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Abstract. In August 2002, Agrawal, Kayal and Saxena announced the first determin-
istic and polynomial-time primality-testing algorithm. For an input n, the Agarwal–
Kayal–Saxena (AKS) algorithm runs in time Õ(log7.5 n) (heuristic time Õ(log6 n)).
Verification takes roughly the same amount of time. On the other hand, the Elliptic
Curve Primality Proving algorithm (ECPP) runs in random heuristic time Õ(log6 n)
(some variant has heuristic time complexity Õ(log4 n)) and generates certificates which
can be easily verified. However, it is hard to analyze the provable time complexity of
ECPP even for a small portion of primes. More recently, Berrizbeitia gave a variant
of the AKS algorithm, in which some primes (of density O(1/log2 n)) cost much less
time to prove than a general prime does. Building on these celebrated results, this paper
explores the possibility of designing a randomized primality-proving algorithm based
on the AKS algorithm. We first generalize Berrizbeitia’s algorithm to one which has
higher density (�(1/log log n)) of primes whose primality can be proved in time com-
plexity Õ(log4 n). For a general prime, one round of ECPP is deployed to reduce its
primality proof to the proof of a random easily proved prime, thus we achieve heuristic
time complexity Õ(log4 n) for all primes.

Key words. Computational number theory, Primality testing, Elliptic curve primality
proving, Agrawal–Kayal–Saxena primality-testing algorithm, Algorithm analysis.

1. Introduction

Testing whether a number is prime or not is one of the fundamental problems in com-
putational number theory. It has wide applications in computer science, especially in
cryptography. After tremendous efforts invested by researchers in hundreds of years, it
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was finally proved by Agrawal, Kayal and Saxena [3] that the set of primes is in the
complexity class P. For a given integer n, the Agarwal–Kayal–Saxena (AKS) algorithm
runs in time Õ(log7.5 n), while the best previously known deterministic algorithm has
subexponential complexity [2]. Under a conjecture concerning the density of the Sophie–
Germain primes, the AKS algorithm should give out an answer in time Õ(log6 n).

Notation: In this paper we use “ln” for logarithm base e and “log” for logarithm base
2. We write rα||n, if rα|n but rα+1 � n. By Õ( f (n)), we mean O( f (n) logc( f (n))) for
some constant c.

The AKS algorithm is based on the derandomization of a polynomial identity testing.
It includes many iterations of polynomial modular exponentiation. To test the primality
of an integer n, the algorithm first searches for a suitable r , which is provably O(log3 n)
or heuristically O(log2 n). Then the algorithm checks for l from 1 to L = �2√r log n�,
whether

(x + l)n ≡ xn + l (mod n, xr − 1). (1)

The algorithm declares that n is a prime if all the congruences hold. The computing of
(x + l)n (mod n, xr − 1) takes time Õ(r log2 n) if we use the fast multiplication. The
total time complexity is thus Õ(r L log2 n).

While the AKS algorithm is a great accomplishment in the theory, the current version
is very slow. Unless its time complexity can be dramatically improved, it cannot replace
random primality-testing algorithms with better efficiency. Even for a cryptosystem
requiring a prime with absolute certainty, an efficient random algorithm is sufficient,
as long as the algorithm can generate a certificate of primality, which in determinis-
tic time convinces a verifier who does not believe any number theory conjectures. A
primality-testing algorithm that generates a certificate of primality is sometimes called
a primality-proving algorithm. Similarly a primality-testing algorithm that generates a
certificate of compositeness is sometimes called a compositeness-proving algorithm. If
a compositeness-proving algorithm fails to prove the compositeness of a number n af-
ter a certain number of tries, then n is called a probable prime. Very efficient random
compositeness-proving algorithms have long been known. Curiously, primality-proving
algorithms [5], [1] lag far behind compositeness-proving algorithms in terms of efficiency
and simplicity.

Recently, Berrizbeitia [8] proposed a brilliant modification to the original AKS al-
gorithm. He used the polynomial x2s − a instead of xr − 1 in (1), where 2s ≈ log2 n.
Among others, he was able to prove the following proposition:

Proposition 1. Given an integer n ≡ 1 (mod 4), denote s = �2 log log n�. Assume
that 2k ||n − 1 and k ≥ s. If there exists an integer a, such that (a/n) = −1 and
a(n−1)/2 ≡ −1 (mod n), then

(1+ x)n ≡ 1+ xn (mod n, x2s − a)

iff n is a power of a prime.

Unlike the AKS algorithm, where each prime costs roughly the same, there are “easily
proved primes” in Berrizbeitia’s algorithm, namely, the primes p where p−1 has a factor
of a power of 2 larger than log2 n. For those primes, one iteration of polynomial modular
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exponentiation, which runs in time Õ(log4 n), establishes the primality of n, provided
that a suitable a exists. In fact, a can be found easily if n is indeed a prime and randomness
is allowed in the algorithm. It serves as a prime certificate for n.

Definition 1. In this paper, for a primality-proving algorithm, we call a prime p easily
proved, if the algorithm runs in expected time Õ(log4 p) on p.

What is the density of the easily proved primes in Berrizbeitia’s algorithm? Let π(x)
denote the number of primes less than or equal to x . The number of primes of form
2s x+1 less than b is about π(b)/ϕ(2s). Hence heuristically for a random prime p, p−1
has a factor 2s ≈ log2 p with probability no larger than 2/ log2 p. In the other words,
the easily proved primes have density at most 2/log2 p around p in his algorithm.

1.1. Increasing the Density of Easily Proved Primes

We prove the following theorem in Section 5, which can be regarded as a generalization
of Proposition 1.

Theorem 1 (Main). Given a number n which is not a power of an integer, suppose that
there exists a prime r , rα||n − 1(α ≥ 1) and r ≥ log2 n. In addition, suppose that there
exists a number 1 < a < n, such that arα ≡ 1 (mod n), gcd(arα−1 − 1, n) = 1 and

(1+ x)n = 1+ xn (mod n, xr − a),

then n is a prime.

The number a can be found easily if n is a prime and randomness is allowed. It, in
addition to r , serves as a prime certificate for n. Based on this theorem, we propose
a random algorithm which establishes the primality of p in time Õ(log4 p) if p − 1
contains a prime factor between a log2 p and b log2 p for some constants a and b.

Definition 2. We call a positive integer n (a, b)-good, if n − 1 has a prime factor p
such that a log2 n ≤ p ≤ b log2 n. We call n good, if it is (1,2)-good.

What is the density of (a, b)-good primes? Clearly the density should be higher than the
density of easily proved primes in Berrizbeitia’s algorithm. We will prove the following
theorem:

Theorem 2. Let a, b be two constants. Let Ma,b(x) denote the number of primes p ≤ x
which are (a, b)-good, then

Ma,b(x) = ln(b/a)

2 ln ln x
π(x)+ O

(
π(x)

(ln ln x)2

)
.

1.2. Algorithm for the General Primes

For general primes, we apply the idea in the Elliptic Curve Primality Proving algorithm
(ECPP). ECPP was proposed by Goldwasser and Kilian [9] and Atkin [4] and imple-
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mented by Atkin and Morain [5] and Kaltofen et al. [10]. In practice, ECPP performs
much better than the current version of AKS. It has been used to prove primality of
numbers up to thousands of decimal digits [12].

In ECPP, if we want to prove that an integer n is a prime, we reduce the problem to
the proof of primality of a smaller number (less than n/2). To achieve this, we try to
find an elliptic curve with ωn′ points over Z/nZ, where ω is completely factored and
n′ is a probable prime greater than ( 4

√
n + 1)2. Once we have such a curve and a point

on the curve with order n′, the primality of n′ implies the primality of n. Since point
counting on elliptic curves is expensive, we usually use the elliptic curves with complex
multiplications of small discriminants. Nonetheless, it is plausible to assume that the
order of the curve has the desired form with the same probability as a random integer
does. ECPP needs O(log n) rounds of reductions to eventually reduce the problem to
a primality proof of a very small prime, say, less than 50000. As observed in [11],
one round of reduction takes heuristic time Õ(log5 n), or Õ(log4 n) if we use the fast
multiplication. To analyze the time complexity, it is assumed that the number of primes
between n − 2

√
n + 1 and n + 2

√
n + 1 is greater than

√
n/log2 n, and the number

of points on an elliptic curve with small discriminant complex multiplication behaves
like a random number in this range. We refer to the assumption as the ECPP heuristics.
For the ECPP algorithm, rigorous proof of the time complexity seems out of reach, as it
involves the study of the prime distribution in a short interval. Due to the nature of using
special curves, it is not feasible to prove the time complexity for even a small fraction
of the primes.

Remark. There is a faster variant of elliptic curve primality-proving algorithm, pro-
posed by Shallit and reported in [11], which runs in heuristic time Õ(log4 n). However,
it has not been tested extensively. It appears that the variant is faster than the ECPP only
for very large numbers.

Our algorithm consists of two stages. In the first stage, for a general probable prime
n, we use one round of ECPP to reduce its proof of primality to a good probable prime
n′ close to n. For convenience, we require that n − 2

√
n + 1 ≤ n′ ≤ n + 2

√
n + 1

(see Section 6 for implementation issues). Note that up to a constant factor, the time
complexity of one round reduction in ECPP is equivalent to the time complexity of
finding a curve with a prime order. We conjecture that Theorem 2 is true in a shorter
interval, for example, between n − 2

√
n + 1 and n + 2

√
n + 1.

Conjecture 1. There exists an absolute constant λ, such that for any sufficiently large
integer n,

Number of (1, 2)-good primes between n − 2
√

n + 1 and n + 2
√

n + 1

Number of primes between n − 2
√

n + 1 and n + 2
√

n + 1
>

λ

ln ln n
.

We are unable to prove this conjecture, but we present in the paper some numerical
evidence. According to the above conjecture and the ECPP heuristics, the extra con-
dition on n′ (that n′ should be good) will increase the time complexity of finding n′
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merely by a factor of O(log log n). Therefore for an arbitrary prime, without signif-
icant increase of time complexity, we reduce its primality proving to the proof of a
good prime. In the second stage we find a primality certificate for n′. To do this, we
search for a which satisfies the conditions in the main theorem, and we compute the
polynomial modular exponentiation. The total expected running time of the first and
second stages becomes Õ(log4 n). However, because of the reasons mentioned before,
it seems difficult to obtain the rigorous time complexity for the first step. Put it all to-
gether, and we now have a general-purpose prime-proving algorithm with the following
properties:

1. It proves primality of a significant part of primes in time Õ(log4 n) , without
assuming any conjecture. For those primes, the ECPP subroutine is not
needed.

2. It runs very fast (Õ(log4 n)) on every prime, assuming reasonable conjectures.
3. The certificate, which consists of an elliptic curve—a point on the curve with or-

der n′, n′, r and a—is very short. It consists of only O(log n) bits as opposed to
O(log2 n) bits in ECPP.

4. A verifier can be convinced in deterministic time Õ(log4 n). In fact, the most time-
consuming part in the verification is the computation of one polynomial modular
exponentiation.

This paper is organized as follows: In Section 2 we review the propositions used by
AKS and ECPP to prove primality. In Section 3 we describe our algorithm and present the
time-complexity analysis. In Section 4 we prove Theorem 2 and present some numerical
evidence for Conjecture 1. The main theorem is proved in Section 5. We conclude this
paper with some discussions on the implementation of the algorithm.

2. Proving Primality in AKS and ECPP

The ECPP algorithm depends on rounds of reductions of the proof of primality of a
prime to the proof of primality of a smaller prime. The most remarkable feature of ECPP
is that once the certificate is constructed, a verifier who does not believe any conjectures
can be convinced in time Õ(log3 n) if the fast multiplication is used. It is based on the
following proposition [5]:

Proposition 2. Let N be an integer prime to 6, and let E be an elliptic curve over
Z/NZ, together with a point P on E and two integers m and s with s|m. Denote the
infinite point on E by O . For each prime divisor q of s, denote (m/q)P by (xq : yq : zq).
Assume that m P = O and gcd(zq , N ) = 1 for all q . If s > (

4
√

N + 1)2, then N is a
prime.

The certificate for N in ECPP consists of the curve E , the point P , m, s and the certifi-
cate of primality of s. Usually the ECPP uses elliptic curves with complex multiplications
of small discriminants. For implementation details, see [5].

The AKS algorithm, on the other hand, proves a number is a prime through the
following proposition:
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Proposition 3. Let n be a positive integer. Let q and r be prime numbers. Let S be a
finite set of integers. Assume

1. that q divides r − 1;
2. that n(r−1)/q �≡ 0, 1 (mod r);
3. that gcd(n, b − b′) = 1 for all the distinct b, b′ ∈ S;
4. that

(q+|S|−1
|S|

) ≥ n2�√r�; and
5. that (x + b)n ≡ xn + b (mod xr − 1, n) for all b ∈ S.

Then n is a power of a prime.

3. Description and Time-Complexity Analysis of Our Algorithm

Now we are ready to describe our algorithm.

Input: a positive integer n.
Output: a certificate of primality of n, or “composite.”

1. If n is a power of an integer, return “composite.”
2. Run a random compositeness-proving algorithm, for example, the Rabin–Miller

testing [6, page 282], on n. If a proof of compositeness is found, output the proof,
return “composite” and exit.

3. If n−1 contains a prime factor between log2 n and 2 log2 n, skip this step. Otherwise,
call the ECPP reduction procedure to find an elliptic curve over Z/nZ with n′ points,
where n′ is a probable prime and n′ is good. Set n = n′.

4. Let r be the prime factor of n − 1 satisfying log2 n ≤ r ≤ 2 log2 n. Let α be the
integer such that rα||n − 1.

5. Randomly select an integer 1 < b < n. If bn−1 �= 1 (mod n), exit.
6. Let a = b(n−1)/rα (mod n). If a = 1, or arα−1 = 1, go back to step 5.
7. If gcd(arα−1 − 1, n) �= 1, exit.
8. If (1+ x)n �= 1+ xn (mod n, xr − a), exit.
9. Output a. If in step 3, the ECPP procedure is invoked, find a point on the curve,

output the curve, the point and the order of the curve. Return “prime.”

On any input integer n, this algorithm will either output “composite” with a com-
positeness proof, or “prime” with a primality proof, or nothing. It outputs nothing only
when the probable prime n in Step 4 is actually composite. The probability depends
on the number of iterations in the compositeness-proving algorithm. If we use log log n
iterations, it is O(1/log n).

Now we analyze its time complexity. Testing whether a number n is good or not can
be done in time Õ(log3 n). Step 3 takes time Õ(log4 n) if the ECPP heuristics is true,
Conjecture 1 is true and the fast multiplication algorithm is used. If n is indeed a prime,
then the probability of going back in step 6 is at most 1/r . Step 7 takes time at most
Õ(log2 n). Step 8 takes time Õ(log4 n), since r ≤ 2 log2 n. Hence the heuristic expected
running time of our algorithm is Õ(log4 n). Obviously the verification algorithm takes
deterministic time Õ(log4 n).
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4. Density of Good Numbers

Let π(x, k, a) denote the number of primes p ≤ x with p ≡ a (mod k). For k ≤ ln5 x
and gcd(a, k) = 1, by the Siegel–Walfisz theorem, we have

π(x, k, a) = π(x)

ϕ(k)
+ O

(
π(x)

ϕ(k) ln2 x

)
.

First we prove a lemma.

Lemma 1. Assume that a and b are functions of x , 0 < a < b, a = �(1) and
b = �(1). Let N (x, a, b) denote the number of primes p ≤ x such that p − 1 has a
prime factor in (a ln2 x, b ln2 x), then we have

N (x, a, b) = ln(b/a)

2 ln ln x
π(x)+ O

(
π(x)

(ln ln x)2

)
.

Proof. Let q, q1, q2 run over the primes between a ln2 x and b ln2 x . By the inclusion–
exclusion law, we have∑

q

π(x, q, 1)−
∑

q1<q2

π(x, q1q2, 1) ≤ N (x, a, b) ≤
∑

q

π(x, q, 1).

From the Siegel–Walfisz theorem, we obtain

∑
q

π(x, q, 1) = π(x)
∑

q

1

q − 1
+ O

(
π(x)

ln2 x

∑
q

1

q − 1

)

and we also have ∑
q

1

q − 1
=

∑
q

1

q
+

∑
q

1

q(q − 1)
.

Since ∑
q

1

q
=

∑
q≤b ln2 x

1

q
−

∑
q<a ln2 x

1

q

= ln ln(b ln2 x)− ln ln(a ln2 x)+ O

(
1

(ln ln x)2

)

= ln
2 ln ln x + ln b

2 ln ln x + ln a
+ O

(
1

(ln ln x)2

)

= ln

(
1+ ln(b/a)

2 ln ln x + ln a

)
+ O

(
1

(ln ln x)2

)

= ln(b/a)

2 ln ln x + ln a
+ O

(
1

(ln ln x)2

)

= ln(b/a)

2 ln ln x
+ O

(
1

(ln ln x)2

)
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and∑
q

1

q(q − 1)
≤

∑
a ln2 x≤n≤b ln2 x

1

n(n − 1)
= 1

a ln2 x − 1
− 1

b ln2 x
= O

(
1

ln2 x

)
,

we have ∑
q

1

q − 1
= ln(b/a)

2 ln ln x
+ O

(
1

(ln ln x)2

)
.

Here we use the fact that b/a = O(1) and a = O(1). We also apply the Mertens theorem:∑
p≤y

1

p
= ln ln y + B + O

(
1

(ln y)2

)
.

Note that we use a better error term than the one in the standard form. It remains to show
that ∑

q1<q2

π(x, q1q2, 1) = O

(
π(x)

(ln ln x)2

)
.

This is true since∑
q1<q2

π(x, q1q2, 1) = π(x)
∑

q1<q2

1

(q1 − 1)(q2 − 1)
+ O

(
π(x)

ln2 x

)

and ∑
q1<q2

1

(q1 − 1)(q2 − 1)
<

(∑
q

1

q − 1

)2

= O

(
1

(ln ln x)2

)
.

It concludes the proof of the lemma.

Now we are ready to prove Theorem 2. Note that if x/ln x < p ≤ x , then ln2 x −
ln x ln ln x < ln2 p ≤ ln2 x . We have

Ma,b(x) ≤ N (x, a, b)

and

Ma,b(x) > N

(
x, a − ln ln x

ln x
, b − ln ln x

ln x

)
− π

( x

ln x

)

= N

(
x, a − ln ln x

ln x
, b − ln ln x

ln x

)
+ O

(
π(x)

ln x

)
.

Hence by the above lemma,

Ma,b(x) = π(x) ln(b/a)

2 ln ln x
+ O

(
π(x)

(ln ln x)2

)
.

See Table 1 for numerical data concerning the density of good primes around 2500.
For comparison, note that

ln(2)

2 ln ln(2500)
= 0.0592626.
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Table 1. Number of (1, 2)-good primes around 2500.

From To Number of primes Number of (1, 2)-good primes Ratio (%)

2500 + 0 2500 + 200000 576 35 6.07
2500 + 200000 2500 + 400000 558 38 6.81
2500 + 400000 2500 + 600000 539 30 5.56
2500 + 600000 2500 + 800000 568 23 4.05
2500 + 800000 2500 + 1000000 611 39 6.38
2500 + 1000000 2500 + 1200000 566 26 4.59
2500 + 1200000 2500 + 1400000 566 38 6.71
2500 + 1400000 2500 + 1600000 526 27 5.13
2500 + 1600000 2500 + 1800000 580 26 4.48
2500 + 1800000 2500 + 2000000 563 20 3.55
2500 + 2000000 2500 + 2200000 562 22 3.91
2500 + 2200000 2500 + 2400000 561 21 3.74
2500 + 2400000 2500 + 2600000 609 34 5.58
2500 + 2600000 2500 + 2800000 601 28 4.66
2500 + 2800000 2500 + 3000000 603 33 5.47
2500 + 3000000 2500 + 3200000 579 37 6.39
2500 + 3200000 2500 + 3400000 576 31 5.38
2500 + 3400000 2500 + 3600000 604 35 5.79
2500 + 3600000 2500 + 3800000 612 40 6.53
2500 + 3800000 2500 + 4000000 588 29 4.93
2500 + 4000000 2500 + 4200000 574 33 5.75
2500 + 4200000 2500 + 4400000 609 27 4.43
2500 + 4400000 2500 + 4600000 549 35 6.37
2500 + 4600000 2500 + 4800000 561 30 5.34
2500 + 4800000 2500 + 5000000 545 29 5.32
2500 + 5000000 2500 + 5200000 590 20 3.39
2500 + 5200000 2500 + 5400000 557 27 4.84
2500 + 5400000 2500 + 5600000 591 28 4.73
2500 + 5600000 2500 + 5800000 517 33 6.38
2500 + 5800000 2500 + 6000000 566 18 3.18
2500 + 6000000 2500 + 6200000 575 30 5.21
2500 + 6200000 2500 + 6400000 573 26 4.53
2500 + 6400000 2500 + 6600000 558 36 6.45
2500 + 6600000 2500 + 6800000 574 32 5.57
2500 + 6800000 2500 + 7000000 594 22 3.70
2500 + 7000000 2500 + 7200000 596 31 5.20
2500 + 7200000 2500 + 7400000 567 26 4.58
2500 + 7400000 2500 + 7600000 619 28 4.52
2500 + 7600000 2500 + 7800000 565 25 4.42
2500 + 7800000 2500 + 8000000 561 25 4.45
2500 + 8000000 2500 + 8200000 570 26 4.56

5. Proof of the Main Theorem

In this section we prove the main theorem. It is built on a series of lemmas. Some of
them are straightforward generalizations of the lemmas in Berrizbeitia’s paper [8]. We
include slightly different proofs of those lemmas, though, for completeness.
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Lemma 2. Let r, p be primes, r |p − 1. If a ∈ Fp is not an rth power of any element
in Fp, then xr − a is irreducible over Fp.

Proof. Let θ be one of the roots of xr − a = 0. Certainly [Fp(θ): Fp] > 1. Let ξ ∈ Fp

be one of the r th primitive roots of unity.

xr − a = xr − θ r =
∏

0≤i≤r−1

(x − ξ iθ).

Let [Fp(θ): Fp] = r ′. Then for all i , [Fp(ξ
iθ): Fp] = r ′. Hence over Fp, xr − a is

factored into polynomials of degree r ′ only. Since r is a prime, this is impossible, unless
that r ′ = r .

Lemma 3. Let n > 2 be an integer. Let r be a prime and rα||n− 1. Suppose that there
exists an integer 1 < a < n such that

1. arα ≡ 1 (mod n);
2. gcd(arα−1 − 1, n) = 1;

then there must exist a prime factor p of n, such that rα||p−1 and a is not an rth power
of any element in Fp.

Proof. For any prime factor q of n, arα ≡ 1 (mod q) and arα−1 �≡ 1 (mod q), so
rα|q − 1. If rα+1|q − 1 for all the prime factors, then rα+1|n− 1, a contradiction. Hence
there exists a prime factor p, such that rα||p − 1. Let g be a generator in F∗p. If a = gt

in Fp, then p − 1|trα , and p − 1 � trα−1. Hence r � t .

In the following text, we assume that n is an integer, n = pld where p is a prime and
gcd(p, d) = 1. Assume r is a prime and r |p−1. Let xr−a be an irreducible polynomial
in Fp. Let θ be one of the roots of xr − a. For any element in the field Fp(θ), we can
find a unique polynomial f ∈ Fp[x] of degree less than r such that the element can be
represented by f (θ). Define σm : Fp(θ)→ Fp(θ) as σm( f (θ)) = f (θm).

Lemma 4. We have that am = a in Fp iff σm ∈ Gal(Fp(θ)/Fp).

Proof. (⇐) Since σm ∈ Gal(Fp(θ)/Fp), θm must be a root of xr − a. Hence a =
(θm)r = am in Fp.

(⇒) For any two elements α, β ∈ Fp(θ), we need to prove that σm(α + β) =
σm(α) + σm(β) and σm(αβ) = σm(α)σm(β). The first one is trivial from the defini-
tion of σm . Suppose that α is represented by fα(θ) and β is represented by fβ(θ) where
fα(x), fβ(x) ∈ Fp[x] has degree at most r − 1. If deg( fα(x) fβ(x)) ≤ r − 1, it is
easy to see that σm(αβ) = σm(α)σm(β). Now assume that deg( fα(x) fβ(x)) ≥ r . Then
fα(x) fβ(x) = h(x)+(xr−a)p(x)where h(x), p(x) ∈ Fp[x] and deg(h(x)) < r . Then
σm(αβ) = σm(h(θ)) = h(θm) = h(θm)+ (am−a)p(θm) = h(θm)+ (θmr −a)p(θm) =
fα(θm) fβ(θm) = σm(α)σm(β).

This shows that σm is a homomorphism. To complete the proof, we need to show that
it is also one-to-one. This is obvious since Fp(θ

m) = Fp(θ).
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Define Gm = { f (θ) ∈ Fp(θ)
∗| f (θm) = f (θ)m}. It can be verified that Gm is a group

when σm is in Gal(Fp(θ)/Fp).

Lemma 5. Suppose σn ∈Gal(Fp(θ)/Fp). Then for any i, j≥0, σdi p j ∈Gal(Fp(θ)/Fp)

and Gn ⊆ Gdi p j .

Proof. Notice that the map x → x pl
is a one-to-one map in Fp(θ). Since σn ∈

Gal(Fp(θ)/Fp), we have an = a, according to the above lemma. This implies that
(ad)pl = a, hence ad = a and adi p j = a. We have σdi p j ∈ Gal(Fp(θ)/Fp).

Let f (θ) ∈ Gn . Thus f (θn) = f (θ)n , this implies f (θ pl d) = f (θ)pl d = f (θ pl
)d .

So θ pl
is a solution of f (xd) = f (x)d . Since it is one of the conjugates of θ , θ must

be a solution as well. This proves that f (θd) = f (θ)d . Similarly since θd is also one
of the conjugates of θ , as σd ∈ Gal(Fp(θ)/Fp), we have f (θd2

) = f (θd)d = f (θ)d
2
.

By induction, f (θdi
) = f (θ)d

i
for i ≥ 0. Hence f (θdi p j

) = f (θdi
)p j = f (θ)d

i p j
. This

implies that f (θ) ∈ Gdi p j .

Lemma 6. If σm1 , σm2 ∈ Gal(Fp(θ)/Fp) and σm1 = σm2 , then |Gm1 ∩ Gm2 | divides
m1 − m2.

This lemma is straightforward from the fact that for any g ∈ Gm1 ∩Gm2 , gm1−m2 = 1.

Lemma 7. Let A = arα−1
. If (1+θ) ∈ Gn , so is 1+ Aiθ for any i = 1, 2, 3, . . . , r−1,

and |Gn| ≥ 2r .

Proof. If (1+ θ) ∈ Gn , this means that (1+ θ)n = 1+ θn . It implies that (1+ θ ′)n =
1+ θ ′n for any conjugate θ ′ of θ . Since A is a primitive root of unity in Fp, hence Aiθ

are conjugates of θ . We have (1 + Aiθ)n = 1 + (Aiθ)n = 1 + (An)iθn and we know
that An = A. This proves that 1+ Aiθ ∈ Gn . The group Gn contains all the elements in
the set {

r−1∏
i=0

(1+ Aiθ)εi |
r−1∑
i=0

εi < r

}
.

By counting we have |Gn| =
(2r+1

r

) ≥ 2r .

Finally we are ready to give the proof of the main theorem (Theorem 1) of this paper.

Proof. Since |Gal(Fp(θ)/Fp)| = r , hence there exist two different pairs (i1, j1) and
(i2, j2)with 0 ≤ i1, j1, i2, j2 ≤ �

√
r�, such thatσdi1 p j1 = σdi2 p j2 . According to Lemma 5,

Gn ⊆ Gdi1 p j1 , Gn ⊆ Gdi2 p j2 , this implies that Gn ⊆ Gdi1 p j1 ∩ Gdi2 p j2 . Therefore
|Gn| divides di1 p j1 − di2 p j2 , but di1 p j1 − di2 p j2 < n�

√
r� ≤ 2

√
r log n ≤ 2r . hence

di1 p j1 − di2 p j2 = 0, which in turn implies that n is a power of p.
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6. Implementation and Conclusion

In this paper we propose a random primality-proving algorithm which runs in heuris-
tic time Õ(log4 n). It generates a certificate of primality of length O(log n) which
can be verified in deterministic time Õ(log4 n). For π(x)/ln ln x number of primes
less than x , the algorithm runs in provable time Õ(log4 n). Our results again illus-
trate that a polynomial-time algorithm usually has a practical version, with exponent 4
or less.

When it comes to implementing the algorithm, space is a bigger issue than time.
Assume that n has 1000 bits when written in binary, which is in the range of practical
interests. To compute (1+x)n (mod n, xr−a), we have to store intermediate polynomials
of size at least 230 bits, or 128M bytes. Even taking the various constant improvement on
r into consideration, it is still impossible to put a polynomial of degree r into the cache
of a processor in a desktop computer. As a comparison, ECPP is not very demanding
on space. In order to make the algorithm available on a desktop PC, space-efficient
exponentiation of 1+ x is highly desirable.

Our algorithm is quite flexible. For the sake of theoretical clarity, we use just one
round of ECPP reduction in the algorithm. To implement the algorithm, it may be better
to follow the ECPP and launch the iteration of AKS as soon as an intermediate prime
becomes good. Again assuming that the intermediate primes are distributed randomly,
the expected number of rounds will be log log n. It could be a better strategy, since the
intermediate primes get smaller.

We can certainly incorporate small time-saving features suggested by various re-
searchers on the original version of AKS. It involved a more careful study of the
lower bound and the upper bound of |Gn|. We refer to the paper by Bernstein [7] for
details.

Remark. Recently Bernstein, and independently Mihailescu and Avanzi, announced
a random primality-proving algorithm which has provable time complexity Õ(log4 n).
Their result dramatically improves the Adleman–Huang [1] algorithm, which was the
only primality-proving algorithm known before AKS with provable random polynomial-
time complexity. Their result is based on Berrizbeitia’s idea as well. Similar to our
algorithm, the most time-consuming part in their algorithm is to compute (1 + x)e

(mod m, xr − a). Suppose the input is an integer n. In our algorithm, e ≤ n and
r ≤ 2(log n)2, while in their algorithm, e = nd for some small integer d, and r =
O(d(log n)2). Hence in practice, for a general prime, our algorithm is several times
faster than theirs in the verification part, assuming that the scale multiplication of a point
on an elliptic curve takes negligible time. Furthermore, most parameters in our algorithm
can be adjusted, and hence the algorithm is more flexible.
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