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Abstract. We present the first constant-round protocol for Oblivious Transfer in
Maurer’s bounded storage model. In this model, a long random string R is initially
transmitted and each of the parties stores only a small portion of R. Even though the
portions stored by the honest parties are small, security is guaranteed against any ma-
licious party that remembers almost the entire string R (but not all of it). Previous
constructions for oblivious transfer in the bounded storage model required polynomi-
ally many rounds of interaction. In contrast, our protocol uses only five messages. In
addition we also improve other parameters, such as the number of bits transferred and
the probability of immaturely aborting the protocol due to failure.
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Our techniques utilize explicit constructions from the theory of derandomization. In
particular, we achieve the constant round complexity of our oblivious transfer protocol
by constructing a novel four-message protocol for Interactive Hashing, in place of the
well-known protocol by Naor et al. (known as the NOVY protocol) which involves many
rounds of interaction. Our four-message interactive hashing protocol is constructed
by use of t-wise independent permutations and may be of independent interest. For
achieving constant-round complexity we also construct a new subset encoding scheme
that is dense; namely, guarantees that almost every string in the image of the encoding
function has a preimage. Other tools we employ include randomness extractors and
averaging samplers.

Key words. Bounded storage model, Oblivious transfer, Interactive hashing,
Constant-round complexity, Information-theoretic security, Almost t-wise independent
permutations, Randomness extractors, Averaging samplers, Dense subset encoding.

1. Introduction

Oblivious transfer (OT) is one of the fundamental building blocks of modern cryptog-
raphy. First introduced by Rabin [50], oblivious transfer can serve as a basis to a wide
range of cryptographic tasks. Most notably, any multi-party secure computation can be
based on the security of OT. This was shown for various models in several works (see
[55], [33], [41], [13], [35], and [16]). Oblivious transfer has been studied in several vari-
ants, all of which were eventually shown to be equivalent. In this paper we consider the
one-out-of-two variant of OT by Even et al. [27], which was shown to be equivalent to
Rabin’s variant by Crépeau [12]. One-out-of-two OT is a protocol between two players,
Alice holding two secrets s0 and s1, and Bob holding a choice bit c. At the end of the
protocol Bob should learn the secret of his choice (i.e., sc), but learn nothing about the
other secret. More precisely, the latter means that the receiver Bob (malicious or not)
learns information about at most one secret; that is, if he obtains any (partial) information
about one of the two secret, then he learns nothing about the other secret. Alice, on the
other hand, should learn nothing about Bob’s choice c.

Traditionally, constructions for OT have been based on strong computational assump-
tions, either specific assumptions such as the hardness of factoring or Diffie–Hellman
problems (see [50], [3], [28], and [45]) or generic assumptions such as the existence of
enhanced trapdoor permutations (see [27], [33], [31], and [29]). In contrast, OT cannot
be reduced in a black box manner to presumably weaker primitives such as one-way
functions [39]. This state of affairs motivates the construction of OT in other types of
setups. Indeed, protocols for OT have been suggested in different models such as under
the existence of noisy channels [14] or quantum channels [14], [5], [18].1 In this work
we follow a direction initiated by Cachin et al. [9] and construct OT in the bounded
storage model.

1 We note that it is impossible to construct unconditionally secure oblivious transfer protocols in the original
model for quantum cryptography. (See references in [18].) Recently in [18], combining ideas from both the
bounded storage model and the quantum model for cryptography, Damgård et al. introduced the so-called
bounded quantum storage model, and constructed a very efficient non-interactive protocol for Rabin’s original
OT in this new model.
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1.1. The Bounded Storage Model

In contrast to the usual approach in modern cryptography, Maurer’s bounded storage
model [43] bounds the space (memory size) of dishonest players rather than their running
time. In a typical protocol in the bounded storage model, a long random stringR of length
N is initially broadcast and the interaction between the polynomial-time participants is
conducted based on a short portion of R.2 What makes such protocols interesting is
that, even though the honest players store only a small fraction k � N of the string R,
security is guaranteed even against dishonest players with space K where k � K < N .
Moreover, dishonest players are not restricted to be computationally bounded. (This
is formalized by allowing dishonest players to choose an arbitrary memory function
g∗: {0, 1}N →{0, 1}K and store g∗(R). From that moment on, they are not bounded in
any way.) Naturally, we’d like to maximize K and minimize k. In this paper we have
K = νN for an arbitrary constant ν < 1 and k will be about K 1/2.

The bounded storage model has two appealing properties: (1) The security obtained
is information theoretic and thus everlasting in the sense that security is guaranteed
even if adversaries acquire infinite space after the protocol is executed. (2) Protocols in
the bounded storage model need not rely on any assumption except the limitation on
the storage capabilities of the adversary. The latter property should be contrasted with
traditional works in cryptography in which, besides bounding the adversary’s compu-
tational capabilities, it is also required to rely on unproven hardness assumptions (such
as the existence of enhanced trapdoor permutations or the hardness of factoring large
integers). We mention that most of the previous work on the bounded storage model
concentrated on private key encryption [43], [10], [2], [1], [23], [26], [42], [54] and key
agreement [10].

1.2. Oblivious Transfer in the Bounded Storage Model

The first protocol for OT in the bounded storage model was given in [9]. This protocol
requires k ≈ K 2/3 and allows K = νN for an arbitrary constant ν < 1. The error ε
in this protocol is rather large, ε = k−O(1). (Loosely speaking, the error ε measures the
probability that a dishonest receiver with storage bound K learns information of both
secrets.) A modified protocol with a smaller error ε and smaller space k was given in [22].
For every constant c > 0, it achieves k = K 1/2+c and ε = 2−kc′

where c′ > 0 is a constant
that depends on c. We mention that the security of [22] is proven in a slightly different
(and weaker) model, where it is assumed that two random stringsR1,R2 of length 6K
are transmitted one after the other and a malicious storage bounded receiver chooses
what to remember about R2 as a function of what he remembers about R1. The work
of [22] was subsequently extended to deal with one-out-of-k OT for any small constant
k ≥ 2 in [37].3 All protocols mentioned above require a lot of interaction. Specifically,
for ε = 2−kO(1)

, they require the exchange of k	(1) messages between the two players.

2 One possible implementation is thatR is broadcast at a very high rate by a trusted party. Another possibility
is to have R transmitted from a satellite. We remark that in our protocol (as in many previous ones) one of
the parties can transmit these bits. Furthermore, the assumption thatR is uniformly distributed can be relaxed
and it is sufficient thatR has high min-entropy.

3 We note that a similar extension can be easily applied to our work.
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1.3. Our Results

We give a constant round OT protocol in the bounded storage model. Our protocol uses
five messages following the transmission of the random stringR. We achieve parameters
k and ε similar to that of [22] (that is, for every c > 0 there exists c′ > 0 such that our
protocol has k = K 1/2+c and ε = 2−kc′

) while working in the stronger model of [9].
Similar to [9] we can achieve K = νN for an arbitrary constant ν < 1. In addition to
being constant-round, our protocol also achieves the following improvements over [9]
and [22]:

– The previous protocols are designed to transfer secrets in {0, 1}. Thus, transferring
long secrets requires many messages. Our protocol can handle secrets of length up
to k	(1) in one execution.4

– The previous protocols abort unsuccessfully with probability 1
2 even if both players

are honest. Our protocol aborts only with probability 2−k	(1) .
– For error ε = 2−k	(1) , the number of bits communicated in the two previous protocols

is at least K 1/2. In contrast, for error ε = 2−kc
our protocol communicates only

O(kc) bits.

We also give a precise definition for the security of oblivious transfer in the bounded
storage model, and we point out difficulties that arise when one attempts to consider the
more standard notion of a simulation-based definition.

1.4. Interactive Hashing

As an essential building block of our OT protocol, we construct a novel constant-round
two-to-one interactive hashing protocol for unbounded parties. Loosely speaking, in
such a protocol Bob holds an input W ∈ {0, 1}m , and Alice and Bob want to agree on
a pair W0,W1 such that Wd = W for some d ∈ {0, 1}, yet Alice does not know d. It
is also required that a dishonest Bob cannot “control” both W0 and W1. In the context
of this paper, for the latter it suffices that for any fixed “bad” set S that is sufficently
small, a dishonest Bob cannot force both W0 and W1 to be in S. (See Section 5 for a
precise definition.) As proved in [9], the protocol of Naor et al. [44] (known as the NOVY
protocol, originally used in the context of perfectly-hiding commitments) achieves two-
to-one interactive hashing. One major drawback of the NOVY protocol, however, is that
it requires m−1 rounds of interaction. In this paper, relying on an explicit construction of
almost t-wise independent permutations, such as the constructions presented in [40] and
references therein, we construct a new four-message protocol for two-to-one interactive
hashing that can replace the NOVY protocol in the context of oblivious transfer in the
bounded-storage model.

It is worth noting that since the security guarantees of this interactive hashing protocol
hold against unbounded parties, the protocol is not restricted to the bounded storage
model alone and may be of independent interest. On the other hand, our new four-
message interactive hashing protocol cannot replace the NOVY protocol in the original
context in [44], that is, for constructing perfectly hiding bit commitment schemes from

4 It is also clear that OT of strings immediately implies OT of bits.
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arbitrary one-way permutations.5 The NOVY protocol achieves a stronger simulation-
based security for interactive hashing than the one defined here (see further details in
Section 8). Another slight drawback of our interactive hashing protocol compared to the
NOVY protocol is that it requires the knowledge of the size of the “bad” set S (this is
true only when the set S is relatively large and contains a polynomial fraction of the all
inputs). In the context of OT in the bounded storage model this requirement translates to
knowledge of the storage bound of the malicious receiver, which is a standard requirement
in the bounded storage model.

Organization. In Section 2 we present an overview of the techniques that were utilized
to achieve our results. Some preliminaries are given in Section 3. Section 4 provides a
precise definition of OT in the bounded storage model. In Section 5 we define the notion
of “interactive hashing” and give a constant round protocol for interactive hashing. The
OT protocol is presented in Section 6. Sections 6.1 and 7 are devoted to proving the
correctness of the protocol. Finally, we conclude and mention some open problems in
Section 8.

2. Overview of the Technique

As motivation for our protocol, we begin by suggesting a simple protocol for OT in the
bounded storage model which is bad in the sense that it requires large storage from the
honest parties: Alice is required to store all of the stringR and Bob is required to store
half this string. We partition the N -bit-long stringR into two equally long partsR0,R1

of length N/2. Recall that Alice has two secrets s0, s1 and Bob has a “choice bit” c and
wants to obtain sc. Bob will choose which of the two parts R0,R1 to store depending
on his “choice bit” c.

Intuitively, even if Bob is dishonest and has storage bound νN , there is an I ∈ {0, 1}
such that Bob “does not remember” (1 − ν)N/2 bits of information aboutRI . This can
be formalized by saying that the conditional entropy of RI given the memory content
of Bob is roughly (1 − ν)N/2. (Actually, in this paper, as in [9] and [22], we need to
work with a variant of entropy called min-entropy.) Let Ext(X, Y ) (Ext for extractor)
denote a function such that whenever X has sufficiently high min-entropy and Y is
uniformly distributed, then Ext(X, Y ) is close to being uniformly distributed. (The reader
is referred to [48] and [53] for surveys on extractors.) To complete the protocol, Alice
sends Zi = si ⊕ Ext(Ri , Yi ) for both i = 0 and i = 1. Note that an honest Bob can
compute Ext(Rc, Yc)⊕ Zc and obtain sc. However, if Bob is dishonest then Z I is close
to uniform from Bob’s point of view and reveals no information about sI .6 Note that
even an unbounded, dishonest Alice cannot learn anything about Bob’s choice bit c, as
Bob does not send any messages during the protocol.

5 We remark that constant-round perfectly hiding bit commitment schemes are known [47], [21], [32], but
require seemingly stronger assumptions than the one-way permutations used in [44].

6 We mention that the argument above is imprecise. Given the memory content of Bob, the strings Z0, Z1

are no longer independent. Thus, to prove security it is not sufficient to prove that Z I is uniformly distributed
given the memory content of Bob. In the technical proof we prove that Z I is uniformly distributed given the
memory content of Bob, Z1−I , and Y0, Y1.
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Input of Alice: Secrets s0, s1.
Input of Bob: Choice bit: c ∈ {0, 1}.
A random stringR = (R0,R1) is transmitted.
Alice: Store all ofR.
Bob: StoreRc.
Alice: For i ∈ {0, 1}, send a uniformly chosen seed Yi , compute Vi = Ext(Ri , Yi ), and

Zi = Vi ⊕ si . Send Yi , Zi .
Bob: Compute Vc = Ext(Rc, Yc) and obtain sc = Vc ⊕ Zc.

Fig. 1. A naı̈ve protocol for OT.

Using a setup stage before the naı̈ve protocol. The naı̈ve protocol shown in Fig. 1
requires very large storage bounds from the honest parties. In order to instantiate it in a
more efficient manner we will first apply a carefully designed setup stage (see Fig. 2).
Our goal is that at the end of the setup stage the two players will agree on two small
subsets C0,C1 ⊆ [N ] of size 
 � N , such that Alice storesR0 = RC0 andR1 = RC1 .
(We use RC to denote the |C |-bit-long string obtained by restricting R to the indices
in C .) Bob remembers only one ofR0,R1 and cannot remember too much information
about the other string. Furthermore, Alice does not know which of the two strings is not
known to Bob. Following the setup stage, the two parties can perform OT by using the
naı̈ve protocol. We call this second stage the transfer stage. As the sets C0,C1 are of size

 � N , the storage required by the honest parties at the transfer stage is much smaller
than before, and honest players can follow the naı̈ve protocol with space O(
) � N .

Implementing the setup stage. An implementation for such a setup stage was suggested
in [9] and [22]: Alice and Bob each choose a random subset of [N ] of size n = √

2N
.
We denote them by A and B, respectively. When the string R is transmitted, Alice and
Bob storeRA andRB , respectively. Alice then sends A to Bob. By the birthday paradox,
with high probability C = A ∩ B is of size at least 
. Note that Bob remembersRC , and
Alice does not know C . To complete the setup stage, Alice and Bob play an interactive
hashing protocol where Bob uses W = C as input. We give a precise definition of
“interactive hashing” later on. Following the interactive hashing protocol, Alice and

A long random stringR of length N is transmitted.
Alice: Choose random A ⊆ [N ] of size n and storeRA.
Bob: Choose random B ⊆ [N ] of size n and storeRB .
Alice: Send A to Bob.
Bob: Verify that C = A ∩ B is of size at least 
 = n2/2N . If C is large then randomly

truncate it to size exactly 
.
Alice and Bob: Play an interactive hashing protocol where Bob’s input is C . Both Alice

and Bob obtain C0,C1 ⊆ A such that C ∈ {C0,C1}.
At this point, Alice and Bob use the naı̈ve protocol withR0 = RC0 andR1 = RC1 .

Fig. 2. The protocol for the setup stage.
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Bob obtain sets C0,C1 ⊆ A such that C = Cd for some d ∈ {0, 1}. The security of
the interactive hashing protocol guarantees the following properties: (1) Alice does not
know d . (2) Bob “does not remember a lot of information” about one of the strings
RC0 ,RC1 . Thus, the two sets C0,C1 satisfy the properties required above and the parties
can complete the OT protocol by using the naı̈ve protocol.7 Note that the setup stage
requires the honest parties to store only k = n = O(

√
N
) bits. In this presentation, we

did not discuss the security of Bob; however it is easy to see that even an unbounded
Alice, who remembers all ofR, cannot learn any information about c.

Previous protocols. The protocols of [9] and [22] both use the setup stage described
above. They implement interactive hashing using the NOVY protocol from [44] which
takes 
 = k	(1) rounds. Following the setup stage they perform what can be seen in
retrospect as variants of our naı̈ve protocol. (Both papers do not use extractors explicitly;
however their strategies can be viewed as some (weak) implementations of extractors.)

Our improvements. Our main improvement comes from replacing the NOVY protocol
for interactive hashing with a new four-message protocol. This protocol is based on
explicit constructions of almost t-wise independent permutations. Some of the additional
improvements are given by using competitive explicit constructions of extractors for the
naı̈ve protocol above. Another source of improvement comes from allowing Alice to
choose the set A using an averaging sampler. (The reader is referred to [30] for a survey
on samplers.) Choosing the set A using a competitive averaging sampler reduces the
memory requirements of Alice and Bob, as well as the overall communication. We
note that using a sampler to choose the set B as well, we can further improve the total
communication and memory requirements. We remark that the usefulness of extractors
in the bounded storage model was demonstrated in [42] and [54], and that of averaging
samplers was demonstrated in [54].8 Our paper is another example of the usefulness of
ideas from the theory of derandomization in the bounded storage model.

2.1. The Improved Interactive Hashing Protocol

In an interactive hashing protocol Bob holds an input W ∈ {0, 1}m and at the end of the
protocol both parties should agree on W0,W1. It is required that there is a d ∈ {0, 1}
such that W = Wd and that a dishonest Alice cannot learn d. The main requirement is
that a dishonest Bob cannot “control” both W0 and W1. This is captured by the following
condition: For every strategy of Bob and every set S of size 2s (where s is a parameter),
if Alice is honest then with high probability Bob cannot force that both W0 and W1 are
in S.

A naı̈ve solution. A naı̈ve solution to this problem is that Alice sends a random two-to-
one “hash function” h: {0, 1}m → {0, 1}m−1 and Bob replies with z = h(W ). Then the

7 A subtlety is that Bob has no control over whether C = C0 or C = C1. In the actual protocol we allow
Bob to ask Alice to “switch” between the roles of C0,C1 in order to receive the desired secret.

8 It should be noted that the seminal paper of Nisan and Zuckerman [49], which defined extractors, already
used them in a very related context to construct pseudorandom generators against bounded space machines.
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two parties compute the two preimages W0,W1 of z under h. Note that for s > m/2 this
protocol fails even if Alice sends a completely random function h: {0, 1}m → {0, 1}m−1.
(By the birthday paradox, for every S of size 2s > 2m/2 with high probability over h
there are W0,W1 ∈ S such that h(W1) = h(W2).)

The NOVY protocol. The NOVY protocol [44] for interactive hashing can be thought
of as a variant of the naı̈ve solution described above in which Alice does not send “all”
of the hash function at once. Alice chooses a random (m − 1)× m matrix A with entries
in {0, 1} subject to the restriction that all the m − 1 rows of A are linearly independent.
Every such A defines a function h A(x) = A ·x , which is clearly two-to-one. The protocol
consists of m − 1 rounds. In round i , Alice sends Ai (the i th row of A), and Bob replies
with the zi = 〈Ai ,W 〉 = h A(W )i . Intuitively, revealing h A slowly in return to bits zi

restricts Bob in the sense that he has to “choose at least part of his input” before seeing
all of h A.

The new protocol. In contrast to the naı̈ve protocol which sends all of the two-to-one
hash function at once, the NOVY protocol sends m − 1 hash functions which together
form a two-to-one function. Our improved protocol will use two hash functions that
together form a two-to-one hash function. The first hash function is chosen from a
family of permutations over {0, 1}m with stronger independence properties. Namely,
Alice chooses π at random from a family of m-wise independent permutations. She then
sends π to Bob and in exchange Bob sends at once z1, . . . , zv where zi = π(W )i and v
is close to m. We can show that the strong independence properties of π “protect Alice”
and allow the parties to engage in a new interactive hashing protocol for sending the
remaining m − v − 1 bits. It turns out that by choosing the parameters appropriately,
the two parties can use the naı̈ve solution (with a pairwise independent hash function
g: {0, 1}m−v → {0, 1}m−v−1) after the first round. As a result of that, we obtain a 2-round
(4-messages) protocol. The precise protocol is described in Section 5.4.

Unfortunately, we are not aware of any explicit construction of a small sample space
of exact t-wise independent permutations for t > 3. Nevertheless, it has been shown
how to construct a sample space of permutations in which all t elements are close to
being independent (see [40] and references therein), and we can carry out the argument
with this weaker property.

3. Preliminaries

We use [N ] to denote the set {1, . . . , N }. We use X
R← S to denote uniformly choosing

X from S. For a set A ⊆ [N ] and a string R ∈ {0, 1}N we let RA denote the substring
of R consisting of the bits indexed by A. For a set S and 
 ≤ |S|, we use

(S



)
to denote

the set of all subsets T ⊆ S with |T | = 
.

Definition 3.1 (2k-to-1 Functions). A function h: {0, 1}m → {0, 1}m−k is 2k-to-1 if
for every output of h there are exactly 2k pre-images. That is, |h−1(z)}| = 2k for every
z ∈ {0, 1}m−k .
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3.1. Encoding Subsets

We use a method of encoding sets in
([n]



)
into binary strings. The following method was

used in [9]:

Theorem 3.2 [11]. For every integers 
 ≤ n there is a one-to-one mapping F :
([n]



) →
[
(n



)
] such that both F and F−1 can be computed in time polynomial in n and space

O(log
(n



)
).

Using Theorem 3.2 we can encode
([n]



)
by binary strings of length �log

(n



)�. However,
it could be the case that images of subsets constitute only slightly more than half of the
strings above. This is exactly what causes the protocols of [9] and [22] to unsuccessfully
abort with probability 1

2 (and is solved by repeating the protocol until the execution
succeeds). Since in this work we are aiming for low round complexity, it would be
beneficial to have the probability of unsuccessful abort to be significantly smaller than
1
2 . To achieve this, we will use a more redundant encoding. This encoding is more “dense”
than the original one and thus guarantees that most strings can be decoded.

Definition 3.3 (Dense Encoding of Subsets). For every integer 
 ≤ n let F be the
mapping from Theorem 3.2. Given an integer m ≥ �log

(n



)� we set tm = �2m/
(n



)�.
Define the mapping Fm :

([n]



) × [tm] → [2m] as Fm(S, i) = (i − 1)
(n



) + F(S) (every
subset S is mapped to tm different m-bit strings).

We now have the following lemma.

Lemma 3.4. For every 
 ≤ n and m ≥ �log
(n



)�, the encoding Fm is a one-to-one map-
ping that is computable in time poly(n, log m) and space O(log

(n



)
)+ log m. Further-

more: (1) Let D denote the image of Fm . The function F−1
m (defined over D) is also com-

putable in time poly(n, log m) and space O(log
(n



)
)+ log m. (2) |D|/2m > 1− (n




)
/2m .

We call the image D of Fm the set of valid encodings.

Proof. Note that D = [tm ·(n



)
]. The encoding Fm is one-to-one since for every W ∈ D,

F−1
m (W ) = F−1(((W − 1) mod

(n



)
) + 1). It is also easy to verify for each W ∈ [2m]

whether W ∈ D, that is, whether W is a valid encoding, by checking whether W ≤ tm ·(n



)
.

Property (1) follows from the formula for F−1
m and the guarantee on Fm (in Definition 3.3).

Also, the number of distinct encodings in D equals

tm ·
(

n




)
=

⌊
2m/

(
n




)⌋
·
(

n




)
≥

(
2m/

(
n




)
− 1

)
·
(

n




)
= 2m −

(
n




)
and property (2) follows.

3.2. Min-entropy and Extractors

Min-entropy is a variant of Shannon’s entropy that measures the randomness of a prob-
ability distribution or a random variable in the worst case. A distribution has high min-
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entropy if the probability mass it assigns to every element of the probability space is
small.

Definition 3.5 (Min-entropy). For a distribution X over a probability space	 the min-
entropy of X is defined as H∞(X) = minx∈	 log(1/Pr[X = x]). We say that X is a
k-source if H∞(X) ≥ k; that is, for every x ∈ 	, Pr[X = x] ≤ 2−k .

Definition 3.6 (Statistical Distance). Two distributions P and Q over 	 are ε-close
(also denoted P

ε≡ Q) if for every A ⊆ 	, | Prx←P(A)− Prx←Q(A)| ≤ ε.

Thus, that two distributions P and Q are ε-close means that the maximum advantage of
any unbounded distinguisher in distinguishing between P and Q is at most ε.

An extractor is a function that “extracts” randomness from arbitrary distributions
which “contain” sufficient (min)-entropy [49].

Definition 3.7 (Strong Extractor). A function Ext: {0, 1}nE × {0, 1}dE → {0, 1}m E

is a (kE , εE )-strong extractor if for every kE -source X over {0, 1}nE the distribution
(Ext(X, Y ), Y ), where Y is uniform over {0, 1}dE , is εE -close to (Um E , Y ), where Um E

is uniform over {0, 1}m E and independent of Y .

We remark that a regular (non-strong) extractor is defined in a similar way, with the
random variables (Ext(X, Y ), Y ) and (Um E , Y ) above replaced by Ext(X, Y ) and Um E ,
respectively.

3.3. Averaging Samplers and Min-Entropy Samplers

A fundamental lemma by Nisan and Zuckerman [49] asserts that given a δv-source X
on {0, 1}v , with high probability over choosing a subset T ⊆ [v] of size t , XT is roughly
a δt-source. Or in other words, that sampling a random piece from a source preserves
the “min-entropy rate” of the source. As shown in [49], [52], and [54] the lemma does
not require a uniformly chosen subset. It is sufficient that T is chosen using a “good
averaging sampler.”

Definition 3.8 (Averaging Sampler). A function Samp: [L] → [v]t is a (µ, θ, γ )-
averaging sampler if for every function f : [v] → [0, 1] with average value
(1/v)

∑
i f (i) ≥ µ,

Pr
p∈[L]

[
1

t

∑
1≤i≤t

f (Samp(p)i ) < µ− θ

]
≤ γ.

The function Samp is said to have distinct samples if for every p ∈ [L], the t outputs of
Samp(p) are distinct.

Averaging samplers have been the subject of a line of studies starting with [4]. For
a survey of averaging samplers, see [30]. The following lemma asserts that using an
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averaging sampler to sample a subset from a source with min-entropy rate δ roughly
preserves the min-entropy rate of the source.

Lemma 3.9 [54]. Suppose that Samp: [L] → [v]t is a (µ, θ, γ )-averaging sampler
with distinct samples for µ = (δ − 2τ)/log(1/τ) and θ = τ/log(1/τ). Then for every
δv-source X on {0, 1}v , the random variable (P, XSamp(P)) where P is uniform over
[L] is γ + 2−	(τv)-close to a random variable (P, Q) such that for every p ∈ [L], the
random variable Q|P=p is a (δ − 3τ)t-source.

It will be convenient for us to state Lemma 3.9 in a different form. For this purpose we
introduce the notion of a min-entropy sampler.

Definition 3.10 (Min-Entropy Sampler). A function Samp: [L] → [v]t with distinct
samples is a (δ, δ′, ϕ, ε)-min-entropy sampler if for every δv-source X over {0, 1}v there
is a set G ⊆ [L] of density 1 − ϕ such that for every p ∈ G the distribution XSamp(p) is
ε-close to a δ′t-source.

With this notation we can restate Lemma 3.9 as follows:

Corollary 3.11. Suppose that Samp: [L] → [v]t is a (µ, θ, γ )-averaging sampler with
distinct samples forµ = (δ−2τ)/log(1/τ) and θ = τ/log(1/τ). Then there is a constant
c > 0 such that for every 0 < α < 1, Samp is a (δ, δ−3τ, (γ+2−cτv)1−α, (γ+2−cτv)α)-
min-entropy sampler.

Proof. Let c be the constant hidden in the statement of Lemma 3.9. That is,
(Ur , XSamp(Ur )) is γ + 2−cτv-close to a random variable (P, Q) where P is uniform
over {0, 1}r and for every p ∈ {0, 1}r , the random variable Q|P=p is a (δ− 3τ)t-source.
Let B be the set of p ∈ {0, 1}r such that the XSamp(p) is not (γ + 2−cτv)α-close to a
(δ − 3τ)t-source. It follows that the density ϕ of B is at most (γ + 2−cτv)1−α . This is
because otherwise the statistical distance between (Ur , XSamp(Ur )) and any (P, Q) that
satisfy the condition in Lemma 3.9 is at least ϕ(γ + 2−cτv)α > γ + 2−cτv . Let G be the
complement of B. The lemma follows.

3.4. The Random Subset Sampler

An averaging sampler is a way of choosing a set with certain “random properties.”
Naturally, choosing a set uniformly at random gives an averaging sampler. We now state
the parameters of this sampler.

Definition 3.12 (The Random Subset Sampler). Given integers v ≥ t , fix a mapping
E from [

(
v

t

)
] to

([v]
t

)
, and let RS: [

(
v

t

)
] → ([v]

t

)
be RS(p) = E(p).

The following lemma about random subset samplers is standard. We give a proof for
completeness.
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Lemma 3.13. There is a constant c such that for every v ≥ t and every µ, λ > 0, RS
is a (µ, λµ, 2e−(cλ2tµ))-averaging sampler with distinct samples.

Proof. Consider the following probability space for choosing a subset S ⊆ [v]. For
every i ∈ [v] we independently choose whether i ∈ S with probability t ′/v. For every
i ∈ [v] we define Xi to be f (i) if i ∈ S and zero otherwise. Note that E(Xi ) = f (i)t ′/v.
Let X = ∑

Xi , by linearity of expectation E(X) = t ′µ. By Chernoff’s inequality,
there is a constant c > 0 such that Pr[|X − t ′µ| > δt ′µ] < e−cδ2t ′µ. Furthermore,
another application of the inequality gives that Pr[||S| − t ′| < δt ′] < e−cδ2t ′ . We now
randomly add indices to S to give a subset of size t = (1 + δ)t ′. Note that this sample
space is e−cδ2t ′ -close to the sample space of choosing a random subset T of size t .
Consider X ′ = t ′

v

∑
i∈S f (i) for the enlarged S. It follows that X ′ ≥ X . We have that

Pr[X ′ < t ′µ − δt ′µ] < e−cδ2t ′µ. We now want this event to hold whenever {X ′ <
tµ− tλµ} holds. A calculation shows that λ ≥ 2δ/1 + δ, which is satisfied for δ = λ/2.
Thus, when choosing a random subset T of size t , Pr[(1/t)

∑
i∈T f (i) < µ − λµ] <

2ecλ2tµ/4(1+λ/2) ≤ 2e−	(λ2tµ), where the last inequality follows because λ < 1.

Corollary 3.14. For every v ≥ t , and δ > 0, RS is a (δ, δ/2, ϕ, ε)-min-entropy
sampler, for ϕ = ε = 3 · 2−	(δt/log(1/δ)).

Proof. Let τ = δ/6, µ = (δ − 2τ)/log(1/τ) = 4δ/6 log(6/δ) and θ = τ/ log(1/τ).
We choose λ = θ/µ = 1/4 and apply Lemma 3.13. It follows that there exists a constant
d such that RS is a (µ, θ, γ )-averaging sampler for γ = 2e−dtµ. By applying Corollary
3.11 with α = 1/2, there is a constant c > 0 such that RS is a (δ, δ′, ϕ, ε)-min-entropy
sampler for δ′ = δ − 3τ = δ/2 and

ϕ = ε = (γ + 2−cτv)1/2 ≤ γ 1/2 + 2−cτv/2

≤ 2 · 2−	(δt/ log(1/δ)) + 2−	(δv)

≤ 3 · 2−	(δt/ log(1/δ)),

where the last inequality follows because t ≤ v.

3.5. Some Useful Technical Lemmas

The following two lemmata measure the min-entropy in a k-source X when conditioned
on the event {Y = y} where Y is a (dependent) random variable over short strings. It is
very useful for us as we often consider the information in the long random stringR from
the point of view of a bounded storage machine that stores only few bits of information
aboutR.

The following lemma is standard. We include a proof for completeness, and it may be
instructive for understanding the proof of the next, related yet much more complicated,
lemma.

Lemma 3.15. If X is a k-source and Y is over {0, 1}r then with probability 1−β (over
the choice of y ← Y ) (X | Y = y) is a (k − r − log(1/β))-source.



Constant-Round Oblivious Transfer in the Bounded Storage Model 177

Proof. Let B = {y | Pr[Y = y] < 2−r−log(1/β)}. It follows that Pr[Y ∈ B] <
2r · 2−r−log(1/β) ≤ β. For every y �∈ B and x ,

Pr[X = x | Y = y] ≤ Pr[X = x]

Pr[Y = y]
≤ 2−k

2−r−log(1/β)
= 2−(k−r−log(1/β)).

The next lemma is a strengthening of Lemma 3.15 and handles the case in which X
is only close to having high min-entropy.

Lemma 3.16. If X is ξ -close to a k-source and Y is over {0, 1}r then with probability
1 − β − √

2ξ (over the choice of y ← Y ) (X | Y = y) is
√

2ξ -close to a (k − r −
log(1/β)− 1)-source.

Proof. Let T = {x | Pr[X = x] > 2−(k−1)}. We first show that

Pr[X ∈ T ] ≤ 2ξ. (1)

Let X ′ be a k-source that is ξ -close to X , and let PX = Pr[X ∈ T ] and PX ′ = Pr[X ′ ∈ T ].
We have that |PX − PX ′ | < ξ . On the other hand we have that PX ≥ |T |2−(k−1) and
PX ′ ≤ |T |2−k . Therefore,

PX − PX ′ ≥ |T |2−(k−1) − |T |2−k = |T |2−k ≥ PX ′ .

Thus, PX ′ ≤ ξ . We now conclude that PX ≤ PX ′ + ξ ≤ 2ξ . Thus, (1) follows. Let
H = {(x, y) | Pr[X = x, Y = y] > 2−(k−1)} and Hy = {x | (x, y) ∈ H}. Note that if a
pair (x, y) ∈ H then x ∈ T . Thus,

Pr[(X, Y ) ∈ H ] ≤ Pr[X ∈ T ] ≤ 2ξ.

Let vy = Pr[X ∈ Hy | Y = y]. Let A = {y | vy ≥ √
2ξ}. We now bound the probability

that {Y ∈ A}. We have that

2ξ ≥ Pr[(X, Y ) ∈ H ] =
∑

y

Pr[(X, Y ) ∈ H | Y = y] Pr[Y = y]

=
∑

y

Pr[X ∈ Hy | Y = y] Pr[Y = y]

=
∑

y

vy Pr[Y = y] ≥
∑
y∈A

vy Pr[Y = y] ≥ Pr[Y ∈ A]
√

2ξ .

Thus, we have that Pr[Y ∈ A] ≤ √
2ξ . Let B = {y | Pr[Y = y] < 2−r−log(1/β)}. It

follows that Pr[B] < 2r · 2−r−log(1/β) ≤ β. Let C = A ∪ B. We have that Pr[Y ∈
C] ≤ β + √

2ξ . Finally, we show that for every y �∈ C , the distribution (X | Y = y) is√
2ξ -close to a k − 1 − r − log(1/β)-source. To see this we check that for every such y

and x �∈ Hy ,

Pr[X = x | Y = y] = Pr[X = x, Y = y]

Pr[Y = y]
≤ 2−(k−1)

2−(r+log(1/β))
= 2−(k−1−r−log(1/β)).

The lemma follows as Pr[X ∈ Hy | Y = y] = vy <
√

2ξ and the weight of heavy
elements is small.
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The following lemma asserts that running a strong extractor on a k-source gives a
distribution which is close to uniform for most choices of y ∈ {0, 1}dE . We will use this
to argue that if a random variable has high min-entropy from the point of view of some
bounded storage machine B∗, then for most seeds y applying an extractor gives a distri-
bution which is (close to) uniform from the point of view of B∗ even if y is revealed to B∗.

Lemma 3.17. If Ext: {0, 1}nE × {0, 1}dE → {0, 1}m E is a (kE , εE )-strong extractor
then for every k-source X over {0, 1}nE , with probability 1 − 2

√
εE over the choice of

y
R← {0, 1}dE the distribution E(X, y) is

√
εE -close to uniform.

Proof. Assume by contradiction that for at least a 2
√
εE -fraction of y’s, there was a

distinguisher Dy which distinguishes E(X, y) from Um E with advantage greater than√
εE . Without loss of generality, assume that for at least a

√
εE -fraction of ys,

Pr[Dy(E(X, y)) = 1]−Pr[Dy(Um E ) = 1] >
√
εE . It follows that there is a distinguisher

for distinguishing (E(X, Y ), Y ) from (Um E , Y )with advantage greater
√
εE ·√εE = εE ,

a contradiction.

4. Oblivious Transfer in the Bounded Storage Model

We now turn to formally define oblivious transfer in the bounded storage model. We
first note that formal definitions of oblivious transfer in information-theoretic settings
have been previously proposed (see [6], [24], and [7]). Shortcomings of those previous
definitions have been pointed out in a recent paper [15] which initiated a systematic
study of general information-theoretically secure two-party protocols.

In this section we give an adequate definition of oblivious transfer in the bounded
storage model. Our definition characterizes malicious strategies for Alice and Bob. Note
that in the definitions below the malicious strategies are asymmetric. We restrict malicious
strategies for Bob to have bounded storage while no bounds are placed on malicious
strategies for Alice. Clearly, if a protocol is secure against unbounded strategies for
Alice, it is also secure against bounded strategies. Thus, the security defined here is even
stronger than that explained in the Introduction.

Definition 4.1 (Malicious Strategy for Alice). A (malicious) strategy A∗for Alice is an
unbounded interactive machine with inputsR ∈ {0, 1}N and s0, s1 ∈ {0, 1}u . That is, A∗

receivesR and s0, s1 and interacts with B. In each stage, it may compute the next message
as any function of its inputs, its randomness, and the messages it received thus far. The
view of A∗ when interacting with B that holds input c (denoted view〈A∗,B〉

A∗ (s0, s1; c))
consists of its local output.9

The following definition captures a bounded storage strategy with storage bound K .
Loosely speaking, the only restriction made on a bounded storage strategy B∗ is that

9 The view of A may be thought of as also containing the party’s randomness, inputs, and outputs, as well
as the messages received from B. This more intuitive “view” is possible since without loss of generality the
malicious party may copy this view to his output.
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it has some (possibly probabilistic) memory function g∗ : {0, 1}N → {0, 1}K and its
actions depend on R only through g∗(R). This formally captures that B∗ remembers
only K bits aboutR.

Definition 4.2 (Bounded Storage Strategy for Bob). A bounded storage strategy B∗

for Bob with memory bound K is a pair (g∗, B̂∗) where:

– g∗: {0, 1} × {0, 1}N → {0, 1}K is an arbitrary (not necessarily efficiently com-
putable) probabilistic function with input c andR.

– B̂∗ is an unbounded interactive machine with inputs c∈{0, 1} and b∗ ∈{0, 1}K.

The behavior described by a strategy B∗ with input c is the following: When given the
string R ∈ {0, 1}N , B∗ computes b∗ = g∗(c, R). B∗ then interacts with A using the
interactive machine B̂∗ receiving inputs c and b∗. The view of B∗ with input c when
interacting with A with inputs s0, s1 (denoted view〈A,B∗〉

B∗ (s0, s1; c)) is defined as the view
of B̂∗ when interacting with A.

We now turn to the definition of oblivious transfer in the bounded storage model. The
security of Bob asks that for any malicious strategy for Alice, its view is identically
distributed whether Bob inputs c = 0 or c = 1. The definition of Alice’s security is a
bit more complex because one of her secrets is passed to Bob. For this definition, we
partition every protocol that implements OT into two stages. The first stage is called
the setup stage and includes the transmission of the long string R and all additional
messages sent by Alice and Bob until the point where Alice first makes use of her input
s0, s1. The remaining steps in the protocol are called the transfer stage. We also need the
following definition:

Definition 4.3. Two pairs s̄ = (s0, s1) and s̄ ′ = (s ′
0, s ′

1) are c-consistent if sc = s ′
c.

The security of Alice asks that following the setup stage (which does not depend on
the secrets), there is an index � (possibly a random variable that depends on R and the
messages sent by the two parties in the setup stage) such that Bob’s view is (close to)
identically distributed for every two �-consistent pairs. In other words, Bob’s view is
(almost) independent of one of the secrets (defined by 1−�). We next present the actual
definition.

Definition 4.4 (Oblivious Transfer). A protocol 〈A, B〉 is said to implement (1 − ε)-
oblivious transfer (OT) against storage K if it is a protocol in which Alice inputs two
(secrets) s0, s1 ∈ {0, 1}u , in which Bob inputs a choice bit c ∈ {0, 1}, and that satisfies:

Functionality: If Alice and Bob follow the protocol, then for any s0, s1 and c,
1. The protocol does not abort with probability at least 1 − ε.
2. If the protocol ends then Bob outputs sc, whereas Alice outputs nothing.

Security for Bob: The view of any strategy A∗ is independent of c. Namely, for every
s0, s1: {

view〈A∗,B〉
A∗ (s0, s1; c) | c = 0

}
≡

{
view〈A∗,B〉

A∗ (s0, s1; c) | c = 1
}
.
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(K , ε)-Security for Alice: For every bounded storage strategy B∗ for Bob with mem-
ory bound K and input c there is a random variable � defined by the end of the
setup stage such that for every two pairs s̄ and s̄ ′ that are �-consistent:{

view〈A,B∗〉
B∗ (s̄; c)

}
ε≡

{
view〈A,B∗〉

B∗ (s̄ ′; c)
}
.

It is instructive to first consider an adversary Bob that is “semi-honest.” Such an
adversary follows the protocol, yet he stores additional information on R and tries to use
this information to learn both secrets. In this case, the definition above can be simplified
and the random variable � can be replaced by the choice bit c. However, in general Bob
may ignore c and decide to play using a choice bit � that is chosen as a function of R
and the messages in the setup stage. Thus, letting � depend on R and the messages in
the setup stage is unavoidable. The definition above guarantees that no matter how Bob
decided to play there is always a secret that he does not learn. We stress that the security
achieved in this definition is information theoretic. We remark that the definition would
be meaningless if � was allowed to depend on the secrets s0, s1, and indeed, this is the
reason we partition protocols into a setup stage and a transfer stage. We require that
the random variable � is defined at the end of the setup stage and therefore it does not
depend on s0, s1.

4.1. Using OT in the Bounded Storage Model as a Sub-Protocol

We remark that it does not immediately follow from the definition above that all the
“standard” applications of OT can be performed in the bounded storage model. (This is
also the case for the previous protocols in this model [9], [22].) Nevertheless, we now
explain how this protocol can be used as a sub-protocol to perform other cryptographic
tasks. For example, our OT protocol can be used in the construction of Kilian [41] to
give a protocol for secure two-party computation in the bounded storage model. The
security achieved guarantees that an unbounded party learns nothing about the input of
the other party. In order to use our protocol as a sub-protocol inside other protocols we
note that our security definition implies security by a simulation argument (although
the simulator is not necessarily efficient). Loosely speaking, the simulation paradigm
requires that any attack of a malicious party can be simulated in an ideal setting where
the parties interact only through a trusted party. This insures that the protocol is as
secure as an interaction in the ideal setting. The ideal setting for OT is that both players
send their inputs (s0, s1; c) to a trusted party, and the trusted party sends sc to Bob.
We need to show that any malicious bounded storage adversary in the bounded storage
model can be simulated in a way that gives him the same information when interacting
through the trusted party. A weakness of the argument we are about to present is that
the simulation we give is not necessarily efficient. We stress that typically one requires
that the simulators should run with essentially the same efficiency as the attack being
simulated, and that this would provide a stronger notion of security. We now give a
sketch of the simulator for a malicious receiver strategy B∗. (Likewise, a simulator for
a malicious sender can be given.) The simulator plays the roles of both B∗ and A in
the protocol up to the transfer stage. At this point the simulator computes the random
variable � and calls the trusted party asking for secret s� . It continues by simulating A
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with inputs s� as received from the trusted party and a random s1−� . By our security
definition this turns out to be a valid simulation. We remark that the protocol presented in
this paper does not suggest how to efficiently compute � and this is why the simulation
is not necessarily efficient. It now follows that any application of OT in which security
of the protocol is proven using a simulation argument (as the aforementioned secure
two-party computation of [41]) can be performed in the bounded storage model with
information-theoretic security. Nevertheless, as our simulator is not efficient it does not
follow that one can “mix” OT in the bounded storage model with cryptography based
on computational hardness assumptions. It is an interesting open problem to come up
with a protocol that can be efficiently simulated. A related problem is pointed out by
Dziembowski and Maurer [25].10

5. Interactive Hashing

One of the main tools we use in this paper is the interactive hashing protocol. While
useful in the bounded storage model, it is important to note that interactive hashing is
not necessarily related to this model. As a matter of fact, the definitions and protocols
given here achieve security against all powerful adversaries with no storage bounds at
all.

5.1. Definition of Interactive Hashing

Interactive hashing is a protocol between Alice with no input and Bob with an input
string. At the end of the protocol Alice and Bob should agree on two strings: One should
be Bob’s input and intuitively the other should be random. Moreover, Alice should not
be able to distinguish which is Bob’s input and which is the random string.

Definition 5.1 (Interactive Hashing). A protocol 〈A, B〉 is called an interactive hash-
ing protocol if it is an efficient protocol between Alice with no input and Bob with
input string W ∈ {0, 1}m . At the end of the protocol both Alice and Bob output a
(succinct representation of a) two-to-one function h: {0, 1}m → {0, 1}m−1 and two val-
ues W0,W1 ∈ {0, 1}m (in lexicographic order) so that h(W0) = h(W1) = h(W ). Let
d ∈ {0, 1} be such that Wd = W . Furthermore, if the distribution of the string W1−d over
the randomness of the two parties is η-close to uniform on all strings not equal to Wd ,
then the protocol is called η-uniform interactive hashing (or simply uniform interactive
hashing if η = 0).

Definition 5.2 (Security of Interactive Hashing). An interactive hashing protocol is se-
cure for B if for every unbounded strategy A∗, and every W , if h,W0,W1 are the outputs

10 In [25] Dziembowski and Maurer showed that using a computationally secure key agreement protocol
in order to agree on a secret key for a private-key encryption scheme in the bounded storage model (BSM),
does not necessarily yield an information-theoretically secure combined (hybrid) scheme. Dziembowski and
Maurer proved this by giving an explicit computationally secure key agreement protocol and a secure BSM
private-key encryption scheme for which the resulting hybrid scheme is insecure.
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of the protocol between an honest Bob with input W and A∗, then{
view〈A∗,B〉

A∗ (W ) | W = W0

}
≡

{
view〈A∗,B〉

A∗ (W ) | W = W1

}
,

where view〈A∗,B〉
A∗ (W ) is A∗’s view of the protocol when B’s input is W . An interactive

hashing protocol is (s, ρ)-secure for A if for every S ⊆ {0, 1}m of size at most 2s and
every unbounded strategy B∗, if W0,W1 are the outputs of the protocol; then

Pr[W0,W1 ∈ S] < ρ

where the probability is taken over the coin tosses of A and B∗. An interactive hashing
protocol is (s, ρ)-secure if it is secure for B and (s, ρ)-secure for A.

Remark. The definition above does not deal with the case in which dishonest players
abort before the end of the execution. Intuitively, such a definition is sufficient for our
purposes since in our OT protocol, the interactive hashing is used before the players send
any message that depends on their secrets, and thus their secrets are not compromised.

5.2. t-Wise Independent Permutations and Hash Functions

In our interactive hashing protocol we would like to use a random permutation on m-bit
strings. However, a description of such a permutation would be exponentially long since
there are (2m)! such permutations. The solution is to use a permutation that falls short
of being truly random but still has enough randomness to it. Specifically we want to
efficiently sample a permutation π out of a small space of permutations such that when
applied on any t points in {0, 1}m , π behaves as a truly random permutation. Such a
space is called a t-wise independent permutation space. Unlike in the case of functions,
where there are extremely randomness efficient constructions of t-wise independent
functions, we are unaware of such constructions for permutations. Instead we further
relax our demands and ask the construction to be almost t-wise independent; that is, the
distribution induced by the permutation π on any t points is statistically close to the
distribution induced on these points by a truly random permutation. Formally:

Definition 5.3. An η-almost t-wise independent permutation space is a procedure that
takes as input a seed of l bits and outputs a description of an efficiently computable
permutation in S2m ,11 with the property that a uniformly chosen seed induces a distribution
�t,η on permutations such that for any t strings x1, . . . xt ∈ {0, 1}m :

{π(x1), . . . π(xt )}
π

R←�t,η

η≡ {π(x1), . . . π(xt )}
π

R←S2m
.

Such a construction was presented by Gowers [36] based on simple 3-bit permutations
(another approach is based on a Feistel structure; see [46]). Recently, the efficiency of
such constructions was improved by Hoory et al. [38] and Brodsky and Hoory [8] and
ultimately by Kaplan et al. [40].

11 S2m denotes the family of all permutations on m-bit strings.
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Theorem 5.4 [40]. There exists an η-almost t-wise independent permutation space
�t,η with t = m, η = (1/2m)t , and seed length l = O(tm + log(1/η)) = O(m2).
Furthermore, �t,η runs in time and space polynomial in the seed length.

Pairwise independent permutations. A widely used tool is a pairwise independent
permutation of strings of m bits. This is simply a 2-wise independent permutation as
defined above (i.e., a 0-almost 2-wise independent permutation). The construction that
we use identifies {0, 1}m with the field G F(2m). A permutation is sampled by randomly
choosing two elements a, b ∈ G F(2m) with the restriction that a �= 0. The permutation
is then defined by ga,b(x) = ax + b (where all operations are in the field). A pairwise
independent permutation is therefore specified by 2m random bits. We note that to
construct a pairwise independent two-to-one hash function, one simply takes a pairwise
independent permutation and omits the last bit of its output.

5.3. Partial Result: A Two-Message Interactive Hashing

We start by showing that when the bad set S is small enough then the following naı̈ve
protocol is sufficiently good. In this two-message protocol called 2M-IH, Alice sends
a random two-to-one hash function h: {0, 1}m → {0, 1}m−1 and Bob replies with z =
h(W ).

Claim 5.5. For all u, the 2M-IH protocol is a (s, 2−(m−2s+1))-secure uniform interactive
hashing.

Proof. The 2M-IH is clearly an interactive hashing protocol, and since h is pairwise
independent, then it is also uniform. (W1−d is uniformly distributed over all strings
barring Wd .) The 2M-IH is also secure for B since all that Bob sends to Alice is h(W ),
which is the exact same view whether Bob has input W = W1 or W = W0. On the
other hand, since h is a pairwise independent hash function, then the probability over
the choice of h for any two strings W0,W1 to be mapped to a certain cell z ∈ {0, 1}m−1

is perfectly random; that is,

Prh[h(W0) = h(W1) = z] = 2 · 1

2m
· 1

2m − 1
.

Denote Xz = 1 if both strings mapped to cell z are from the set S and Xz = 0 otherwise.
Then

Prh[Xz = 1] ≤
(

2s

2

)
Prh[h(W0) = h(W1) = z] ≤ 2s

2m
· 2s − 1

2m − 1
≤ 22s

22m
.

Denote by X the number of cells z such that both values mapped into z are from the set
S, then

E(X) = E

(∑
z

Xz

)
=

∑
z

E (Xz) ≤ 2m−1 · 22s

22m
≤ 2−(m−2s+1).

The protocol is insecure only if Bob finds a cell z with two bad values, that is, only if X ≥
1. However, using Markov’s inequality we have that Pr[X ≥ 1] ≤ E(X) ≤ 2−(m−2s+1).
Thus this protocol is (s, 2−(m−2s+1))-secure for Alice.
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4M-IH (Four-Message Interactive Hashing)

Common Input: Parameters m and s.
Let v = s − log m.
A family � of η-almost t-wise independent permutations π : {0, 1}m → {0, 1}m .

Set t = m and η = (1/2v)t .
A family G of 2-wise independent 2-1 hash functions g: {0, 1}m−v→{0, 1}m−v−1.
A family H (induced by �,G) of 2-1 hash functions h: {0, 1}m → {0, 1}m−1

defined as h(x)
def= π(x)1, . . . , π(x)v, g(π(x)v+1 . . . , π(x)m), where π(x)i denotes

the i th bit of π(x).
Input of Alice: ⊥.
Input of Bob: W ∈ {0, 1}m .

– Alice: Choose π
R← �. Send π to Bob.

– Bob: Compute z1, . . . zm = π(W ). Send π ′(W ) = z1, . . . , zv to Alice (let π ′

denote π when truncated to its first v bits).

– Alice: Choose g
R← G. Send g to Bob.

– Bob: Send g(zv+1, . . . , zm) to Alice.
– Alice and Bob: Output W0,W1 s.t. h(W0) = h(W1) = h(W ).

Fig. 3. The four-message protocol for interactive hashing.

5.4. A Four-Message Protocol for Interactive Hashing

The two-message protocol is useful when the bad set S is very small. However, if S is
large (for example, if |S| > 2m/2) then this protocol does not suffice. We need to deal
with a large set S in our application for OT in the bounded storage model. It was observed
in [9] that the protocol of [44] can handle large sets. However, the interactive hashing
protocol of [44] requires m − 1 rounds of communication. We present a four-message
protocol in Fig. 3.

Theorem 5.6. For all s,m such that s ≥ log m + 2, the 4M-IH protocol is
an (s, 2−(m−s)+O(log m))-secure η′-uniform interactive hashing protocol for η′ =
(1/2s−log m−1)m < 2−m .

Proof. We start by noting that the protocol is efficient for both parties due to the
efficiency of the permutations used. Furthermore, they can run in small space. This is
an η′-uniform interactive hashing protocol since h is η close to pairwise independent.
Therefore for any value w′ and input W , the distribution of the pair (h(W ), h(w′)) is
η-close to that of a random permutation. The probability that W1−d = w′ is therefore
η-close to 1/(2m − 1). Summing the distance to uniformity over all possible values w′,
we get that W1−d is distributed η′ = 2m · η close to uniform. The 4M-IH protocol is
secure for B since no matter what strategy A∗ Alice uses, the messages that Bob sends
are identical whether his input is W = W0 or W = W1 (recall that h(W0) = h(W1)). This
protocol has two stages of question and answer (four messages), and in order to prove
the security for A we view each of these two parts separately. In the first part, all strings
W ∈ {0, 1}m are divided by π ′ into 2v cells (according to the value of π ′(W )). Our goal
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is to show that no cell z′ ∈ {0, 1}v has too many strings from the bad set S mapped to it.
The second part of the protocol can then be viewed as implementing the 2M-IH protocol
on strings in the cell z′, yielding the security of the combined protocol (the portion of
bad strings in the cell z′ is reduced to less than a square root of the strings in the cell).
We start by bounding the probability that a specific set of t strings are mapped by π ′ to
the same cell z.

Claim 5.7. For every z ∈ {0, 1}v and all x1, . . . , xt ∈ {0, 1}m we have that

ρ = Prπ∈�[π ′(x1) = π ′(x2) = · · · = π ′(xt ) = z] ≤
(

1

2v

)t

+ η.

Proof. Suppose that π were a t-wise independent function (and not permutation),
then for every xi ∈ {0, 1}m we have that the probability that π ′(xi ) = z is exactly
1/2v and the probability that this is the case for t different values is exactly (1/2v)t .
However, since π is a permutation, this probability is smaller since for every i we have
Pr[π ′(xi ) = z | π ′(x1) = π ′(x2) = · · · = π ′(xi−1) = z] ≤ 1/2v . However, as π is
actually an almost t-wise independent permutation, the probability on t elements may
deviate by up to η from the truly random permutation, and therefore ρ ≤ (1/2v)t + η.

Let us focus on a specific cell z ∈ {0, 1}v . For every set of t elements x1, . . . , xt ∈ S,
denote by Y π

z (x1, . . . , xt ) the indicator random variable that indicates whether or not all
xi are mapped to z by π ′. That is,

Y π
z (x1, . . . , xt ) =

{
1, π ′(x1) = π ′(x2) = · · · = π ′(xt ) = z,

0, otherwise.

Let Y π
z denote the number of strings from S mapped to cell z by π ′. Let E = 2s/2v ,

which is the expected number of strings from S in each cell, if the cells were divided
uniformly among all strings in S. We claim that, with high probability, Y π

z does not
deviate much from E .

Lemma 5.8. Let t − 1 ≤ E . Then for all z ∈ {0, 1}v ,

Prπ∈�[Y π
z ≥ 3E] ≤ 2−(t−1).

Proof. Consider the table of all possible Y π
z (x1, . . . , xt ), where each row stands for a

specific set {x1, . . . , xt } where each xi ∈ S, and each column stands for a choice of π . By
Claim 5.7, the fraction of ones in each row, and hence the fraction of ones in the whole
table, is at most (1/2v)t + η. On the other hand, for each π such that Y π

z ≥ 3E there are
at least

(3E
t

)
sets of t elements for which Y π

z (x1, . . . , xt ) = 1; therefore the fraction of

ones in the table is at least Prπ∈�[Y π
z ≥ 3E] · (3E

t

)
/
(2s

t

)
. Therefore we get that

Prπ∈�
[
Y π

z ≥ 3E
] ≤

(2s

t

)(3E
t

) ((
1

2v

)t

+ η

)
.
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Recall that η = (1/2v)t and using the fact that
(a

c

)
/
(b

c

) ≤ (a/(b − c + 1))c we get

Prπ∈�[Y π
z ≥ 3E] ≤

(
2s

3E − t + 1

)t

· 2 ·
(

1

2v

)t

.

Since t − 1 ≤ E and E = 2s/2v ,

Prπ∈�
[
Y π

z ≥ 3E
] ≤ 2 ·

(
2s

2E2v

)t

≤ 2 ·
(

2s

2(2s/2v)2v

)t

= 2 · 2−t .

This completes the proof of Lemma 5.8.

As a corollary of Lemma 5.8 we get that with high probability there is no cell that
contains a large number of bad elements. Applying a union bound gives

Prπ∈�
[∃z s.t. Y π

z ≥ 3E
] ≤ 2−(t−1−v).

Recall that t = m and v = s − log m. So the condition t − 1 ≤ E in Lemma 5.8 holds,
and thus the probability of error here is 2−(m−s)−log m+1. Assuming that indeed for all
cells z we have Y π

z < 3E , then the second part of the protocol is actually running the
2M-IH on the strings in a specific cell z′. This cell contains all the possible extensions
of z′ into an m bit string. Therefore, the 2M-IH is run on strings of length m ′ = m − v.
There are no more than 2s ′ = 4 · 2s−v strings that belong to the bad set S. According
to Claim 5.5 the second part of the protocol is an (s ′, 2−(m ′−2s ′+1))-interactive hashing
protocol. The probability that Bob can choose a cell with two string from the bad set
is therefore 2−(m ′−2s ′+1) = 2−(m−v−2(s−v+2)+1) = 2−(m−s)+log m+3. Combined with the
probability that there exists a z with Y π

z ≥ 3E we get that the probability that any
strategy B∗ that Bob plays succeeds in choosing both W0 and W1 in the set S is at most
2−(m−s)+O(log m).

6. The Oblivious Transfer Protocol

Our BS-OT protocol is presented in Fig. 4. The protocol relies on three ingredients:
An extractor, a min-entropy sampler, and an interactive hashing protocol. The precise
requirements from the ingredients are presented in Fig. 5.

In our suggested implementation of BS-OT we choose SampA to be the sampler from
[54], Ext to be an extractor from [51], and we use the 4M-IH interactive hashing protocol
from the previous section. The precise choices of parameters for these ingredients appear
in Section 6.1. These choices meet the requirements of Fig. 5 with ε = 2−	(
). The main
theorem of this paper asserts that this implementation of BS-OT is a constant-round
protocol for oblivious transfer in the bounded storage model. At first reading, the reader
may safely ignore the sampler and assume that the set A is chosen uniformly at random.
That is, assume that SampA is the identity mapping on

([N ]
n

)
.12

12 Using different samplers allows choosing a “random” set A which has a shorter description. Specifically,
using the sampler from Section 6.1 reduces the description size of A from log

(
N
n

)
= �(n log n) to O(
).
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Input of Alice: Secret strings s0, s1 ∈ {0, 1}u .
Input of Bob: Choice bit c ∈ {0, 1}.
Setup Stage:

Subsets Stage: Alice and Bob store subsets of the stringR ∈ {0, 1}N .

– Alice: Choose P
R← [L A]. Compute A ⊂ [N ] of size n by A = SampA(P)

and store the bitsRA.
– Bob: Choose random B ⊂ [N ] of size n and store the bitsRB .
– Alice: Send A to Bob by sending P .
– Bob: Determine C = A ∩ B. If |C | < 
 abort. If |C | > 
, randomly truncate

it to be of size 
.

– Bob: Compute tm as in Definition 3.3. Choose Q
R← [tm] and compute W =

Fm(C, Q).1

Interactive Hashing Stage: Interactively hash W .
– Bob: Input W into the interactive hashing protocol.
– Alice and Bob: Interactively obtain h and W0,W1 s.t. h(W0) = h(W1) =

h(W ). Compute the subsets C0,C1 encoded by W0,W1. If W0 or W1 is not a
valid encoding then abort.

Choice Stage:
– Bob: Let d ∈ {0, 1} be such that Wd = W . Send e =

c ⊕ d.

– Alice: For i ∈ {0, 1} send Yi
R← {0, 1}dE .

Transfer Stage:
– Alice: Set X0 = RC0 and X1 = RC1 .
– Alice: Send “encrypted” values of s0 and s1: For i ∈ {0, 1}, send Zi = si⊕e

– ⊕Ext(Xi , Yi ).
– Bob: Compute X = RC . Bob’s output is given by Ext(X, Yc⊕e)⊕ Zc⊕e.

1 The range of Fm is [n] and not A = SampA(P). For simplicity, we treat C as a subset of A.

Fig. 4. Protocol BS-OT for one-to-two OT in the bounded storage model.

Theorem 6.1. There is a constant α > 0 such that if N , n, and 
 satisfy log n ≤ 
 ≤ nα

then for every constant ν < 1 let protocol BS-OT use the ingredients described in Section
6.1. Protocol BS-OT is a (1 − ε)-oblivious transfer protocol against storage K = νN ,
with ε = 2−	(
). Furthermore:

– The protocol has five messages.
– The strategies for Alice and Bob run in time poly(n) and space k = O(n log n).
– The protocol passes secrets of length u = 	(
).
– The overall number of bits exchanged is T C = O(
O(1)).

The constants hidden in ε, s, u, and T C above depend on ν.13

The results mentioned in the Introduction can be obtained by choosing n =
N 1/2+a/log N for some small constant a > 0. Note that if a is sufficiently small then the

13 Tracing this dependency gives that for δ = (1 − ν): ε = 2−	(δ
/ log(1/δ)), s = m − O(δ
/ log(1/δ)), and
u = 	(δ
). This holds even when ν isn’t a constant, as long as n ≥ 
/δ4. That is, the theorem holds even for
ν ≈ 1 − (
/n)4.



188 Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel

Parameters:
– N is the length of the long random stringR,
– n is the number of bits honest players remember aboutR,
– u is the length of the secrets,
– 
 = n2/2N , the size of the intersection set,
– ν is the dishonest receiver remembers at most νN bits aboutR,
– ε is the error of the protocol. The protocol works as long as ε is not

too small. See the precise requirement on ε under “additional requirements”
below.

Ingredients:
– A (δA, δ

′
A, ϕA, εA)-min-entropy sampler SampA: [L A] → [N ]n with

• δA ≤ (1 − ν)/2.
• δ′A = δA/8.
• ϕA ≤ ε/20.
• εA ≤ (ε/20)2.
• L A determines the length of the first message sent by Alice.

– A (kE , εE )-strong extractor Ext: {0, 1}nE × {0, 1}dE → {0, 1}m E with
• nE = 
.
• dE ≤ δ′A
/12.
• m E = u ≤ δ′A
/12..
• kE ≤ δ′A
/6.
• εE ≤ (ε/20)2.

– An (s, ρ)-secure (2−m)-uniform interactive hashing protocol for strings of
length m = 10
 log n with
• s ≤ m − cI Hδ

′
A
/ log(1/δ′A)+ 1 (cI H > 0 is a universal constant chosen

in the proof).
• ρ ≤ ε/20.

Additional requirements:
– ε ≥ 2−cδ′

A

/ log(1/δ′

A
) where c > 0 is a universal constant chosen in the proof.

Fig. 5. Ingredients and requirements for Protocol BS-OT.

space of honest players satisfies k = O(n log n) = O(N 1/2+a) ≤ O(K 1/2+a), where the
last inequality follows for every constant fraction ν < 1. As 
 = n2/2N we have that

 = n2a/2 log N ≥ ka for large enough n, and we have that ε = 2−	(
) = 2−	(ka). The
remainder of the paper is devoted to proving Theorem 6.1. In Section 6.1 we explain how
to choose the ingredients in a way that satisfies the requirements in Fig. 5. In Section 7
we prove the functionality and security of the protocol. The most challenging part is
proving Alice’s security.

6.1. Choosing the Ingredients

We now turn to choose the ingredients for BS-OT to get the parameters guaranteed in
Theorem 6.1. Given n, N , u, ν, we shoot for ε = 2−	(
). We need to show an extractor,
a sampler, and an interactive hashing protocol that satisfy the conditions specified in
Fig. 5.
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The extractor. In [51] it was shown how to construct a (kE , εE )-strong extractor,
Ext: {0, 1}
 × {0, 1}dE → {0, 1}u , for every kE , u ≤ kE − 2 log(1/εE ) − O(1), and
dE = c log(1/εE ) for some constant c, as long as log(1/ε) > log4 
. Setting kE = δ′A
/6,
we can get u = δ′A
/12 for dE ≤ δ′A
/6 and εE = 2−c′δ′A
 for some constant c′ > 0
(which depends on c). This choice satisfies the requirements in Fig. 5. We note that the
above extractor can be computed in time and space polynomial in 
.

The sampler. In [54] it was shown how to construct a (µ, θ, γ )-averaging sampler
Samp: [L] → [v]t with distinct samples for every µ > θ > 0 and γ > 0 as long as t ≥
	(log(1/γ )/θ2). This sampler has seed length log L ≤ log(v/t)+ log(1/γ )(1/θ)O(1).
Let v = N and t = n. By Corollary 3.11, for every δ, γ such that log(1/γ )/δ4 ≤ n,
this sampler yields a (δ, δ/2, (γ + 2−	(δN ))1/2, (γ + 2−	(δN ))1/2)-min-entropy sampler
SampA: [L A] → [N ]n . Setting γ = 2−
 we have that as long as n ≥ 
/δ4, this sampler
has ϕ = ε = 2−	(
), and log L A ≤ log (N/n) + 
(1/δ)O(1) ≤ log n + 
(1/δ)O(1) for
n ≥ √

N . Note that the condition n ≥ 
/δ4 is satisfied when ν is a constant (as in this
case δ = δA is also a constant).14 We also note that the above sampler can be computed
in time polynomial in n and space O(n).

The interactive hashing protocol. We need to show that protocol 4M-IH satisfies the
requirements of Fig. 5. It is required there that 4M-IH is (s, 2−	(δ′A
/log(1/δ′A)))-secure
for s ≤ m − cI Hδ

′
A
/log(1/δ′A) + 1 where cI H > 0 is some universal constant and

δ′A = α(1 − ν) for some α > 0. By Theorem 5.6, we have that

ρ ≤ 2−(m−s)+O(log m) ≤ 2−cI H δ
′
A
/ log(1/δ′A)+O(log m) ≤ 2−	(δ′A
/ log(1/δ′A))

as m = 10
 log n and 
 ≥ log n. When ν is a constant, δ′A is also a constant and we
have that ρ = 2−	(
) as required. We note that Protocol 4M-IH requires time and space
polynomial in 
.

7. Proof of the Main Theorem

7.1. The Functionality of the OT Protocol

The following lemma asserts that protocol BS-OT indeed implements oblivious transfer.

Lemma 7.1. For every choice of ingredients for BS-OT and every s0, s1, c, if Alice and
Bob follow protocol BS-OT then

– with probability 1 − 2−	(
) the protocol does not abort, and
– if the protocol does not abort then Bob’s output is indeed sc.

Proof. We first show that with high probability |A ∩ B| ≥ 
. This is because for every
fixed A, as B is a random set the expected size of A∩ B is n2/N ≥ 2
. A standard lemma

14 We remark that we do not have to require that ν is a constant. Our protocol also works for ν = 1 − o(1)
as long as the condition above (n ≥ 
/δ4) is satisfied.
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(see for example Corollary 3 in [22]) can be used to show that there exists a constant
0 < α < 1 such that probability that |A ∩ B| < 
 is at most 2e−α
. We now show that
the probability that one of W0,W1 is not a valid encoding of a subset is small. Wd was
chosen by Bob and is certainly a valid encoding. By the definition of Interactive Hashing,
the other string W1−d is η-close to uniformly distributed in {0, 1}m , for η < 2−m . By
Lemma 3.4 the probability that a random string W ∈ {0, 1}m is not a valid encoding is
at most

(n



)
2−m ≤ 2
 log n−m ≤ 2−
−1 as m = 10
 log n. It follows that the probability

of abort is bounded by 2−m + 2−
−1 ≤ 2−
. To see that whenever the protocol does
not abort Bob indeed outputs sc, we observe that X = RC is known to Bob (since
C = A ∩ B ⊆ B and Bob has stored all the bits RB). In particular, Bob is always able
to compute Ext(X, Yc⊕e) and subsequently use it in order to “decrypt” the value Zc⊕e.
By the definition of the protocol we then have

Ext(X, Yc⊕e)⊕ Zc⊕e = Ext(X, Yd)⊕ (sc ⊕ Ext(Xd , Yd))

= Ext(X, Yd)⊕ (sc ⊕ Ext(X, Yd))

= sc, (2)

where (2) follows from the fact that Xd equals RC (= X ), which in turns follows from
the fact that Cd = C (since Wd = W and the encoding Fm is one-to-one). The lemma
follows.

We next verify that the protocol indeed meets the promised efficiency properties.

Lemma 7.2. Let Ext, SampA, and IH be chosen as in Theorem 6.1. Then the properties
in the itemized list in Theorem 6.1 are satisfied by protocol BS-OT.

Proof. It is easy to verify that the protocol has five messages (not including the transmis-
sion ofR). By Section 6.1 the extractor and sampler run in time polynomial in n and space

O(1)+O(n). Protocol 4M-IH runs in time and space polynomial in m = 10
 log n. Thus,
both parties run in time polynomial in n. Both parties require space n to storeRA andRB

and space mO(1) to play 4M-IH. Alice’s set A is chosen by a sampler with seed length
log L A = O(
), thus it can be stored in space O(
). Overall, Alice’s space is bounded
by O(n)+ poly(
). Bob’s set B is a random set, and thus takes O(n log n) bits to store.
We conclude that both players can run their strategies in space O(n log n) + poly(
)
which is bounded by O(n) for sufficiently small α as required. The protocol passes
secrets of length m E where m E = 	(
). Finally, the longest message sent in the pro-
tocol is the description of the permutation π in the interactive which is of length at
most 
O(1).

7.2. Security for Bob

The following theorem guarantees the security of Bob.

Theorem 7.3. For every choice of ingredients of BS-OT, the protocol is secure for Bob.
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Proof. We show that for any strategy A∗, the view of A∗ is independent of the bit c.
This is shown by the following argument: Fix the randomness of A∗ and R. We show
a perfect bijection between possible pairs of B’s randomness rB and input c. That is,
for each pair (rB, c) that is consistent with the view V of A∗, there exists a unique pair
(r ′

B, 1 − c) such that r ′
B and 1 − c are consistent with the same view V . There are two

possible options for a V = view〈A∗,B〉
A∗ :

– The protocol aborts before the choice stage where Bob sends Alice the value e =
c ⊕ d . In such a case, the view V is totally independent of c and we map every
consistent rB to itself (r ′

B = rB). Clearly rB is consistent with both c = 0 and c = 1.
– V includes the message e = c ⊕ d sent by Bob. In such a case, suppose that (rB, c)

is consistent V . That is, rB is the randomness that chooses the random set B so
that C = A ∩ B is encoded by the string Wd . By the fact that the protocol did not
abort, we are assured that also W1−d encodes a legal set C ′. Then we choose r ′

B
to be the randomness that chooses B ′ = (B \ C) ∪ C ′ and encodes C ′ by W1−d .
This perfectly defines (r ′

B, 1 − c) that is consistent with the view V . Furthermore,
(r ′

B, 1 − c) is mapped by the same process back to (rB, c), hence we get a perfect
bijection.

Theorem 7.3 follows.

7.3. Security for Alice

The following theorem (which is technically the most challenging theorem of this paper)
guarantees Alice’s security against bounded storage receivers. This theorem refers to a
list of requirements on the parameters of the ingredients which appears in Fig. 5.

Theorem 7.4. For every ν < 1 (not necessarily constant), if all the requirements in
Fig. 5 are met, then protocol BS-OT is (νN , ε)-secure for Alice.

We prove Theorem 7.4 in Section 7.5. In Section 6.1 we showed that Ext and SampA and
4M-IH satisfy all the requirements in Fig. 5 for ε = 2−	(
). Theorem 7.4 thus implies
the following corollary which in turn completes the proof of Theorem 6.1.

Corollary 7.5. Let Ext, SampA, and IH be chosen as in Theorem 6.1. Protocol BS-OT
is (νN , ε)-secure for Alice, for ε = 2−a
 where a > 0 is a constant that depends on ν.

7.4. Overview of the Proof

Theorem 7.4 regarding Alice’s security is somewhat technical and involves many param-
eters. We find it instructive to first give a sketch of the proof while ignoring the precise
parameters. The formal proof appears in the next section. Fix some bounded storage
strategy B∗ with storage bound νN for some ν < 1 and an input c. We need to show
that there exists a random variable � determined in the setup stage such that for every
two pairs of secrets s, s ′ that are �-consistent the view of B∗ is distributed roughly the
same whether Alice’s input is s or s ′. Recall that in the protocol, the secrets s0, s1 are
only involved in the transfer stage where zi = Ext(Xi , Yi )⊕ si for i ∈ {0, 1}. Our goal
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is to show that there exists a random variable I determined in the setup stage such that
for every choice of secrets s0, s1, the string Z I is close to uniformly distributed from
B∗’s point of view. More precisely, for every i ∈ {0, 1} we split Alice’s messages into
Zi and all the rest of the messages which we denote by MSGi . For every fixing of r ofR
and msgi of MSGi , B∗’s point of view on Zi is captured by considering the distribution
Z ′

i = (Zi | g∗(R) = g∗(r),MSGi = msgi ). We show that for most fixings r and msgI ,
the random variable Z ′

I is close to uniformly distributed. We now explain how we achieve
this goal. It is instructive to first consider a simplified scenario in which B∗ chooses to
remember the original content ofR at νN indices. We call these indices “bad” indices,
and we call the remaining (1 − ν)N indices “good” indices. Let δ = (1 − ν). The proof
proceeds as follows:

1. We note that B∗ does not remember the δN good indices.
2. When Alice uses a sampler to choose A, with high probability she hits a large

fraction (say δn/2) of the good indices.
3. We have that the set A contains many good indices. If we were to choose a random

subset of A with 
 indices, then with high probability we will hit many (say δ
/4)
good indices. Let S be the set of all such subsets which hit less indices. By the
above argument S is a small set.

4. It follows that when Alice and Bob use interactive hashing to determine the subsets
C0 and C1, at least one of the subsets is not in S. We define the random variable I
to be the index of this subset. It follows that CI contains many good indices.

5. We now consider X I = RCI given MSGI . As it contains many good indices, it
has high min-entropy. It follows that with high probability over the choice of YI ,
Ext(X I , YI ) is close to uniformly distributed even given MSGI . Thus, Z I is close
to uniformly distributed as required. However, a subtlety is that RC0 and RC1 are
not independent; consequently Z1−I may give information about RCI , and hence
may potentially give some information about Z I . We explain how to resolve this
issue below in the proof sketch for the general case where B∗ computes an arbitrary
memory function ofR.

We now sketch how to make this argument work when B∗ is allowed to remember an
arbitrary function g∗: {0, 1}N → {0, 1}νN ofR. Intuitively, the notion of “min-entropy”
replaces that of “good bits” in this case:

1. It is easy to see that for most fixings r of R, the random variable (R | g∗(R) =
g∗(r)) has high min-entropy (say, 	(δN )).

2. When Alice uses a min-entropy sampler for most fixings p of P she obtains a set
A such that (RA | g∗(R) = g∗(r), P = p) has high min-entropy.

3. Choosing a random subset is a min-entropy sampler, and thus for most choices of
a subset of C of size 
, (RC | g∗(R) = g∗(r), P = p) has high min-entropy.

4. As before it follows that following the interactive hashing with high probability
there exists an I such that (RCI | g∗(R) = g∗(r), P = p) has high min-entropy.

5. We note that RC0 and RC1 are not independent, as mentioned earlier. Thus, it
may be the case that Z1−I gives information about RCI . However, we set the
parameters so that RCI has min-entropy much larger than the length of the pair
(Z1−I , Y1−I ). As a consequence we can argue that for most fixings z1−I and y1−I ,
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(RCI | g∗(R) = g∗(r), P = p, Z1−I = z1−I , Y1−I = y1−I ) has high min-entropy.
Thus, running an extractor, with high probability over YI we obtain a distribution
which is close to uniform given MSGI just as before.

7.5. The Full Proof of Alice’s Security

In this section we assume that the parameters of the Extractor, Sampler and Interactive
Hashing protocol satisfy the requirements in Fig. 5. We fix some bounded storage strategy
B∗ with storage bound νN for some ν < 1. We also fix some secrets s0, s1 and choice
bit c. Consider the probability space obtained in the interaction of Alice(s0, s1) and
B∗(c) when receiving a randomR. We can assume without loss of generality that B∗ is
deterministic, as otherwise we consider every possible fixing of his random coins. The
view of B∗ depends on g∗(R) and Alice’s messages. We denote the random variable
of Alice’s messages by MSG = (P,MSGI H , Y0, Y1, Z0, Z1) where P is the seed for
the sampler used to choose A, MSGI H is the messages sent by Alice in the Interactive
Hashing protocol, and Y0, Y1, Z0, Z1 are defined in protocol BS-OT. The security of the
protocol follows from the following technical lemma: (We say that a bounded storage
strategy B∗ is non-aborting if it always sends messages that are syntactically consistent
with the protocol and in addition it never claims that the intersection C = A ∩ B is too
small in the subset stage.)

Lemma 7.6. For every s0, s1 and c, and every non-aborting bounded storage strategy
B∗ with storage bound νN , there exists a subset G7.6 of 6-tuples (b, p,msgI H , z′, y′, y′′)
and a random variable I such that:

– I is determined in the setup stage (it does not depend on messages sent in the choice
stage).

– Pr[(g∗(R), P,MSGI H , Z1−I , Y1−I , YI ) ∈ G7.6] ≥ 1 − β7.6 for

β7.6 = 2−(1−ν)N/2 + ϕA + ρ + 2−δ′A
/6 +
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A)))+ 2
√
εE .

– For every (b, p,msgI H , z′, y′, y′′) ∈ G7.6,

(Z I | g∗(R) = b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′, YI = y′′)

is ε7.6-close to uniform for ε7.6 =
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A)))+ √
εE .

Loosely speaking, this means that there is a bit I (which is determined before Alice uses
s0, s1) such that Bob’s view does not depend on the secret “encrypted” in Z I . Indeed,
this lemma suffices to prove Theorem 7.4.

Proof of Theorem 7.4. Let B∗ be some bounded storage strategy with storage bound
νN . We assume without loss of generality that B∗ is non-aborting. If B∗ chooses to abort
at some stage we modify it to answer randomly from that point on. Let G7.6 and I be the
set and random variable guaranteed in Lemma 7.6. We define � = (1 − I ) ⊕ e where
e is the bit sent by B∗ at the choice stage. Let s̄ and s̄ ′ be two pairs of secrets that are
�-consistent. Let V (s0, s1, c) denote the view of B∗ when given input c and interacting
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with Alice(s0, s1). We need to show that V (s̄, c) and V (s̄ ′, c) are statistically close. We
first observe that for every 6-tuples (b, p,msgI H , z′, y′, y′′) ∈ G7.6, the probability that
g∗(R) = b and Alice sends P = p, MSGI H = msgI H , Z1−I = z′, Y1−I = y′, and
YI = y′′ is identical no matter whether Alice plays with s̄ or s̄ ′. This is trivial for all
messages except Z1−I as they are sent in the setup stage and do not depend on the secrets.
It holds for Z1−I because Z1−I depends only on s(1−I )⊕e. Note that s(1−I )⊕e is identical
in the two cases as s̄ and s̄ ′ are �-consistent and � = (1 − I ) ⊕ e. Furthermore we
observe that

(V (s̄, c) | g∗(R)=b, P = p,MSGI H =msgI H , Z1−I = z′, Y1−I = y′, YI = y′′) (3)

is 2ε7.6-close to

(V (s̄ ′, c) | g∗(R) = b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′, YI = y′′).

This holds because V (s0, s1, c) is determined by g∗(R) and Alice’s messages MSG =
(P,MSGI H , Y0, Y1, Z0, Z1), and by Lemma 7.6, (Z I | g∗(R) = b, P = p,MSGI H =
msgI H , Z1−I = z′, Y1−I = y′, YI = y′′) is ε7.6-close to uniform. Thus, (3) follows by the
triangle inequality. By (3) above the two random variables V (s̄, c) and V (s̄ ′, c) are 2ε7.6-
close on a set G7.6 which has probability 1−β7.6. Therefore, they are (2ε7.6 +β7.6)-close.
Thus the final error is given by

2ε7.6 + β7.6 ≤ 2(
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A)))+ √
εE )

+ 2−(1−ν)N/2 + ϕA + ρ + 2−δ′A
/6

+
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A)))+ 2
√
εE

≤ 2−(1−ν)N/2 + ϕA + ρ + 2−δ′A
/6

+ 3 · (
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A)))+ 2
√
εE )

≤ 2−(1−ν)N/2 + ϕA + ρ + 2−δ′A
/6

+ 6
√
εA + 9 · 2−	(δ′A
/ log(1/δ′A)) + 6

√
εE )

≤ 2−δ′A
+ ε/20 + ε/20 + 2−δ′A
/6

+ 6ε/20 + 9 · 2−	(δ′A
/ log(1/δ′A)) + 6ε/20

≤ 14ε

20
+ 2−	(δ′A
/ log(1/δ′A)) ≤ ε,

where all the inequalities above except the last one follow by the requirements in Fig. 5.
For the last inequality we choose the constant c that appears in the requirement that
ε ≥ 2−cδ′A
/ log(1/δ′A) in Fig. 5 to be small enough so that the inequality holds.

The remainder of this section is devoted to proving Lemma 7.6. We will follow the
messages of the protocol one by one to obtain the set G and random variable I . We start
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by showing that with high probability B∗ forgets at least (1 − ν)N/2 bits of information
aboutR.15

Lemma 7.7. There exists G7.7 ⊆ {0, 1}νN such that:

– Pr[g∗(R) ∈ G7.7] ≥ 1 − β7.7 for β7.7 = 2−(1−νN )/2.
– For every b ∈ G7.7, (R | g∗(R) = b) is a ((1 − ν)N/2)-source.

Proof. We apply Lemma 3.15 where R plays the role of X , g∗(R) plays the role of
Y , and β = 2−(1−ν)N/2. It follows that there is a subset G7.7 ⊆ {0, 1}νN such that
Pr[g∗(R) ∈ G7.7] ≥ 1 − β and for every b ∈ G7.7, (R | g∗(R) = b) is a ((1 − ν)N/2)-
source.

Our next step is to show that when Alice chooses A, with high probability B∗ does
not remember a lot aboutRA.

Lemma 7.8. There exists G7.8 ⊆ {0, 1}νN × [L A] such that

– Pr[(g∗(R), P) ∈ G7.8] ≥ 1 − β7.8 for β7.8 = β7.7 + ϕA = 2−(1−ν)N/2 + ϕA.
– For every (b, p) ∈ G7.8, the random variable (RSampA(P) | g∗(R) = b, P = p) is
εA-close to a δ′An-source.

Proof. Let G7.7 be the set from Lemma 7.7. As δA N ≤ (1 − ν)N/2, we have that for
every b ∈ G7.7, (R | g∗(R) = b) is a δA N -source. By the properties of SampA it follows
that for every b ∈ G7.7 there exists a set Gb ⊆ [L A] with density 1 − ϕA such that for
p ∈ Gb, (RSampA(p) | g∗(R) = b) is εA-close to a δ′An-source. Let G7.8 = {(b, p) | b ∈
G7.7, p ∈ Gb}. The lemma follows.

We now show that B∗ does not remember a lot aboutRC for a random subset C ⊆ A.

Lemma 7.9. For every (b, p) ∈ G7.8, let G(b,p) be the set of all C ⊆ SampA(p) such
that |C | = 
 and (RC | g∗(R) = b, P = p) is εA + 3 · 2−	(δA
/ log(1/δA))-close to a
δ′A
/2-source. Then for every (b, p) ∈ G7.8, the density of G(b,p) in the set

([n]



)
is at

least 1 − 3 · 2−	(δ′A
/ log(1/δ′A)).

Proof. Let (b, p) ∈ G7.8. By Lemma 7.8 we have that (RSampA(p) | g∗(R) = b, P = p)
is εA-close to a δ′An-source. Consider the random subset sampler RS which samples
sets of size 
 in a universe of size n. We think of this sampler as sampling subsets of
SampA(p). By Corollary 3.14 RS is a (δ′A, δ

′
A/2, 3·2−	(δ′A
/ log(1/δ′A)), 3·2−	(δ′A
/ log(1/δ′A)))-

min-entropy sampler. It follows that there exists a subset G(b,p) ⊆ ([n]



)
of density

1−3 ·2−	(δ′A
/ log(1/δ′A)) such that for every C ∈ G(b,p) such that (RSampA(p)∩C | g∗(R) =
b, P = p) is εA + 3 · 2−	(δ′A
/ log(1/δ′A))-close to a δ′A
/2-source.

15 It is instructive to consider a player B∗ that sets g∗(R) = 0νN if and only if R = 0N . In the case that
R = 0N , B∗ remembers all ofR. The lemma says that such a case happens with very small probability.
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We now show that after the interactive hashing phase, with high probability there
exists an i such that B∗ does not remember a lot aboutRCi .

Lemma 7.10. There exists a set G7.10 of triples (b, p,msgI H ) such that:

– Pr[(g∗(R), P,MSGI H ) ∈ G7.10] ≥ 1 − β7.10 for β7.10 = β7.8 + ρ = 2−(1−ν)N/2 +
ϕA + ρ.

– For every (b, p,msgI H ) ∈ G7.10 there exists an i ∈ B such that (RCi | g∗(R) =
b, P = p,MSGI H = msgI H ) is ε7.10-close to a δ′A
/2-source for ε7.10 = εA + 3 ·
2−	(δ′A
/log(1/δ′A)).

Proof. Let G7.8 be the set from Lemma 7.8. For every (b, p) ∈ G7.8, let G(b,p) be the
set defined in Lemma 7.9. For every pair (b, p) ∈ G7.8 we define set S(b,p) ⊆ {0, 1}m

as follows: Recalling the encoding Fm (defined in Definition 3.3) which encodes pairs
(C, Q), we think of C as a subset of SampA(P) of size 
 and Q ∈ [tm] (where tm is
defined in Definition 3.3). We use D to denote the image of Fm . We define

S′
(b,p) = {W ∈ {0, 1}m | W �∈ D}

(i.e., those for which F−1
m is undefined). We define

S′′
(b,p) = {W ∈ {0, 1}m | such that (C, Q) = F−1

M (W ) is defined and C �∈ G(b,p)}.
Finally, we define S(b,p) = S′

(b,p) ∪ S′′
(b,p). We now show that S(b,p) is small. By Lemma

3.4 we have that |D|/2m ≥ 1 − (n



)
2−m . Thus, |S′

(b,p)| ≤ (n



) ≤ 2
 log n ≤ 2m/10 as
m = 10
 log n. We now bound S′′

(b,p). We have that the density of G(b,p) is at least

1 − 3 · 2−	(δ′A
/ log(1/δ′A)). As Fm outputs any set C the same number of times, we have
that |S′′

(b,p)| ≤ 3 · 2−	(δ′A
/ log(1/δ′A)) · 2m . Overall, we have that

|S(b,p)| ≤ 2m/10 + 2m · 3 · 2−	(δ′A
/ log(1/δ′A)).

We now choose the constant cI H which appears in Fig. 5 on the requirement from the
interactive hashing protocol. We define cI H to be the constant hidden in the	(·) notation
above. We thus have that

|S(b,p)| ≤ 2m/10 + 2m−cI H δ
′
A
/ log(1/δ′A).

Note that m = 10
 log n and therefore the second term is larger and we conclude that

|S(b,p)| ≤ 2m−cI H δ
′
A
/ log(1/δ′A)+1.

As the interactive hashing protocol is (s, ρ)-secure for s ≥ m − cI Hδ
′
A
/ log(1/δ′A)+ 1,

we have that for each (b, p) ∈ G7.8, there is a subset G ′
(b,p) of messages msgI H of

probability measure at least 1 − ρ such that for each msgI H ∈ G ′
(b,p), there exists an

i ∈ {0, 1} such that Ci ∈ G(b,p). Define G7.10 to be the set of triples (b, p,msgI H ) such
that (b, p) ∈ G7.8 and msgI H ∈ G ′

(b,p). It follows that for each (b, p,msgI H ) ∈ G7.10,

(RCi | g∗(R) = b, P = p,MSGI H = msgI H ) is εA + 3 · 2−	(δ′A
/ log(1/δ′A))-close to a
δ′A
/2-source.
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We can now identify the secret that B∗ does not learn.

Definition 7.11 (Identifying the Secret). We define a random variable I =
I (R, P,MSGI H ) as the bit i from Lemma 7.10. I is defined arbitrarily when
(g∗(R), P,MSGI H ) �∈ G7.10. Note that I is determined in the setup stage.

It follows that by running an extractor on RCi Alice obtains a string Zi that is (close
to) uniform from B∗’s point of view. Thus, intuitively the message Zi does not give
information about the secret encoded in it. However, this guarantee is not sufficient to
prove the security of the protocol. This is because at the last step of the protocol Alice
sends Z1−i which may depend on Zi and give B∗ more information. We therefore prove
that with high probability B∗ does not remember a lot about RCi even when given
Zi−1, Yi−1.

Lemma 7.12. There exists a subset G7.12 of 5-tuples (b, p,msgI H , z′, y′) such that

– Pr[(g∗(R), P,MSGI H , Z1−I , Y1−I ) ∈ G7.12] ≥ 1 − β7.12 for

β7.12 = β7.10 + 2−δ′A
/6 +
√

2ε7.10

= 2−(1−ν)N/2 + ϕA + ρ + 2−δ′A
/6 +
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A))).

– For every (b, p,msgI H , z′, y′) ∈ G7.12, the random variable (RCI | g∗(R) =
b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′) is ε7.12-close to a δ′A
/6-
source, for

ε7.12 =
√

2ε7.10 =
√

2(εA + 3 · 2−	(δ′A
/ log(1/δ′A))).

Proof. Let G7.10 be the set from Lemma 7.10. Fixing some (b, p,msgI H ) ∈ G7.10,
we have that (RCI | g∗(R) = b, P = p,MSGI H = msgI H ) is ε7.10 -close to a δ′A
/2-
source. Note that the total length of (Z1−I , Y1−I ) is no more than δ′A
/6. We now use
Lemma 3.16 with the following parameters: The probability space for the lemma is the
initial probability space of the protocol conditioned on the event E = {g∗(R) = b, P =
p,MSGI H = msgI H }. RCI plays the role of X and (Z1−I , Y1−I ) play the role of Y .
We use β = 2−δ′A
/6 and ξ = ε7.10. We conclude that with probability 1 − β − 2

√
ε7.10

over choosing y′, z′ from (Y1−I , Z1−I | E), (RCI | g∗(R) = b, P = p,MSGI H =
msgI H , Z1−I = z′, Y1−I = y′) is ε7.12 = √

2ε7.10 close to a δ′A
/6-source. We define
G7.12 to be the set of all 5-tuples (b, p,msgI H , z′, y′) such that (b, p,msgI H ) ∈ G7.10

and z′, y′ are good in the sense explained above.

It follows that when Alice applies an extractor to RCI , she obtains a string which is
(close to) uniform even when conditioned on the rest of Alice’s messages. We are finally
ready to prove Lemma 7.6.

Proof of Lemma 7.6. Let G7.12 be the set from Lemma 7.12 and I be the random
variable defined in Definition 7.11. We have that for every (b, p,msgI H , z′, y′) ∈ G7.12,
the random variable (RCI | g∗(R) = b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I =
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y′) is ε7.12-close to a δ′A
/6-source. As Ext is a (δ′A
/6, εE )-strong extractor it follows
from Lemma 3.17 that with probability 1 − 2

√
εE over choosing y from (YI | g∗(R) =

b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′), (Ext(RCI , YI ) | g∗(R) = b, P =
p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′, YI = y) is ε7.12 + √

εE -close to uniform.
We define G7.6 to be the set of all tuples whose prefix is in G7.12 and y is good in the
sense explained above. It follows that Z I = sI⊕e ⊕ Ext(RCI , YI ) satisfies that (Z I |
g∗(R) = b, P = p,MSGI H = msgI H , Z1−I = z′, Y1−I = y′, YI = y) is ε7.6-close to
uniform.

8. Conclusions and Open Problems

We have constructed the first constant-round protocol for oblivious transfer in the
bounded storage model. Our protocol involves only five messages. As a main build-
ing block, we have constructed a novel four-message interactive hashing protocol using
almost t-wise independent permutations. Our interactive hashing protocol may be of
independent interests.

Our OT protocol also has some additional improvements over previous work [9], [22],
including total communication efficiency, memory requirement, probability of aborting,
and handling of long secrets. Our protocol achieves k ≈ √

K ≈ √
N , where k is the

space requirement of honest parties, K is the space bound of a malicious receiver, and N
is the length of the public random string R. In words, the space of the honest parties is
about a square root of the space allowed for the malicious parties. This space requirement
has recently been proved to be optimal in [25].16

Our five-message OT protocol attains a very small error ε = 2−	(
) against a mali-
cious receiver and has a total communication of 
O(1) bits, where 
 = |A ∩ B| is size of
the intersection of the sets of indices in [N ] sampled by Alice and Bob, respectively, and

 > u where u is the length of the secrets. In the case of a large secret length u, if one
settles for a larger yet still negligibly small error, e.g., ε = 2− logc N , the communication
complexity can be further reduced by using a randomness efficient averaging sampler
SampB : [L B] → [N ]n for Bob in choosing his set B. That is, instead of choosing B
uniformly at random, Bob chooses a random seed y ← [L B] for SampB and computes
B = SampB(y). Then the seed y is input to the interactive hashing protocol, instead of
an encoding of B. The rest of the protocol is essentially the same. The security of the re-
sulting protocol variant can be proved by slightly modifying the proof in Section 7. Since
the density of A is sub-constant, we need a sampler SampB for a sub-constant average µ
(recall Definition 3.8). Although optimal averaging samplers for a sub-constant average

16 In [25] it is shown that for secure key agreement (KA) against a passive eavesdropper in the bounded
storage model, the product of the space required of Alice and Bob must be at least 	(K ), where K the
adversary’s storage bound. It is well known (see [29]) that a secure OT protocol yields a secure KA protocol.
Moreover, the standard reduction from KA to OT has the following properties: Suppose that one is given
an OT protocol that requires honest Alice and Bob of space kA and kB , respectively, and is secure against a
malicious party with space bound K . Then the resulting KA protocol invokes the given OT protocol exactly
once, requires the two communicating parties Alice and Bob of the same space kA and kB , and achieves the
given OT protocol’s security against an eavesdropper with space bound K − kB . Thus by the lower bound of
[25], kAkB ≥ 	(K − kB).
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have not been constructed, a short seed length of say O(log N log (1/ε)) can be achieved
by constructions based on t-wise independence (see [4]). Using such a sampler, the com-
munication complexity of the resulting protocol becomes O(u + (log N log (1/ε))O(1)).
When log (1/ε) � u, the savings would be significant.

Our new four-message interactive hashing protocol can replace the NOVY protocol
of [44] in our setting. A similar phenomena was also observed in the context of Zero-
Knowledge. Damgård [17] used the NOVY protocol to give certain transformations of
“honest verifier” Zero-Knowledge protocols into general Zero-Knowledge protocols.
Later works [19], [34] replaced the NOVY protocol with a constant-round protocol.
This raises the interesting question of whether the NOVY protocol can be replaced by
a constant-round protocol for the application in [44], that is, for constructing perfectly
hiding bit commitment schemes from arbitrary one-way permutations. We remark that
constant-round perfectly hiding bit commitment schemes are known only using seem-
ingly stronger assumptions [47], [21], [32]. The NOVY protocol achieves a stronger
security for interactive hashing than the one defined here. This stronger security allows
its use in the application of [44]. Loosely speaking, it is shown in [44] that their protocol
is secure in the following sense: For every malicious strategy B∗ for Bob, there is a
“simulator” AB∗(W ′) with running time polynomial in that of B∗, such that for most
W ′ ∈ {0, 1}m , the simulator AB∗(W ′) can run B∗, play Alice’s role, and generate a per-
fectly simulated random transcript in which one of the two outputs is W ′. Intuitively,
this is a stronger and computational form of the notion that Bob does not “control” the
two outputs. Obtaining this stronger property with a constant number of rounds seems
hard. A very related open problem was raised in [20] in the context of Zero-Knowledge.

It is interesting to further study simulation-based definitions for protocols in the
bounded storage model and investigate whether it is possible to construct efficiently
simulatable protocols. Positive results may allow composition of such protocols with
secure protocols in the standard complexity-based model, with the benefit of combining
the salient features of both worlds.
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[21] I. Damgård, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment
schemes and fail-stop signatures. In Advances in Cryptology—CRYPTO ’93, pages 250–265. Lecture
Notes in Computer Science, volume 773. Springer-Verlag, Berlin, 1993.

[22] Y.Z. Ding. Oblivious transfer in the bounded storage model. In Advances in Cryptology—CRYPTO ’01,
pages 155–170. Lecture Notes in Computer Science, volume 2139. Springer-Verlag, Berlin, 2001.

[23] Y.Z. Ding and M.O. Rabin. Hyper-encryption and everlasting security. In Proceedings of the Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 1–26, 2002.

[24] Y. Dodis and S. Micali. Lower bounds for oblivious transfer reductions. In Advances in Cryptology—
EUROCRYPT ’99, pages 42–55. Lecture Notes in Computer Science, volume 1592. Springer-Verlag,
Berlin, 1999.

[25] S. Dziembowski and U. Maurer. On generating the initial key in the bounded storage model. In Advances in
Cryptology—Eurocrypt ’04, pages 126–137. Lecture Notes in Computer Science, volume 3027. Springer-
Verlag, Berlin, 2004.

[26] S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the bounded-storage model. Journal
of Cryptology, 17(1):5–26, 2004.

[27] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications
of the ACM, 28(6):637–647, 1985.



Constant-Round Oblivious Transfer in the Bounded Storage Model 201

[28] M. Fischer, S. Micali, and C. Rackoff. A secure protocol for the oblivious transfer. Journal of Cryptology,
9(3):191–195, 1996.

[29] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship between public
key encryption and oblivious transfer. In Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science, pages 325–335, 2000.

[30] O. Goldreich. A sample of samplers—a computational perspective on sampling (survey). In Electronic
Colloquium on Computational Complexity (ECCC) (20), volume 4, 1997.

[31] O. Goldreich. Foundations of Cryptography—Volume II, Basic Applications. Cambridge University Press,
Cambridge, 2004.

[32] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems for NP.
Journal of Cryptology, 9(2):167–189, 1996.

[33] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game—a completeness theorem for
protocols with honest majority. In Proceedings of the 19th ACM Symposium on the Theory of Computing,
pages 218–229, 1987.

[34] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zero-knowledge equals general statis-
tical zero-knowledge. In Proceedings of the 30th ACM Symposium on the Theory of Computing, pages
399–408, 1998.

[35] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. In
Advances in Cryptology—CRYPTO ’90, pages 77–93. Lecture Notes in Computer Science, volume 537.
Springer-Verlag, Berlin, 1990.

[36] W.T. Gowers. An almost m-wise independent random permutation of the cube. Combinatorics, Proba-
bility and Computing, 5:119–130, 1996.

[37] D. Hong, K.Y. Chang, and H. Ryu. Efficient oblivious transfer in the bounded-storage model. In Advances
in Cryptology—ASIACRYPT ’02, pages 143–159. Lecture Notes in Computer Science, volume 2501.
Springer-Verlag, Berlin, 2002.

[38] S. Hoory, A. Magen, S. Myers, and C. Rackoff. Simple permutations mix well. In Proceedings of ICALP,
pages 770–781, 2004.

[39] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In Pro-
ceedings of the 21st ACM Symposium on the Theory of Computing, pages 44–61, 1989.

[40] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost) independent
permutations. In RANDOM-APPROX ’05, pages 354–365. Lecture Notes in Computer Science, volume
3624. Springer-Verlag, Berlin, 2005.

[41] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th ACM Symposium on
the Theory of Computing, pages 20–31, 1988.

[42] C. Lu. Encryption against space-bounded adversaries from on-line strong extractors. Journal of Cryptol-
ogy, 17(1):27–42, 2004.

[43] U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptol-
ogy, 5(1):53–66, 1992.

[44] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for np using any
one-way permutation. Journal of Cryptology, 11(2):87–108, 1998. Preliminary version in CRYPTO 92.

[45] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proceedings of the SIAM Symposium
on Discrete Algorithms (SODA 2001), pages 448–457, 2001.

[46] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-rackoff revisited.
Journal of Cryptology, 12(1):29–66, 1999.

[47] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Pro-
ceedings of the 21st ACM Symposium on the Theory of Computing, pages 33–43, 1989.

[48] N. Nisan. Extracting randomness: How and why, a survey. In Proceedings of the IEEE Conference on
Computational Complexity, pages 44–58, 1996.

[49] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences,
52(1):43–52, 1996.

[50] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard, 1981.
[51] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractor. In Proceedings of the 40th IEEE

Symposium on Foundations of Computer Science, pages 191–201, 1999.
[52] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing. In Pro-

ceedings of the 41st IEEE Symposium on Foundations of Computer Science, pages 22–31, 2000.



202 Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel

[53] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77:67–95,
2002.

[54] S.P. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded storage
model. Journal of Cryptology, 17(1):43–77, 2004.

[55] A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pages 162–167, 1986.


