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Abstract. Cryptographic computations are often carried out on insecure devices for
which the threat of key exposure represents a serious concern. Forward security allows
one to mitigate the damage caused by exposure of secret keys. In a forward-secure
scheme, secret keys are updated at regular periods of time; exposure of the secret key
corresponding to a given time period does not enable an adversary to “break” the scheme
(in the appropriate sense) for any prior time period.

We present the first constructions of (non-interactive) forward-secure public-key en-
cryption schemes. Our main construction achieves security against chosen-plaintext
attacks in the standard model, and all parameters of the scheme are poly-logarithmic in
the total number of time periods. Some variants and extensions of this scheme are also
given.

We also introduce the notion of binary tree encryption and construct a binary tree
encryption scheme in the standard model. Our construction implies the first hierarchical
identity-based encryption scheme in the standard model. (The notion of security we
achieve, however, is slightly weaker than that achieved by some previous constructions
in the random oracle model.)

Key words. Public-key encryption, Identity-based encryption, Forward sercurity.

1. Introduction

Exposure of secret keys can be a devastating attack on a cryptosystem since such
an attack typically implies that all security guarantees are lost. Indeed, standard no-
tions of security offer no protection whatsoever once the secret key of the system has

∗ A preliminary version of this work appeared in [12]. Portions of this work were done while Jonathan Katz
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been compromised. With the threat of key exposure becoming more acute as cryp-
tographic computations are performed more frequently on poorly protected devices
(smart-cards, mobile phones, etc.), new techniques are needed to deal with this
concern.

A variety of methods, including secret sharing [38], threshold cryptography [16], and
proactive cryptography [34], have been introduced in an attempt to deal with this threat.
One promising approach—which we focus on here—is to construct forward-secure cryp-
tosystems. This notion was first proposed in the context of key-exchange protocols by
Günther [25] and Diffie et al. [17]: a forward-secure key-exchange protocol guarantees
that exposure of long-term secret information does not compromise the security of pre-
viously generated session keys. A forward-secure key-exchange protocol naturally gives
rise to a forward-secure interactive encryption scheme in which the sender and receiver
interact to generate a shared key which is erased immediately after being used to encrypt
a single message.

Subsequently, Anderson [3] suggested forward security for the more challenging non-
interactive setting: here, the lifetime of the system is divided into N intervals (or time
periods) labeled 0, . . . , N − 1, and the secret key “evolves” with time. Namely, at the
beginning of time period i any party who stores the secret key applies some function
to the “previous” key SKi−1 to derive the “current” key SKi ; key SKi−1 is then erased
and SKi is used for all secret cryptographic operations during period i . If we are in a
public-key setting, the public key remains fixed throughout the lifetime of the system;
this is crucial for making the scheme viable. Forward security means that exposure of the
secret key SKi (for any time period i) does not compromise the security of the system—
in some appropriate sense—for all time periods prior to i . (Note that since SKi is the
only secret existing at period i , it is impossible to ensure security for period i or any
subsequent time period in this model.) Specializing for the case of encryption, which is
the focus of this work, forward security guarantees that even if an adversary learns SKi

(for some i), messages encrypted during all time periods prior to i remain secret. The
notion of forward security was first formalized by Bellare and Miner [5] in the context of
signature schemes; a formal definition for the case of public-key encryption is introduced
here and given in Section 4.

A number of constructions of forward-secure signature/identification schemes are
known [5], [30], [1], [27], [31], [29], and forward security in the symmetric-key setting
has also been studied [6]. The existence of non-trivial, forward-secure public-key en-
cryption (PKE) schemes, however, has been open since the question was first posed by
Anderson [3]. Forward-secure PKE has a number of obvious applications, as it can be
used to protect (to the extent possible) the secrecy of communications for devices oper-
ating in insecure environments where key exposure is an immediate concern. Of course,
it is appropriate in “standard” environments as well: if used to send encrypted e-mail,
for example, then the compromise of a user’s secret key on a particular day does not leak
any information about e-mails sent to that user at any time in the past. (Note, however,
that if the user wants to retain the ability to decrypt past e-mails then he will have to
store the “master” secret key SK0 on some secure device.) Finally, forward-secure PKE
forms an integral building block in recent constructions of adaptively secure encryption
schemes [14].
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Table 1. Efficiency of our forward-secure encryption schemes as a function of the
total number of time periods N .

Standard model Random oracle model

Key generation time O(log N ) O(1)
Encryption/decryption time O(log N · (log log N )2) O(log N )
Key update time O(log N ) O(1)
Ciphertext length O(log N ) O(log N )
Public key size O(log N ) O(1)
Secret key size O(log N ) O(log N )

1.1. Our Contributions

In this work we construct the first (non-interactive) forward-secure PKE schemes. Toward
this goal, we introduce the notion of binary tree encryption and show a construction of
the latter as well. Interestingly, this yields the first construction of a hierarchical identity-
based encryption scheme that does not rely on the random oracle model. (The notion of
security we achieve, however, is somewhat weaker than that achieved in prior work.) We
explain these contributions in more detail now.

Forward-secure encryption. We formally define a notion of security for forward-secure
PKE and give efficient constructions of schemes satisfying this notion. Our main scheme
achieves semantic security (i.e., security against chosen-plaintext attacks) in the standard
model based on the decisional version of the bilinear Diffie–Hellman (BDH) assumption
[28], [9]. All salient parameters of this scheme are poly-logarithmic in N , the total number
of time periods.

We also present a variant of this scheme with better complexity: in particular, the
public-key size and the key-generation/key-update times are independent of N . Here,
semantic security is proven in the random oracle model1 under the computational BDH
assumption. The parameters of our schemes are summarized in Table 1. Both schemes
are roughly as efficient as log2 N invocations of the Boneh–Franklin identity-based
encryption scheme [9] and are therefore practical for reasonable values of N .

At a high level, our constructions share similarities with previous tree-based, forward-
secure signature schemes (e.g., those of [5], [1], and [31]). Here, however, we associate
time periods with all the nodes of the tree (in a pre-order traversal) instead of associating
time periods with the leaves only; this improves the efficiency of our key-generation
and key-update algorithms. This tree traversal technique can also be used to improve
the efficiency of key generation and the (worst-case) efficiency of key updates in the
tree-based signature schemes mentioned above, from O(log N ) to O(1).

We consider also a number of extensions of our schemes. Using the techniques of
Malkin et al. [31], our schemes can be adapted to support an unbounded number of time

1 A proof in the random oracle model does not guarantee the security of a protocol once the random oracle
is instantiated with an efficiently computable “cryptographic hash function” [11]. Nevertheless, a proof in the
random oracle model can be regarded as heuristic evidence that a construction is secure.
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periods; in other words, the number of time periods N need not be known at the time the
public key is generated and published. This has the added advantage that the efficiency
depends only on the number of time periods elapsed thus far. We also sketch two ways to
modify our schemes to achieve security against adaptive chosen-ciphertext attacks [35],
[4]. In the random oracle model, we use (an appropriate modification of) the Fujisaki–
Okamoto transformation [20]. In the standard model, we note that the techniques of
Sahai [37] using simulation-sound NIZK proofs (and based on earlier work of Naor and
Yung [33]) extend to our setting; interestingly, we show also that NIZK proofs for all of
NP may be constructed based on the computational BDH assumption (so that we do
not require the additional assumption of trapdoor permutations). This approach serves
as a proof of feasibility only, as it results in a very inefficient scheme. Subsequent to
our work, more efficient methods for achieving chosen-ciphertext security in our setting
were shown [13], [10].

Binary-tree encryption and (hierarchical) identity-based encryption. Our construc-
tions are based on the hierarchical identity-based encryption (HIBE) scheme of Gentry
and Silverberg [21] which, in turn, is based on the identity-based encryption (IBE)
scheme of Boneh and Franklin [9]. As a first step toward our constructions, we define
a relaxed variant of HIBE which we call binary tree encryption (BTE). We then show
how to modify the Gentry–Silverberg construction to yield a BTE scheme which can
be proven secure in the standard model for trees of polynomial depth. (In contrast, the
main construction of Gentry and Silverberg is proven secure in the random oracle model,
and only for trees of constant depth.) Finally, we construct a forward-secure encryption
scheme from any BTE scheme. Our construction of a forward-secure encryption scheme
can be slightly optimized when given a HIBE scheme (rather than a BTE scheme) as
a primitive; as an example, a more efficient forward-secure encryption scheme can be
constructed using a recent HIBE scheme of Boneh et al. [8].

The BTE primitive is interesting in its own right. We show in Section 5 how a full-
blown IBE/HIBE scheme (albeit satisfying a slightly weaker notion of security than
that considered by Boneh–Franklin and Gentry–Silverberg) may be based on any BTE
scheme. Combined with our construction of a BTE scheme, this yields the first (hierar-
chical) IBE scheme with a proof of security in the standard model.

1.2. Organization

In Section 2 we define the computational and decisional versions of the BDH assumption,
and we also review the notion of t-wise independent function families as needed in this
work. In Section 3 we define binary tree encryption and provide a construction of a
BTE scheme which is provably secure under the decisional BDH assumption in the
standard model. In that section we also show a more efficient construction based on the
computational BDH assumption in the random oracle model and discuss some extensions
of our schemes.

We formally define forward security for PKE in Section 4, and we show there how
a forward-secure PKE scheme can be constructed from any BTE scheme. Combining
our results, we obtain a forward-secure PKE scheme with the parameters advertised in
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Table 1. In Section 5 we define a (slightly) relaxed notion of security for hierarchical
IBE and show how an HIBE scheme satisfying this notion can be constructed from any
BTE scheme. Combining this with our results from Section 3 yields an HIBE scheme
secure in the standard model.

2. Preliminaries

We let PPT stand for “probabilistic polynomial time.” If A is a probabilistic algorithm
taking inputs x1, . . . , xn , then by y = A(x1, . . . , xn;ω) we mean that y is assigned
the (deterministic) output of A when run on the stated inputs with random coins ω. By
y ← A(x1, . . . , xn) we mean that random coins ω are chosen uniformly at random, and
y is assigned the value A(x1, . . . , xn;ω).

Let ε denote the empty string, having length 0. We let {0, 1}� denote the set of strings

of length �, and define {0, 1}<� def= ⋃
0≤i<�{0, 1}i and {0, 1}≤� def= ⋃

0≤i≤�{0, 1}i . We
stress in particular that the latter both contain the empty string.

2.1. The Bilinear Diffie–Hellman Assumption

The security of our BTE schemes are based on the difficulty of the bilinear Diffie–
Hellman (BDH) problem as formalized by Boneh and Franklin [9] (see also [28]).
We review the relevant definitions of the computational and decisional versions of this
assumption as they appear in [9] and [21]. LetG1 andG2 be two cyclic groups of prime
order q , where G1 is represented additively and G2 is represented multiplicatively. We
assume a non-constant map ê: G1 ×G1 → G2 for which the following hold:

1. The map ê is bilinear: for all P0, P1 ∈ G1 and allα, β ∈ Zq we have ê(αP0, βP1) =
ê(P0, P1)

αβ .
2. There is an efficient algorithm to compute ê(P0, P1) for any P0, P1 ∈ G1.

A BDH parameter generator IG is a randomized, polynomial-time algorithm that
takes as input a security parameter 1k and outputs the description of two groups G1,G2

and a map ê satisfying the above conditions (we assume q, the group order, is implicit in
G1,G2). We define the computational BDH problem with respect to IG as the following:
given (G1,G2, ê) output by IG along with random P, αP, βP, γ P ∈ G1, compute
ê(P, P)αβγ . We say that IG satisfies the computational BDH assumption if the following
probability is negligible (in k) for all PPT algorithms A:

Pr

[
(G1,G2, ê)← IG(1k); P ← G1;α, β, γ ← Zq :

A(G1,G2, ê, P, αP, βP, γ P) = ê(P, P)αβγ

]
.

The decisional BDH problem is to distinguish between tuples of the form (P, αP, βP,
γ P, ê(P, P)αβγ ) and (P, αP, βP, γ P, ê(P, P)µ) for random P, α, β, γ, µ. (Note that
if P is a generator of G1—which is the case with all but negligible probability—then
ê(P, P) is a generator of G2 and so ê(P, P)µ is simply a random element of G2.)
Formally, we say IG satisfies the decisional BDH assumption if the following probability
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is negligible (in k) for all PPT algorithms A:∣∣∣∣Pr

[
(G1,G2, ê)← IG(1k); P ← G1;α, β, γ ← Zq :
A(G1,G2, ê, P, αP, βP, γ P, ê(P, P)αβγ ) = 1

]

− Pr

[
(G1,G2, ê)← IG(1k); P ← G1;α, β, γ, µ← Zq :
A(G1,G2, ê, P, αP, βP, γ P, ê(P, P)µ) = 1

]∣∣∣∣ .
BDH parameter generators believed to satisfy the above assumptions can be con-

structed from modified Weil or Tate pairings associated with elliptic curves or Abelian
varieties. As our results do not depend on any specific instantiation, we refer the interested
reader to [9] for details.

2.2. t-Wise Independent Function Families

We briefly review the notion of t-wise independent function families (specialized for
our purposes) and describe the construction we will use. LetH be a family of functions
with domain Zq and range G1 (where these are as in the previous section; in particular,
q is prime). We say H is t-wise independent if for all distinct x1, . . . , xt ∈ Zq and all
y1, . . . , yt ∈ G1 we have

Pr
H←H

[H(x1) = y1 ∧ · · · ∧ H(xt ) = yt ] =
(

1

|G1|
)t

.

In other words, informally speaking, any t distinct elements in Zq are mapped uni-
formly and independently toG1 by a randomly selected hash function fromH. Abusing
terminology somewhat, we will refer to a given function H ∈ H as a t-wise indepen-
dent function. An additional property we will require of H is that given any distinct
x1, . . . , xj ∈ Zq and any y1, . . . , yj ∈ G1 with j ≤ t , it is possible to efficiently sample
a uniform element from the set

{
H ∈ H: H(x1) = y1 ∧ · · · ∧ H(xj ) = yj

}
.

We will use the following construction: let H = {Hh0,...,ht }h0,...,ht∈G1 , where

Hh0,...,ht (x)
def= h0 + x · h1 + · · · + xt · ht . We first claim that H is (t + 1)-wise in-

dependent. To see this, let g ∈ G1 be a generator of G1 and let Ĥh0,...,ht denote the
polynomial (over the field Zq )

Ĥh0,...,ht (x) = logg h0 + x · logg h1 + · · · + xt · logg ht ,

where logg h is the unique element λ ∈ Zq such that λ · g = h (recall that |G1| = q).
Now, for any distinct x1, . . . , xt+1 ∈ Zq and y1, . . . , yt+1 ∈ G1, we have

Hh0,...,ht (xi ) = yi for all i iff Ĥh0,...,ht (xi ) = logg yi for all i .

It is well known that there is a unique polynomial Ĥ∗(x) = ĥ∗0 + x · ĥ∗1 + · · · + xt · ĥ∗t



A Forward-Secure Public-Key Encryption Scheme 271

of degree at most t such that Ĥ∗(xi ) = logg yi for all i . So

Pr
H←H

[∀i : H(xi ) = yi ] = Pr
h0,...,ht←G1

[∀i : Hh0,...,ht (xi ) = yi ]

= Pr
h0,...,ht←G1

[Ĥh0,...,ht = Ĥ∗]

= Pr
h0,...,ht←G1

[∀i : logg hi = ĥ∗i ]

=
(

1

q

)t+1

=
(

1

|G1|
)t+1

,

as required.
As for our second requirement, given distinct x1, . . . , xj ∈Zq and arbitrary y1, . . . , yj ∈

G1 with j ≤ t + 1, we may sample uniformly from the set {H ∈ H: H(xi ) = yi

for 1 ≤ i ≤ j} as follows. Choose arbitrary xj+1, . . . , xt+1 ∈ Zq so that the {xi }t+1
i=1

are distinct. Then choose yj+1, . . . , yt+1 ∈ G1 uniformly at random. We now find the
unique values h0, . . . , ht such that Hh0,...,ht (xi ) = yi for all i . These values must satisfy
the following system of equations:


1 x1 x2

1 · · · xt
1

1 x2 x2
2 · · · xt

2
...

...
...

. . .
...

1 xt+1 x2
t+1 · · · xt

t+1




︸ ︷︷ ︸
X

·




h0

h1
...

ht


 =




y1

y2
...

yt+1


 .

Since the {xi } are distinct, the Vandermonde matrix X is invertible. We may thus compute


h0

h1
...

ht


 = X−1 ·




y1

y2
...

yt+1


 ,

as desired. Note in particular that we do not need to compute any discrete logarithms in
G1 (which we do not know how to do efficiently whenG1 is generated as in the previous
section).

3. Binary Tree Encryption

This section defines the notion of binary tree encryption (BTE) and presents a BTE
scheme based on the bilinear Diffie–Hellman assumption. As discussed in the introduc-
tion, BTE is a relaxation of hierarchical identity-based encryption (HIBE) [26], [21]. As
in HIBE, in BTE we have a “master” public key P K associated with a tree; each node in
this tree has a corresponding secret key. To encrypt a message “targeted” for some node,
one uses both P K and the name of the target node; the resulting ciphertext can then be
decrypted using the secret key of the target node. Moreover, as in HIBE the secret key



272 R. Canetti, S. Halevi, and J. Katz

of any node can be used to derive the secret keys for the children of that node. The only
difference between HIBE and BTE is that in the latter we insist on a binary tree, where
the children of a node w are labeled w0 and w1. (In an HIBE scheme the tree can have
arbitrary degree, and a child of node v is labeled v.s for an arbitrary string s.) A formal
definition follows:

Definition 1. A (public-key) binary tree encryption (BTE) scheme is a tuple of PPT

algorithms (Gen,Der,Enc,Dec) such that:

• The key-generation algorithm Gen takes as input a security parameter 1k and a
value 1� representing the depth of the tree. It returns a master public key P K and
a root secret key SKε. (We assume that 1k and 1� are implicit in P K .)
• The key-derivation algorithm Der takes as input P K , the name of a node w ∈
{0, 1}<�, and its secret key SKw. It returns secret keys SKw0, SKw1 for the two
children of w.
• The encryption algorithm Enc takes as input P K , the name of a nodew ∈ {0, 1}≤�,

and a message M . It returns a ciphertext C .
• The decryption algorithm Dec takes as input P K , the name of a nodew ∈ {0, 1}≤�,

its secret key SKw, and a ciphertext C . It returns a message M or a distinguished
symbol ⊥.

We make the natural correctness requirement: namely, for any (P K , SKε) output by
Gen(1k, 1�), any node w ∈ {0, 1}≤� and secret key SKw correctly generated for this
node, and any message M , we have M = Dec(P K , w, SKw,Enc(P K , w,M)).

Roughly speaking, a secure BTE scheme should ensure the secrecy of ciphertexts
targeted for a node w even if the secret keys of other nodes (as long as they are not
ancestors of w) are exposed. In [21] (in the context of HIBE), the adversary is allowed
to choose the target node w adaptively. We define a relaxed notion of security whereby
the adversary is required to commit to the target node in advance (i.e., before seeing
the public key); we call this attack scenario a selective-node (SN) attack (analogous to
“selective forgery” of signatures [24]). While this definition is a weaker one, it suffices
for our applications. Furthermore, by a standard hybrid argument the definitions can be
shown to be equivalent when the number of nodes in the tree is polynomial in the security
parameter.

Definition 2. A BTE scheme is secure against selective-node, chosen-plaintext attacks
(secure in the sense of SN-CPA) if for all polynomials �(·) and all PPT adversaries A, the
advantage of A in the following game is negligible in the security parameter k (in the
following, let � = �(k)):

1. A(1k, 1�) outputs a name w∗ ∈ {0, 1}≤� of a node.
2. Algorithm Gen(1k, 1�) outputs (P K , SKε). In addition, algorithm Der(· · ·) is run

to generate the secret keys of all the nodes on the path from the root to w∗ (we
denote this path by P). The adversary is given P K and the secret keys {SKw} for
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all nodes w of the following form:
– w = w′b, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of some
node in P);
– w = w∗0 and w = w∗1, if |w∗| < � (i.e., w is a child of w∗).
Note that this information allows the adversary to compute SKw′ for any node
w′ ∈ {0, 1}≤� that is not a prefix of w∗.

3. The adversary generates a request challenge(M0,M1). A random bit b is selected
and the adversary is given C∗ = Enc(P K , w∗,Mb).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adver-
sary’s advantage is the absolute value of the difference between its success probability
and 1

2 .

In the above definition (as well as all the definitions of security in this paper) the adversary
is assumed to maintain state throughout its execution.

Security against chosen-ciphertext attacks is defined as the obvious extension of the
above:

Definition 3. A BTE scheme is secure against selective-node, chosen-ciphertext at-
tacks (secure in the sense of SN-CCA) if for all polynomials �(·) and all PPT adversaries
A, the advantage of A in the following game is negligible in the security parameter k
(again, set � = �(k)):

1. A(1k, 1�) outputs a name w∗ ∈ {0, 1}≤� of a node.
2. Algorithm Gen(1k, 1�) outputs (P K , SKε). The adversary is given P K and node

secret keys as in Definition 2.
3. The adversary may query a decryption oracle denoted by Dec∗(·, ·). On query

Dec∗(w,C) with w ∈ {0, 1}≤�(k), the key SKw is derived from SKε and the adver-
sary is given M = Dec(P K , w, SKw,C).

4. The adversary generates a request challenge(M0,M1). A random bit b is selected
and the adversary is given C∗ = Enc(P K , w∗,Mb).

5. The adversary may continue to query Dec∗(·, ·), except that it may not query
Dec∗(w∗,C∗) (but it may query Dec∗(w,C∗) with w �= w∗ or Dec∗(w∗,C) with
C �= C∗).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adver-
sary’s advantage is the absolute value of the difference between its success probability
and 1

2 .

Remark 1 (Randomized Key-Derivation Algorithms). There is a slight technicality
with regard to the above definition in case the key-derivation algorithm Der is random-
ized (and so there might be multiple “valid” keys SKw that can be derived from SKε).
Specifically, there are two natural ways the decryption queries of A can be answered:

First approach: When A queries Dec∗(w,C), key SKw is derived “from scratch” start-
ing from SKε using repeated calls to Der.
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Second approach: At the end of step 2, define a set Keys containing SKε, all secret
keys on the path from the root to w∗, and all secret keys given to A. When A queries
Dec∗(w,C), do:
• If SKw ∈ Keys, decrypt C using SKw.
• Otherwise, let w′ be the longest prefix of w such that SKw′ ∈ Keys. Derive SKw

using SKw′ and repeated calls to Der. Decrypt C using SKw, and add all secret keys
generated during this step to Keys.

Note that, under the first approach, the same decryption query of A might be answered
differently depending on the secret key used for decryption each time the query is asked.
For the schemes presented here, the choice of which approach to use is immaterial
even though key derivation is randomized. For concreteness, however, we will implicitly
assume the second approach.

3.1. BTE Schemes Based on the BDH Assumption

Our main result of this section is the following:

Theorem 1. Under the decisional BDH assumption, there exists a BTE scheme that is
secure in the sense of SN-CPA.

The starting point for our construction is the HIBE scheme of Gentry and Silverberg
[21]. Unlike their scheme, our scheme will be proven secure in the standard model and
for trees of polynomial depth. (It is immediate that the scheme of [21] may be used to
implement a secure BTE in the random oracle model for trees of constant depth.) The
HIBE scheme of Gentry and Silverberg (as well as the IBE scheme of Boneh and Franklin
[9]) uses random oracles in three ways: to map identities to group elements, to efficiently
achieve semantic security based on the computational BDH assumption, and to obtain
chosen-ciphertext security. The latter two uses of the random oracle can be avoided if
one is willing to rely on the decisional BDH assumption (to efficiently achieve semantic
security) and generic non-interactive zero-knowledge (to achieve chosen-ciphertext se-
curity, as discussed further below). More interestingly, we show that the random oracle
used to map identities to group elements can be replaced by an O(�)-wise indepen-
dent function (see Section 2.2), where � is the depth of the tree. Moreover, a proof
of security may be obtained even for trees of polynomial depth. We now provide the
details.

Notation and conventions. Recall that � denotes the depth of the tree. The i-bit prefix
of a string w1w2 · · ·wt is denoted by w|i . Namely, w|i = w1 · · ·wi . By convention,
we set w|0 = ε (i.e., the empty string) for any string w. Let H� denote a (2� + 1)-
wise independent family of functions with domain {0, 1}≤� and range G1; we may take
essentially the construction described in Section 2.2 except that we first apply a one-to-
one encoding of elements in {0, 1}≤� as elements in Zq (alternately, we can include in
the public key a universal one-way hash function [32] mapping {0, 1}≤� to Zq ). Finally,
IG is a BDH parameter generator.
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Gen(1k, 1�) does the following:

1. Run IG(1k) to generate groups G1,G2 (of prime order q) and bilinear map ê.
2. Select a random generator P ∈ G1 and a random α ∈ Zq . Set Q = αP .
3. Choose a random function H ∈ H�.
4. The public key is P K = (G1,G2, ê, P, Q, H). The root secret key is SKε =
αH(ε).

In general, the secret key of node w = w1 · · ·wt consists of t + 1 group elements
and is denoted by SKw = (Rw|0 , Rw|1 , . . . , Rw|t−1 , Sw) (for the special case of w = ε
we simply have SKε = Sε = αH(ε) and the other values are not present). With this in
mind, we now describe the key derivation algorithm.

Der(P K , w, SKw) does the following:

1. Let w = w1 · · ·wt . Parse SKw as (Rw|0 , Rw|1 , . . . , Rw|t−1 , Sw).
2. Choose random ρw ∈ Zq . Set Rw = ρwP , Sw0 = Sw + ρwH(w0), and Sw1 =

Sw + ρwH(w1).
3. Output SKw0 = (Rw|0 , . . . , Rw, Sw0) and SKw1 = (Rw|0 , . . . , Rw, Sw1).

Enc(P K , w,M) (where M ∈ G2) does the following:

1. Let w = w1 · · ·wt . Select random γ ∈ Zq .
2. Output C = (γ P, γ H(w|1), γ H(w|2), . . . , γ H(w), M · d), where d =

ê(Q, H(ε))γ .

Dec(P K , w, SKw,C) does the following:

1. Let w = w1 · · ·wt . Parse SKw as (Rw|0 , . . . , Rw|t−1 , Sw) and parse C as (U0,U1,

. . . ,Ut , V ).
2. Output M = V/d , where

d = ê(U0, Sw)∏t
i=1 ê(Rw|i−1 ,Ui )

.

We verify that decryption succeeds. When encrypting, we have d = ê(Q, H(ε))γ =
ê(P, H(ε))αγ . When decrypting, we have U0 = γ P , and Ui = γ H(w|i ) for 1 ≤ i ≤ t
(where t = |w|). Hence,

d = ê(U0, Sw)∏t
i=1 ê(Rw|i−1 ,Ui )

= ê
(
γ P, αH(ε)+∑t

i=1 ρw|i−1 H(w|i )
)∏t

i=1 ê
(
ρw|i−1 P, γ H(w|i )

)
= ê(P, H(ε))αγ ·∏t

i=1 ê (P, H(w|i ))γρw|i−1∏t
i=1 ê (P, H(w|i ))γρw|i−1

= ê(P, H(ε))γα

and thus decryption recovers M .
Theorem 1 is established by the following proposition.
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Proposition 1. If IG satisfies the decisional BDH assumption, the above BTE scheme
is secure in the sense of SN-CPA.

Proof. Let �(·) be a polynomial, and set � = �(k) in what follows. Given a PPT adver-
sary A attacking the above scheme in the sense of Definition 2, denote the probability
that A succeeds by PrA[Succ]. We construct an algorithm B that attempts to solve the
decisional BDH problem with respect to IG. Relating the advantage of B to the advan-
tage of A gives the desired result. In the description below we denote by w|ı the sibling
of w|i ; namely, w|ı consists of the (i − 1)-bit prefix of w followed by the negation of
the i th bit of w. (Thus, w|i and w|ı agree on their first i − 1 bits and differ on their i th
bit.)

Algorithm B is given the output (G1,G2, ê) of IG(1k) and also (P, Q = αP, Iε =
βP, U0 = γ P, d = ê(P, P)µ); we will assume that P, Q, Iε,U0 are all generators
of G1 since this occurs with all but negligible probability. The goal of B (informally)
is to determine whether µ = αβγ . For that purpose, B simulates an instance of the
encryption scheme for A as follows: B initiates a run of A, and A commits to the target
node w∗ = w∗1w

∗
2 · · ·w∗t (with t ≤ �).2 Now, for 1 ≤ i ≤ t , B chooses χi , λi , and

ϕi at random from Zq . If t < �, B also chooses λ0
t+1, λ1

t+1, and ϕt+1 at random from
Zq . Then B randomly chooses a hash function H : {0, 1}≤� → G1 from the family H�
subject to the following constraints:

1. H(ε) = Iε.
2. H(w∗|i ) = χi P for 1 ≤ i ≤ t .
3. H(w∗|ı ) = λi P − (1/ϕi )Iε for 1 ≤ i ≤ t .
4. If t < �, then also H(w∗0) = λ0

t+1 P − (1/ϕt+1)Iε and H(w∗1) = λ1
t+1 P −

(1/ϕt+1)Iε.

(We assume the {ϕi } are invertible since this occurs with all but negligible probability.)
Since there are at most 2�+ 1 constraints, B can efficiently choose a (random) H ∈ H�
subject to these constraints. Furthermore, since Iε is uniformly distributed in G1 and
the χ - and λ-values are all chosen independently and uniformly at random from Zq ,
this choice of H is distributed identically to H in the real experiment. B sets P K =
(G1,G2, ê, P, Q, H) and gives P K to A.

Next, B generates secret keys for siblings of the nodes on the path from the root tow∗,
as well as for the children of w∗ (in case t < �). Recall that from these secret keys A
can derive appropriate secret keys for any node w in the tree such that w is not a prefix
of w∗. To generate these secret keys, B sets (for 1 ≤ i ≤ t) Rw∗|i−1 = ϕi Q. Next, for all
1 ≤ i ≤ t , B sets

Sw∗|ı = λiϕi Q +
i−1∑
j=1

χj Rw∗|j−1 . (1)

(For i = 1 the upper limit of the summation is less than the lower limit; by convention,
we let the sum in this case be 0.) Additionally, if t < � then B sets Rw∗ = ϕt+1 Q and

2 We assume for simplicity that w∗ �= ε; however, the proof may be easily adapted for that special case.
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also (for b ∈ {0, 1}) Sw∗b = λb
t+1ϕt+1 Q +∑t

j=1 χj Rw∗|j−1 . Note that, having done so, B
can now provide A with all relevant secret keys.

We now verify that these keys have the correct distribution. Note first that the values
Rw∗|0 , . . ., Rw∗|t−1 (and Rw∗ when t < �) are all uniformly distributed inG1, independent
of each other as well as P K . For 1 ≤ i ≤ t , let ρw∗|i−1 ∈ Zq be the value such that
Rw∗|i−1 = ρw∗|i−1 P , and notice that ρw∗|i−1 = ϕiα. Now, in a real execution of the
experiment we would have Sw = αH(ε)+∑|w|j=1 ρw|j−1 H(w|j ) for anyw. Forw = w∗|ı
this means

Sw∗|ı = α Iε +
(

i−1∑
j=1

ρw∗|j−1 H(w∗|j )
)
+ ρw∗|i−1 H(w∗|ı )

= α Iε +
(

i−1∑
j=1

ρw∗|j−1χj P

)
+ ϕiα

(
λi P − 1

ϕi
Iε

)

= λiϕi Q +
i−1∑
j=1

χj Rw∗|j−1 ,

exactly as constructed according to (1). The analysis for the nodesw∗0 andw∗1 (in case
t < �) is analogous.

After providing the appropriate secret keys, B responds to the query
challenge(M0,M1) from A using the elements U0 and d that it got as input. Specifi-
cally, B chooses a random bit b and returns

C = (U0, χ1U0, . . . , χtU0, d · Mb) = (γ P, χ1γ P, . . . , χtγ P, ê(P, P)µ · Mb)

= (γ P, γ H(w∗|1), . . . , γ H(w∗), ê(P, P)µ · Mb).

Finally, if A outputs b′ = b then B outputs “1”; otherwise, B outputs “0”.
Recalling that Q = αP and H(ε) = Iε = βP , we can rewrite the last component

of C as
(
ê(Q, H(ε))γ

)µ/αβγ · Mb. Thus, if µ = αβγ then C is indeed a (random)
valid encryption of Mb and the probability that B outputs 1 is exactly PrA[Succ]. On
the other hand, when µ is random the last element of C is uniformly distributed in G2,
independent of b, and therefore C is independent of b. In this case, then, B outputs 1 with
probability 1/2. The advantage of B is therefore (negligibly close to) |PrA[Succ]−1/2|;
since the advantage of B is negligible (by assumption on IG), the advantage of A must
be negligible as well.

Scheme parameters. We calculate the efficiency of the above scheme as a function of
the tree depth �, assuming H� is the hash family described in Section 2.2. The public
key has lengthO(�). A secret key of a nodew at level t consists of t +1 elements ofG1.
(Interestingly, however, the elements Rw|0 , Rw|1 , . . . , Rw|t−1 of the secret key need not
be kept secret for security to hold. This is an immediate consequence of the fact that
these values are contained, anyway, in the secret keys of the children of w.) The key-
generation algorithm requires time linear in �, where this complexity is due to selection
of H . The key-derivation algorithm requires a constant number of operations in G1 and
two evaluations of H ; a single evaluation of H requires timeO(�). Encryption for a node
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at level t requires t evaluations of H , t + 1 multiplications in G1, one application of ê,
and one multiplication and one exponentiation in G2. In the worst case, when t = �,
the dominating term is the O(�) evaluations of H and thus encryption can be done in
timeO(�2). For H as described in Section 2.2 this can be improved using algorithms for
simultaneous polynomial evaluation at multiple points [2, Section 8.5] to yield a running
time ofO(� log2 �). Decryption by a node at level t requires t + 1 evaluations of ê and t
multiplications/divisions in G2.

Construction in the random oracle model. The scheme above can be proven secure
if H is replaced with a cryptographic hash function modeled as a random oracle. (A
proof of security is immediate since a random oracle, in particular, acts as a (2� + 1)-
wise independent hash function for any polynomial �.) Instantiating H in this way, and
assuming that the time to evaluate H is independent of the input length, improves several
of the scheme parameters: the public-key size, key-generation time, and key-derivation
time are now independent of �, and encryption now takes time O(�).

Once we are working in the random oracle model, the scheme may be further modified
so that its security is based on the computational BDH assumption3 rather than the
decisional version: simply replace the component M · ê(Q, H(ε))γ of the ciphertext by
M ⊕ H ′(ê(Q, H(ε))γ ), where H ′: G2 → {0, 1}n is modeled as an independent random
oracle and M is now an n-bit string.

3.2. Achieving Chosen-Ciphertext Security

We sketch how our schemes may be modified so as to achieve security in the sense
of SN-CCA. In the standard model, we may apply the techniques of Sahai [37] based
on earlier work of Naor and Yung [33]; namely, we may use simulation-sound NIZK
proofs4 [37, Definition 3.2] to achieve chosen-ciphertext security. In more detail (we
assume the reader is familiar with [37]), we construct a BTE scheme secure in the sense
of SN-CCA as follows: The public key consists of a randomly generated string r for
a simulation-sound NIZK proof system, as well as two independently generated public
keys P K1, P K2 for a BTE scheme secure in the sense of SN-CPA. The root secret key
is the secret key SKε corresponding to P K1, and key derivation is done in the obvious
way. To encrypt message M for node w, the sender chooses random coins ω1, ω2,
computes C1 = Enc(P K1, w,M;ω1), C2 = Enc(P K2, w,M;ω2), and then generates
a simulation-sound NIZK proof of consistency π (explained in more detail below) using
the string r ; the output ciphertext is C = 〈w,C1,C2, π〉. The proof π guarantees that
(w,C1,C2, P K1, P K2) is in the NP-language L defined by

L = {(w,C1,C2, P K1, P K2) |
∃M, ω1, ω2 s.t. C1 = Enc(P K1, w,M;ω1) and C2 = Enc(P K2, w,M;ω2)};

3 It is also possible to construct a scheme based on the computational BDH assumption in the standard
model (by extracting hard-core bits); however, this will result in a much less efficient scheme.

4 As in [37], we also require the proof system to satisfy the technical conditions of having unpredictable
and uniquely applicable proofs. For brevity, we do not explicitly mention this in the discussion that follows.
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that is, C1 and C2 are both encryptions of the same message M for the specified nodew.
Node w with secret key SKw decrypts ciphertext 〈w′,C1,C2, π〉 by first checking

whether w′ ?= w and then verifying that π is a valid proof (with respect to r ) of the
statement (w′,C1,C2, P K1, P K2) ∈ L . If so, the output is Dec(P K1, w, SKw,C1);
otherwise, the output is ⊥. A proof that the above scheme is secure in the sense of
SN-CCA exactly follows the analogous proof of Theorem 4.1 of [37] and is therefore
omitted.

Simulation-sound NIZK proofs (admitting efficient provers) for all of NP may be
based on the assumption of (certified) trapdoor permutations [19], [7], [37]. We observe,
additionally, that simulation-sound NIZK in the common reference string model5 may
also be based on the decisional BDH assumption. To see this, note that Sahai’s construc-
tion [37] of simulation-sound NIZK requires only the existence of one-way functions
(which is implied by the decisional BDH assumption) in addition to any single-theorem
adaptive NIZK proof system (see Definition 2.2 of [37]). The latter, in turn, may be con-
structed using the “hidden-bits paradigm” set forth in [19] (see Section 4.10.2 of [22]).
We observe in Appendix A that: (1) the “hidden-bits paradigm” (which is achieved
using trapdoor permutations in [19]) can be implemented using what we call publicly
verifiable trapdoor predicates, a generalization of trapdoor permutations considered pre-
viously [18] and formally defined in Appendix A; furthermore, (2) the computational
BDH assumption (and thus the decisional BDH assumption as well) gives rise to a pub-
licly verifiable trapdoor predicate. Finally, since the string r for the NIZK proof (included
with the public key) is generated by the receiver—and not by some third party—working
in the common reference string model is sufficient for our purposes.

Combining the results outlined in the preceding paragraphs yields the following:

Theorem 2. Under the decisional BDH assumption, there exists a BTE scheme that is
secure in the sense of SN-CCA.

In the random oracle model, we can achieve a more efficient scheme secure in the
sense of SN-CCA by applying, e.g., a variant of the Fujisaki–Okamoto transformation
[20]. (Note that the Fujisaki–Okamoto transformation only applies to standard PKE and
must be appropriately modified for the case of BTE). In particular: let Enc denote the
encryption algorithm for a BTE scheme BT E secure in the sense of SN-CPA which
encrypts messages at least as long as the security parameter. To simplify6 the proof, we
will assume that Enc satisfies a technical condition that we call the “unique randomness
property”: namely, that for any public key P K and any ciphertext C there is at most one
set of random coins r for which there exist (w,M) satisfying

C = Enc(P K , w,M; r).
(Note that for the given r , there may be multiple (w,M) satisfying the above.) It is easy

5 In the common reference string model—as distinguished from the common random string model—the
string r may be chosen from an arbitrary, poly-time computable distribution (and not necessarily a uniform
one); furthermore, the coins used to generate r are kept secret.

6 A proof does not seem to require this assumption, but making the assumption allows us to avoid having
to deal with some annoying technicalities. See footnote 7 in Appendix B.
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to see that the BTE scheme constructed in the previous section satisfies this condition if
we let r represent the random γ ∈ Zq used for encryption (rather than the random bits
used to generate γ ). Let H and G denote independent random oracles (with appropriate
ranges) which are also independent of any random oracles used by Enc. Consider then
the BTE scheme in which encryption is performed as

Enc′(P K , w,M) = 〈Enc(P K , w, σ ; H(w, σ,M)),G(σ )⊕ M〉

for randomly chosen σ of length k, the security parameter. Key generation and key
derivation are done exactly as in the original BTE scheme BT E . A node w with secret
key SKw decrypts ciphertext 〈C1,C2〉 by computing σ = Dec(P K , w, SKw,C1) and

M = G(σ )⊕C2. If C1
?= Enc(P K , w, σ ; H(w, σ,M)), the output is M ; otherwise, the

output is ⊥. Security of this modified scheme is given by the following theorem, whose
proof appears in Appendix 5.2:

Theorem 3. If BT E is secure in the sense of SN-CPA and satisfies the unique random-
ness property, then the above construction yields a BTE scheme secure in the sense of
SN-CCA in the random oracle model.

4. Forward-Secure Public-Key Encryption

Here, we provide a definition of security for forward-secure public-key encryption and
mention two “trivial” forward-secure schemes whose complexity is linear in the total
number of time periods. As our main result of this section, we then describe a construction
of a forward-secure encryption scheme all of whose parameters grow at most poly-
logarithmically with the total number of time periods. This construction builds on the
BTE primitive discussed in the previous section.

4.1. Definitions

We first provide a syntactic definition of key-evolving public-key encryption schemes,
then we define what it means for such a scheme to achieve forward security. The former
is a straightforward adaptation of the notion of key-evolving signature schemes [5]; the
latter, however, is new.

Definition 4. A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-tuple of
PPT algorithms (Gen,Upd,Enc,Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and the
total number of time periods N . It returns a public key P K and an initial secret
key SK0. (We assume N is implicit in P K .)
• The key update algorithm Upd takes as input P K , an index i ∈ [0, N − 1) of

the current time period, and the associated secret key SKi . It returns the secret
key SKi+1 for the following time period.
• The encryption algorithm Enc takes as input P K , an index i ∈ [0, N ) of a time

period, and a message M . It returns a ciphertext C .
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• The decryption algorithm Dec takes as input P K , an index i ∈ [0, N ) of the
current time period, the associated secret key SKi , and a ciphertext C . It returns a
message M or ⊥.

We make the obvious correctness requirement: namely, for any (P K , SK0) output by
Gen(1k, N ), any index i ∈ [0, N ) and secret key SKi correctly generated for this time
period, and any message M , we have M = Dec(P K , i, SKi ,Enc(P K , i,M)).

Our definitions of forward-secure public-key encryption generalize the standard no-
tions of security for public-key encryption, similar to the way in which the definitions
of [5] generalize the standard notion of security for signature schemes.

Definition 5. A ke-PKE scheme is forward-secure against chosen-plaintext attacks
(secure in the sense of fs-CPA) if for all polynomials N (·), the advantage of any PPT

adversary in the following game is negligible in the security parameter k (in the following,
let N = N (k)):

Setup: Gen(1k, N ) outputs (P K , SK0). The adversary is given P K .

Attack: The adversary issues one breakin(i) query and one challenge( j,M0,M1) query,
in either order, subject to 0 ≤ j < i < N . These queries are answered as follows:

• On query breakin(i), key SKi is computed via repeated application of Upd in the
obvious way. This key is then given to the adversary.
• On query challenge( j,M0,M1), a random bit b is selected and the adversary is

given C∗ = Enc(P K , j,Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1

2 .

We give an analogous definition incorporating chosen-ciphertext attacks by the adversary.

Definition 6. A ke-PKE scheme is forward-secure against chosen-ciphertext attacks
(secure in the sense of fs-CCA) if for all polynomials N (·), the advantage of any PPT

adversary in the following game is negligible in the security parameter k (again, let
N = N (k)):

Setup: Gen(1k, N ) outputs (P K , SK0). The adversary is given P K .

Attack: The adversary issues one breakin(i) query, one challenge( j,M0,M1) query, and
multiple Dec∗(k,C) queries, in any order, subject to 0 ≤ j < i < N and k ∈ [0, N ).
These queries are answered as follows:

• The breakin and challenge queries are answered as in Definition 5.
• On query Dec∗(k,C), the appropriate key SKk is first derived via repeated applica-

tion of Upd in the obvious way. The adversary is then given the output
Dec(P K , k, SKk,C). If the adversary has already received response C∗ from
query challenge( j,M0,M1), then query Dec∗( j,C∗) is disallowed (but queries
Dec∗(k,C∗) with k �= j , and Dec∗( j,C) with C �= C∗, are allowed).
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Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adver-
sary’s advantage is the absolute value of the difference between its success probability
and 1

2 .

The discussion in Remark 1 applies here as well in case the key-update algorithm
is randomized. Actually, things are slightly easier here: since N is polynomial in k,
we may as well assume that all secret keys for all time periods are generated at the
outset of the experiment, and then used (as needed) to answer the oracle queries
of A.

Remark 2 (On the Order of the Breakin/Challenge Queries). The definitions above
allow the adversary to make the breakin and the challenge queries in either order. Without
loss of generality, however, we may assume the adversary makes the breakin query first.
(Specifically, given an adversary A that queries challenge( j,M0,M1) before its breakin
query, it is easy to construct an adversary B that queries breakin( j + 1) followed by this
same challenge query and can then answer any subsequent breakin query of A; this B
will achieve the same advantage as A.)

Interestingly, requiring the adversary to make the challenge query first seems to result
in slightly weaker concrete security. Specifically, transforming an adversary that first
makes the breakin query into an adversary that first makes the challenge query results
in a factor of N degradation in the advantage due to the need to guess the location of
the eventual challenge query in advance. Since N is polynomial in k, this reduction in
security is tolerable. Still, it is better to avoid it.

4.2. Forward-Secure PKE Schemes with Linear Complexity

For completeness, we discuss some simple approaches to forward-secure PKE yielding
schemes with linear complexity in at least some parameters. One trivial solution is
to generate N independent public-/private-key pairs {(ski , pki )} for any standard PKE
scheme and to set P K = (pk0, . . . , pkN−1). In this scheme, the key SKi for time period i
will simply consist of (ski , . . . , skN−1). Algorithms for encryption, decryption, and key
update are immediate. The drawback of this trivial solution is an N -fold increase in the
sizes of the public and secret keys, as well as in the key-generation time. Anderson [3]
noted that a slightly improved solution can be built using any identity-based encryption
scheme. Here, the public key is the “master public key” of the identity-based scheme,
and SKi is the secret key corresponding to the “identity” i (the scheme is otherwise
identical to the above). This solution achieves O(1) public key size, but still has O(N )
secret-key size and key-generation time.

One can improve upon this last solution somewhat: instead of a large secret key, the
user may store a large non-secret file containing one record per period. The record for
period i contains the secret key SKi encrypted with respect to the public key and time
period i − 1. At the beginning of period i , the user obtains record i , uses its current
key SKi−1 to recover SKi , and then erases SKi−1. This solution achieves essentially
the same efficiency as the forward-secure signatures of Krawczyk [30] and in particular
requires O(N ) non-secret storage and key-generation time.
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4.3. A Construction with Poly-Logarithmic Complexity in All Parameters

We now construct an encryption scheme secure in the sense of fs-CPA (resp., fs-CCA)
from any BTE scheme secure in the sense of SN-CPA (resp., SN-CCA). Our construction
is straightforward and is easily seen to be secure given the machinery we have developed
for BTE schemes in Section 3.

At a high level, the construction proceeds as follows: To obtain a forward-secure
scheme with N = 2�+1 − 1 time periods (labeled 0 through N − 1), we use a BTE of
depth � and associate the time periods with all nodes of the tree according to a pre-order
traversal. Namely, letting wi denote the node associated with period i , we have:

• w0 = ε (i.e., the root of the tree).
• If wi is an internal node then wi+1 = wi 0.
• If wi is a leaf node and i < N − 1 then wi+1 = w′1, where w′ is the longest string

such that w′0 is a prefix of wi .

The public key will simply be the public key for the BTE scheme; the secret key for
period i will consist of the secret key (in the underlying BTE scheme) for node wi as
well as the secret keys for all right siblings of the nodes on the path from the root to wi .
To encrypt a message at time period i , the message is simply encrypted for node wi

using the BTE scheme; decryption is done in the obvious way using the secret key for
node wi (which is stored as part of the secret key for period i). Finally, the secret key
is updated at the end of period i in the following manner: if wi is an internal node, then
the secret keys for wi+1 and its sibling (i.e., the two children of wi ) are derived as in
the underlying BTE scheme; otherwise, the secret key for node wi+1 is already stored
as part of the secret key. In either case, the key for node wi is then deleted. Note that
this maintains the property that SKi+1 contains the secret key for wi+1 as well as the
secret keys for all right siblings of the nodes on the path from the root to wi+1. Also,
onlyO(�) secret keys of the underlying BTE scheme are stored as part of the secret key
of the forward-secure scheme at any point in time.

Our method of associating time periods with nodes of a binary tree is reminiscent
of previous tree-based forward-secure signature schemes [5], [1], [31]. However, we
associate time periods with all nodes of a binary tree rather than with the leaves only
(as was done in prior work); this results in an efficiency improvement from O(log N )
to O(1) in the key-generation and (worst-case) key-update times. We remark that our
tree-traversal method can also be applied to the signature schemes of [5], [1], and [31]
with similar efficiency gains for the worst-case complexity of these algorithms.

More formally, given a BTE scheme (Gen, Der, Enc, Dec), we may construct a ke-PKE
scheme (Gen′, Upd, Enc′, Dec′) as follows:

• Algorithm Gen′(1k, N ) runs Gen(1k, 1�), where � is the smallest integer satisfying
N ≤ 2�+1 − 1, and obtains P K , SKε. It then outputs P K ′ = (P K , N ), and
SK ′0 = SKε.
• Algorithm Upd(P K , i, SK ′i ) has SK ′i organized as a stack of node keys, with the

secret key SKwi on top. We first pop this key off the stack. If wi is a leaf node, the
next key on top of the stack is SKwi+1 and we are done. If wi is an internal node,
compute (SKwi 0, SKwi 1)← Der(P K , wi , SKwi ) and push SKwi 1 and then SKwi 0
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onto the stack. The new key on top of the stack is SKwi 0 (and indeed wi+1 = wi 0).
In either case, node key SKwi is then erased and the new stack of node keys is
returned.
• Algorithm Enc′(P K ′, i,M) runs Enc(P K , wi ,M). Note that wi is publicly com-

putable (in O(log N ) time) given i and N .
• Algorithm Dec′(P K ′, i, SK ′i ,M) runs Dec(P K , wi , SKwi ,M), where SKwi is the

node key on top of the stack of keys stored as part of SK ′i .

Theorem 4. If BTE scheme (Gen,Der,Enc,Dec) is secure in the sense of SN-CPA
(resp., SN-CCA) then ke-PKE scheme (Gen′,Upd,Enc′,Dec′) is secure in the sense of
fs-CPA (resp., fs-CCA).

Proof. The proof proceeds via a straightforward reduction. Assume we have an adver-
sary A′ with advantage Adv(k) in an fs-CPA (resp., fs-CCA) attack against (Gen′,Upd,
Enc′,Dec′). We construct an adversary A with advantage Adv(k)/N (k) in the corre-
sponding attack against the underlying BTE scheme (Gen,Der,Enc,Dec). Since N =
N (k) is polynomial in the security parameter k, the theorem follows. We now define
adversary A:

1. A chooses uniformly at random a time period i∗ ∈ [0, N ) and outputswi∗ . Next, A
obtains the public key P K and the appropriate secret keys for the BTE scheme.

2. A runs A′ with public key (P K , N ).
3. When A′ queries breakin( j) (recall from Remark 2 that without loss of generality A′

makes its breakin query before its challenge query), if j ≤ i∗ then A outputs a
random bit and halts. Otherwise, A computes the appropriate secret key SK ′j and
gives this to A′. (Observe that A can efficiently compute SK ′j for j > i∗ from the
secret keys it has been given.)

4. When A′ queries challenge(i,M0,M1), if i �= i∗ then A outputs a random bit and
halts. Otherwise, A obtains C ← challenge(M0,M1) and gives ciphertext C to A′.

5. If decryption queries are allowed, note that A can respond to queries Dec′∗(k,C)
of A′ by simply querying Dec∗(wk,C) and returning the result to A′.

6. When A′ outputs b′, A outputs b′ and halts.

It is straightforward to see that when i∗ = i the copy of A′ running within A has
exactly the same view as in a real fs-CPA (resp., fs-CCA) interaction. Since A guesses
i∗ = i with probability 1/N , we have that A correctly predicts the bit b with advantage
Adv(k)/N .

Scheme parameters. Each of the four operations of the FSE scheme (key generation,
key update, encryption, and decryption) requires at most one corresponding operation of
an underlying BTE scheme of depth � = O(log N ). The secret key of the FSE scheme
at any time period consists of at mostO(log N ) node secret keys of the underlying BTE
scheme. Since node secret keys in the BTE scheme constructed in Section 3.1 are of size
at most O(log N ), this immediately implies an FSE scheme in which secret keys have
size O(log2 N ). For the specific construction of a BTE scheme given in Section 3.1,
however, we may notice that for any node w at depth |w| = t all elements of the node



A Forward-Secure Public-Key Encryption Scheme 285

secret key except for Rw|t−1 and Sw already appear in the secret key of the parent of w.
Thus, when using this BTE scheme to construct an FSE scheme, secret keys for the FSE
scheme can in fact be stored using onlyO(log N ) space. This justifies the claims given in
Table 1 (for schemes achieving security in the sense of fs-CPA), and yields the following
corollary:

Corollary 1. Under the decisional BDH assumption, there exists a ke-PKE scheme
that is secure in the sense of fs-CPA. Furthermore, all parameters of this scheme are
poly-logarithmic in the total number of time periods.

Supporting an unbounded number of time periods. In our description above, we have
assumed that the number of time periods N is known at the time of key generation.
However, it is easy to modify our scheme to support an “unbounded” (i.e., arbitrary
polynomial) number of time periods by using a BTE scheme with depth � = ω(log k).
Following the techniques of [31], we can further improve this scheme so that its efficiency
depends only poly-logarithmically on the number of time periods elapsed thus far (note
that a simple pre-order traversal using a tree of depth ω(log k) results in a scheme with
super-logarithmic dependence on N for any N = poly(k)).

5. Hierarchical Identity-Based Encryption

Here we show how one can construct a full-blown hierarchical identity-based encryption
(HIBE) scheme from any BTE scheme. (As noted in the introduction, the security we
obtain for the resulting identity-based scheme is slightly weaker than the notion of
security considered in earlier work on identity-based encryption [9], [21].)

We begin by providing a syntactic definition of HIBE essentially following [26], [21].
We then introduce the notion of “selective identity” security for HIBE and show how to
transform any secure BTE scheme into a secure HIBE scheme.

5.1. Definitions

In all the definitions below, an ID-vector v is a vector of strings, i.e., v ∈ ({0, 1}∗)∗.
The empty vector is denoted by (). If v = (v1, . . . , v�) is an ID-vector and v�+1 is any
string, then by v.v�+1 we mean the ID-vector (v1, . . . , v�, v�+1). For two ID-vectors
u = (u1, . . . , u�1) and v = (v1, . . . , v�2), we say that u is a prefix of v if �1 ≤ �2 and
ui = vi for i ≤ �1.

Definition 7. A hierarchical identity-based encryption (HIBE) scheme is a 4-tuple of
PPT algorithms (Gen,Ext,Enc,Dec) such that:

• The key-generation algorithm Gen takes as input a security parameter 1k and a
value 1� for the depth of the tree. It returns a master public key P K and a root
secret key SK(). We assume that 1k and 1� are implicit in P K .
• The key-extraction algorithm Ext takes the public key P K , an ID-vector v ∈
({0, 1}∗)<� and its associated secret key SKv , and a string r . It returns the secret
key SKv.r associated with the ID-vector v.r .
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• The encryption algorithm Enc takes a public key P K , an ID-vector v ∈ ({0, 1}∗)≤�,
and a message M . It returns a ciphertext C .
• The decryption algorithm Dec takes as input a public key P K , an ID-vector v ∈
({0, 1}∗)≤� and its associated secret key SKv , and a ciphertext C . It returns a mes-
sage M or symbol ⊥.

We make the natural correctness requirement: namely, for any (P K , SK()) output by
Gen(1k, 1�), any ID-vector v ∈ ({0, 1}∗)≤� and secret key SKv correctly generated for
this ID-vector, and any message M , we have M = Dec(P K , v, SKv,

Enc(P K , v,M)).

The notion of “selective identity” security we present is a relaxation of the notion of
security for IBE/HIBE schemes considered previously, and it requires that the attacker
commit to a “target” ID-vector (or, in the case of IBE, a “target” identity) before it
sees the public key. (Previous definitions allow the adversary to choose the target ID-
vector/identity adaptively, as a function of the public key as well as any secret keys
it obtains.) Other than this, our definition follows that given in [21]. We provide a
definition for the case of chosen-plaintext security; an analogous definition of security
against selective-identity, chosen-ciphertext attacks (SI-CCA) is the obvious extension
of this, and is omitted.

Definition 8. A HIBE scheme is secure against selective-identity, chosen-plaintext
attacks (SI-CPA) if for all polynomials �(·), the advantage of any PPT adversary A in
the following game is negligible in the security parameter k (we set � = �(k) in what
follows):

1. The adversary A(1k, 1�) outputs an ID-vector v∗ ∈ ({0, 1}∗)≤�.
2. Algorithm Gen(1k, 1�) outputs (P K , SK()). The adversary is given P K .
3. The adversary may adaptively ask for the secret key(s) corresponding to any ID-

vector(s) v, as long as v is not a prefix of the target ID-vector v∗. The adversary is
given the secret key SKv correctly generated for v using the Ext algorithm.

4. The adversary generates a request challenge(M0,M1)with |M0| = |M1|. A random
bit b is selected and the adversary is given C∗ = Enc(P K , v∗,Mb).

5. The adversary can keep asking for secret keys as above, even after seeing C∗.

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adver-
sary’s advantage is the absolute value of the difference between its success probability
and 1

2 .

The discussion in Remark 1 applies here as well in case the key-extraction algorithm is
randomized.

5.2. From BTE to HIBE

We now show the transformation from a BTE scheme to a HIBE scheme. In the transfor-
mation, we will use universal one-way hashing [32] to map an ID-vector with a bounded
number of entries to a bounded-length string by applying the hash function separately
to each entry in the vector and then concatenating the results. We thus obtain a string
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whose length depends only on the number of entries in the input ID-vector (and not the
length of these entries).

Universal one-way hashing. A universal one-way hash function (UOWHF) [32] con-
sists of two algorithms: a seed-generation algorithm sGen that (given the security param-
eter k in unary) outputs a seed s, and a hashing algorithm Hash that given a seed s and an
input string of some polynomial length, produces a k-bit output string. A collision for a
seed s is a pair of distinct inputs x, x ′ such that Hash(s, x) = Hash(s, x ′). Security of a
UOWHF (sGen,Hash) requires that no adversary can find a collision involving an input
string x chosen before selection of s; formally, for all PPT A the following is negligible:

Pr[x ← A(1k); s ← sGen(1k); x ′ ← A(1k, s, x): x ′ �= x ∧Hash(s, x ′) = Hash(s, x)].

We remark that a collision-resistant hash function [15] is also a UOWHF; however,
constructions of UOWHFs are known based on the minimal assumption of one-way
functions [36].

It will be convenient to define some notation for the entry-wise application of a hash
function to an ID-vector. If s is a seed output by sGen(1k) and v = (v1, . . . , v�) is an
ID-vector, then we let w = Hash(s, v) refer to the string Hash(s, v1)| · · · |Hash(s, v�).
Note that if v ∈ ({0, 1}∗)t then w ∈ {0, 1}kt .

The construction. Our construction proceeds by identifying the ID-vectorv∈({0, 1}∗)≤�
with the node w = H(s, v) in a binary tree of depth k�; then, to encrypt a message
destined for user v, the message is encrypted for this node w using an underlying BTE
scheme. In more detail, given a UOWHF (sGen,Hash) and a BTE scheme (Gen, Der,
Enc, Dec), we may construct a HIBE scheme (Gen′, Ext, Enc′, Dec′) as follows.

• Algorithm Gen′(1k, 1�) runs Gen(1k, 1k�) and obtains (P K , SKε). It also runs
sGen(1k) and obtains a seed s. The public key of the HIBE is P K ′ = (s, P K ) and
the root secret key is SK ′() = SKε.
• Algorithm Ext(P K ′, v, SK ′v, r) sets w = Hash(s, v) and w′ = Hash(s, r) (with
|w′| = k). For i = 1, . . . , k, algorithm Ext uses algorithm Der to derive the BTE
secret key SKw(w′|i ) from the BTE secret key SKw(w′|i−1). (Recall that the given
secret key SK ′v is nothing more than the secret key SKw for the BTE scheme.) The
HIBE secret key is then set to SK ′v.r = SKww′ .
• Algorithm Enc′(P K ′, v,M) runs Enc(P K , w,M), where w = Hash(s, v).
• Algorithm Dec′(P K ′, v, SK ′v,M) runs Dec(P K , w, SKw,M), where w =

Hash(s, v).

Theorem 5. If (sGen,Hash) is a UOWHF and (Gen, Der, Enc, Dec) is a BTE scheme
secure in the sense of SN-CPA (resp., SN-CCA), then (Gen′, Ext, Enc′, Dec′) is a HIBE
scheme secure in the sense of SI-CPA (resp., SI-CCA).

Proof. The proof is immediate. Given an adversary A that attacks the HIBE scheme
(in either the CPA or CCA scenario), we build an adversary B that attacks the underlying
BTE scheme (in the same scenario). The adversary B implements for A an HIBE scheme
exactly as above, choosing the seed s for the hash function according to sGen(1k).
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When A commits to its target ID-vector v∗, the adversary B commits to its target node
w∗ = Hash(s, v∗). Then B uses its own queries to the BTE scheme to answer all of
the queries that A makes to the HIBE scheme, with only two possible exceptions. One
exception occurs in case A asks for a secret key SK ′v , corresponding to ID-vector v,
such that v is not a prefix of the target ID-vector v∗ but w = Hash(s, v) is a prefix of
the target node w∗ = Hash(s, v∗). The other exception (that can only occur in the CCA
scenario) occurs in case A asks a decryption query Dec∗(v,C∗) such that v �= v∗ but
Hash(s, v) = Hash(s, v∗). It is easy to see that either of these cases yields a collision in
the hash function involving an entry in the ID-vector v∗. Since A commits to the target
ID-vector v∗ before obtaining the seed s (which is included as part of the public key), a
straightforward hybrid argument shows that the probability of such a collision occurring
is negligible. Thus, B’s advantage is only negligibly smaller than the advantage of A.

Since a universal one-way hash function may be constructed from any one-way func-
tion [36] (and thus, in particular, from any BTE scheme), we obtain the following result:

Theorem 6. Assuming the existence of a BTE scheme secure in the sense of SN-CPA
(resp., SN-CCA), there exists an HIBE scheme secure in the sense of SI-CPA (resp.,
SI-CCA).
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Appendix A. Basing NIZK on the (Computational) BDH Assumption

In this section we show two results culminating in a construction of an NIZK proof
system (for all of NP) in the common reference string model (see footnote 5) based
on the computational BDH assumption. Recall that this can then be used to achieve
chosen-ciphertext security for our BTE scheme in the standard model.

First, we formally define a new primitive which we call a publicly verifiable trapdoor
predicate (first suggested in [18]), and we show that the computational BDH assumption
can be used to construct such a primitive. This new primitive may be viewed as a general-
ization of trapdoor permutations, and indeed we argue that the construction of an NIZK
proof system based on trapdoor permutations given by Feige et al. [19] (in the common
random string model) can in fact be based on publicly verifiable trapdoor permutations in
the common reference string model. Finally, we note that the publicly verifiable trapdoor
predicate which arises naturally from the computational BDH assumption is sufficient
for NIZK in the context of CCA2-secure encryption (see discussion below).

We begin with a definition of publicly verifiable trapdoor predicates. As noted above,
these may be viewed as generalizing the notion of trapdoor permutations. Somewhat
informally, we replace the requirements that (1) the domain of the permutation π is effi-
ciently sampleable and that (2) π is efficiently computable, by the (weaker) requirements
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that (1) it is possible to efficiently sample pairs (x, π(x)) uniformly at random and that
(2) given a pair (x, y) it is possible to efficiently determine whether or not y = π(x). The
formal definition we give here is patterned after the definition of trapdoor permutations
[22, Definition 2.4.5]. Below we let Ī ⊆ {0, 1}∗ be an index set, and corresponding to
each index i ∈ Ī we associate a domain Di and a predicate fi : Di × Di → {0, 1}.
(Informally, fi indicates whether or not the pair (x, y) is of the appropriate form.)

Definition 9. Let F = { fi : i ∈ Ī } be a collection of functions fi : Di × Di → {0, 1}
such that for all i ∈ Ī and y ∈ Di , there is a unique x for which fi (x, y) = 1. CollectionF
is a publicly verifiable trapdoor predicate if there exist four PPT algorithms I, D, F, F−1

such that:

• Index and trapdoor selection: For all k we have I (1k) ∈ Ī × {0, 1}∗.
• Uniform sampling of valid predicates: For all i ∈ Ī we have

– If (x, y)← D(i) then fi (x, y) = 1.
– The distribution {(x, y)← D(i): y} is exactly the uniform distribution over Di .
• Efficient predicate evaluation: For all i ∈ Ī and all (x, y) ∈ Di × Di , F(i, x, y) =

fi (x, y).
• Hard to find a valid “match”: For all PPT algorithms A the following is negligible

in k:

Pr[(i, td)← I (1k); (x, y)← D(i): A(1k, i, y) = x].

• Easy to find a valid “match” with the trapdoor: For all k, any pair (i, td) output by
I (1k), and any y ∈ Di we have fi (F−1(td, y), y) = 1.

It is not hard to see that a BDH parameter generator IG satisfying the computa-
tional BDH assumption (see Section 2.1) gives rise to a publicly verifiable trapdoor
predicate. Informally, this predicate arises because the computational Diffie–Hellman
problem in G1 is “hard” while the decisional Diffie–Hellman problem in G1 is “easy”
(see [28]). Specifically, having the index include the output of IG and a pair of random
elements P, Q ∈ G1 (and letting the output of IG be implicit), we define the predicate as
fP,Q(R1, R2) = 1 iff logP R1 = logQ R2. Now, verifying the equality is just an instance
of the decisional Diffie–Hellman problem, while computing R1 from P, Q, and R2 re-
quires solving the computational Diffie–Hellman problem. On the other hand, knowing
the trapdoor (i.e., logP Q) makes this last problem easy. In more detail:

• I (1k) runs IG(1k) to obtain (G1,G2, ê). Then, it chooses random P ∈ G1 and
random α ∈ Z∗q (recall that q is the order of G1,G2). It sets Q = αP and outputs
the index i = (G1,G2, ê, P, Q) and the trapdoor α.
• D(i) chooses random β ∈ Zq and outputs (βP, βQ).
• F(i, R1, R2) (with R1, R2 ∈ G1) outputs 1 iff ê(P, R2) = ê(Q, R1).
• F−1(α, R2) outputs α−1 R2.

It is immediate from the discussion earlier that the above forms a publicly verifiable
trapdoor predicate if IG satisfies the computational BDH assumption (since the compu-
tational BDH assumption for IG implies that the computational Diffie–Hellman problem
in G1 is hard).
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It is furthermore not difficult to see (following, e.g., Section 4.10.2 of [22]) that publicly
verifiable trapdoor predicates satisfying some additional assumptions are sufficient to
implement the “hidden-bits paradigm” [22, Definition 4.10.3] (and hence NIZK) in the
common random string model. These additional assumptions, informally, relate to:

1. The ability to efficiently recognize elements of the index set Ī , or to prove that a
given i is indeed in Ī (see [7]).

2. The existence of a sampling algorithm D′ which, on input i ∈ Ī and random
coins ω, outputs a uniformly distributed element y ∈ Di and furthermore has the
following property: for all PPT algorithms A the following is negligible in k:

Pr[(i, td)← I (1k);ω←{0, 1}∗; y←D′(i;ω); x← A(1k, i, y, ω): fi (x, y)=1];

i.e., it is hard to find a valid “match” even given the random coins of D′. (Trapdoor
permutations satisfying a notion analogous to the above are called “enhanced.” The
reader is referred to Appendix C.1 of [23], which corrects Section 4.10.2 of [22],
for discussion.)

Although these assumptions seem plausible for BDH parameter generators used in prac-
tice, we do not require these assumptions for our desired application to CCA2 security as
discussed in Section 4.3. In particular, since for our desired application the receiver—and
not a third party—establishes the “public parameters,” NIZK in the common reference
string model (as opposed to the common random string model) is sufficient. This enables
a number of simplifications. In particular, the receiver can simply generate parameters
(G1,G2, ê, P) and publish these values as part of its public key along with a sufficiently
long sequence R1, . . . , Rn of randomly generated values in G1 which will serve as the
common reference string. When proving a statement, a sender chooses random α ∈ Z∗q ,
computes Q = αP , and sends Q, thereby defining an index i = (G1,G2, ê, P, Q) for
the publicly verifiable trapdoor predicate introduced earlier. Note that since the sender
has the trapdoor α, he may indeed implement the “hidden-bits paradigm,” as desired.

Appendix B. Proof of Theorem 3

The proof is a relatively straightforward adaptation of [20]. Given a PPT adversary A, we
introduce a sequence of games where the first game Game0 corresponds to the experiment
of Definition 3 while in the final game the view of A is independent of the bit b. For
each pair of consecutive games in the sequence, we argue that the difference between
the probability that b′ = b in the first game and the probability that b′ = b in the second
game is negligible. Since there are only a constant number of games, and the probability
that b′ = b in the final game is exactly 1

2 , this completes the proof.
Let p0 denote the probability that b′ = b in Game0, as described in Definition 3

(technically, p0 is a function of the security parameter k but we do not explicitly write
this). Let w∗ be the “target” node chosen by A, let (M0,M1) denote the “challenge
messages” submitted by A, and let C∗ = 〈C∗1 ,C∗2 〉 denote the “challenge ciphertext”
received by A where:

C∗1 = Enc(P K , w∗, σ ∗; H(w∗, σ ∗,Mb)) and C∗2 = G(σ ∗)⊕ Mb,
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for randomly chosen σ ∗ and b. Game1 is exactly the same as Game0 except that whenever
A (after receiving the challenge ciphertext) requests decryption of a ciphertext 〈C∗1 ,C2〉
by a node w, this query is answered by ⊥. Let p1 denote the probability that b′ = b in
Game1.

We claim that |p0− p1| is negligible. To prove this we argue that, with all but negligible
probability, all decryption requests by A of the form considered above are answered by⊥
in Game0 anyway. To see this, consider any request by A for nodew to decrypt ciphertext

〈C∗1 ,C2〉. Note that we must have (w,C2) �= (w∗,C∗2 ). Let σ
def= Dec(P K , w, SKw,C∗1 ),

and let M
def= G(σ ) ⊕ C2. If w = w∗ then σ = σ ∗; but then C2 �= C∗2 implies that

M �= Mb. In any case, then, we have (w, σ,M) �= (w∗, σ ∗,Mb). Since BT E satisfies
the “unique randomness” property (see Section 3.2), the only way this decryption query
will not be answered with⊥ is in case H(w, σ,M) = H(w∗, σ ∗,Mb). Since the output
length of H is super-logarithmic (this is implied by the SN-CPA security of BT E), the
probability that this occurs is negligible.7 Applying a union bound over all oracle queries
of A (specifically, A’s decryption queries, queries to H , and challenge query) proves the
stated claim.

In Game2 we again modify the way decryption requests of A are handled. In par-
ticular, for all decryption queries of A not covered by the rule stated above (namely,
whenever A requests that a node w decrypt ciphertext 〈C1,C2〉, and either this is be-
fore A has received the challenge ciphertext or else C1 �= C∗1 ) we proceed as follows:
For each query H(wi , σi ,Mi ) made by A to its random oracle H , with corresponding
answer ri , we check whether: (1) wi = w; and (2) Enc(P K , w, σi ; ri ) = C1. If there
exists such a tuple (wi , σi ,Mi ) satisfying the above (we call this a “match”), then this
decryption query of A is answered by computing M ′ = G(σi )⊕ C2 and outputting M ′

iff Enc(P K , w, σi ; H(w, σi ,M ′)) = C1. Otherwise, the decryption query is answered
with ⊥. Let p2 denote the probability that b′ = b in Game2.

We claim that |p2− p1| is negligible. Clearly, whenever a “match” is found in Game2,
the corresponding decryption query of A is answered identically to how this query
would be answered in Game1. Thus we only need to argue that, with all but negligible
probability, when a “match” is not found in Game2 the decryption query would have
been answered with⊥ in Game1, anyway. To see this, consider a request by A for nodew
to decrypt 〈C1,C2〉. Let σ = Dec(P K , w, SKw,C1) (if σ =⊥ we are done, so assume
otherwise), and let M = G(σ )⊕C2. By the unique randomness property of BT E , there
is at most one r for which C1 = Enc(P K , w, σ ; r). Since no match was found, it is
either the case that A asked the query H(w, σ,M) but the response to this query was not
r , or A did not ask this query. In the former case, the decryption query will be rejected,
while in the latter case it will be rejected with all but negligible probability. Applying a
union bound as before proves the stated claim.

In Game3, we let the second component of the challenge ciphertext (i.e., C∗2 ) be a
randomly chosen string of the appropriate length. Let p3 denote the probability that

7 Without the unique randomness assumption, we would need to argue that the set of coins r for which
C∗1 = Enc(P K , w, σ ; r) constitutes a negligible fraction of all possible random coins. While this seems easy
to prove if we assume security of the encryption scheme against non-uniform adversaries, it appears difficult
to prove otherwise.
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b′ = b in Game3; clearly p3 = 1
2 . To complete the proof of the theorem, we thus only

need to argue that |p3 − p2| is negligible. Note that the only difference between the two
games—from the point of view of A—occurs in case A makes a query G(σ ∗) (where σ ∗

represents the random value used to construct the challenge ciphertext). Let q denote the
probability that A makes such a query. We claim that q is negligible since BT E is secure
in the sense of SN-CPA. Indeed, consider the following adversary B(1k, 1�) attacking
BT E in the sense of SN-CPA:

1. Run A(1k, 1�) to obtain a target node w∗. This same target node is output by B.
2. B obtains a public key P K and secret keys {SKw} as in Definition 2. B gives these

to A.
3. B simulates random oracles H,G for A, and decryption queries of A are answered

as in Game2.
4. When A queries challenge(M0,M1), B chooses σ0 uniformly at random and sets
σ1 to be an arbitrary constant (say, the all-0 string). B queries challenge(σ0, σ1)

and receives a ciphertext C∗1 . Next, B chooses C∗2 uniformly at random and gives
〈C∗1 ,C∗2 〉 to A.

5. Decryption queries of A are again answered as in Game2.
6. Furthermore, if at any point A makes a query G(σ0) then B outputs “0” and

stops. Otherwise, if the experiment ends without A having made such a query, B
outputs “1”.

Note that if C∗1 is an encryption of σ0 then, from the point of view of A, the above
experiment is identical to games Game2/Game3 until the point in time (if any) that
A queries G(σ0) (and this occurs with probability q). On the other hand, if C∗1 is an
encryption of σ1 then A has no information about σ0 and hence the probability that A
queries G(σ0) is some negligible quantity negl (recall that |σ0| = k). Thus, the advantage
of B (in attacking BT E in the sense of SN-CPA) is

∣∣∣∣q2 + 1− negl

2
− 1

2

∣∣∣∣ =
∣∣∣∣q − negl

2

∣∣∣∣ ,
and so q must be negligible, as desired. This completes the proof of Theorem 3.
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[15] I. Damgård. Collision Free Hash Functions and Public-Key Signature Schemes. Advances in Cryptology—
Eurocrypt ’87, pp. 203–216. LNCS, vol. 304. Springer-Verlag, Berlin, 1988.

[16] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Advances in Cryptology—Crypto ’89, pp. 307–
315. LNCS, vol. 435. Springer-Verlag, Berlin, 1990.

[17] W. Diffie, P. C. Van-Oorschot, and M. J. Weiner. Authentication and Authenticated Key Exchanges. Des.,
Codes, Cryptogr. 2(2):107–125 (1992).

[18] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes. Public-Key
Cryptography—PKC 2003, pp. 130–144. LNCS, vol. 2567. Springer-Verlag, Berlin, 2003.

[19] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General
Assumptions. SIAM J. Comput. 29(1):1–28 (1999).

[20] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Schemes.
Advances in Cryptology—Crypto ’99, pp. 537–554. LNCS, vol. 1666. Springer-Verlag, Berlin, 1999.

[21] C. Gentry and A. Silverberg. Hierarchical Identity-Based Cryptography. Advances in Cryptology—
Asiacrypt 2002, pp. 548–566. LNCS, vol. 2501. Springer-Verlag, Berlin, 2002.

[22] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press, Cambridge,
2001.

[23] O. Goldreich. Foundation of Cryptography, vol. 2: Basic Applications. Cambridge University Press,
Cambridge, 2004.

[24] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-
Message Attacks. SIAM J. Comput. 17(2):281–308 (1988).

[25] C.G. Günther. An Identity-Based Key-Exchange Protocol. Advances in Cryptology—Eurocrypt ’89, pp.
29–37. LNCS, vol. 434. Springer-Verlag, Berlin, 1990.

[26] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. Advances in Cryptology—
Eurocrypt 2002, pp. 466–481. LNCS, vol. 2332. Springer-Verlag, Berlin, 2002.

[27] G. Itkis and L. Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying. Advances in
Cryptology—Crypto 2001, pp. 499–514. LNCS, vol. 2139. Springer-Verlag, Berlin, 2001.

[28] A. Joux and K. Nguyen. Separating Decision Diffie–Hellman from Diffie–Hellman in Cryptographic
Groups. Manuscript, January 2001. Available at http://eprint.iacr.org/2001/003/.

[29] A. Kozlov and L. Reyzin. Forward-Secure Signatures with Fast Key Update. Security in Communication
Networks, pp. 247–262. LNCS, vol. 2576. Springer-Verlag, Berlin, 2002.

[30] H. Krawczyk. Simple Forward-Secure Signatures From any Signature Scheme. Proceedings of the 10th
ACM Conference on Computer and Communications Security, pp. 108–115. ACM, New York, 2000.

[31] T. Malkin, D. Micciancio, and S. K. Miner. Efficient Generic Forward-Secure Signatures with an Un-
bounded Number of Time Periods. Advances in Cryptology—Eurocrypt 2002, pp. 400–417. LNCS, vol.
2332. Springer-Verlag, Berlin, 2002.



294 R. Canetti, S. Halevi, and J. Katz

[32] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Applications.
Proceedings of the 21st ACM Symposium on Theory of Computing (STOC), pp. 33–43. ACM, New York,
1989.

[33] M. Naor and M. Yung, Public Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks.
Proceedings of the 22nd ACM Symposium on Theory of Computing (STOC), pp. 427–437. ACM, New
York, 1990.

[34] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 51–59. ACM, New York, 1991.

[35] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext
attack. Advances in Cryptology—Crypto ’91, pp. 433–444. LNCS, vol. 576. Springer-Verlag, Berlin,
1992.

[36] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures. Proceedings of the
22nd ACM Symposium on Theory of Computing (STOC), pp. 387–394. ACM, New York, 1990.

[37] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-Ciphertext Security.
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 543–553.
IEEE, Piscataway, NJ, 1999.

[38] A. Shamir. How to Share a Secret. Comm. ACM 22(11):612–613 (1979).


