
DOI: 10.1007/s00145-007-0424-2

J. Cryptology (2007) 20: 295–321

© 2007 International Association for
Cryptologic Research

Robust Information-Theoretic Private
Information Retrieval∗

Amos Beimel and Yoav Stahl
Computer Science Department, Ben-Gurion University,

Beer-Sheva 84105, Israel
{beimel,stahl}@cs.bgu.ac.il

Communicated by Stefan Wolf

Received 28 June 2004 and revised 19 October 2006
Online publication 21 June 2007

Abstract. An information-theoretic private information retrieval (PIR) protocol al-
lows a user to retrieve a data item of its choice from a database replicated amongst
several servers, such that each server gains absolutely no information on the identity of
the item being retrieved. One problem with this approach is that current systems do not
guarantee availability of servers at all times for many reasons, e.g., crash of server or
communication problems. In this work we design robust PIR protocols, i.e., protocols
which still work correctly even if only some servers are available during the protocol’s
operation. We present various robust PIR protocols giving different tradeoffs between
the different parameters. We first present a generic transformation from regular PIR
protocols to robust PIR protocols. We then present two constructions of specific robust
PIR protocols. Finally, we construct robust PIR protocols which can tolerate Byzantine
servers, i.e., robust PIR protocols which still work in the presence of malicious servers
or servers with a corrupted or obsolete database.

Key words. Privacy, Distributed databases, Information-theoretic secure protocols,
Fault-tolerance computation.

1. Introduction

A private information retrieval (PIR) protocol allows a user to retrieve a data item
of its choice from a database, such that the server storing the database does not gain
information on the identity of the item being retrieved. For example, an investor might
want to know the price of a certain stock in the stock-market without revealing which
stock she is interested in. The problem was introduced by Chor et al. [23], and has
attracted a considerable amount of attention. It is convenient to model the database by
an n-bit string x , where the user, holding some retrieval index i , wishes to learn the
i th data bit xi . In the information-theoretic setting, the user accesses replicated copies

∗ A preliminary version of this paper appeared in [13].

295

296 A. Beimel and Y. Stahl

of the database kept on different servers, requiring that each server gains absolutely no
information on the bit the user reads.

The definition of PIR protocols raises a simple question—what happens if one of the
servers crashes during the operation? How can we devise a protocol which still works
in the presence of crashing servers? Current systems do not guarantee availability of
servers at all times for many reasons, e.g., crash of server or communication problems.
Our purpose is to design robust PIR protocols. Given a database x which is replicated
amongst � servers, and a parameter k ≤ �which specifies the minimal number of servers
that are available at any moment, the user in our protocol can retrieve xi by using the
answers of any k servers. That is, even if �–k severs are unreachable while the protocol
is being performed, the user can still reconstruct xi . The user does not need to know in
advance which servers are online and which servers will be online during the process.

A trivial solution to this problem is to execute an independent PIR protocol for each
group of k servers. This yields a solution whose complexity is

(
�

k

)
times the complexity

of the best known PIR protocol. Even for fairly small � and k, the factor
(
�

k

)
may be

too expensive. Another trivial solution is that the user first checks which servers are
available and then executes a regular PIR protocol with these servers. The problem with
this solution is that it necessitates two rounds of communication. Another problem is
that servers can crash between the first round and the second round. Our goal is to design
robust protocols in which the dependency of the communication complexity on � and k
is polynomial.

We next present two additional motivating examples. First, consider a database which
is updated frequently. In this case the servers might hold different versions of the database.
If the user and servers execute a robust PIR protocol, and each server sends the version
number of the database, then as long as a big enough subset of the servers holds the latest
version of the database, the user can recover the desired bit. Second, consider a system
in which the servers do not have the same response time. Furthermore, the response time
may vary according to the server’s load at a specific moment. In this case, using a robust
protocol, the user needs only the first k answers it receives, i.e., it need not wait for slow
servers.

1.1. Related Work

Before proceeding, we give an overview of some known results on PIR. The simplest
solution to the PIR problem is sending the entire database to the user. This solution is
impractical for large databases. However, if there is a single server and it is not allowed to
gain any information about the retrieved bit, then the linear communication complexity
of this solution is optimal [23]. To overcome this problem, Chor et al. [23] suggested that
the user accesses replicated copies of the database kept on different servers, requiring
that each server gains absolutely no information on the bit the user reads (thus, these
protocols are called information-theoretic PIR protocols). The best information-theoretic
PIR protocols known to date are summarized below:

1. A two-server protocol with a communication complexity of O(n1/3) [23].
2. A k-server protocol, for any constant k > 1, with communication complexity of

O(k2 log kn1/(2k−1)) bits [65] (improving on [23], [3], [38], [37], and [8]).

Robust Information-Theoretic Private Information Retrieval 297

3. A k-server protocol, for any constant k > 1, with a communication complexity of
O(2Õ(k) · n(2 log log k)/(k log k)) bits [11].

4. A protocol with O(log n) servers and a communication complexity of
O(log2 n log log n) bits [5], [6], [23] (the protocol of [5] and [6] was done in
the context of the instance hiding problem).

In all these protocols it is assumed that the servers do not communicate with each other.
Protocols in which the user is protected against collisions of up to t servers, called t-
private protocols, have been considered in [23], [37], [8], and [65]. Specifically, the best
communication complexity of such a protocol is O(k2/t log kn1/�(2k−1)/t) bits [65]. No
strong general lower bounds on PIR are known. A constant-factor improvement over the
trivial log n bound, for any constant k, was obtained in [47]. The constant in the lower
bound for a two-server PIR was improved to 5 log n in [64]. Stronger lower bounds were
given for restricted protocols [39], [36], [7], [41], [64], [54]. Several extensions of the
basic model of PIR have been considered in [12], [26], [34], [35], and [50]. A survey on
PIR can be found in [32].

One particularly interesting application of PIR is for the construction of so-called
locally decodable codes. A locally decodable code allows encoding a database x into a
(longer) string y, such that even if a large fraction of y is adversarially corrupted, each
bit of x can still be decoded with high probability by probing a few (randomly selected)
locations in y. In [40] tight connections between such codes and information-theoretic
PIR have been shown. In particular, information-theoretic PIR protocols can be converted
into locally decodable codes of related efficiency, and the best known upper bounds on
the length of locally decodable codes were obtained from PIR protocols. Lower bounds
for locally decodable codes were introduced in [40], [36], [52], [25], [41], [64], and [57].

A different approach for reducing the communication is to limit the power of the
servers; i.e., to relax the perfect privacy requirement into computational indistinguisha-
bility against computationally bounded servers (thus, these protocols are called compu-
tational PIR protocols). In [43], following a two-server protocol of [22], it is proved
that in this setting one server suffices; under a standard number-theoretic intractabil-
ity assumption they construct, for any constant ε > 0, a single-server protocol with
a communication complexity of O(nε) bits. Essentially the same construction can be
based on any homomorphic encryption scheme [47], [60], [66]. A single-server protocol
with a polylogarithmic communication complexity, based on a new number-theoretic
intractability assumption called the �-hiding assumption, is presented in [19]. Other
single-server protocols with polylogarithmic communication complexities, based on dif-
ferent hardness assumptions, were presented in [21], [45], and [33]. In [44] a construction
of a protocol based on a very general assumption, the existence of trapdoor permutation,
with communication complexity n(1−1/polylog(n)) is presented. Necessary conditions
for the existence of computational PIR protocols with sub-linear communication were
presented in [10] and [27]. Other works which use PIR protocols are [53], [20], and [28].

One of the main tools we use in this paper is perfect hash families which were intro-
duced by Sprugnoli [59]. These families are used to construct a data structure enabling
the retrieval of an item from a static table with a single probe. Several constructions of
perfect hash families were given, e.g., [59], [63], [31], and [58]. In the last few years,
perfect hash families have been applied to circuit complexity problems [51], derandom-

298 A. Beimel and Y. Stahl

ization of probabilistic algorithms [2], threshold cryptography [14], [16], and other tasks
in cryptography [29], [61]. Perfect hash families are also considered from a combina-
torial point of view [1], [4], [15], [17], [30], [42], [62]. A comprehensive overview on
perfect hashing can be found in [24].

1.2. Our Results

We present several protocols with various features which address the robust PIR problem.
These protocols are incomparable, i.e., for different values of n and k we will get better
results using different protocols.

Our first result is a generic transformation from k-out-of-k PIR protocols to robust
k-out-of-� PIR protocols: we show that if there exists an (�, k) minimal perfect hash
family of sizew�,k (for the definition of minimal perfect hash families, see Definition 3.3)
and if there exists a k-out-of-k PIR protocol with communication complexity PIRk(n)
per server, then there exists a k-out-of-� PIR protocol with communication complexity
wk,� · PIRk(n) per server. Since this transformation is generic, any improvement in the
communication complexity of k-out-of-k PIR protocols (e.g., the result of [11]) directly
translates to improved robust PIR protocols. The best known explicit constructions of
hash families [48], [58] have size log � · 2O(k) (this is basically optimal [48]). That is,
this transformation is logarithmic in �, however, it is exponential in k. We also present
a generic transformation from t-private k-out-of-k PIR protocols to robust t-private k-
out-of-� PIR protocols.

Our second result is a robust PIR protocol using the polynomial interpolation-based
PIR protocol of [5], [6], and [23]. This protocol is a k-out-of-� PIR protocol with a com-
munication complexity of O(kn1/k� log �). That is, the communication in this protocol
is polynomial in � and k. However, its dependency on n is worse than the protocols
obtained via the generic transformation.

Our third protocol combines Shamir’s secret sharing scheme with the two-server
protocol of [23]. This results in a 2-out-of-� protocol with communication complexity of
O(n1/3� log �), that is, the same communication complexity that can be achieved using
the generic protocol. We present this protocol as it is a more direct approach; we hope
that this approach will be used in the future to construct more efficient protocols for
larger values of k.

Finally, we extend our discussion to robust PIR protocols which can tolerate Byzantine
servers. That is, we require that the user can reconstruct the correct value of xi even if the
answers of some servers are maliciously altered. We first show a generic transformation
from robust PIR protocols to robust PIR protocols that tolerate Byzantine servers. In
particular, we obtain two robust k-out-of-� PIR protocols where the user can reconstruct
the correct value of xi as long as it receives at least k answers, of which at most k/3 are
corrupted. The communication complexity of these protocols is 2O(k)n1/(2�k/3	−1)� log �
and 2Õ(k)nO(log log k/k log k)� log �, respectively. More generally, our protocols exhibit a
tradeoff between the number of Byzantine servers and the communication complexity.
We next present an explicit construction of a robust k-out-of-� PIR protocol where the
user can reconstruct the correct value of xi as long as it receives at least k answers of
which at most k/3 are corrupted with communication complexity O(kn1/�k/3	� log �)
(that is, better dependency on k but worse dependency on n).

Robust Information-Theoretic Private Information Retrieval 299

Table 1. Summary of the complexity of our various protocols.

PIR type Complexity Method Where

k-out-of-� 2O(k)n1/(2k−1)� log � Generic + [58], [48], [3] Corollary 3.6

k-out-of−� 2Õ(k)n(2 log log k)/(k log k)� log � Generic + [58], [48], [11] Corollary 3.7
k-out-of-� O(kn1/k� log �) Polynomial interpolation Theorem 4.3
2-out-of-� O(n1/3� log �) Shamir’s secret sharing Theorem 5.2
t-private k-out-of-� O(2O(k)n1/�(2k−1)/t	� log �) Generic + [58], [48], [8] Corollary 3.9

t-private k-out-of-� O
(

k

t
n1/(�(k−1)/t	+1)� log �

)
Polynomial interpolation Theorem 4.5⌊

k − a

2

⌋
Byz. k-out-of-� 2O(a)n1/(2a−1)� log � Generic + Corollary 3.6 Corollary 6.3⌊

k − a

2

⌋
Byz. k-out-of-� 2Õ(a)n(2 log log a)/(a log a)� log � Generic + Corollary 3.7 Corollary 6.3⌊

k

3

⌋
Byz. k-out-of-� O(kn1/�k/3	� log �) Polynomial interpolation Theorem 6.4

b-private b Byz.
k-out-of-� (b < k/3)

O
(

k

b
n1/(�(k−2)/b	−1)� log �

)
Generic + Theorem 4.5 Corollary 6.6

We summarize the complexity of the various protocols we obtain in Table 1.

1.3. Subsequent Work

Parallel to our work [13], the question of PIR in the presence of Byzantine failures
has also been addressed by Yang et al. [67]. They construct a b-private b Byzantine-
robust k-out-of-� PIR protocol (where b < k/2) with communication O(n� log �) (for
the definition of b-private b Byzantine-robust PIR see Section 6). Using a b-private
k-out-of-k protocol of [23] combined with the ideas of [67], this can be improved to
O((k/b)n1/(�k/2b	+1)� log �). In comparison, our protocol, presented in Corollary 6.6, is
slightly more efficient and has communication complexity O((k/b)n1/(�(k−2)/b	−1)� log �),
however, it requires that b < k/3.

In a work done after our original work, Woodruff and Yekhanin [65] suggested an
elegant geometric approach to information-theoretic PIR. Using their approach, they ob-
tain several improvements over previous protocols in the dependency in k. Their results
are already surveyed in Section 1.1; our results do not rely on the results of [65]. In
addition, Woodruff and Yekhanin [65] improve our results in Corollary 3.6 and Theo-
rem 4.3, presenting a k-out-of-� PIR protocol with complexity O(kn1/(2k−1)� log �). The
communication complexity of this protocol is incomparable with the communication
complexity of our protocol presented in Corollary 3.7. Plugging the result of [65] in
Theorem 6.2, we obtain a �(k − a)/2	 Byzantine-robust k-out-of-� PIR protocols with
total communication O(an1/(2a−1)� log �).

Organization. In Section 2 we provide the necessary definitions. In Section 3 we
describe our generic transformations from PIR protocols to robust PIR protocols. In
Sections 4 and 5 we describe specific constructions of robust PIR protocols. In Section 6
we present a robust PIR protocol tolerating Byzantine servers. In Section 7 we discuss
some open problems. Finally, in the Appendix we describe a construction of the perfect
hash family we use in our paper.

300 A. Beimel and Y. Stahl

2. Preliminaries

2.1. Notation

We start with some notation used throughout the papers. The set {1, . . . , k} is denoted
by [k]. The finite field with q elements, where q is a prime-power, is denoted by GF(q).
Vectors are denoted by bold letters, e.g., V. The j th coordinate of a vector V is denoted
by V [j].

2.2. PIR Protocols

We define one-round information-theoretic PIR protocols.1 A k-out-of-� PIR protocol
involves � servers S1, . . . ,S�, each holding the same n-bit string x (the database), and a
user who wants to retrieve a bit xi of the database.

Definition 2.1 (Robust PIR). A robust t-private k-out-of-� PIR protocol P = (R,Q,
A, C) consists of a probability distribution R over a given set R (the set R is part
of the specification of the protocol) and three algorithms: query algorithm Q(·, ·, ·),
answering algorithmA(·, ·, ·), and a reconstruction algorithm C(·, ·, . . . , ·) (C has k + 3
arguments). At the beginning of the protocol, the user picks a random string r according
to the distribution R. For j = 1, . . . , �, it computes a query qj = Q(j, i, r) and sends
it to server Sj . Each server responds with an answer aj = A(j, qj , x). (The answer
is a function of the query and the database; without loss of generality, the servers are
deterministic.) Finally, the user, upon receiving (at least) k answers aj1 , . . . , ajk , computes
the bit xi by applying the reconstruction algorithm C(i, r, K , aj1 , . . . , ajk), where K =
{ j1, . . . , jk}. The protocol must satisfy the following requirements:

Correctness. The user always computes the correct value of xi from any k answers.
Formally, for every i ∈ {1, . . . , n}, every string r ∈ R, every set K = { j1, . . . , jk} ⊆
{1, . . . , �}, and every database x ∈ {0, 1}n ,

C(i, r, K ,A(j1,Q(j1, i, r), x), . . . ,A(jk,Q(jk, i, r), x)) = xi .

t-Privacy. Each collusion of (at most) t servers has no information about the bit that the
user tries to retrieve: for every two indices i1, i2 ∈ {1, . . . , n}, for every { j1, . . . , jt } ⊆
{1, . . . , �}, and for every t possible queries {�1, . . . , �t },

Pr[∀b∈[t]Q(jb, i1, r) = �b] = Pr[∀b∈[t]Q(jb, i2, r) = �b],

where the probability is taken over the choice of r ∈ R according to the distributionR.2

We refer to a robust t-private k-out-of-� PIR protocol as a t-private k-out-of-� PIR
protocol and to a robust 1-private k-out-of-� PIR protocol as a k-out-of-� PIR protocol.

1 All the protocols constructed in this paper, as well as all previous information-theoretic PIR protocols,
require a single round of queries and answers. This definition may be extended to multi-round PIR in a natural
way.

2 For this definition it is enough to consider collusions of exactly t servers (unlike private computations
where parties have different inputs).

Robust Information-Theoretic Private Information Retrieval 301

The main difference between a PIR protocol and a robust PIR protocol is in the correct-
ness requirements. That is, the regular k-server PIR protocols are robust k-out-of-k PIR
protocols.

Definition 2.2 (Communication Complexity). Given a k-out-of-� PIR protocol, the
communication per server is the number of bits communicated between the user and
any single server on a database of size n, maximized over all choices of x ∈ {0, 1}n, i ∈
{1, . . . , n}, and random inputs. The total communication in the protocol is the number of
bits communicated between the user and the � servers. The query complexity (per server)
is the maximal number of bits sent from the user to any single server, and the answer
complexity (per server) is the maximal number of answer bits sent by any server.

2.3. Secret Sharing

Threshold secret-sharing schemes [18], [56] are an important tool in the construction
of several PIR protocols. See [8] for a discussion on the usage of secret sharing in PIR
protocols. Informally, a t-out-of-� secret-sharing scheme enables a user to share a given
secret amongst � users such that only subsets of at least t users can reconstruct the secret,
and any subset of less than t users gets no information on the secret. We next describe
Shamir’s secret-sharing scheme [56] which we use in our protocols.

2.3.1. Shamir’s scheme [56]

Let � be an integer, let q > � be a prime-power, and let ω1, . . . , ω� be distinct nonzero
elements of GF(q). In order to share a secret s ∈ GF(q) using Shamir’s t-out-of-� secret-
sharing scheme, the dealer chooses t − 1 random elements at−1, . . . , a1, which together
with the secret s define a univariate polynomial p(Y)

def= at−1Y t−1 + at−2Y t−2 + · · · +
a1Y + s.Observe that p(0) = s. The share of the j th player is p(ωj). Each set of at least
t players can recover p(Y) by interpolation, and hence can also reconstruct s = p(0).
More formally, for every set { j1, . . . , jt } there exist constantsαj1 , . . . , αjt (independent of

p(Y) and s) where αjh
def= ∏

d �=h ωjd/(ωjd − ωjh) such that s = p(0) =∑t
h=1 αjh p(ωjh).

On the other hand, every set of t − 1 players learns nothing on s from their shares.
In the previous scheme we shared one element of the field; we extend this notion

in the natural way to a scheme for sharing a vector of elements in the field. Given a
vector V = 〈s1, . . . , sm〉 of length m, i.e., V ∈ GF(q)m , we define the shares of the
vector, denoted by 〈V1, . . . ,V�〉, where each Vj is a vector in GF(q)m as follows: for
each element sa , where 1 ≤ a ≤ m, the user executes Shamir’s t-out-of-� secret-sharing
scheme independently over the field GF(q) producing � shares sa

1 , . . . , sa
� . We then define

the vector Vj as 〈s1
j , . . . , sm

j 〉, i.e., the j th share out of each set of shares.

3. Generic Transformations

In this section we present several generic transformations from PIR protocols to robust
PIR protocols. We start with a warmup transformation from 2-out-of-2 PIR protocols
to robust 2-out-of-� PIR protocols. We then generalize this transformation to a trans-
formations from k-out-of-k PIR protocols to robust k-out-of-� PIR protocols and from

302 A. Beimel and Y. Stahl

t-private k-out-of-k PIR protocols to robust t-private k-out-of-� PIR protocols. Finally,
we present a more generalized reduction from k-out-of-k PIR protocols to k-out-of-�
PIR protocols. The last transformation does not lead to better k-out-of-� PIR protocols
when applied to current k-out-of-k PIR protocols. However, if there were better PIR
protocols then this transformation can lead to better protocols.

3.1. A Replication Solution for Robust 2-out-of-� PIR

In this section we construct a generic transformation from 2-out-of-2 PIR protocols to
2-out-of-� PIR protocols, proving the next theorem:

Theorem 3.1. If there is a 2-out-of-2 PIR protocol with communication PIR2(n) per
server, then there is a 2-out-of-� PIR protocol with communication PIR2(n) log � per
server and total communication PIR2(n)� log �.

Proof. Let P be a 2-out-of-2 PIR protocol. Given a retrieval index i , the user executes
the given PIR protocol P to produce log � independent pairs of queries

{
Q1, . . . , Qlog �

}
for the retrieval of xi , each pair comprising of two queries, i.e., Qj = 〈Qj [0], Qj [1]〉,
where Qj [a] is the query for server a. Each server S1, . . . ,S� receives one query out of
each pair of queries and answers this query. (We describe the algorithm that chooses one
query out of each pair later.) The queries sent to each server guarantee that, if the user
receives correct answers from at least two servers, then there exists an index m such that
the user receives an answer for query Qm[0] and Qm[1], and thus can reconstruct the bit
xi . (This is done independently of the answers that the user receives or does not receive
for the other queries.)

We next explain which queries each server receives. Given a server Sj , we look at the
representation b j

1b j
2 · · · b j

log � of j as a binary number of length log �. The user sends the

following log � queries to Sj —for each 1 ≤ a ≤ log � send the query Qa[b j
a] to Sj , i.e.,

if b j
a = 0 send Qa[0] and if b j

a = 1 send Qa[1]. Each server, upon receiving the queries,
replies independently to each query according to the PIR protocol. That is, Server Sj

replies to each query q = Qa[b j
a] as Server Sb j

a
would reply to q in the original 2-out-

of-2 PIR protocol P . Since we assume that at least two servers are reachable, the user
receives answers from at least two servers, say server Sj1 and server Sj2 (where j1 �= j2).
The binary representations of j1 and j2 differ in at least one bit; let a be the index of
the first bit that differs between j1 and j2, and, without loss of generality, b j1

a = 0 and
b j2

a = 1. The user takes the answer received from server Sj1 for query Qa[0] and the
answer received from server Sj2 for query Qa[1] and reconstructs the desired bit xi .

Security. This scheme is secure since each server receives only one query out of each
pair of queries and these pairs of queries are independent.

Communication Complexity. In this protocol each server receives log � queries and
answers each of them, so that the complexity of the protocol is the number of queries
multiplied by PIR2(n), i.e., the communication per server is O(PIR2(n) log �) and the
total communication is O(PIR2(n)� log �).

Robust Information-Theoretic Private Information Retrieval 303

Plugging the PIR protocol of [23] we get:

Corollary 3.2. There exists a 2-out-of-� PIR protocol with a total communication of
O(n1/3� log �).

3.2. A Generic k-out-of-� Replication Solution

In this section we generalize the solution presented in the previous section, and construct
a generic transformation from k-out-of-k PIR protocols to k-out-of-� PIR protocols. The
idea is similar to the 2-out-of-� PIR protocol; however, we need to be more careful in
partitioning the queries. For this purpose we recall the following definition:

Definition 3.3 (Perfect Hashing and Minimal Perfect Hashing). Let k ≤ m ≤ �. An
(�, k,m) perfect hash family {h1, . . . , hw} is a family of functions of the form: ha : [�] →
[m] such that for each subset A ⊆ [�], where |A| = k, there exists an index a such that
|ha(A)| = k (that is, ha restricted to A is one-to-one). The size of the family is the
number of functions in the family denoted by w. An (�, k) minimal perfect hash family
is an (�, k, k) perfect hash family.

We have four parameters for a perfect hash family: �—size of the domain, k—size of
the hashed sets, m—size of the range, and w—number of functions in the perfect hash
family. The size of the range m has to be at least k, since we require that there exists
a function that is one-to-one when restricted to a set of size k. Thus, a minimal perfect
hash family has the smallest size of range possible for a given k. The parameters �, m,
and k are part of the specification of the problem. We would like the size of the family
w to be as small as possible, since w will directly affect our protocol’s complexity.

Theorem 3.4. If there exists an (�, k) minimal perfect hash family of size w�,k and
a k-out-of-k PIR protocol with communication PIRk(n) per server, then there exists a
k-out-of-� PIR protocol with communication w�,k · PIRk(n) per server, and thus with
total communication � · w�,k · PIRk(n).

Proof. Given a k-out-of-k PIR protocol P we do the following. Given i , the retrieval
index, the user uses P to produce w�,k independent vectors of queries

{
Q1, . . . , Qw�,k

}
for the retrieval of xi , each vector comprising of k queries, i.e., Qj = 〈Qj [1], . . . , Qj [k]〉,
that is, the user executesw�,k times the protocolP independently and generatesw�,k query
vectors. Each server receives from the user one query out of each vector of queries and
answers this query. Since each server receives w�,k PIR queries, which are independent,
the server gains no knowledge on i . We show below how the user chooses which queries
to send to each server. This choice of queries sent to each server guarantees that if the
user receives answers from at least k servers, then it can reconstruct xi .

Given an (�, k) minimal perfect hash family H�,k =
{
ha : a ∈ [w�,k]

}
, for every j ∈

[k], the user sends the followingw�,k queries toSj : For each 1 ≤ a ≤ w�,k , let� = ha(j).
The user sends Qa[�] to Sj , i.e., the user sends the �th query out of the vector Qa .
Formally, the query sent toSj is 〈Qa[ha(j)]〉1≤a≤w�,k . In other words, the minimal perfect
hash family determines which queries we need to take from each vector of queries Qa .

304 A. Beimel and Y. Stahl

Server Sj replies to each query q = Qa[ha(j)], where 1 ≤ a ≤ w�,k , as Server Sha(j)

would reply to q in the original k-out-of-k PIR protocol P .
Let Sj1 , . . . ,Sjk be k servers from which the user receives answers. By the definition

of perfect hashing, there is an index a such that |{ha(j1), . . . , ha(jk)}| = k, i.e., the set
{ha(j1), . . . , ha(jk)} is exactly [k]. We consider the answers received from these servers
to the queries {Qa[ha(j1)], . . . , Qa[ha(jk)]}. Since these queries are distinct, we have k
answers in a k-out-of-k PIR protocol, and the user can reconstruct xi from the answers
received for these queries.

The communication complexity of the above protocol depends on the size of the
minimal perfect hash family. Mehlhorn [48] proved that there exists an (�, k) minimal
hash family of size log � ·2O(k) (this is basically optimal [48]). Combining constructions
of [58] and [48], we get an explicit minimal hash family of the same size as stated in
the next claim. See the Appendix for the proof.

Claim 3.5 [58], [48]. For every integers � and k, there is an explicit (�, k) minimal
perfect hash family of size log � · 2O(k).

Using the PIR protocol of [3], [38], [37], [8], and [65] and the construction of the hash
family of Claim 3.5 we get:

Corollary 3.6. There is a k-out-of-� PIR protocol with total communication
2O(k)n1/(2k−1)� log �.

Applying the protocol of [11] and the hash family Claim 3.5 we get:

Corollary 3.7. For every k ≥ 3, there is a k-out-of-� PIR protocol with total commu-
nication

2Õ(k)n(2 log log k)/(k log k)� log �.

We use the same approach taken in Theorem 3.4, only this time instead of using a
“regular” k-out-of-k PIR protocol, we use a t-private k-out-of-k PIR protocol to produce
the w�,k independent query vectors. The other details are the same as in the previous
transformation.

Theorem 3.8. If there is an (�, k) minimal perfect hash family of size w�,k and a t-
private k-out-of-k PIR protocol with communication PIRk,t (n) per server, then there is
a t-private k-out-of-� PIR protocol with communication w�,k · PIRk,t (n) per server, thus
a total communication of � · w�,k · PIRk,t (n).

Applying the PIR protocol of [8] and the hash family of Claim 3.5 we get:

Corollary 3.9. There is a t-private k-out-of-� PIR protocol with total communication

O(2O(k) · n1/�(2k−1)/t	� log �).

Robust Information-Theoretic Private Information Retrieval 305

3.3. A Generalized Transformation

We now show a generalization of the previous transformation, where our goal is to reduce
the dependency on k. Thus, we first generalize the notion of perfect hashing.

Definition 3.10 (Nearly Perfect Hashing). An (�, k, α) nearly perfect hash family
{h1, . . . , hw} (where α ≤ 1) is a family of functions ha : [�] → [�αk] such that for
each subset A ⊆ [�], where |A| = k, there exists an index a such that |ha(A)| = �αk	
(that is, the function ha when restricted to A is onto [�αk]).

Note that when α = 1 we get the standard definition of a minimal perfect hash family.
We now show how to use (�, k, α) nearly perfect hash families in the construction of
k-out-of-� PIR protocols.

Theorem 3.11. If there is an (�, k, α) nearly perfect hash family of size w�,k,α and
if there is an �αk	-out-of-�αk	 PIR protocol (where α ≤ 1) with communication
PIR�αk	(n) per server, then there exists a k-out-of-� PIR protocol with communication
w�,k,α · PIR�αk	(n) per server, thus a total communication of � · w�,k,α · PIR�αk	(n).

Proof. This proof is similar to that of Theorem 3.4, only this time we use an �αk	-out-
of-�αk	 PIR protocol and an (�, k, α) nearly perfect hash family. In order to prove the
correctness of this protocol we use the property of the (�, k, α) nearly perfect hash family:
Let Sj1 , . . . ,Sjk be k servers from which the user receives answers. Using the (�, k, α)
nearly perfect hash family property, let a be an index such that |{ha(j1), . . . , ha(jk)}| =
�αk	. This means that the user has �αk	 answers of an �αk	-out-of-�αk	 PIR protocol,
and the user can reconstruct xi from the answers received for these queries.

In the last proof we used, as our building block to construct a k-out-of-� PIR protocol,
an �αk	-out-of-�αk	 PIR protocol (as opposed to Theorem 3.4 where we used a k-out-
of-k PIR protocol). Since the communication complexity of PIR protocols decreases as
k gets bigger and since we are using α < 1, we will get a less efficient PIR protocol in
its dependency on n; our hope is thatw�,k,α is considerably smaller, thus the dependency
on k will be better. For α = 1/ln k we show by a standard probabilistic construction that
there is a family whose size is small.

Claim 3.12. There exists an (�, k, 1/ln k) nearly perfect hash family of size
(k log �)/(log log k), where k ≥ 3.

Proof. We prove the claim using a probabilistic proof. As a first step we consider a spe-
cific subset A ⊆ {1, . . . , �}, where |A| = k, one hash function h chosen at random from
the space of functions from {1, . . . , �} to {1, . . . , �αk	} and one index c ∈ {1, . . . , �αk	}.
Consider the probability

Pr[∀j∈Ah(j) �= c] =
(�αk	 − 1

�αk	
)k

≤
((

1− 1

αk

)αk
)1/α

< e−1/α = 1

k
.

306 A. Beimel and Y. Stahl

The last equality is true since α = 1/ln k. By the union bound we conclude that

Pr[|h(A)| < �αk] = Pr[∃c∀j∈A h(j) �= c] < �αk	 1

k
≤ α = 1

ln k
. (1)

As the next step we choose w�,k,α hash functions independently from the space of
functions from {1, . . . , �} to {1, . . . , �αk	}. Thus for a fixed set A we get

Pr[∀1≤a≤w�,k,α |ha(A)| < �αk] <
(

1

ln k

)w�,k,α
.

Therefore,

Pr[∃A; |A|=k ∀1≤a≤w�,k,α |ha(A)| < �αk] <
(
�

k

)(
1

ln k

)w�,k,α
≤ �k

(
1

ln k

)w�,k,α
.

If �k(1/ln k)w�,k,α < 1, then choosing at random w�,k,α hash functions, the probability
that this family of hash functions is not an (�, k, α) nearly perfect hash family is smaller
than 1, i.e., there exists an (�, k, α) nearly perfect hash family of size w�,k,α . Thus, it
suffices that �k < (ln k)w�,k,α < (log k)w�,k,α , i.e., w�,k,α > (k log �)/(log log k).

In the above analysis, (1) could have been derived from the so-called coupon collector
problem, see, e.g., pages 57–63 of [49]. The analysis of the coupon collector problem
implies that if we try to take α ≥ 2/ln k then for a given A of size k the probability that
|h(A)| = �αk	would be exponentially small, thus the size of family we would construct
using the above proof would be exponential in k.

With the current state of the art of PIR protocols we cannot achieve a more efficient
robust PIR protocols using the (�, k, 1/ln k) nearly perfect hash family. If, for example,
there exists a PIR protocol with communication poly(k) · nO(1/(k log k)) then we will get
a robust protocol with communication complexity of poly(k, �) · n1/(2k). Notice that
the recent PIR protocols [11] are close to these requirements (however, they are not
polynomial in k).

4. A k-out-of-� Polynomial Interpolation-Based PIR Protocol

In this section we construct a k-out-of-� PIR protocol using the polynomial interpolation-
based PIR protocol of [5], [6], and [23]. We start with a known technical lemma (and
supply its proof for completeness), and then present the protocol.

Lemma 4.1. Let d and m be integers such that m ≥ d · n1/d . There is a function
E : {1, . . . , n} → {0, 1}m and an m-variate degree d polynomial Px (which depends on
the database x) such that Px (E(i)) = xi for each 1 ≤ i ≤ n.

Proof. Let E(1), . . . , E(n) be n distinct binary vectors of length m and weight d (such
vectors exist since

(m
d

) ≥ (m/d)d ≥ n), let E(i)a be the ath bit of E(i) and define

Px (Z1, . . . , Zm)
def=

n∑
i=1

xi

∏
a:E(i)a=1

Za .

Robust Information-Theoretic Private Information Retrieval 307

Lemma 4.2. There exists a k-out-of-� PIR protocol with query complexity
O(kn1/(k−1) log �) and answer complexity O(log �) per server.

Proof. Let d = k−1 and let Px and E be as promised in Lemma 4.1. Given a retrieval
index i , the user does the following: First calculates the vector E(i) = 〈y1, . . . , ym〉
(i.e., yj is the j th bit of E(i)). Now the user uses Shamir’s 2-out-of-� scheme, over a
finite field with at least � + 1 elements, to share E(i). That is, it chooses at random m
polynomials {p1, . . . , pm} (each of degree 1) such that pa(0) = ya for each 1 ≤ a ≤ m.
Let ω1, . . . , ω� be distinct nonzero elements of the field. The user sends to server Sj the
shares 〈p1(ωj), . . . , pm(ωj)〉 .

We now consider the univariate polynomial: R(Y) = Px (p1(Y), . . . , pm(Y)); its
degree is d since R is constructed from the polynomial Px , whose degree is d, by
replacing each variable Yj with a degree 1 polynomial. Given these definitions,

R(0) = Px (p1(0), . . . , pm(0)) = Px (y1, . . . , ym) = xi .

Furthermore, the server Sj can compute R(ωj)without knowing the polynomial R since

R(ωj) = Px (p1(ωj), . . . , pm(ωj))

and since 〈p1(ωj), . . . , pm(ωj)〉 are the shares that server Sj receives from the user.
Thus, Sj computes R(ωj) and sends it to the user.

Upon receiving any k answers R(ωj1), . . . , R(ωjk) (from k different servers) the user
reconstructs the polynomial R by interpolation (since the user has k points on a polyno-
mial of degree d = k − 1) and computes R(0) = xi .

Server Sj does not gain any information on i since Sj receives one share of each
secret bit y1, . . . , ym in a 2-out-of-� secret sharing scheme. Thus, the protocol is pri-
vate. The user sends m shares to each server, each share of size O(log �). Each server
sends an answer of length O(log �) and thus the total communication is O(m� log �) =
O(kn1/(k−1)� log �).

In the above protocol the answer complexity is smaller than the query complexity.
We will balance these complexities using the balancing technique of [23], yielding the
following theorem:

Theorem 4.3. There exists a k-out-of-� PIR protocol with total communication
O(kn1/k� log �).

Proof. This communication complexity is achieved by balancing the complexities of
the queries and answers of the protocol described in Lemma 4.2, i.e., reducing the query
complexity and increasing the answer complexity. This is done by looking at the database
as a matrix of size α(n)× (n/α(n)), where α(n) will be determined later. We consider
each index i as a cell (i1, i2), where i → (i1, i2) in a natural mapping of i according to the
size of the matrix. To achieve the balancing, the user executes the above PIR protocol with
retrieval index i2 and database of size α(n). Each server considers each row of the matrix
as a database of size α(n), and sends the answer to the query it gets for each row. The

308 A. Beimel and Y. Stahl

user then takes the answers it gets for row i1 and reconstructs xi1,i2 . The user sends one
query to each server, thus the query complexity is O(log � ·kα(n)1/(k−1)) per server. Each
server sends one answer per row, each answer being of length O(log �); thus, the answer
complexity is log � ·n/α(n) per server. To minimize the total communication complexity
we require log � · n/α(n) = O(log � · kα(n)1/(k−1)). Taking α(n) = O(n(k−1)/k), we
obtain a protocol with total communication O(kn1/k� log �).

A similar construction works for t-private robust protocols.

Lemma 4.4. There exists a t-private k-out-of-� PIR protocol with query complexity

O

(
k

t
n1/�(k−1)/t	 log �

)

and an answer complexity of O(log �) per server.

Proof. Let d = �(k − 1)/t	, let m = �(dn1/d), and let Px and E be as promised in
Lemma 4.1. The protocol we construct is similar to the protocol described in the proof
of Lemma 4.2 with the following differences: In the t-private protocol the user uses
Shamir’s (t + 1)-out-of-� scheme, that is, the degree of the polynomials p1, . . . , pm is
t . Thus, the degree of R is dt = �(k − 1)/t	 · t ≤ k − 1. The user, upon receiving any k
answers R(ωj1), . . . , R(ωjk) (from k different servers), reconstructs the polynomial R by
interpolation (since the user has k points on a polynomial of degree k−1) and computes
R(0) = xi .

Security and t-Privacy. A coalition of t servers does not gain any information on i ,
since we used Shamir’s (t + 1)-out-of-� secret-sharing scheme. Thus, the protocol is
t-private.

Communication Complexity. The user sends m shares to each server, each share is
of size O(log �). Each server sends an answer of length O(log �) and thus the total
communication is

O(m� log �) = O

(
k

t
n1/�(k−1)/t	� log �

)
.

Again we apply the balancing technique:

Theorem 4.5. There is a t-private k-out-of-� PIR protocol with total communication

O

(
k

t
n1/(�(k−1)/t	+1)� log �

)
= O

(
k

t
nt/k� log �

)
.

Proof. We use here the technique used in the proof of Theorem 4.3. The query com-
plexity is O((k/t) log � · α(n)1/�(k−1)/t) per server. Each server sends n/α(n) answers,

Robust Information-Theoretic Private Information Retrieval 309

each of length log �, thus in order to minimize the total communication complexity we
require

log � · n

α(n)
= O

(
k

t
log � · α(n)1/�(k−1)/t	

)
.

Taking α(n) = O(n�(k−1)/t	/�(k−1)/t+1) yields a protocol with the desired communica-
tion complexity.

5. A Robust PIR Protocol Using Shamir’s Secret Sharing

In this section we show how one can use Shamir’s secret sharing to produce robust
PIR protocols. We first construct a k-out-of-� PIR protocol with a total communication
complexity of O(n� log �). This protocol is just a “warmup” (because the result is trivial).
However, the ideas of this protocol are used to construct a 2-out-of-� protocol whose
complexity is O(n1/3� log �).

Given the retrieval index i , the user shares the unit vector ei of length n using Shamir’s
k-out-of-� secret-sharing scheme (as described in Section 2.3.1) over GF(2�log �	+1).
Denote by 〈V1, . . . ,V�〉 the shares the user computed. The user sends Vj to server Sj

for each 1 ≤ j ≤ �. Server Sj , upon receiving Vj , sends back to the user the following

scalar product: aj
def= Vj · x , i.e., the server computes the scalar product of the database

and the vector Vj and sends the result to the user.
The user upon receiving k answers aj1 , . . . , ajk uses the appropriate constants

αj1 , . . . , αjk (from Section 2.3.1) to perform the following computation (in the following
proof all additions and multiplications are done in GF(2�log �	+1)):

k∑
h=1

αjh ajh =
k∑

h=1

αjh (Vjh · x) =
(

k∑
h=1

αjh Vjh

)
· x = ei · x = xi .

Thus, the user can reconstruct xi from any k answers.

Security. This protocol is secure since the user sends each server one share of the
vector ei . Since Shamir’s scheme is secure the server cannot gain any information about
i from the shares it received.

Communication Complexity. The user sends � vectors, each of length n log �, and
each server sends an answer of length log �, and thus we get a communication com-
plexity of O(n� log �). Using the balancing technique of [23] we can reduce the total
communication complexity to O(n1/2� log �).

We now present a more efficient protocol that uses the above ideas combined with the
two-server protocol of [23]. This 2-out-of-� protocol works with a total communication
of O(n1/3� log �). We first recall the protocols presented by [23]:

Original protocol (variant of [23]). Let n = m3 for some m, and consider the database
as a three-dimensional cube, i.e., every i ∈ [n] is represented as 〈i1, i2, i3〉where ir ∈ [m]

310 A. Beimel and Y. Stahl

The Two-Server Protocol of [23]

1. The user selects three random vectors A1
1,A1

2,A1
3 ∈ {0, 1}m , and computes

A2
r = A1

r ⊕ eir for r = 1, 2, 3.
The user sends A j

1,A j
2,A j

3 to Sj for j = 1, 2.
2. Server Sj computes for every b ∈ [m],

a j
1,b

def= A j
2 · xb,∗,∗ · A j

3,

a j
2,b

def= A j
1 · x∗,b,∗ · A j

3,

a j
3,b

def= A j
1 · x∗,∗,b · A j

2,

and sends the 3m bits {a j
r,b: r ∈ {1, 2, 3} , b ∈ [m]} to the user.

3. The user outputs
⊕

r=1,2,3(a
1
r,ir
⊕ a2

r,ir
).

Fig. 1. The two-server protocol of [23] with communication O(n1/3).

for r = 1, 2, 3. This is done using a natural mapping from [n] to [m]3. Furthermore, we
use the following notation.

Notation 5.1. Let x be a three-dimensional cube of height m. We denote by xj1,∗,∗ the
matrix of all values of x where the first index of this value is j1. Formally, we define
xj1,∗,∗ as the matrix A where Ai1,i2 = xj1,i1,i2 . We define x∗, j1,∗ and x∗,∗, j1 similarly. We
denote by xj1, j2,∗ the vector obtained from the three-dimensional cube x by taking all
the values of x where the first index of this value is j1 and the second is j2. Formally,
we define xj1, j2,∗ as the vector A where A[i1] = xj1, j2,i1 . We define x∗, j1, j2 and xj1,∗, j2
similarly.

In Fig. 1 we describe the protocol. It can be checked that each bit, except for xi1,i2,i3 ,
appears an even number of times in the exclusive-or the user computes in step 3, and
thus cancels itself. Therefore, the user outputs xi1,i2,i3 as required. Furthermore, the
communication is O(m) = O(n1/3).

We may consider A2
r = A1

r ⊕ eir and A1
r as two shares in a 2-out-of-2 sharing scheme

of the unit vector eir . We use a similar approach to construct a robust protocol. There is
one difference—we use Shamir’s 2-out-of-� secret-sharing scheme in order to share the
unit vector eir ; these shares are used to generate the queries for the protocol.

Theorem 5.2. There exists a 2-out-of-� PIR protocol with a total communication of
O(n1/3� log �).

Proof. In this proof we consider the database x as a three-dimensional cube and use
Shamir’s 2-out-of-� secret-sharing scheme to construct our queries:

Given � and retrieval index i = 〈i1, i2, i3〉, the user, for every r ∈ {1, 2, 3}, computes
the vector 〈Ur

1, . . . ,Ur
�〉 as the shares in a Shamir’s 2-out-of-� scheme of the unit vector

eir . The user sends the query U1
j ,U2

j ,U3
j to server Sj for each 1 ≤ j ≤ �.

Robust Information-Theoretic Private Information Retrieval 311

Server Sj , upon receiving U1
j ,U2

j ,U3
j , sends back to the user the following 3n1/3

numbers: For each 1 ≤ b ≤ n1/3 the server sends to the user the element U2
j · xb,∗,∗ ·U3

j ,
the element U1

j · x∗,b,∗ · U3
j , and the element U1

j · x∗,∗,b · U2
j (where xb,∗,∗, x∗,b,∗, and

x∗,∗,b are the two-dimensional matrices described in Notation 5.1), i.e., each number the
server sends is a result of multiplications of a two-dimensional matrix produced from
the cube with the vectors sent by the user. As in the regular 2-out-of-2 scheme, the user
takes one element out of each set of answers: The user upon receiving answers from two
servers f and g considers the following six numbers:

U2
f · xi1,∗,∗ · U3

f , U1
f · x∗,i2,∗ · U3

f , U1
f · x∗,∗,i3 · U2

f ,

U2
g · xi1,∗,∗ · U3

g, U1
g · x∗,i2,∗ · U3

g, U1
g · x∗,∗,i3 · U2

g.
(2)

The following claim is similar to the claim that in the protocol of [23] the user reconstructs
the correct bit xi .

Claim 5.3. There exists a linear combination of the six numbers appearing in (2) that
computes the desired bit xi1,i2,i3 .

Proof. In our proof we use the constants from Shamir’s scheme α f and αg (see Sec-
tion 2.3.1). These two constants are independent of the answers received from the servers.
Denote Vr def= α f Ur

f and Wr def= αgUr
g for r ∈ {1, 2, 3}. Thus,

Vr +Wr = eir (3)

for r ∈ {1, 2, 3}.
Notice that V2 · xi1,∗,∗ ·V3 = (α f)

2(U2
f · xi1,∗,∗ ·U3

f). In our computation we multiply
each of the first three numbers by α2

f and each of the last three numbers by α2
g and

consider the following combination:

S
def= V2 · xi1,∗,∗ · V3 + V1 · x∗,i2,∗ · V3 + V1 · x∗,∗,i3 · V2

+W2 · xi1,∗,∗ ·W3 +W1 · x∗,i2,∗ ·W3 +W1 · x∗,∗,i3 ·W2. (4)

Note that S is a linear combination of the bits of the database x . We next prove that
S = xi1,i2,i3 . The proof is somewhat technical and shows that the coefficient of every bit
of x , except for xi1,i2,i3 , is zero. First, we use the fact that GF(2�log �	+1) is of characteristic
2 and we can add the number W2 · xi1,∗,∗ · V3 twice without changing the sum. Thus,

V2 · xi1,∗,∗ · V3 +W2 · xi1,∗,∗ ·W3 (5)

= V2 · xi1,∗,∗ · V3 +W2 · xi1,∗,∗ · V3 +W2 · xi1,∗,∗ ·W3 +W2 · xi1,∗,∗ · V3

= (V2 +W2) · xi1,∗,∗ · V3 +W2 · xi1,∗,∗ · (W3 + V3)

= ei2 · xi1,∗,∗ · V3 +W2 · xi1,∗,∗ · ei3 (6)

= xi1,i2,∗ · V3 +W2 · xi1,∗,i3 , (7)

where the equality in (6) follows from (3), and the last equality follows since ei2 ·xi1,∗,∗ =
xi1,i2,∗, and similarly xi1,∗,∗ · ei3 = xi1,∗,i3 (multiplication from the right replaces the

312 A. Beimel and Y. Stahl

2-out-of-� PIR Protocol which Uses Shamir’s Secret-Sharing Scheme

1. Given � and the retrieval index i1, i2, i3, we denote the vectors 〈Ur
1, . . . ,Ur

�〉 as the shares
of the unit vector eir for r ∈ {1, 2, 3}.

2. ServerSj upon receiving U1
j ,U2

j ,U3
j sends back to the user the following 3n1/3 numbers:

For each 1 ≤ a ≤ n1/3 the server sends to the user: U2
j · xa,∗,∗ · U3

j , U1
j · x∗,a,∗ · U3

j ,
and U1

j · x∗,∗,a · U2
j .

3. The user upon receiving answers from two servers S f and Sg computes xi1,i2,i3 as the
linear combination specified in Claim 5.3:

α2
f (U

2
f · xi1,∗,∗ · U3

f + U1
f · x∗,i2,∗ · U3

f + U1
f · x∗,∗,i3 · U2

f)

+ α2
g(U

2
g · xi1,∗,∗ · U3

g + U1
g · x∗,i2,∗ · U3

g + U1
g · x∗,∗,i3 · U2

g).

Fig. 2. A 2-out-of-� PIR protocol which uses Shamir’s scheme with total communication O(n1/3 log �) per
server.

rightmost ∗ and multiplication from the left replaces the leftmost ∗). That is, already in
the sum of the two terms in (5) many bits of x have a zero coefficient. Similarly,

V1 · x∗,i2,∗ · V3 +W1 · x∗,i2,∗ ·W3 = xi1,i2,∗ · V3 +W1 · x∗,i2,i3 (8)

and

V1 · x∗,∗,i3 · V2 +W1 · x∗,∗,i3 ·W2 = xi1,∗,i3 · V2 +W1 · x∗,i2,i3 . (9)

Thus, by (4)–(9),

S = xi1,i2,∗ · V3 +W2 · xi1,∗,i3 + xi1,i2,∗ ·W3 + V1 · x∗,i2,i3 + xi1,∗,i3 · V2 +W1 · x∗,i2,i3

= xi1,i2,∗ · (V3 +W3)+ (V1 +W1) · x∗,i2,i3 + xi1,∗,i3 · (V2 +W2)

= xi1,i2,∗ · ei3 + ei1 · x∗,i2,i3 + xi1,∗,i3 · ei2

= xi1,i2,i3 + xi1,i2,i3 + xi1,i2,i3 = xi1,i2,i3 .

We now provide the proof of Theorem 5.2, by analyzing the privacy and the commu-
nication complexity of the protocol appearing in Fig. 2. Each server gets one share of
Shamir’s 2-out-of-� scheme. Since Shamir’s scheme is secure, each server cannot gain
any information about i from the share it received, and the protocol is secure. Each server
sends and receives 3n1/3 elements of GF(2�log �	+1), and thus the total communication is
O(n1/3� log �).

6. Dealing with Byzantine Servers

In previous sections we assumed that servers may crash. However, they cannot reply
with wrong answers. We next show solutions for the robust PIR problem tolerating
some Byzantine servers, that is, some servers might be malicious or have a corrupted or
obsolete database, and may return any answer to the user’s queries. The user needs to be

Robust Information-Theoretic Private Information Retrieval 313

prepared for wrong answers from the servers and still reconstruct the right value of the
desired bit xi .

Definition 6.1 (Byzantine-Robust PIR). A b Byzantine-robust k-out-of-�PIR protocol
P is defined as in Definition 2.1, where the correctness requirement is replaced by the
following requirement:

Correctness. The user always computes the correct value of xi from any k answers,
of which at least k − b are correct. Formally, for every i ∈ {1, . . . , n}, every random
string r , every set K = { j1, . . . , jk} ⊆ {1, . . . , �}, every database x ∈ {0, 1}n , and every
k answers {a1, . . . , ak} such that

|{w ∈ [k]: aw = A(jw,Q(jw, i, r), x)}| ≥ k − b,

we have

C(i, r, K , a1, . . . , ak) = xi .

We assume that there at least k honest servers available and the user receives at least
k answers. However, the system is asynchronous. Thus, upon receiving k answers, the
user cannot know if either it received the answers from k honest servers (and possibly
no other answers arrive later) or there are some answers from Byzantine servers (and
additional answers arrive later).

In Definition 6.1 the correctness holds even if the Byzantine servers cooperate. For
the privacy we assume that the Byzantine servers do not cooperate. That is, we deal with
1-privacy (and not, say, b-privacy). Later, we show what can be done when we discard
this assumption. Note that, since we are talking about one-round PIR protocols, the
definition is simple. For example, Byzantine servers will not learn any new information
as a result of sending wrong answers.

Clearly, if the user receives answers from k servers, then, to enable the user to re-
construct the correct value of xi , more than half of the answers must be correct. This
condition is also sufficient as shown by the following trivial protocol: Each server sends
the entire database to the user. Given k answers, out of which less than k/2 are Byzantine,
the user takes the value of xi which appears at least k/2 times.

Next we show a generic transformation from robust protocols to robust protocols that
tolerate Byzantine servers.

Theorem 6.2. Let a be a parameter where 0 < a ≤ k, and assume there is an a-out-of-
� robust PIR protocol with total communication PIR�a(n). Then there exists a �(k − a)/2	
Byzantine-robust k-out-of-� PIR protocol with total communication PIR�a(n).

Proof. The user and the servers execute a robust a-out-of-� PIR protocol. Assume that
the user receives answers from a set B of servers of size at least k. Now, for each subset
of size a of B, the user reconstructs xi (recall that the user can reconstruct xi from any a
answers). The user finds a largest subset A ⊆ B such that for every subset of A of size
a the user reconstructs the same value of xi , and outputs this value as the value of xi .

314 A. Beimel and Y. Stahl

We next prove that the user reconstructs the correct value of xi . Since there are at
most �(k − a)/2	 Byzantine servers and the size of B is at least k, there are at least
k−�(k − a)/2	 = �(k + a)/2� honest servers in B; for every subset of the honest servers
of size a the user reconstructs the correct value of xi . Hence, |A| ≥ �(k + a)/2�. Since
there are at most �(k − a)/2	Byzantine servers, the set A contains at least �(k + a)/2�−
�(k − a)/2	 ≥ a honest servers, and therefore the value of xi reconstructed for this set
(and any other subset of A) is the correct value of xi .

Plugging the a-out-of-� PIR protocol of Corollaries 3.6 and 3.7 we get:

Corollary 6.3. For every k and a such that 0 < a ≤ k, there exist �(k − a)/2	
Byzantine-robust k-out-of-� PIR protocols with total communication

1. 2O(a)n1/(2a−1)� log �, and
2. 2Õ(a)n(2 log log a)/(a log a)� log �.

In the previous protocol the user is required to reconstruct xi for
(k

a

)
sets. We now

show a construction which overcomes this exponential dependency on k. We construct
a robust k-out-of-� PIR protocol in which (at most) k/3 servers are Byzantine. Note that
in the following protocol the communication complexity is worse than in the generic
protocol.

Theorem 6.4. There exists a �k/3	Byzantine-robust k-out-of-�PIR protocol with total
communication O(kn1/�k/3	� log �).

Proof. We use the �k/3	-out-of-� protocols described in the proofs of Lemma 4.2 and
Theorem 4.3.3 In the protocols the answers of the honest servers are points on a univariate
polynomial R whose degree is �k/3	 − 1. (When we say that the answer a of server Sj

is on R we mean that a = R(ωj) where ωj is defined in Lemma 4.2.) The user needs to
interpolate the polynomial R from the answers of the servers. Since some of the servers
are Byzantine, not all of the answers are points on R. Nevertheless, we now show that
the user can still reconstruct R as it is the only polynomial on which at least two-thirds
of the points (answers) reside.

We know that at least �2k/3� of the servers are not Byzantine, thus all of these servers
send points on R. The user has to find �2k/3� points which reside on a polynomial of
degree at most �k/3	−1 (i.e., on R) and use this polynomial to reconstruct xi . By standard
arguments, there is exactly one polynomial of degree �k/3	− 1 that agrees with at least
�2k/3� of these k points, and the user can reconstruct this polynomial using the decoding
algorithm of the Reed–Solomon error-correcting codes [55]. (For more information on
error-correcting codes the reader can refer to, e.g., [46].) The communication complexity
of the above protocol is the communication complexity of the �k/3	-out-of-� protocol
of Theorem 4.3, i.e., O(kn1/�k/3	� log �).

3 Notice that the balancing technique used in Theorem 4.3 does not change the details.

Robust Information-Theoretic Private Information Retrieval 315

Since we consider Byzantine servers, the assumption that they do not cooperate is
questionable, thus it might be more reasonable to consider robust b-private PIR protocols
in the presence of b Byzantine servers.4 That is, we consider a robust PIR protocol where
the privacy holds even if b Byzantine servers cooperate. We next show two corollaries
where we allow the Byzantine servers to cooperate.

Corollary 6.5. Let a be a parameter where k/3 < a ≤ k, and define b = �(k − a)/2	.
Assume there is a robust b-private a-out-of-� PIR protocol with total communication
PIR�a,b(n). Then there exists a b-private b Byzantine-robust k-out-of-� PIR protocol with
total communication PIR�a,b(n).

The idea is to use the same approach seen in Theorem 6.2, but with a b-private a-
out-of-� PIR protocol. Notice that a b-private a-out-of-� PIR protocol with sub-linear
communication exists only if a > b, thus we get that a > k/3 and b < k/3.

Corollary 6.6. There exists a b-private b Byzantine-robust k-out-of-� PIR protocol
(where b < k/3) with total communication O((k/b)n1/(�(k−2)/b	−1)� log �).

Proof. We use Corollary 6.5 and Theorem 4.5. To apply Corollary 6.5, we take b =
�(k − a)/2	 and use a b-private a-out-of-� PIR protocol. This implies that a ≥ k −
2b − 1, and the communication complexity of the b-private a-out-of-� PIR protocol of
Theorem 4.5 is O((k)/(b)n1/(�(k−2)/b	−1)� log �).

7. Open Problems

We have shown several robust PIR protocols with different features—a protocol with
the best known complexity with regard to n, logarithmic in �, but exponential in k, or
polynomial in k and � but not optimal in regard to n. Some open questions remain: Given
k, �, and n what is the best possible communication complexity for a robust k-out-of-�
PIR protocol? That is, can one present a protocol which is optimal with regard to n and still
polynomial in k and �? Given a k-out-of-k PIR protocol, what is the minimum overhead
in communication complexity needed in order to transform any protocol to a robust k-
out-of-� PIR protocol? That is, can one design a more efficient generic transformation?
We note that even the question of the optimal communication complexity of “standard”
PIR protocols is a long standing open question.

As demonstrated in this work the robust PIR is a well-motivated protocol as it is.
Furthermore, we believe that this protocol can be used as a building block in more
complex protocols. For example, we use it to construct Byzantine-robust PIR protocols.
An open problem is to find other applications and other protocols which use robust PIR
protocols.

4 We could also consider the more general case of t-private b Byzantine-robust PIR, where possibly b �= t .
However, the most interesting case is b = t .

316 A. Beimel and Y. Stahl

Appendix. Construction of a Minimal Perfect Hash Family

In this section we describe an (�, k) minimal perfect hash family of size log �2O(k),
namely we prove Claim 3.5. This construction is a combination of the constructions of
Mehlhorn [48] and Slot and van Emde Boas [58], and uses techniques from [31]. The
construction of the (�, k) minimal hash family has four stages: first we construct an
(�, k, O(k2 log �)) perfect hash family H1, second we construct an (O(k2 log �), k, k2)

perfect hash family H2, then we construct a (k2, k, 6k) perfect hash family H3, and,
finally, we construct a (6k, k) minimal perfect hash familyH4. The (�, k) minimal hash
family is

H def= {h4◦h3◦h2◦h1: h1 ∈ H1, h2 ∈ H2, h3 ∈ H3, h4 ∈ H4} .
That is, to reduce the range to k, we first reduce the range to O(k2 log �), we then reduce
it to k2, then to 6k, and finally to k.

We start by describing some results of [31] and [48]. We say that a function h shatters
a set A if h restricted to A is one-to-one. The basic building block of the perfect hash
family is the following construction:

Definition A.1 (The Function h p,m
a). For integers m, a and a prime p, define the func-

tion h p,m
a : [p − 1] → [m] where

ha(x)
def= ((ax mod p) mod m)+ 1.

Furthermore, define the family of functions

Hp,m
def= {h p,m

a : a ∈ [p − 1]
}
.

Claim A.2 [31]. Let k be an integer, let p be a prime, and let A ⊂ [p − 1] be a set of

size k. The function h p,2k2

a shatters A for at least half of all values a in [p − 1].

Claim A.3 [31]. Let p be a prime, let A ⊂ [p − 1], and let y ∈ [p − 1]. Define
B(A, a, y)

def= {x ∈ A: h p,k
a = y}. For every A ⊂ [p− 1], where |A| = k, there exists an

a ∈ [p − 1] such that
∑

y∈[k] |B(A, a, y)|2 ≤ 3k.

In the above claim, B(A, a, y) is the set of elements x ∈ A that are mapped to y − 1
by the function (ax mod p) mod k.

Claim A.4 [48]. For every integer � and prime p define the function MOD�
p: [�] → [p],

where

MOD�
p(x)

def= (x mod p)+ 1.

There exists a constant c that for every integers � and k and every set A ⊂ [�], where
|A| = k, there is a prime p < ck2 log � such that MOD�

p shatters A.

Robust Information-Theoretic Private Information Retrieval 317

First stage. Let c be the constant from Claim A.4. Define the family of functions

H1
def= {MOD�

p: p < ck2 log � is a prime}.

By Claim A.4, the familyH1 is an (�, k, ck2 ln �) perfect hash family of size O(k2 log �).

Second stage. Let p2 be a prime, where ck2 log � < p2 < 2ck2 log �. Define the family
of functions H2

def= Hp2,2k2 . By Claim A.2, the family H2 is a (ck2 log �, k, k2) perfect
hash family of size O(k2 ln �).

Third stage. This is the more complicated stage. First, we use the family H2k2,k . This
family is not a perfect hash family, however, by Claim A.3, it hashes every set A of
size k to different buckets, such that each bucket contains at most O(

√
k) elements. Let

p3 be a prime, where 2k2 < p3 ≤ 4k2. For a, a1, . . . , ak ∈ [p3 − 1] and a sequence
c1, . . . , ck ∈ [6k], where

∑k
y=1 cy ≤ 6k, define the hash function ha,a1,...,ak ,c1,...,ck :

• i ← ((ax mod p3) mod k)+ 1.
• j ← ((ai x mod p3) mod ci)+ 1.
• Output ha,a1,...,ak ,c1,...,ck (x) =

∑i−1
�=1 c� + j .

Now, define

H3
def=
{

ha,a1,...,ak ,c1,...,ck : a, a1, . . . , ak ∈ [p3 − 1],
k∑

y=1

cy ≤ 6k

}
.

We claim that H3 is a (2k2, k, 6k) perfect hash family of size kO(k). That is, for any set
A ⊂ [k2] of size k, the following function ha,a1,...,ak ,c1,...,ck shatters A: Let a ∈ [p3 − 1]
be an element such that

∑
y∈[k] |B(A, a, y)|2 ≤ 3k; such a is guaranteed by Claim A.3.

For y ∈ [k], define cy
def= 2|B(A, a, y)|2, and let ay ∈ [p3 − 1] be an element such that

h
p3,cy
ay shatters B(A, a, y); such ay is guaranteed by Claim A.2.
We now explain the trick of [58] to reduce the size of the familyH3 to 2O(k) (compared

with kO(k) above). As above, for any set A ⊂ [k2] of size k, let a ∈ [p3 − 1] be an
element such that

∑
y∈[k] |B(A, a, y)|2 ≤ 3k. For y ∈ [k], define cy

def= |B(A, a, y)|2.

By Claim A.2, there is a single b1 ∈ [p3 − 1] such that h
p3,cy

b1
shatters the set B(A, a, y)

for at least half of all values y in [k]. Furthermore, there is a second b2 ∈ [p3 − 1] such
that h

p3,cy

b2
shatters the set B(A, a, y) for at least half of all values y in [k] that are not

shattered by b1. After at most log k choices of a we shatter B(A, a, y) for every y ∈ [k].
By proper encoding, this reduces the size ofH3 to 2O(k).

Fourth stage. The final stage is a simple re-indexing. For every k distinct elements
x1, x2, . . . , xk in [6k], define the function hx1,x2,...,xk : [6k] → [k], where hx1,x2,...,xk (xi) =
i for i ∈ [k] and hx1,x2,...,xk (x) = 1 otherwise. Define the following family of functions:

H4
def= {hx1,x2,...,xk : 1 ≤ x1 < x2 < · · · xk ≤ 6k}.

The familyH4 is, clearly, a (6k, k) minimal hash family of size
(6k

k

) ≤ 26k .

318 A. Beimel and Y. Stahl

References

[1] N. Alon. Explicit construction of exponential sized families of k-independent sets. Discrete Math.,
58:191–193, 1986.

[2] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and construction
of perfect hash functions. Algorithmica, 16:434–449, 1996.

[3] A. Ambainis. Upper bound on the communication complexity of private information retrieval. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. of the 24th International Collo-
quium on Automata, Languages and Programming, pages 401–407. Volume 1256 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1997.

[4] M. Atici, S. S. Magliveras, D. R. Stinson, and W. D. Wei. Some recursive constructions for perfect hash
families. J. Combin. Des., 4:353–363, 1996.

[5] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In C. Choffrut and T. Lengauer,
editors, STACS ’90, 7th Symp. on Theoretical Aspects of Computer Science, pages 37–48. Volume 415
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1990.

[6] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions: improvements and
applications. J. Cryptology, 10(1):17–36, 1997. Early version: Security with small communication over-
head, CRYPTO ’90, pages 62–76. Volume 537 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1991.

[7] R. Beigel, L. Fortnow, and W. Gasarch. Nearly tight bounds for private information retrieval systems.
Comput. Complexity, 15(1):82–91, 2006.

[8] A. Beimel and Y. Ishai. Information-theoretic private information retrieval: a unified construction. In
P. G. Spirakis and J. van Leeuven, editors, Proc. of the 28th International Colloquium on Automata,
Languages and Programming, pages 912–926. Volume 2076 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2001. Journal version in [9].

[9] A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-theoretic private informa-
tion retrieval. J. Comput. System Sci., 71(2):213–247, 2005. Journal version of [37] and [8].

[10] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential for single-server
private information retrieval. In Proc. of the 31st ACM Symp. on the Theory of Computing, pages 89–98,
1999.

[11] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the O(n1/(2k−1)) barrier for information-
theoretic private information retrieval. In Proc. of the 43rd IEEE Symp. on Foundations of Computer
Science, pages 261–270, 2002.

[12] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ computation in private information retrieval:
PIR with preprocessing. J. Cryptology, 17(2):125–151, 2004. Preliminary version: M. Bellare, editor,
Advances in Cryptology – CRYPTO 2000, pages 56–74. Volume 1880 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2000.

[13] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval. In S. Cimato, C. Galdi,
and G. Persiano, editors, Proc. of the 3rd Conf. on Security in Communication Networks, pages 326–341.
Volume 2576 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2002.

[14] S. R. Blackburn. Combinatorial designs and their applications. Res. Notes Math., 403:44–70, 1999.
[15] S. R. Blackburn. Perfect hash families: probabilistic methods and explicit constructions. J. Combin.

Theory Ser. A, 92:54–60, 2000.
[16] S. R. Blackburn, M. Burmester, Y. Desmedt, and P. R. Wild. Efficient multiplicative sharing schemes. In

U. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, pages 107–118. Volume 1070 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1996.

[17] S. R. Blackburn and P. R. Wild. Optimal linear perfect hash families. J. Combin. Theory Ser. A, 83:233–
250, 1998.

[18] G. R. Blakley. Safeguarding cryptographic keys. In R. E. Merwin, J. T. Zanca, and M. Smith, editors,
Proc. of the 1979 AFIPS National Computer Conf., pages 313–317. Volume 48 of AFIPS Conference
Proceedings. AFIPS Press, Reston, VA, 1979.

[19] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic
communication. In J. Stern, editor, Advances in Cryptology – EUROCRYPT ’99, pages 402–414. Volume
1592 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1999.

Robust Information-Theoretic Private Information Retrieval 319

[20] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and R. N. Wright. Selective private func-
tion evaluation with applications to private statistics. In Proc. of the 20th ACM Symp. on Principles of
Distributed Computing, pages 293–304, 2001.

[21] Y.-C. Chang. Single database private information retrieval with logarithmic communication. In Informa-
tion Security and Privacy: 9th Australasian Conf., ACISP 2004, pages 50–61. Volume 3108 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2004.

[22] B. Chor and N. Gilboa. Computationally private information retrieval. In Proc. of the 29th ACM Symp.
on the Theory of Computing, pages 304–313, 1997.

[23] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In Proc. of the
36th IEEE Symp. on Foundations of Computer Science, pages 41–51, 1995. Journal version: J. ACM,
45:965–981, 1998.

[24] Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theoret. Comput. Sci., 182:1–143, 1997.
[25] A. Deshpande, R. Jain, T Kavita, V. Lokam, and J. Radhakrishnan. Lower bounds for adaptive locally

decodable codes. Random Structures Algorithms, 27(3):358–378, 2005. Conference version: Proc. of the
17th IEEE Conf. on Computational Complexity, pages 184–193, 2002.

[26] G. Di-Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for private information retrieval.
J. Cryptology, 14(1):37–74, 2001. Preliminary version in Proc. of the 17th ACM Symp. on Principles of
Distributed Computing, pages 91–100, 1998.

[27] G. Di-Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information retrieval implies
oblivious transfer. In Advances in Cryptology – EUROCRYPT 2000, pages 122–138. Volume 1807 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.

[28] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright. Secure multiparty com-
putation of approximations. In P. G. Spirakis and J. van Leeuven, editors, Proc. of the 28th International
Colloquium on Automata, Languages and Programming, pages 927–938. Volume 2076 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 2001.

[29] A. Fiat and M. Naor. Broadcast encryption. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO
’93, pages 480–491. Volume 773 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.

[30] M. L. Fredman and J. Komlós. On the size of separating systems and families of perfect hash funtions.
SIAM J. Algebraic Discrete Methods, 5:61–68, 1984.

[31] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
J. ACM, 31(3):538–544, 1984.

[32] W. Gasarch. A survey on private information retrieval. Bull. Eur. Assoc. Theor. Comput. Sci., 82:72–107,
2004. Can also be found at: http://www.cs.umd.edu/∼gasarch/pir/pir.html.

[33] C. Gentry and Z. Ramzan. Single-database private information retrieval with constant communication
rate. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proc. of the 32nd
International Colloquium on Automata, Languages and Programming, pages 803–815. Volume 3580 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005.

[34] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private information retrieval. In
M. Luby, J. Rolim, and M. Serna, editors, RANDOM ’98, 2nd International Workshop on Randomization
and Approximation Techniques in Computer Science, pages 200–217. Volume 1518 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1998.

[35] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval
schemes. J. Comput. System Sci., 60(3):592–629, 2000. Conference version in Proc. of the 30th ACM
Symp. on the Theory of Computing, pages 151–160, 1998.

[36] O. Goldreich, H. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear locally decodable
codes and PIR. In Proc. of the 17th IEEE Conf. on Computational Complexity, pages 175–183, 2002.

[37] Y. Ishai and E. Kushilevitz. Improved upper bounds on information theoretic private information retrieval.
In Proc. of the 31st ACM Symp. on the Theory of Computing, pages 79–88, 1999. Journal version in [9].

[38] T. Itoh. Efficient private information retrieval. IEICE Trans. Fund. Electron. Commun. Comput. Sci.,
E82-A(1):11–20, 1999.

[39] T. Itoh. On lower bounds for the communication complexity of private information retrieval. IEICE Trans.
Fund. Electron. Commun. Comput. Sci., E84-A(1):157–164, 2001.

[40] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In
Proc. of the 32nd ACM Symp. on the Theory of Computing, pages 80–86, 2000.

320 A. Beimel and Y. Stahl

[41] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum
argument. J. Comput. System Sci., 69(3):395–420, 2004.

[42] J. Korner and Marton. New bounds for perfect hashing via information theory. Eur. J. Combin., 9:523–530,
1988.

[43] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database, computationally-private
information retrieval. In Proc. of the 38th IEEE Symp. on Foundations of Computer Science, pages
364–373, 1997.

[44] E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient for single-database
computationally-private information retrieval. In B. Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, pages 104–121. Volume 1807 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2000.

[45] H. Lipmaa. An oblivious transfer protocol with log-squared communication. In J. Zhou and J. Lopez,
editors, Proc. of the 8th Information Security Conference (ISC’05), pages 314–328. Volume 3650 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005.

[46] F. R. Macwilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. Mathematical library.
North-Holland, Amsterdam, 1978.

[47] E. Mann. Private access to distributed information. Master’s thesis, Technion – Israel Institute of Tech-
nology, Haifa, 1998.

[48] K. Mehlhorn. Data Structures and Algorithms, volume 1. Sorting and Searching. Springer-Verlag, New
York, 1984.

[49] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.
[50] M. Naor and B. Pinkas. Oblivious transfer and polynomial evalutation. In Proc. of the 31st ACM Symp.

on the Theory of Computing, pages 245–254, 1999.
[51] I. Newman and A. Wigderson. Lower bounds on formula size of Boolean functions using hypergraph

entropy. SIAM J. Discrete Math., 8:536–542, 1995.
[52] K. Obata. Optimal lower bounds for 2-query locally decodable linear codes. In J. D. P. Rolim and

S. Vadhan, editors, RANDOM ’02, 6th International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 39–50. Volume 2483 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2002.

[53] R. Ostrovsky and V. Shoup. Private information storage. In Proc. of the 29th ACM Symp. on the Theory
of Computing, pages 294–303, 1997.

[54] A. Razborov and S. Yekhanin. An �(n1/3) lower bound for bilinear group based private information
retrrieval. In Proc. of the 47th IEEE Symp. on Foundations of Computer Science, 2006.

[55] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM, 8:300–304, 1960.
[56] A. Shamir. How to share a secret. Commun. ACM, 22:612–613, 1979.
[57] D. Shiowattana and S. V. Lokam. An optimal lower bound for 2-query locally decodable linear codes.

Inform. Process. Lett., 97(6):244–250, 2006.
[58] C. Slot and P. van Emde Boas. On tape versus core; an application of space efficient perfect hash functions

to the invariance of space. In Proc. of the 16th ACM Symp. on the Theory of Computing, pages 391–400,
1984.

[59] R. Sprugnoli. Perfect hashing functions: a single probe retrieving method for static sets. Commun. ACM,
20(11):841–850, 1977.

[60] J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In K. Ohta and D. Pei, editors,
Advances in Cryptology – ASIACRYPT ’98, pages 357–371. Volume 1514 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1998.

[61] D. Stinson, T. van Trung, and R. Wei. Secure frameproof codes, key distribution patterns, group testing
algorithms and related structures. J. Statist. Plann. Inference, 86(2):595–617, 2000.

[62] D. R. Stinson, R. Wei, and L. Zhu. New constructions for perfect hash families and related structures
using combinatorial designs and codes. J. Combin. Designs, 8:189–200, 2000.

[63] R. E. Tarjan and A. C. Yao. Storing a sparse table. Commun. ACM, 22(11):606–611, 1979.
[64] S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and private information

retrieval. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proc. of the
32nd International Colloquium on Automata, Languages and Programming, pages 1424–1436. Volume
3580 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005.

Robust Information-Theoretic Private Information Retrieval 321

[65] D. Woodruff and S. Yekhanin. A geometric approach to information-theoretic private information re-
trieval. In Proc. of the 20th IEEE Conf. on Computational Complexity, pages 275–284, 2005.

[66] A. Yamamura and T. Saito. Private information retrieval based on the subgroup membership problem.
In V. Varadharajan and Y. Mu, editors, ACISP 2001, pages 206–220. Volume 2119 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2001.

[67] E. Y. Yang, J. Xu, and K. H. Bennett. Private information retrieval in the presence of malicious failures. In
Proc. of the 26th IEEE International Computer Software and Applications Conference, pages 805–812,
2002.

