation of participant identities, (16). Let V be a
randomly selected subset from 2U . Then if V ∈ �

Prob (H(S|σ(V)) = 0) ≥ 1 − ε, (17)

while otherwise

Prob (H(S|σ(V)) = H(S)) ≥ 1 − ε, (18)

where

ε = (k − 2)(k − 1)

2(q − k)
. (19)

Proof. If V ∈ � there exists a minimal authorized subset V0 ⊆ V , |V0| = k, such that
if det MV0 �= 0 V may recover S. If, on the other hand, V /∈ �, we saw in Theorem 3.2
that if 0 ∈ U0 there exists a minimal authorized subset V0 such that det MV0 �= 0 implies
that V cannot learn any information about S. Hence, in order to prove both statements
of the theorem, (17) and (18), it suffices to assume that 0 ∈ U0 and then show that if
V ∈ � is a minimal authorized subset, MV has a nonzero determinant in probability at
least 1 − ε.

To that end, letV be such a subset and assume that its participants are ordered according
to their position in the hierarchy, (13). We proceed to show that

Prob (det(MV) = 0) ≤ (k − 2)(k − 1)

2(q − k)
. (20)

Noting that (20) clearly holds when k = 1, 2, we continue by induction on k. There are
two cases to consider:

1. The last row in MV is r(h)(vk) where h < k − 1 (this happens if km−1 < km − 1 or
if V ∩ Um = ∅).

2. The last row in MV is r(k−1)(vk) (this happens when km−1 = km −1 andV∩Um �= ∅;
in that case vk is the only participant in V ∩ Um , since V is minimal).

We begin by handling the first case. Let v = (v1, . . . , vk−1) and (v, vk) = (v1, . . . , vk).
Let µk−1 = µk−1(v) denote the determinant of the (k − 1) × (k − 1) minor of MV
that is obtained by removing the last row and last column in MV . Then, expanding the
determinant by the last row, we may write it as a polynomial in vk ,

det(MV) =
k−2−h∑

i=0

civ
i
k + (k − 1)!

(k − 1 − h)!
· µk−1 · vk−1−h

k , (21)

for some constants ci that depend on v. Let � denote the collection of all v ∈ Fk−1 for
which µk−1 = µk−1(v) = 0. Then

Prob(det(MV) = 0) =
∑

v∈Fk−1\�
Prob(det(MV) = 0|v) · Prob(v)

+
∑
v∈�

Prob(det(MV) = 0|v) · Prob(v). (22)
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If v ∈ Fk−1\� then det(MV) is a polynomial of degree k − 1 − h in vk , (21). Hence,
there are at most k − 1 − h values of vk for which det(MV) = 0. This implies that

Prob(det(MV) = 0|v) ≤ k − 1 − h

(q − 1)− (k − 1)
, ∀v ∈ Fk−1\� (23)

(recall that the participant identities are distinct and are randomly selected from F\{0}).
Note that h could take any value between 0 and k −2. However, if h = 0 it means that all
participants in V belong to the highest level, so that MV is a Vandermonde matrix. In that
case, the matrix is invertible and, consequently, Prob(det(MV) = 0) = 0. Therefore, the
worst case in (23) is when h = 1. Hence, we rewrite (23) as follows:

Prob(det(MV) = 0|v) ≤ k − 2

q − k
, ∀v ∈ Fk−1\�. (24)

If v ∈ � then the degree of det(MV) as a polynomial in vk is less than k − 1 − h.
The problem is that it may completely vanish and then det(MV) would be zero for all
values of vk . However, as v is a vector of dimension k − 1, we may invoke the induction
assumption (i.e., (20) for k − 1) and conclude that

Prob(v ∈ �) ≤ (k − 3)(k − 2)

2(q − k + 1)
. (25)

Finally, combining (22), (24), and (25) we may prove (20) in this case:

Prob(det(MV) = 0) ≤ k − 2

q − k
+ (k − 3)(k − 2)

2(q − k + 1)
≤ (k − 2)(k − 1)

2(q − k)
.

In the second case, det(MV) does not depend on vk as the last row in the matrix in
this case is (0, . . . , 0, (k − 1)!). Hence, we may solve for ak−1 and reduce the system to
a system in only (k − 1) unknowns, {ai }k−2

i=0 . Consequently, we may apply induction in
order to conclude that

Prob (det(MV) = 0) ≤ (k − 3)(k − 2)

2(q − k + 1)
<
(k − 2)(k − 1)

2(q − k)
.

The proof is thus complete.

Examples. 1. Consider a secret sharing problem with k = (k0 = 3, k1 = 4, k2 = 6).
Let V be an authorized subset that has �0 = 3 participants from U0, �1 = 5 participants
from U0 ∪U1, and �2 = 6 participants overall. Then V needs to solve a linear system for
the polynomial coefficients a = (a0, . . . , a5) where the corresponding matrix is

MV =




1 v1 v2
1 v3

1 v4
1 v5

1

1 v2 v2
2 v3

2 v4
2 v5

2

1 v3 v2
3 v3

3 v4
3 v5

3

0 0 0 6 24v4 60v2
4

0 0 0 6 24v5 60v2
5

0 0 0 0 24 120v6



. (26)
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Here, det(MV) = 120µ5v6 + c0, where µ5 and c0 depend on {vi }5
i=1 (see (21)). If

µ5 = det




1 v1 v2
1 v3

1 v4
1

1 v2 v2
2 v3

2 v4
2

1 v3 v2
3 v3

3 v4
3

0 0 0 6 24v4

0 0 0 6 24v5


 �= 0

then det(MV) will vanish for only one value of v6. If, on the other hand, µ5 = 0, there
are two scenarios: either c0 �= 0, in which case the matrix is non-singular independently
of v6, or c0 = 0, in which case the matrix is singular for all values of v6. The proof of the
theorem took into account the latter scenario which is worse. Therefore, MV is singular
in probability (6 − 2)(6 − 1)/2(q − 6) = 10/(q − 6) at most.

2. Assume now that k = (k0 = 3, k1 = 5, k2 = 6) and V has the same structure as in
the previous example. Then

MV =




1 v1 v2
1 v3

1 v4
1 v5

1

1 v2 v2
2 v3

2 v4
2 v5

2

1 v3 v2
3 v3

3 v4
3 v5

3

0 0 0 6 24v4 60v2
4

0 0 0 6 24v5 60v2
5

0 0 0 0 0 120



. (27)

Here, a5 may be found and then we are left with the first five equations in (a0, . . . , a4).
Then, we conclude that MV is singular in probability (5 − 2)(5 − 1)/2(q − 5) =
6/(q − 5) at most. In fact, in this particular example we can see that the matrix MV
is invertible for all values v1 < v2 < · · · < v6. Namely, concentrating on secret sharing
settings with k as above, all authorized subsets of this type (i.e., with the same values of
�0, �1, �2) are at no risk of being unable to recover the secret.

Theorem 3.3 implies that if k, the number of overall participants that are required
in an authorized subset, is a small number, the failure probability is �(1/q). Since q
should be at least as large as the number of possible secrets (and, hence, is usually very
large), the failure probability is not much larger than the probability of simply guessing
the secret.

As the number of minimal authorized subsets in U ∪ {0} is
(n+1

k

)
, Theorems 3.2 and

3.3 imply the following:

Corollary 3.4. Assume a random allocation of participant identities, (16). Then the
probability that the resulting scheme has accessibility, (2), for all authorized subsets and
perfect security, (3), for all unauthorized subsets is at least 1 − (n+1

k

) · ε, where ε is as
in (19). Consequently, hierarchical threshold access structures with n participants and
minimal authorized subsets of size k may be realized ideally by a linear secret sharing
scheme over fields F of size

q = |F| >
(

n + 1

k

)
· (k − 2)(k − 1)

2
+ k.
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The random allocation is therefore a safe bet. Since usually n and k are not too
large, the dealer may adopt this strategy and be certain in a high probability that both
requirements—accessibility, and perfect security—will be satisfied.

If the number of minimal authorized subsets in U ∪ {0}, (n+1
k

)
, is manageable, the

dealer could use the random allocation as a basis for finding a full-proof allocation of
identities: The dealer will assign the identities to participants one at a time. For each newly
generated participant identity, the dealer will scan all minimal authorized subsets that
involve only participants from those that were assigned an identity thus far (including the
phantom participant u = 0). If one of those subsets V happens to have a singular matrix
MV—an event of probability �(1/q)—the dealer will select a new random identity for
the new participant. After finding a successful identity for that participant, the dealer will
proceed to the next one until all participants are associated with some identity u ∈ F.

Such a verification is feasible with modest values of n, say n ≤ 30 and all values of
1 ≤ k ≤ n. By carrying out a more careful scanning of all minimal authorized subsets,
one can skip subsets that give rise to matrices that are unconditionally invertible and
therefore significantly reduce the running time of the allocation process. One simple
observation along those lines is the following: let �i = |V ∩ ⋃i

j=0 Uj |, 0 ≤ i ≤ m,
be as in (13). Then if for each i there exists j (i) such that �i = kj (i), the matrix MV
is unconditionally invertible since it is block-triangular and the square blocks on the
diagonal are generalized Vandermonde blocks (the number of blocks equals the size of
the set { j (i)}0≤i≤m).

A verification process of that sort is not feasible for large values of n. In such cases, the
dealer must perform an oblivious random allocation and rely on the negligible probability
for a failure, as provided by Theorem 3.3 and Corollary 3.4.

3.3. Monotone Allocation of Participant Identities

Here, we present a simple allocation method that guarantees both accessibility, (2), and
perfect security, (3), if the field F is of a sufficiently large prime order q.

For every 0 ≤ i ≤ m we define ni = |⋃i
j=0 Ui | and let n−1 = 0. The simpler version

of our method associates all ni −ni−1 members ofUi with the identities [ni−1+1, ni ] ⊂ F.
The more flexible version of this method leaves gaps between the m + 1 intervals
of identities, in order to allow new participants to be added to any level while still
maintaining the monotonic principle,

u ∈ Ui , v ∈ Uj , i < j ⇒ u < v, (28)

where the inequality is in the usual sense between integers in the interval [0, q − 1].
In Lemma 3.5 and Theorem 3.6 we prove that this method guarantees accessibility and

perfect security, (2)+(3), provided that the size of the underlying field, q, is sufficiently
large with respect to the parameters of the problem. In Lemma 3.5 we prove our basic
lower bound on q that guarantees these two conditions. Then, in Theorem 3.6, we use the
bound of Lemma 3.5 and carry out a more delicate analysis that yields a better bound.

Lemma 3.5. Let (k, n) be a hierarchical threshold secret sharing problem. Assume
that the participants in U were assigned identities in F = Fq , q being a prime, in a
monotone manner, namely, in concert with condition (28), and let N = maxU . Finally,
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assume that

2−k · (k + 1)(k+1)/2 · N (k−1)k/2 < q = |F| (29)

(where k = km is the minimal size of an authorized subset). Then our hierarchical secret
sharing scheme satisfies conditions (2) and (3).

Proof. In view of Theorem 3.2, it suffices to prove that ifV ∈ � is a minimal authorized
subset, that may include the phantom participant u = 0, then the corresponding square
matrix MV , (14), is regular. Without loss of generality we assume that the participant
identities in V are given by (13) (with �m = k) and that they are ordered in the usual
sense in R, v1 < v2 < · · · < vk . First, we prove that

det MV �= 0 in R. (30)

Then, invoking (29), we shall prove that

|det MV | < q in R. (31)

Combining (30) and (31) we conclude that

det MV �= 0 in F = Fq . (32)

In order to prove (30), we observe that the interpolation matrix E , which corresponds
to the Birkhoff interpolation problem with which the participants in V are faced, has an
echelon form. Indeed, all rows have exactly one entry that equals 1, and the position of
the 1 is monotonically non-decreasing as we go down the rows of E : in the first �0 rows
we encounter the 1 in column j = 0, in the next �1 − �0 rows the 1 appears in column
j = �0, and so forth. Hence, the matrix E has no supported 1-sequences in the sense of
Definition 2.1. Recalling Proposition 3.1, we infer that the conditions of Theorem 2.2
are satisfied. Therefore, the corresponding Birkhoff interpolation problem is well posed
over R (30).

In order to bound the determinant of MV , we invoke Hadamard’s maximal determinant
theorem [9, problem 523]. According to that theorem, if A is a k × k real matrix, and

|Ai, j | ≤ 1, 0 ≤ i, j ≤ k − 1, (33)

then

| det(A)| ≤ 2−k · (k + 1)(k+1)/2. (34)

Let A be the matrix that is obtained from MV if we divide its j th column by N j ,
0 ≤ j ≤ k − 1. Since that matrix A satisfies condition (33), we conclude, in view of
(34) and (29), that MV satisfies (31). That completes the proof.

Theorem 3.6. Under the conditions of Lemma 3.5, the hierarchical threshold secret
sharing scheme satisfies conditions (2) and (3) provided that

α(k)N (k−1)(k−2)/2 < q = |F| where α(k) := 2−k+2 ·(k −1)(k−1)/2 ·(k −1)!. (35)
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Proof. Assume that V in (13) is a minimal authorized subset and that the participant
identities are ordered in the usual sense in R, v1 < v2 < · · · < vk . Let di , 1 ≤ i ≤ k, be
the order of derivative of the share that vi got. Namely, in view of (13) and (14), di = 0
for 1 ≤ i ≤ �0, di = k0 for �0 + 1 ≤ i ≤ �1, and so forth. We refer to d = (d1, . . . , dk)

as the type of the interpolation problem that needs to be solved by the participants of V
since it characterizes the form of the coefficient matrix MV , (14). Finally, let t be the
largest integer such that di = i − 1 for all 1 ≤ i ≤ t . We note that t is well defined and
t ≥ 1 since always d1 = 0 (i.e., V must always include at least one participant of the
highest level U0).

LetP denote the problem of recovering the polynomial P from the shares of {vi }1≤i≤k .
We claim thatP may be decomposed into two independent problems that may be solved
in succession:

• Problem P1. Recovering P (t−1) (namely, the coefficients ai , t − 1 ≤ i ≤ k − 1,
see (12)) from the shares of vi , t ≤ i ≤ k.

• Problem P2. Recovering ai−1 from the share of vi , t − 1 ≥ i ≥ 1.

Indeed, the equations that correspond to the last k − t + 1 participants—{vi }t≤i≤k—
involve only the k − t +1 coefficients {ai }t−1≤i≤k−1 (note that if t = 1,P1 coincides with
the original problem P and then P2 is rendered void). Hence, we may first concentrate
on solving the (possibly reduced) interpolation problem P1. If that problem is solvable,
we may proceed to problem P2. That problem is always solvable by the following
simple procedure: for every i , i = t − 1, . . . , 1, we perform one integration and then,
using the share of vi , we recover the coefficient ai−1 of P . Hence, we may concentrate on
determining a sufficient condition for the solvability ofP1. That condition will guarantee
also the solvability of P . (Note that P1 still satisfies Pólya’s condition, Lemma 2.1.)

The dimension of the interpolation problemP1 is k − t +1. Hence, since the left-hand
side in (35) is monotonically increasing in k, we may concentrate here on the worst case
where t = 1 and the dimension of P1 is k (namely, P1 = P). The main observation,
which justifies this preliminary discussion and the decomposition of P into two sub-
problems, is that in the type d of P1, d1 = d2 = 0. Indeed, d1 = 0 and d2 ≤ 1, as
enforced by Pólya’s condition; moreover, d2 �= 1 for otherwise t ≥ 2, as opposed to our
assumption that t = 1. With this in mind, we define s ≥ 2 to be the maximal integer for
which di = 0 for all 1 ≤ i ≤ s.

Next, we write down the system of linear equations that characterizes the interpolation
problemP1. To that end, we prefer to look for the polynomial P in its Newton form with
respect to {vi }1≤i≤k (as opposed to its standard representation (12)):

P(x) =
k−1∑
j=0

cj

j∏
i=1

(x − vi ). (36)

Writing down the system of linear equations in the unknowns {cj }0≤ j≤k−1, we see that
the corresponding coefficient matrix, M̂ = M̂V , has a block triangular form,

M̂ =
(

B1 0
B2 B3

)
, (37)
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where the upper-left s × s block is given by

B1 =




1 0 0 0 · · · 0
1 v2 − v1 0 0 · · · 0
1 v3 − v1

∏2
i=1(v3 − vi ) 0 · · · 0

...
...

...
...

...
...

1 vs − v1
∏2

i=1(vs − vi )
∏3

i=1(vs − vi ) · · · ∏s−1
i=1(vs − vi )


 . (38)

(We use the notation M̂ in order to distinguish this matrix from M = MV , (14), that
was the coefficient matrix in the linear system for the unknowns ai in the standard
representation of the interpolant P(x), (12).) Invoking the same arguments as in Lemma
3.5, we conclude that

det M̂ �= 0 in R. (39)

We need to show that

det M̂ �= 0 in F. (40)

In order to prove (40), we first invoke (37) to conclude that

det M̂ = det B1 · det B3. (41)

As N < q , all terms on the diagonal of B1, (38), are non-zero in F, so that B1 is invertible
over F. Therefore, by (41), we only need to show that

det B3 �= 0 in F, (42)

in order to prove (40). Since det B3 �= 0 in R, as implied by (39) and (41), this amounts
to showing that

|det B3| < q in R. (43)

In order to prove (43), we shall show that

|M̂i, j | ≤ j · N j−1 for all s + 1 ≤ i ≤ k, s ≤ j ≤ k − 1. (44)

(Note that the rows of M̂ correspond to vi , 1 ≤ i ≤ k, while the columns of M̂ correspond
to the unknown coefficient cj , 0 ≤ j ≤ k − 1.) Then, we may proceed to prove (43)
using Hadamard’s inequality: let A be the matrix that is obtained from B3 after dividing
its j th column, s ≤ j ≤ k − 1, by j · N j−1. Then according to (44), the normalized
block A satisfies condition (33) of Hadamard’s maximal determinant theorem. Hence,
by (34),

|det A| ≤ 2−k+s · (k − s + 1)(k−s+1)/2.

Consequently, since s ≥ 2,

|det B3|=|det A| ·
(

k−1∏
j=s

j · N j−1

)
≤ 2−k+2 · (k −1)(k−1)/2 · (k −1)! · N (k−1)(k−2)/2. (45)

Inequalities (45) and (35) prove (43).
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The only missing link is (44). In order to prove this inequality, we need to derive an
expression for the derivatives of P(x), (36). Let us introduce the notations

Pj (x) =
j∏

i=1

(x − vi ) and Pj,h(x) = dh Pj (x)

dxh
, 0 ≤ j ≤ k − 1, h ≥ 0. (46)

Then, since Pj,h = 0 for all j < h,

P (h)(x) =
k−1∑
j=h

cj Pj,h(x). (47)

The expression for Pj,h(x) is given by

Pj,h(x) =
∑{

�(g1,...,gh)(x): (g1, . . . , gh) ∈ G( j, h)
}
, (48)

where G( j, h) is the set of all j!/( j − h)! ordered selections of h elements from
{1, . . . , j} and

�(g1,...,gh)(x) =
∏

{(x − vi ): i ∈ {1, . . . , j}\{g1, . . . , gh}} . (49)

Setting x = v�, for some s + 1 ≤ � ≤ k, in (47), we see that the �th row in M̂ takes the
form

(M̂�, j )0≤ j≤k−1 = (0 · · · 0 Ph,h(v�) · · · Pk−1,h(v�)), (50)

where h = d� is the order of derivative of the share of v�. From (48),

|Pj,h(v�)| ≤ |G( j, h)| · max
(g1,...,gh)

|�(g1,...,gh)(v�)|.

Since, by (49), |�(g1,...,gh)(v�)| ≤ N j−h , we conclude that

|Pj,h(v�)| ≤ j!

( j − h)!
· N j−h, h ≤ j ≤ k − 1. (51)

As the definition of s implies that h ≥ 1 for all rows s + 1 ≤ � ≤ k, and since
j ≤ k − 1 < N , we infer by (51) and (50) that

|M̂�, j | ≤ j · N j−1, h ≤ j ≤ k − 1. (52)

Since, by (50), the inequality in (52) holds trivially for columns 0 ≤ j ≤ h − 1 as well,
that proves (44). The proof of the theorem is thus complete.

Condition (35) is pretty sharp. It may be seen that the worst scenario is that in which
d = (0, 0, 1, . . . , 1)—namely, k0 = 1 (the number of participants from U0 must be at
least 1) and there are two participants fromU0 while all the rest are fromU1. In such cases,
the (real) determinant of the block B3 in the matrix of coefficients M̂ is�(N (k−1)(k−2)/2),
though the constantα(k)may be somewhat improved. In the Appendix we list all possible



Hierarchical Threshold Secret Sharing 257

Table 1. Values of k and N that satisfy condi-
tions (29) and (35).

k Condition (29) Condition (35)

5 N ≤ 5497 N ≤ 1234795
6 N ≤ 296 N ≤ 3637
7 N ≤ 56 N ≤ 200
8 N ≤ 19 N ≤ 38

cases where k ≤ 4. From that study one sees that (35) is sharp for k = 2 when it reads
1 < q (i.e., there is no restriction) and k = 3 when it reads 2N < q. However, when
k = 4, (35) demands that 32.5 N/2 ≈ 7.8N < q, while a careful examination of all cases
where k = 4 reveals that 6N < q suffices.

The improvement offered by (35) over (29) may be appreciated by comparing the
logarithms to the base 2 of the two lower bounds on q. The difference between the
logarithm to the base 2 of the lower bound in (29) and that of the lower bound in (35) is
given by

(k − 1) · log N + 1
2 log

(k + 1)k+1

(k − 1)k−1
− log((k − 1)!)− 2.

This difference shows the number of additional bits that estimate (35) allows for the
prime number q comparing to the size in bits that is allowed by estimate (29).

Table 1 includes for each value of k, 5 ≤ k ≤ 8, the maximal value of N for which
the original condition, (29), and the improved one, (35), still holds when the secret to be
shared is an AES key (namely, q is of size 128 bits). The figures in the table demonstrate
the exponential drop in the capacity of the scheme, N , when k increases. However, this
should not be worrisome because n and k in any plausible real-life application are usually
small. In the unlikely scenario of k and N so large that condition (35) fails to hold for
any prime q of the size of the secret to be shared, we may always go back to the random
allocation strategy that was described in the previous section.

4. An Ideal Scheme for the Disjunctive Hierarchical Secret Sharing Problem

As described in the Introduction, Simmons [18] studied a closely related hierarchical
secret sharing problem, where the conjunction of threshold conditions is replaced by
a disjunction (compare (1) to (7)). His scheme is not ideal and it requires (possibly
exponentially) many checks to be made when assigning identities and shares to the
participants. Brickell [6] offered two schemes for the same problem, both ideal. The first
one suffers from the same problem as Simmons’, in the sense that the dealer is required to
check (possibly exponentially) many matrices for non-singularity. In the second scheme
this difficulty is replaced by the need to find an algebraic number of some degree over a
prime-order field. Here we show how the ideality of the disjunctive hierarchical access
structures follows immediately from the ideality of their conjunctive counterpart. We
then proceed to describe an ideal scheme for their realization that does not involve any
of the above-mentioned difficulties of Simmons’ and Brickell’s schemes.
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Karchmer and Wigderson [13] introduced monotone span programs as a linear al-
gebraic model of computation for computing monotone functions. A monotone span
program (MSP) is a quintupleM = (F,M,U, ϕ, e) where F is a field, M is a matrix of
dimensions a × b over F, U = {u1, . . . , un} is a finite set, ϕ is a surjective function from
{1, . . . , a} to U , which is thought of as labeling of the rows of M , and e is some target
row vector from Fb. The MSPM realizes the monotone access structure � ⊂ 2U when
V ∈ � if and only if e is spanned by the rows of the matrix M whose labels belong to
V . The size ofM is a, the number of rows in M . Namely, in the terminology of secret
sharing, the size of the MSP is the total number of shares that were distributed to all
participants in U . An MSP is ideal if a = n.

If � is a monotone access structure over U , its dual is defined by �∗ = {V: Vc /∈ �}. It
is easy to see that �∗ is also monotone. In [11] it was shown that ifM = (F,M,U, ϕ, e)
is an MSP that realizes a monotone access structure �, then there exists an MSPM∗ =
(F,M∗,U, ϕ, e∗) of the same size like M that realizes the dual access structure �∗.
Hence, an access structure is ideal if and only if its dual is.

Returning to the disjunctive hierarchial access structure that was studied by Simmons,
(7), we claim the following straightforward proposition:

Proposition 4.1. LetU = ⋃m
i=0 Ui and k = {ki }m

i=0 be as in Definition 1.1. Let� be the
corresponding disjunctive access structure as defined in (7). Then �∗ is the conjunctive
access structure that is defined in Definition 1.1 with thresholds k∗ = {k∗

i }m
i=0 where

k∗
i = |⋃i

j=0 Uj | − ki + 1, 0 ≤ i ≤ m.

Since the conjunctive hierarchial access structure is ideal in the sense that there exists
an ideal secret sharing scheme that realizes it (over sufficiently large fields), we conclude
the following:

Corollary 4.2. The disjunctive access structure (7) is ideal.

Finally, we describe how to modify our scheme for (k, n)-conjunctive threshold access
structures, (1), in order to be suitable for (k, n)-disjunctive ones, (7). There are two
small modifications that need to be made, both reflecting the duality of the two types of
problems. As before, we let k = km be the highest threshold, and the scheme is based
on a secret polynomial P(x) ∈ Fk−1[x]. However, while in the original scheme the
secret was a0, in the new scheme it is ak−1, the coefficient of the highest power. Another
modification is that the more important levels will now get lower-order derivatives, as
opposed to the original scheme. The scheme is therefore as follows:

1. The dealer selects a random polynomial P(x) ∈ Fk−1[x], where

P(x) =
k−1∑
i=0

ai x
i and ak−1 = S. (53)

2. The dealer identifies each participant u ∈ U with a field element, denoted by u.
3. The dealer distributes shares to all participants in the following manner: Each

participant of the i th level in the hierarchy, u ∈ Ui , 0 ≤ i ≤ m, receives the share
P (k−ki )(u) (instead of P (ki−1)(u) in the original scheme).
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For example, assume that there are three levels in the hierarchy, U = U0 ∪ U1 ∪ U2,
and that the thresholds are k = (k0, k1, k2) = (2, 4, 7); namely, V ⊂ U is authorized if
and only if it has at least seven participants, or at least four participants from U0 ∪ U1,
or at least two participants from U0. Then, as k = k2 = 7, the dealer selects a random
polynomial P(x) = ∑6

i=0 ai xi where a6 = S. He then distributes the shares as follows:
participants u ∈ U0 will get the share P (5)(u), as k − k0 = 7 − 2 = 5; participants
u ∈ U1 will get the share P (3)(u), since k − k1 = 3; and those of the lowest level, U2,
will get P(u).

The idea behind this allocation is simple: given V ⊂ U , its relevant threshold is
determined by its lowest participant. If the lowest participant in V is from Ui (namely,
V ⊂ ⋃i

j=0 Uj ) then all participants in V have shares with derivatives of order k − ki

or higher. Hence, all linear equations that correspond to those shares involve only the
k − (k − ki ) = ki highest coefficients of P(x) as unknowns. Therefore, it is necessary to
have at least ki participants in order to have a sufficient number of equations. As before,
the main concern is how to allocate the participant identities so that we achieve both
accessibility (2) and perfect security (3). The random and monotone allocations that we
described in Sections 3.2 and 3.3, and all of the results that we proved therein, apply
equally to this modified scheme.

A concluding remark. In Corollary 3.4 we showed that hierarchical threshold access
structures with n participants and minimal authorized subsets of size k may be realized
ideally by a linear secret sharing scheme over fields F of size

|F| >
(

n + 1

k

)
· (k − 2)(k − 1)

2
+ k. (54)

A similar result was proven by Brickell [6] regarding disjunctive threshold access struc-
tures, (7). He proved that those access structures may be realized ideally by a linear
secret sharing scheme over fields F of size

|F| >
(

n

k − 1

)
· (k − 1), (55)

where also here k = km is the highest threshold. This may be translated into another lower
bound for the conjunctive case, independent of ours, (54), using duality arguments. Since
in the dual access structure k "→ n − k + 1, see Proposition 4.1, we infer from Brickell’s
estimate (55) and duality that conjunctive hierarchical threshold access structures may
be realized ideally over fields of size

|F| >
(

n

k

)
· (n − k). (56)

The ratio between the two lower bounds (54) and (56) is given by(n+1
k

) · [(k − 2)(k − 1)/2] + k(n
k

) · (n − k)
≈ n + 1

n + 1 − k
· (k − 2)(k − 1)

2(n − k)
. (57)

This ratio is less than 1 whenever

k <
−1 + √

8n + 9

2
. (58)
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Namely, for those values of k, estimate (54) is better than (56); for greater values of k
the latter estimate is better. Note that usually k is expected to be significantly smaller
than n (namely, it is expected to satisfy (58)). In any case, the ratio in (57) shows that the
difference between the two lower bounds is quite insignificant since, when comparing
the number of bits that are required for representing field elements, it translates into a
small additive term.

5. Open Problems

The classes HTAS∀ and HTAS∃ may be viewed as the two extreme cases in a sequence
of classes:

Definition 5.1. Let U be a set of n participants and assume that U is composed of
levels, i.e., U = ⋃m

i=0 Ui where Ui ∩ Uj = ∅ for all 0 ≤ i < j ≤ m. Let k = {ki }m
i=0

be a monotonically increasing sequence of integers, 0 < k0 < · · · < km . Then, for
1 ≤ � ≤ m + 1, the (k, n)-hierarchical threshold access structure of type (�,m + 1) is

� = {V ⊂ U : |V ∩ (∪i
j=0Uj )| ≥ ki for at least � values of i ∈ {0, 1, . . . ,m}}. (59)

We see that HTAS∃ and HTAS∀ are the classes of all hierarchical threshold access struc-
tures of types (1,m +1) and (m +1,m +1), respectively, for some value of m. It may be
easily verified that the access structures of types (�,m+1) and (m+2−�,m+1) are dual.
The question is whether the access structures of types (�,m + 1) where 1 < � < m + 1
are ideal, and if so, how can they be realized ideally and efficiently by a secret sharing
scheme.

Closely related threshold access structures that were studied by Simmons [18] and
Brickell [6] are comparmented access structures.

Definition 5.2. Let U be a set of n participants and assume that U is composed of
compartments, i.e., U = ⋃m

i=1 Ui where Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ m. Let k =
{ki }m

i=0 be a sequence of integers such that k0 ≥ ∑m
i=1 ki . Then the (k, n)-compartmented

access structure is

� = {V ⊂ U : |V ∩ Ui | ≥ ki ∀i ∈ {1, . . . ,m} and |V| ≥ k0} . (60)

Brickell proved that those access structures are ideal, but the secret sharing scheme
that he proposed suffered from the same problem of inefficiency as some previously
mentioned schemes did (namely, the dealer must perform possibly exponentially many
checks when assigning identities and shares the participants). The question is whether
there exists an efficient ideal secret sharing scheme for such access structures.

Appendix. Monotone Allocation of Identities—Study Cases

The goal of this study is to illustrate the analysis that we carried out in Section 3.3 and
to demonstrate its sharpness. We deal here with problems of low dimension k ≤ 4. As
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the case k = 2 is trivially solvable for all given data (this may be seen also by condition
(35)), we concentrate on dimensions k = 3 and k = 4. In each of those cases we list all
possible types of Birkhoff interpolation that may occur in such a dimension, where the
word type is in the same sense as in the proof of Theorem 3.6. In doing so, we speak of
the order of a given type, which means the order of the highest derivative that appears
in the interpolation.

A.1. k = 3

There are five different types of Birkhoff interpolation that might occur when k = 3:
d = (0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 0, 2), and (0, 1, 2). Recall that the notation d was
introduced in the proof of Theorem 3.6 and it indicates the order of the derivative of
the share of each of the participants in the subset that attempts to recover the common
secret. For example, d = (0, 1, 1) refers to the scenario where the first participant is
from U0 and his share is P(v1), while the other two participants are from U1 and their
contribution is P ′(vi ), i = 2, 3; i.e., the system of equations that needs to be solved has
the following matrix of coefficients:

MV =

1 v1 v2

1
0 1 2v2

0 1 2v3


 .

The solvability of each of the five types of interpolation is as follows:

• (0,0,0) is solvable, since it represents standard interpolation.
• (0,1,1) is solvable by first recovering P ′ and then P .
• (0,0,2) is solvable by first recovering P ′′ and then P .
• (0,1,2) is solvable by recovering P ′′, then P ′ and then P .
• (0,0,1) is the only interesting case in dimension k = 3. Let

0 ≤ v1 < v2 < v3 ≤ N (61)

be the identities of the three participants, where v1 and v2 are the two values in
which P(x) is known. Looking for the polynomial in its Newton form,

P(x) = c0 + c1(x − v1)+ c2(x − v1)(x − v2), (62)

the linear system that we have is characterized by the matrix

M̂V =

1 0 0

1 v2 − v1 0
0 1 (v3 − v1)+ (v3 − v2)




(compare with (37), (38), and (48)–(50)). Hence, the problem is well posed if and
only if

(v3 − v1)+ (v3 − v2) �= 0 in F = Fq . (63)

In view of (61), a sufficient condition that guarantees the inequality in (63) is

2N < q. (64)

Note that this condition agrees with (35) when k = 3.
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A.2. k = 4

We claim that all interpolation types in dimension 4 are well posed, provided that

6N 3 < q. (65)

This is a somewhat milder condition than (35) when k = 4: the power of N is the same
in both estimates but the constant in (35) is approximately 7.8 as opposed to 6 in (65).
We proceed to examine all of those types according to their order.

Interpolation types of order 3 may involve in dimension 4 only one datum of the third
order, P (3)(v); otherwise they fail to comply with Pólya’s condition, Lemma 2.1. We may
use that datum in order to recover a3 and then we are left with a problem of dimension 3
and order 2 at the most, as discussed in Section A.1. Hence, all types of order 3 are well
posed provided that condition (64) holds. Since (65) is stronger than (64), we conclude
that it is a sufficient condition for the solvability of all types of order 3.

Next, we concentrate on types of order 2. There are five such types that comply with
Pólya’s condition: d = (0, 0, 0, 2), (0, 0, 1, 2), (0, 1, 1, 2), (0, 0, 2, 2), and (0, 1, 2, 2).
Types (0, 0, 2, 2) and (0, 1, 2, 2) are solvable by first recovering P ′′ and then P . Type
(0, 1, 1, 2) is solvable under assumption (65). Indeed, if (65) holds, we may use the data
in v2, v3, and v4 in order to recover P ′ (the type of interpolation problem that needs to be
solved to that end is (0, 0, 1), as discussed in Section A.1) and then use P(v0) in order
to determine a0.

In order to deal with the remaining two types, (0, 0, 0, 2) and (0, 0, 1, 2), we rewrite
the interpolant in Newton form:

P(x) = c0 + c1(x − v1)+ c2(x − v1)(x − v2)+ c3(x − v1)(x − v2)(x − v3), (66)

where

0 ≤ v1 < v2 < v3 < v4 ≤ N . (67)

The matrix of coefficients for type (0, 0, 0, 2) is

M̂V =




1 0 0 0
1 v2 − v1 0 0
1 v3 − v1 (v3 − v1)(v3 − v2) 0
0 0 2 2

∑3
i=1(v4 − vi )




(see (37), (38), and (48)–(50)). Indeed, this system is solvable since (67)+(65) guarantee
that

∑3
i=1(v4 − vi ) �= 0 in F = Fq . As for the type (0, 0, 1, 2), the matrix of coefficients

is

M̂V =




1 0 0 0
1 v2 − v1 0 0
0 1

∑2
i=1(v3 − vi ) (v3 − v1)(v3 − v2)

0 0 2 2
∑3

i=1(v4 − vi )


 , (68)

and this matrix is non-singular provided that

� =
2∑

i=1

(v3 − vi ) ·
3∑

i=1

(v4 − vi )− (v3 − v1)(v3 − v2) �= 0 in F = Fq . (69)
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It is not hard to see that, as a real number, � > 0 in the domain in R4 defined by (67).
On the other hand, (67) implies that � < 2N · 3N = 6N 2. Therefore, 0 < � < 6N 2

which, by (65), implies (69).
Finally, we deal with types of order 1. Here, there are three types to consider:

(0, 0, 0, 1), (0, 0, 1, 1), and (0, 1, 1, 1). The third one, (0, 1, 1, 1), is unconditionally
solvable since we may recover P ′ and then, using P(v1), determine P . As for (0, 0, 1, 1),
the polynomial coefficients in the Newton form, (66), satisfy a linear system with the
following matrix of coefficients:

M̂V =




1 0 0 0
1 v2 − v1 0 0

0 1
2∑

i=1

(v3 − vi ) (v3 − v1)(v3 − v2)

0 1
2∑

i=1

(v4 − vi )
∑

1≤i< j≤3

(v4 − vi )(v4 − vj )



. (70)

Therefore, the solvability condition is

� = det




2∑
i=1

(v3 − vi ) (v3 − v1)(v3 − v2)

2∑
i=1

(v4 − vi )
∑

1≤i< j≤3

(v4 − vi )(v4 − vj )


 �= 0 in F = Fq . (71)

(67) implies that 0 < � < 2N · 3N 2. Together with (65), we arrive at the conclusion
that � �= 0 in Fq . Finally, the type (0, 0, 0, 1) gives rise to the matrix

M̂V =




1 0 0 0
1 v2 − v1 0 0
1 v3 − v1 (v3 − v1)(v3 − v2) 0

0 1
2∑

i=1

(v4 − vi )
∑

1≤i< j≤3

(v4 − vi )(v4 − vj )


 , (72)

which is solvable since∑
1≤i< j≤3

(v4 − vi )(v4 − vj ) �= 0 in F = Fq , (73)

as guaranteed by (65).
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