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Abstract. We extend the concept of key encapsulation to the primitives of identity-
based and certificateless encryption. We show that the natural combination of ID-
KEMs or CL-KEMs with data encapsulation mechanisms results in encryption
schemes that are secure in a strong sense. In addition, we give generic constructions of
ID-KEMs and CL-KEMs that are provably secure in the random oracle model.

1. Introduction

The natural way to perform public-key encryption for large messages is to separate the
encryption into two parts: one part uses public-key techniques to encrypt a one-time
symmetric key; the other part uses the symmetric key to encrypt the actual message. In
such a construction, the public-key part of the algorithm is known as the key encapsula-
tion mechanism (KEM) while the symmetric-key part—where the message is actually
encrypted—is known as the data encapsulation mechanism (DEM). The formalization
of this basic approach originates in the work of Shoup [18]. The resulting KEM/DEM
encryption paradigm has received much attention in recent years [11,12,18]. It is very
attractive as it gives a clear separation between the various parts of the cipher allowing
for modular design.

In [12] Dent proposes a number of generic constructions of KEMs from standard
public-key encryption schemes. The KEMs themselves are secure in a strong sense.
However, the encryption schemes from which they are built require only a weak notion
of security. It is this line of work that we extend here by applying these techniques to two
types of recently introduced, but closely related, primitives: identity-based encryption
(IBE) and certificateless encryption (CL).

A secure and efficient IBE scheme was introduced by Boneh and Franklin [9], based
on pairings on elliptic curves. Many others have also been proposed, for example [8,
10,19]. One of the contributions of this paper is to formalize the notion of key en-
capsulation for the identity-based setting. We also present a generic construction of an
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ID-KEM, that is secure in a strong sense, from any IBE scheme, that is secure in a weak
sense. We feel that our construction of an IBE scheme from an ID-KEM and a standard
DEM is more natural than the construction in [9], which relies on the Fujisaki-Okamoto
transform [13].

In addition to the work on IBE, we also present a security model for key encapsula-
tion applied to certificateless encryption and a generic construction for such schemes.
This form of encryption was introduced and developed in a series of publications by
Al-Riyami and Paterson [1-3]. The idea is to have the benefit of IBE (the absence of
certificates) without the drawback (key-escrow). We describe a generic construction of
a certificateless variant of a KEM, which we call a CL-KEM. Our generic construction
takes any (weakly secure) IBE scheme plus a special form of (weakly secure) public-
key scheme, such as RSA or ElGamal in certain groups, and uses them to construct a
CL-KEM. The resulting scheme is secure in a strong sense.

Since we use a generic public-key scheme in our construction one can now add cer-
tificateless encryption to an infrastructure of existing RSA and ElGamal keys, which are
either not certified or whose certificates are not trusted by the sender. This possibility
to take a set of already deployed public keys and to use them in a certificateless manner
allows certificateless encryption to be used in situations outside the scope of existing
technology.

We show that combining a CL-KEM with a standard DEM results in a secure cer-
tificateless encryption scheme. However, in order to prove our composition result we
need to modify the definitions of security for a certificateless encryption scheme and
CL-KEMs slightly. We will discuss this point further once we have introduced the ap-
propriate security notions.

Our paper proceeds as follows. In Section 3 we give the security definitions for the
primitives that we are interested in: standard public-key encryption, IBE and certificate-
less encryption. In Section 4 we show a simple generalization of the hybrid result of
Cramer and Shoup [11], which allows one to combine any ID/CL-KEM meeting a par-
ticular security definitions with a standard DEM so as to meet the security definitions
of an encryption scheme, as presented in Section 3. In Section 5 we present our generic
construction of an ID-KEM, and prove that it is secure under our definitions. Finally,
in Section 6 we present our construction of a generic CL-KEM and we prove that it is
secure.

Our generic constructions of ID and CL-KEMs are all in the random oracle model [7].
It is clear, since our composition theorem is proved in the standard model, that if one
has an ID-KEM which was secure in the standard model then the resulting hybrid IBE
scheme would also be secure in the standard model. We leave it as an open question to
find generic constructions of strongly secure ID and CL-KEMs in the standard model
from weaker primitives.

We note that recently IBE schemes have been proposed that are secure in the standard
model [8,15,19]. However, these schemes have extremely large key-sizes and they are
not nearly as efficient as our constructions, especially when chosen ciphertext security
is considered. In many of these standard model schemes to achieve chosen ciphertext
security requires using a two-level hierarchical IBE scheme.
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2. Conventions and Notation

In the following sections, where we give definitions, we do not explicitly define set-up
algorithms which define the domain parameters for the schemes, such as underlying
groups. This is to simplify and lighten the notation. Our results can be expanded to cope
with this by inserting a domain parameter generation algorithm that takes as input 17,
where ¢ is a security parameter. The output of this algorithm would then be passed to
the key-generation algorithms.

In addition, to simplify our discussion, we assume that all encryption algorithms are
sound in that any ciphertext produced by the genuine encryption algorithm will always
decrypt correctly. We make an analogous set of assumptions for KEMs. All our concrete
constructions do indeed satisfy this condition, but our general results can be extended
to cover schemes with a weaker soundness definition in the standard way [11].

If S is a set then we write v <— S to denote the action of sampling from the uniform
distribution on S and assigning the result to the variable v. If S contains one element s
we use v < s as shorthand for v < {s}.

We shall be concerned with probabilistic polynomial-time (PPT) algorithms. If A is
such an algorithm we denote the action of running A on input / and assigning the re-
sulting output to the variable v by v <— A(I). Note that since A is probabilistic, A(1) is
a probability space and not a value.

If E is an event defined in some probability space, we denote the probability that E
occurs by Pr[E] (assuming the probability space is understood from the context).

In our proofs we will make use of the following key lemma [11].

Lemma 1. Letr Uy, U, and F be events defined on some probability space. Suppose
that Pr[U; A =F] =Pr[Uy A =F], then

|Pr(U1] — Pr[Uz]] < Pr[F].

3. Public-Key, Identity-Based and Certificateless Encryption Schemes

3.1. Public-Key Encryption

In this section we recap on some basic definitions of public-key encryption schemes and
introduce some additional terminology that we require.

Let the message space be denoted M px (+), the ciphertext space by Cpx(-), and the
space from which randomness used in encryption comes from by Rpx(-). All of these
spaces are specified as functions that, on input of a public key, return a description
of a finite set. A public-key encryption scheme consists of the three PPT algorithms
(Gpg, Epg, Dpx).

— Gpg(1") is the key generation algorithm. This takes as input 17. It outputs a pub-
lic/private key pair (p€, s€).

— Epx(pt, m;r) is the encryption algorithm. This takes as input pt and a message
m € Mpg (p¥), plus possibly some randomness r € Rpx (p€). It outputs the corre-
sponding ciphertext ¢ € Cpx (pt).
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— Dpex(st, ¢) is the decryption algorithm. On input of s and ¢ this outputs the corre-
sponding value of m or a failure symbol L.

The de facto definition of security for public-key encryption schemes is indistinguisha-
bility under adaptive chosen ciphertext attack (IND-CCA?2) [6]. When using an indis-
tinguishability definition for security one clearly needs to restrict the message space to
consist of messages of a fixed length. However, we will require a much weaker form of
security in our construction of a generic CL-KEM, namely OW-CPA**. Here OW is
an acronym for one-way (i.e. the adversary’s task is to invert the encryption function)
and the attack model CPA™ is an attack model in which an adversary has access to the
following oracles.

— A ciphertext validity oracle that checks whether a given ciphertext is valid or not.

— A plaintext checking oracle that, on input of a message and a ciphertext, checks
whether the ciphertext is an encryption of the message, for a given public key.

— A ciphertext equality oracle that, on input of two ciphertexts, checks if they are
encryptions of the same message under a given public key.

The model in which an adversary only has access to the first of these oracles was first
formalized by Pointcheval and Okamoto under the name PCA (plaintext checking at-
tack) [17]. Dent [12] calls this model the CPA™ model. This motivates our own naming.
Schemes that are secure in the sense of OW-CPA™'™ are readily available: raw RSA un-
der the RSA assumption, or EIGamal under the assumption that the gap Diffie-Hellman
problem [16] is hard, for example.

Public-key encryption schemes for which an explicit algorithm exists to implement
a plaintext checking oracle will be called verifiable. Clearly, a verifiable encryption
scheme cannot be secure in the sense of indistinguishability of encryptions. Note that
textbook RSA is verifiable, as is EIGamal if one implements it in a group on which there
is a bilinear pairing.

3.2. Identity-Based Encryption Schemes

Here we give the definition and security notions for an IBE scheme, as first introduced
by Boneh and Franklin [9]. Extending our earlier notation we denote the message, ci-
phertext and randomness spaces of an IBE scheme by M 1p(:), C1p(-) and R1p(-),
respectively. These are functions that, on input of a master public key My, return de-
scriptions of finite sets. An IBE scheme consists of four algorithms:

— G1p(1") is a PPT algorithm that takes as input 17 and returns the master public key
My and the master secret key Me.

— X1p(Mge, IDy) is the private key extraction algorithm. It takes as input Mg¢ and
IDy4 € {0, 1}*, an identifier string for A, and it returns the associated private key
D1p, . This algorithm may be deterministic or probabilistic.

— E1p(IDa, Mg, m; r) is the encryption algorithm. On input of an identifier ID4,
the master public key My, a message m € Mrp(Mpe), and possibly some random-
ness r € R p(Mpe), this algorithm outputs ¢ € Crp(Mpe).

— D1p(D1p,, c) is the deterministic decryption algorithm. On input of the private
key D1p, and a ciphertext ¢, this outputs the corresponding plaintext 7 or a failure
symbol L.



182 K. Bentahar et al.

Security notions related to IBE schemes can be found in [9]. Our generic constructions
will make use of schemes which are ID-OW-CPA secure, but we shall use these to
construct schemes which are ID-IND-CCA2 secure. Again for ID-IND-CCA2 schemes
we need to assume a message space consisting of messages of a given fixed length.

To cope with probabilistic ciphers, we require that not too many choices for » encrypt
a given message to a given ciphertext. Let y (M) be the least upper bound

l{r € Rip(Mpe) : Exp(ID, Mpe, m; 1) = c}| <y (Mpe) ey

for every ID, m € Mpx(Mpe) and ¢ € Cpx(Mpe). Our requirement is that the quantity
v (Mpe)/|IRpx (Mpe)| is a negligible function of the security parameter.

Note that it is not necessarily impossible for there to be a secure cryptosystem without
the above property. There could be a cryptosystem for which, for all public keys, there is
one message in the message space that always encrypts to the same ciphertext, whatever
random input is used for encryption. Unless the adversary is able to find this particular
message however, it does not help it to break the cryptosystem.

3.3. Certificateless Encryption Schemes

We now describe certificateless encryption schemes as proposed by Al-Riyami and Pa-
terson [1-3]. We expand on the details here in some length as understanding the security
model, and in particular our new model of Type-I— adversaries, will be crucial to un-
derstanding the rest of the paper.

A certificateless scheme makes use of a trusted third party known as a key generation
center (KGC). Unlike the trusted party in an identity-based setting, the KGC does not
have access to users’ private keys. The KGC uses a global secret key to compute partial
private keys for users from their identities. Partial private keys are passed from the KGC
to the users in a possibly untrusted manner. See [1] for a discussion of the transmission
mechanism in more detail.

Suppose that user A with identity ID4 has been supplied with partial private key
D1p, by the KGC. This user combines D1p, with some additional secret information—
its secret value—to generate its full private key S4. The secret value is not known to
the KGC and therefore Sy4 is not known to the KGC either. User A computes its public
key from its secret value; it can do this without knowing D1p,. We denote the public
key pt,.

The system is not identity-based: the public key of a user cannot be derived from
its identity alone. Instead, a user publishes its public key in some publicly accessible
directory. Unlike a traditional PKI, it is not necessary to obtain and verify certificates
for public keys in this scenario. Before presenting the formal definitions we note that
the notion of certificateless encryption is closely related to that of certificate based en-
cryption [14].

Formally, a certificateless scheme consists of seven polynomial time algorithms,
where the message, ciphertext and randomness spaces are defined as before:

— G (1") is a PPT algorithm that takes as input 17 and returns the master public key
M and the master secret key M.
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— Partial-Private-Key-Extract takes asinput M,¢ and an identifier string
for A, ID4 € {0, 1}*, and returns a partial private key D1p,. This algorithm may
be deterministic or probabilistic.

— Set-Secret-Value is a PPT algorithm that takes no input (bar the system
parameters) and outputs a secret value st4.

— Set-Public-Key is a deterministic algorithm that takes as input the secret
value s€4 and outputs a public key pt,.

— Set-Private-Key is a deterministic algorithm that takes as input a partial pri-
vate key D1p, and a secret value st4 and returns the (full) private key Sa.

— Ecp(pty, IDA, Mpe, m; r) is the PPT encryption algorithm. On input of a public
key pt,, an identifier ID4, the master public key My¢, a message m € M, (Mpe)
and possibly some randomness r € R r,(Mpe), this algorithm outputs a ciphertext
c€Cer(Mpe).

— Der,(S4, ¢) is the deterministic decryption algorithm. On input of a ciphertext ¢
and the full private key S4 this algorithm outputs the corresponding value of the
plaintext m or a failure symbol L.

Owing to the lack of authenticating information for public keys—certificates for
example—an adversary may be able to replace users’ public keys with public keys of
its choice. This appears to give adversaries enormous power. However, to compute the
full private key of a user, knowledge of the partial private key is necessary.

To capture the scenario above, Al-Riyami and Paterson [1-3] consider a security
model in which an adversary is able to adaptively replace users’ public keys with (valid)
public keys of its choice. Such an adversary is called a Type-I adversary below.

Since the KGC is able to produce partial private keys, we must of course assume that
the KGC does not replace users public keys itself. We do however treat other adversarial
behavior of a KGC: eavesdropping on ciphertexts and making decryption queries for
example. Such an adversarial KGC is referred to as a Type-II adversary below.

By assuming that a KGC does not replace users public keys itself, a user is placing a
similar level of trust in a KGC that it would in a PKI certificate authority: it is always
assumed that a CA does not issue certificates for individuals on public keys which it has
maliciously generated itself!

Below we present a game to formally define what an adversary must do to break the
scheme; X can be instantiated with I or II in the description below.

Type-X Adversarial Game

1. (Mpe, Mge) < Gep(19).

2. (ID%,s,mo, my1) < AL (Mye, Msp).
3. b < {0,1).

4. c* < Ecp(p¥*, ID*, Mpe, mp; 7).
5.0 <« A9(c*,5).

In the above s is some state information, and mq and m are messages of equal length.
Note, that the master secret key M, is only passed to the adversary in step 2 above in
the case of Type-II adversaries.

When performing the encryption (step 4) in the game, the challenger uses the current
public key pt* of the user with identifier ID*. (Note that a Type-II adversary is unable
to change users’ public keys, so the notion of current public key is redundant.)
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The adversary’s advantage is defined to be
AdvETPEH(A) = [2Pr[b = b] — 1,

where X is either I, I™ or II (see below for definition of ™). We now turn to the various
oracles O available to the adversaries in each game.

Type-I Adversary Oracle Access: This adversary may request public keys, replace
public keys with (valid) public keys of its choice, extract partial private and private
keys, and make decryption queries for all identities of its choosing. We make natural
restrictions on such a Type-I adversary: it is not allowed to do any of the following.

1. Extract the private key for ID* at any point.

2. Request the private key for any identity if the corresponding public key has been
replaced.

3. Replace the public key for ID* before its challenge ciphertext has been issued
and extract the partial private key for ID* (at any point).

4. Once the challenge ciphertext ¢* has been issued it must not make a decryption
query on ¢* under ID* and the public key p€* used to encrypt mp.

Type-I~ Adversary Oracle Access: This adversary is very similar to the Type-I ad-
versary described above. The only difference is that, if it has replaced a public key
and it subsequently requires a decryption query that involves a decryption with the
corresponding secret key, it must supply this key to the decryption oracle. (Note that
the decryption oracle continues to use Ms¢ which is unknown to the adversary.) We
propose this slightly weakened definition to allow us to prove our composition re-
sult and remark that, in any real life application, there could never be an oracle that
performs decryption with an unknown secret key for an adversary.

Type-II Adversary Oracle Access: In this game the adversary has access to the master
secret key Mg¢ and so can create partial private keys itself. It is not allowed to replace
public keys of entities at any point, but it can request public keys and make private
key extraction queries for all entities of its choosing. However, it is not allowed to
extract the private key for the challenge identity ID* at any point. In addition, once
the challenge ciphertext ¢* has been issued, it cannot make a decryption query on c¢*
for the combination (p€*, ID*).

A certificateless system is said to be secure if, for all PPT Type-I and Type-II adver-
saries, the advantage in winning the relevant game is a negligible function of the secu-
rity parameter. As mentioned above, to prove our composition result, we need to weaken
the requirement of Type-I security and replace it with Type-1~.

3.4. Public-Key, Identity-Based and Certificateless Key Encapsulation Mechanisms

Following Shoup [18] one can define the notion of key encapsulation mechanisms
(KEMs) in the public-key setting as follows.
A standard KEM consists of three algorithms (Gxry, Exgm, Dxem):

— Ggen(1") is the PPT key generation algorithm. This takes as input 1’ and outputs
a public/private key pair (pt, st).
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— Egen(p®) is the PPT key encapsulation algorithm. This takes as input p€ and out-
puts an encapsulated key pair (k, ¢) € Kgen(pt) x Cxru(p€). The item c is called
the encapsulation of the key k. The key k is assumed to be uniformly distributed
over the key space Kxgm(pt).

— Dxem(st, ¢) is the decapsulation algorithm. On input of st and c this outputs the
corresponding value of k or an invalid encapsulation symbol L.

It is relatively straightforward to extend this definition to the identity-based and the
certificateless settings. One can also easily extend the security notions of identity-based
and certificateless schemes to the KEM setting. To save space we only perform this
extension for certificateless schemes, the other simpler definitions can be derived by the
reader.

A CL-KEM scheme is specified by seven polynomial time algorithms:

— Gerxen(1") is a PPT algorithm that takes as input 1 and returns the master public
keys Mpe and the master secret key Mse.

— Partial-Private-Key-Extract takes asinput M and an identifier string
for A, ID4 € {0, 1}* and returns a partial private key D1p ,. It may be deterministic
or probabilistic.

— Set-Secret-Value is a PPT algorithm that takes no input (bar the system
parameters) and outputs a secret value st 4.

— Set-Public-Key is a deterministic algorithm that takes as input s€¢4 and out-
puts a public key p€,.

— Set-Private-Key is a deterministic algorithm that takes as input D1p, and
st4 and returns S4 the (full) private key.

— Ecrxen(p€y, IDA, Mpe) is the PPT encapsulation algorithm. On input of pty,
IDa and My this outputs a pair (k, c) where k € Kep.xem(Mpe) is a key for the
DEM and ¢ € Cer,kem(Mpe) is the encapsulation of that key.

— Derxem(S4, ¢) is the deterministic decapsulation algorithm. On input of ¢ and Sy
this outputs the corresponding k or a failure symbol L.

To define the security model for CL-KEMs we simply adapt the security model of Al-
Riyami and Paterson into the KEM framework. Again there are three types of adversary
against a CL-KEM: Type-I, Type-I~ and Type-Il. Each adversary is trying to win the
following games, where the various oracle accesses allowed are identical to those de-
fined in Section 3.3, we simply replace the word “decryption” with “decapsulation”.
Again the master secret Ms¢ is only passed to the adversary in the case of Type-II ad-
versaries.

Type-X Adversarial Game
(Mg, Mse) < Gepxem(19).
(ID*, ) < AP (Mpe, Mop).
(ko, ¢*) < Ecpxen(pt*, ID*, Mye).
ki < KCL-KEM(MpE)-
b < {0, 1}.
6. b < A?(c*, s, ID*, kp).

M

When performing the encapsulation, in line three of both games, the challenger uses the
current public key p€* of the entity with identifier ID*. The adversary’s advantage in
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such a game is defined to be
AdvEPEX(A) = [2Pr[b = b] — 1|

where X is either I, I™ or II. A CL-KEM is considered to be secure, in the sense of
IND-CCA?2, if for all PPT adversaries A, the advantage is a negligible function of 7.

4. Combining KEMs, ID-KEMs and CL-KEMs with DEMs

In order to apply our ID-KEM and CL-KEM constructions we will need to compose
them with data encapsulation mechanisms. We shall show that combining a secure DEM
with a fully secure KEM will result in a fully secure hybrid scheme. The security de-
finition that we require of a DEM is a variant of the find-then-guess game as defined
by Bellare et al. [5]. An adversary must determine which of two messages has been en-
crypted under a random key. After being given the challenge encryption, the adversary
is given access to a decryption oracle for the key in question. We denote this notion
FG-CCA henceforth.

This result will allow us to construct ID-IND-CCA?2 secure IBE schemes from ID-
IND-CCA2 secure ID-KEMs and FG-CCA secure DEMs. Similarly, it will allow us to
construct certificateless encryption schemes secure against Type-I~ and Type-II adver-
saries.

We assume that the key space output by the KEMs corresponds to the key space
required by the DEM. Our construction follows that of Cramer and Shoup ([11], §7.3)
and consists of the natural concatenation of the key encapsulation followed by the data
encapsulation of the message under the key encapsulated by the first component. We
denote such a ciphertext C = (c1, c2) henceforth, where c; encapsulates the key and ¢
encapsulates the data. We refer to such a construction as hybrid.

The following theorem is a natural generalization of Theorem 5 of [11]. Note that,
unlike the equivalent result in [11], we are implicitly assuming that, for all keys, all en-
capsulations decapsulate correctly. It would be straightforward to generalize the result.
However, the soundness condition that we are assuming applies to all the primitives that
we consider in this paper.

Theorem 1. Let A be a PPT adversary against the hybrid IBE scheme (resp. the hy-
brid certificateless scheme) in the sense of ID-IND-CCA2 (resp. Type-I— and Type-II)
adversaries, then there exists PPT adversaries By and By, whose running times are
essentially that of A, such that

AdvIDTNDCCR(A) < DAQVIDINDCCA (B ) + AdVESCCR(By),
AdvITPET (A) < 2Advi S (Br) 4+ AdvESSCA(B,),

AdvEPETL(A) < 2AdVIYRSIY(B)) + AdVESCSCR(By).

Before proceeding with the proof we note that the proof follows essentially that of [11];
the main difficulty occurs in Lemma 3. It is here that we must restrict ourselves to
Type-I" adversaries in the certificateless setting. Since a Type-I secure CL-KEM is
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clearly Type-I~ secure the above result allows us to combine a Type-I secure CL-KEM
with a secure DEM, so as to obtain a Type-I~ secure CL encryption scheme.

Proof. Our proof strategy is as follows. We define a sequence Gameq, Game|, Game,
of modified attack games in which A runs. The only difference between games is how
the environment responds to A’s oracle queries.

We fix some notation that we will use throughout. Let C* = (c7, ¢3) be the challenge
ciphertext presented to A by its challenge encryption oracle—the oracle that encrypts
either mg or m according to a bit b. Let k* denote the symmetric key used by the chal-
lenge encryption oracle in the generation of the challenge ciphertext, or alternatively,
the decapsulation of ¢} using the secret keys associated to ID*—the identity chosen by
the adversary on which it wishes to be challenged. For any i =0, 1, 2, we let S; be the
event that b’ = b in game Game;, where b is the bit chosen by A’s challenge encryption
oracle. This probability is taken over the random choices of A and those of A’s oracles.

Let Gameg be the genuine attack game played by A. So by definition we have

1
[Pr[So] — 1/2| = EAdviMOD(A).

Game Game is now modified so that whenever an identity ID and (cy, ¢2) is presented
to the decryption oracle after the invocation of the challenge encryption oracle, if ID =
ID* and ¢ = ¢, and in the case of a Type-I~ adversary, the public key of ID* has not
been replaced, then the decryption oracle does not use the genuine decryption procedure
for the hybrid scheme, instead it uses the key k* to decapsulate ¢, and returns the result
to the adversary. This modification to Game( gives us the game Game|. Games Game
and Game; are identical, under the soundness condition that we discussed above, and
so Pr[S{] =Pr[Sp].

We now modify Game; by replacing k* with a random key &’ from K pgy (1, £2). With
this modification we have the game Game,. The result then follows from the following
two lemmas. (|

Lemma 2. There is a PPT algorithm By, whose running time is essentially the same
as that of A, such that

|Pr{S2] — Pr{S1]] = AdvEERi (B1),
where MOD is IND-CCA2, Type-I— or Type-II and * is ID or CL as appropriate.

Proof. To prove this we demonstrate how to construct an adversary B; of the KEM to
violate the assumed security against adaptive chosen ciphertext (resp. Type-1~/Type-II)
attack.

Adversary Bj is constructed by running adversary A. We respond to A’s queries as
follows.

— When A calls any oracle, bar its decryption or challenge encryption oracles, B
simply relays these queries to its own equivalent oracle.
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— To respond to A’s decryption oracle query for an identity ID and a ciphertext
(c1, c2) before A has queried its challenge encryption oracle, B; proceeds as fol-
lows. It first obtains & by calling its own decapsulation oracle with cy. If k = L then
Bj replies to A with L. Otherwise it proceeds to use k to decrypt c; and relays the
result to A.

— When A calls its challenge encryption oracle with identity ID* and messages
(mg, m1), By first calls its own challenge encryption oracle with ID* to obtain
(T, c}). It then chooses a bit d at random and computes ¢} < Epen(k®, my). Fi-
nally, it responds to A with (¢, ¢3).

— To respond to A’s decryption oracle query for an identity ID and a ciphertext
(c1, ¢2) after A has queried its challenge encryption oracle, By proceeds as follows.
e If (ID,cy) # (ID*, cf) then it uses the same procedure that it used before A’s

call to its challenge encryption oracle.

e In the case of a Type-I~ adversary against a certificateless encryption scheme,
if (ID, ¢1) = (ID*, ¢}) and the public key has been replaced, then Bj responds
by calling the decapsulation oracle provided to it by A with input (ID*, c}) to
obtain k. It then uses k to decrypt ¢, and relays the response to A.

e Otherwise, B; uses k' to decrypt ¢, and relays the result to A.

At the end of the simulation, A outputs a bit d". If d’ = d, By outputs 1, otherwise it
outputs 0.

Let b be the internal bit of By’s challenge oracle which B; seeks to determine and
let &’ be the bit output by Bj. By construction we see that when b = 1, so k' is the key
encapsulated within ¢, A is run exactly as it would be run in Game. This means that

Pr{S|]=Pr[d =d|b=11=Prb' = 1|p=1], )

where d is A’s challenge bit and d’ is A’s guess. Also, when b = 0, so a random k’
is used in the generation of the challenge ciphertext, A is run exactly as it would be
in Game;. This means that

Pr[S2] =Pr[d =d|b=0]=Pr[d' =1|b=0]. 3)

The result follows from (2), (3) and the definitions of security for KEMs when one
observes that

AdvEMD (B)) = 2Pt[p =b] — 1| =|Pr[b = 1|b=1]—Pr[p' =1]b=0]|. O

Lemma 3. There is a PPT algorithm By, whose running time is essentially the same
as that of A, such that

1
[Pr[S2] —1/2| = EAdVggl},[CCA(Bz).

Proof. To construct such a B, we simply run A as it would be run in game Game.
We run the ID/CL-KEM'’s key generation step so we can respond to A’s queries before
it calls its challenge encryption oracle. When A calls its challenge encryption oracle
with identity ID* and messages (mg, m) we simply relay (mq, m1) to the challenge
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encryption oracle of B, to obtain c3. We then run the key encapsulation mechanism to
obtain (k, c;) we discard k and set ¢} = c;. Finally we return (c7, ¢3) to A. We continue
to respond to A’s queries as before except if it a makes decryption query ID*, (c, ¢2)
for some c;. In this instance there are two cases:

— If we are dealing with a Type-I~ adversary A of a certificateless encryption
scheme, and the public key of ID* has been replaced, then B, decapsulates
(ID*, c}) using the provided secret key to obtain k, decrypts ¢ and relays the
response to A.

— Otherwise we query B;’s decryption oracle with ¢ and relay the response to A.

In this simulation A is run by B; in exactly the same manner as the former would be
run in game Game,; moreover, Pr[S»] corresponds exactly to the probability that By
correctly determines the hidden bit of its challenge encryption oracle since B; outputs
whatever A outputs. The result follows. ]

5. ID-KEM Constructions

In this section we describe our generic construction of a fully secure identity-based
KEM from an ID-OW-CPA secure IBE scheme. We let H| and H» denote cryptographic
hash functions, with the following domains and co-domains

Hi :{0, 1} > Rip(Mpe), and
H : {0, 1}* — Kpgu(?)

where K pgey(?) is the key space of the DEM we will be using.

We take a generic probabilistic IBE scheme, we shall denote the associated en-
cryption algorithm by Erp(ID, My, m; r) and the associated decryption algorithm by
D1p(D1p, ), Wwhere D1p is the output from the extraction algorithm X1p-gem(Mge, ID).
We assume the message space of E1p is finite and is given by M1p(Mpe) and the space
of randomness is given by Rip(Mpe).

In the following construction we make no assumption on how such an identity-based
scheme is constructed, only that it exists.

E1pxem(ID, Mpe) D1p.ken(D1p, €)
— m < Mp(Mye). — m < D:p(D1p, ¢).
— r < Hi(m). — If m= _ thenreturn L.
— ¢ < E1p(ID, Mpe, m; 7). — r < Hi(m).
— k < Hy(m). — If ¢ #E1p(ID, Mpg, m; r) then return L.
— Return (k, ¢). — k < Hy(m).
— Return k.

Before proceeding we compare our construction with the Fullldent scheme of Boneh
and Franklin [9] and the Fujisaki—-Okamoto transformation that it uses [13]. Our first
remark is that we can instantiate the ID-OW-CPA scheme in our construction using the
Basicldent scheme described by Boneh and Franklin [9] as it has the security property
that we require. The computational requirements for our construction and Fullldent
are then identical. However, we believe that our approach has considerable advantages.
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Firstly, as an artifact of the Fujisaki-Okamoto transformation, the random input for
the Fullldent scheme depends on the actual message being encrypted. In particular,
this means that the expensive elliptic curve operations can only be performed once one
knows what message will be encrypted. Our method, using an ID-KEM, has the property
that a key can be encapsulated at any point. This could be of particular benefit if one is
going to send the same message to multiple parties, a problem studied in [4].

The second advantage of our approach is also related to the use of the Fujisaki—
Okamoto transformation. A popular application for IBE is encrypted email and one
very popular form of email is web-based email for roaming users. Suppose that we
wanted IBE encryption for web-based email. In this instance it would make sense for
user secret keys to be stored in a secure server. Using our construction, since the KEM
and the DEM are independent, the user can send the (relatively short) KEM to the server
for decryption without having to send the entire message. This is not the case for any
scheme derived from the Fujisaki—-Okamoto transform because there the actual message
is necessary for integrity checking.

The final point to note is that our construction makes use of an IBE scheme that is
ID-OW-CPA (such as Basicldent from [9]). We remark that this scheme is also ID-IND-
CPA.

Theorem 2. [fE1p is an ID-OW-CPA secure IBE scheme and Hy and H, are modeled
as random oracles then the above construction of an ID-KEM is secure against adaptive
chosen ciphertext attack.

Specifically, if A is a PPT algorithm that breaks the ID-KEM by using a chosen
ciphertext attack, then there exists a PPT algorithm B, with

2qpy (Mpe)

AdVIDIND-CCA2(A) < 2(q) + g2 + gp) - AdvIBOTCPA(B) 4 TR
IRp(Mype)|

where q1, q2 and qp are the number of queries made by A to Hy, H> and the decryption
oracle respectively, and y (Mpg) is as in (1).

Proof. The proof of this result follows by adapting the proof of Theorem 5 of [12] to
the identity-based setting. The only essential difference is that one needs to answer the
key extraction queries of the adversary A, however this is done by appealing to the key
extraction oracle provided to B. (]

6. CL-KEM Construction

In this section we give our generic construction of a CL-KEM.

— Let (Gpg, Epg, Dpx) be a OW-CPA+ secure public-key encryption algorithm that
is verifiable, for example textbook RSA.
— Let (G1p, X1p, E1p, D1p) be an ID-OW-CCA?2 secure IBE algorithm.

We define our seven algorithms as follows. The algorithm Ger, xgy is defined to be
equal to Grp. The algorithm Partial-Private-Key-Extract returns Drp,: the



Generic Constructions of Identity-Based and Certificateless KEMs 191

output from X1p(Mge, ID4). The values returned by Set -Secret-Value and Set-
Public-Key are simply the outputs pt, and s€4 from Gpx. The algorithm Set-
Private-Key returns the pair S4 = (D1p,, 5€4). Finally, using a hash function H,
encapsulation and decapsulation work as follows.

Ecrxem(ps, IDa, Mye): Der-ken(Sa, ©):

— my < Mpg(pt). - (c1,00) «<c.

— r1 < Ropg(pf). — (D1p,,5t4) < Sa.

- m2 <—MID(MpE)- — my < Dpx(sta, c1).

— 1y < Rp(Mpe). — If m; = L then return L.
— c1 < Epg(pty, my;r1). — my < D1p(D1p,, €2).

If mp = L then return L.
k< H(cy,pty,my, mr).

— 2« E1p(IDa, Mye, m2; 12).
— k< H(cy, pty,my, m).
c < (c1,c2).

Note that we require our IBE scheme in Theorem 3 below to be ID-OW-CCA2 se-
cure. We use this rather strong requirement to simplify our presentation and note that
an ID-OW-CPA scheme can be enhanced to offer ID-OW-CCA2 security by making
the random input the hash of the message. This is done at the cost of a re-encryption
during verification. The proof for such a construction is almost identical to the proof
of Theorem 2, the only difference being the definition of the adversarial goal for the
algorithm A.

Before stating our results, we compare the performance of our construction with that
of Al-Riyami and Paterson [3]. The major advantage of our approach is that we decouple
the identity based part of the scheme from the public-key part of the scheme. This means
that our scheme can be used within an existing PKI. This could also lead to performance
advantages. Suppose that we implement the public-key part of the scheme with raw RSA
(which satisfies our security requirements) and the scheme derived from Basicldent [9]
by making the random input the hash of the message (as discussed above). This would
mean that in encryption we replace two pairing computations with one RSA encryption
operation. The only overhead is an extra RSA decryption operation in the decryption
phase.

We also remark that, unlike our approach, the scheme of [3] makes use of the
Fujisaki—-Okamoto transformation [13] and so the comments that we make in Section 5
also apply here.

6.1. Security Proof: Type-1 Adversary

In this section we shall prove that Type-I security of our generic CL-KEM construction
rests both on the security of the identity-based component of the scheme and on the
security of the public-key component.

Theorem 3. Our generic CL-KEM construction is secure against Type-1 adversaries
in the random oracle model, assuming the IBE scheme is secure in the sense of ID-OW-
CCA2 and the public-key scheme is secure in the sense of OW-CPA™T™T.

In particular, let A denote a PPT Type-I adversary A against our generic CL-KEM
which makes at most qy calls to the random oracle H, requests up to qpg public keys,
makes at most qg replacements of public keys, makes at most qsk private key extrac-
tions, makes at most qpx partial-private key extractions and at most qp decapsulation
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queries. These queries are subject to the restrictions imposed in the Type-1 game defin-
ition given above.

Then there exists two PPT adversaries: By against the ID-OW-CCA?2 security of the
IBE system which makes at most qg + qp calls to the random oracle H, at most qp
calls to its decryption oracle and at most qpx + qsk calls to its private key extraction;
and By against the OW-CPAY™Y security of the public-key scheme that makes at most
qu + gqp calls to the random oracle H. Both By and Bj run for essentially the same
time as A and they are such that

. -OW- cpatt
Advg{%emﬁ(f“) <2(qu + qD)AdV%B ow CCAZ(BI) +2(gpx +9p + l)AdVg‘I"{’ CPATT ().

Proof. Let A denote a Type-I adversary against our CL-KEM as specified in the state-
ment of the theorem.

We let ID* denote the challenge identity chosen by A after its first stage. We shall
denote the target encapsulation by ¢* = (c}, ¢5) which encapsulates the key k}. Let m}
denote the message encrypted in ¢} under p€*, the public key of ID* at the time the chal-
lenge ciphertext is created, and let m} denote the message encrypted in ¢5 under ID*.
Let k; denote a random key selected from the co-domain of H, and let b denote a ran-
dom bit; both outside the view of the adversary. In the second stage of the game we let
k* = kj; denote the key given to the adversary and we let b denote the bit returned by
the adversary.

Security is proved using two games Gameq and Game;. In each game Game; we let
Si denote the event that b’ = b. We let Game( denote the original attack game and so
by definition

AdvEEGL(A) = [2Pr[So] — 1. @

Gamej: In Game| we replace the public key request oracles, the private key extraction
oracles and the hash function H by the following oracle simulations.

— Public Key Request/Private Key Extraction: We keep a list Ly = {(ID, pt, st)}
of length at most gpx + gsx + gpx + qr + gp. When either oracle is called on
an identity ID we check whether this identity already appears on the list, if so we
respond with either pt or s€ as appropriate. Otherwise we call G to obtain a new
pair (pt, st) insert (ID, pE, s€) into the list and then return the appropriate value of
pt or st.

— Public Key Replacement: If A wishes to replace the public key for user ID with
p¥ then we search the Ly list for an entry corresponding to ID and replace this
entry with (ID, p€, L). If no such entry exists then we add (ID,p¥, L) to the
list L.

— Partial Private Key Extraction: The challenger answers these queries using the
genuine partial private key extraction algorithm.

— Hash Function: We keep a list Ly = {(k, ¢, pt, m1, m3)} of length at most gy +
gp. If this oracle is called with input (cy, pt, m1, my) we perform the following
steps:

e If (k,c1,pt, my,my) is on Ly then we respond with k.
e If there is some (k, c1, pt, L, m>) on Ly such that c; is the encryption of m
under the key pt we update this entry to make it (k, c1, pt, m, m2) and we
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respond with k. Note, this requires the property that the public-key scheme is
verifiable.

e Otherwise we generate k at random from the co-domain of H, we place
(k,c1,p€,my, my) onto Ly and respond with k.

— Decapsulation Queries: On input of ¢ = (c1, ¢2) and ID, the simulator for algo-
rithm A can decapsulate ¢, to obtain m>, since it knows the master key for the
identity-based scheme. Then, by making a call to the public key extraction oracle
we can obtain the public/private key pair (p€, s€) from the list Lx corresponding
to the identity ID. There are two cases:

e st=£ 1, in which case the public key has not been replaced. We can then use st
to decrypt c; to obtain m . The simulator for hash function H can then be called
on the input (cy, p¥, m, m2) so as to obtain the encapsulated key k.

e st =_1, in which case the public key has been replaced. We then search Ly to
find an entry (k, c1, p€, m1, my) such that ¢ is the encryption of m under the
key pt. Note, this requires the property that the public-key scheme is verifiable.
If such an entry exists then we return k. Otherwise we generate k at random
from the co-domain of H, place (k, c1, p€, L, my) onto Ly and return k.

Since A is working in the random oracle model then the two games are identical. We
have

Pr[So] = Pr[S]. ®
Before proceeding, we define three events.

Replace: The event that A replaces the public key for ID* before the challenge ci-
phertext is issued.

Extract: The event that A extracts the partial private key for ID*.

Ask: The event that the simulator for H is called with input (¢, pt*, m}, m}).

We immediately have the following.

Pr[Si] = Pr[S| AReplace] +Pr[S; A —Replace]
= Pr[Si|Replace]Pr[Replace]
+ Pr[S||—Replace](l — Pr[Replace]). 6)

Also,
Pr[Si|Replace] =Pr[S| A mExtract|Replace]. 7)

The last equality above follows from the fact that, by definition of a Type-I adversary,
if Replace occurs then Extract is forbidden.
Now,

Pr[S| A mExtract|Replace] =Pr[S| A —“Extract A Ask|Replace]

+ Pr[S; A mExtract A mAsk|Replace]

1
< Pr[S; A mExtract A Ask|Replace] + 7 (8)
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The final inequality follows from the fact that, if the query (c}, p€*, m}, m3) is never
made to the simulator for H, then A can have no advantage.
We also have

Pr[Si|—Replace] = Pr[S| A Ask|—Replace] + Pr[S; A mAsk|—Replace]

1
< Pr[S| AAsk|—-Replace] + 3 )

Again, the last inequality follows from the fact that, if the query (c7, pl*, my,m3) is
never made to the simulator for H, then A can have no advantage.

We now describe an algorithm B; to break the assumed ID-OW-CCAZ2 security of the
IBE scheme used in the construction. This algorithm runs A in a similar manner to how
A is run in Game|. The first difference is how we respond to A’s decapsulation queries
in the construction of Bj. To do this we must introduce an additional list L’,. This list
is initially empty, it is updated by the new decapsulation oracle as described below.

— Decapsulation Queries: Suppose that we are responding to a query ID, (c1, ¢2).
If ID # ID* or c; # ¢; we respond as in Game| except that, rather than using
knowledge of the master key for the identity-based scheme which we no longer
have, we decapsulate ¢, using the decapsulation oracle provided to B;. Otherwise,
we make a call to the public key request oracle to obtain the public key pt from
the list Ly corresponding to the identity ID. We then search L', for an entry
(k, c1, pB). If such exists we respond with k. Otherwise we choose k at random
from the co-domain of H, add (k, c1, pt) to L}, and respond with k.

To generate the challenge ciphertext for A we proceed as usual to compute ¢}, we obtain
c5 by relaying ID* output by A to By’s challenge oracle and we choose k* at random
from the co-domain of H.

Finally, at the end of A’s execution, we choose a random input (cy, pt, m1, my) from
Ly and output my as By’s attempt to recover the plaintext within 3.

Now, A is run by B; up until the event Ask occurs in exactly the same manner as A is
run in Gamej; moreover, if the event Ask occurs, B; succeeds to recover the plaintext
within ¢5 with probability atleast 1/(gy +¢p) since there are at most (g +¢p) entries
in L g. This tells us that

Pr[S; A mExtract A Ask|Replace] < (gi + ¢p)AdvIEO"CCR2(B)) (10)

To complete the proof we describe an adversary B» of the public-key scheme used
in our construction. The adversary B is given a public key p€* for which it wishes to
recover a message from a ciphertext. To construct By we run A in similar manner to
how A is run in Game|. The oracles that are modified are described below.

— Public Key Request/Private Key Extraction: At the very beginning of the simu-
lation we choose i uniformly at random from [1, ..., gpx + gp + 1]. We maintain
alist Ly = {(ID, p¢, st)} of length at most gpgx +gsx +qgpx +qr +9p + 1. We
have two cases when responding to a query ID.

e If we are responding to the i-th public key request, made either by A directly
or by the decapsulation oracle, or made by the challenge encryption oracle, we
respond with p¢* and add (ID, pt*, 1) to Ly.
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e Otherwise, we check whether this identity already appears on the list, if so we
respond with either p€ or st as appropriate and, if not, we call Gy to obtain a
new pair (pt, s€) insert (ID, pt, st) into the list and then return the appropriate
value of pt or st.

— Hash Function: We modify how the hash function operates after the chal-
lenge ciphertext has been issued. Suppose that we are responding to a query
(c’{, pt*, my, my)—where cT is the first component of the challenge encapsula-
tion—before proceeding as in Game| we check whether or not c7 is the encryption
under p€* of my. If so we output m; and terminate the simulation.

To generate the challenge ciphertext for A first call the public key request oracle. If we
do not receive pt* in response we abort the simulation. If we do receive p€* we proceed
as usual to compute ¢, we obtain ¢} by calling B>’s challenge encryption and k* at
random from the co-domain of H.

Now, when we are generating the challenge ciphertext we obtain p€* from the public
key request oracle with probability at least 1/(gpx 4+ gp + 1). Assuming this is so, A is
run by B; in exactly the same way that A is run in Game up until the event Ask occurs
and, moreover, if the event Ask occurs, By succeeds. We conclude that

Pr[S| A Ask|-Replace] < (gpk +gp + DAdVITCPA™ (By). (11)

The result now follows from (4), (5), (6), (7), (8), (10), (9) and (11). U

6.2. Security Proof: Type-II Adversary

In this section we shall prove that Type-II security of our generic CL-KEM construction
rests solely on the security of the public-key component of the scheme.

Theorem 4. Our generic CL-KEM construction is secure against Type-II adversaries
in the random oracle model, assuming the public-key encryption system is secure in the
sense of OW-CPA™T™T,

In particular, let A denote a PPT Type-II adversaries A against our generic CL-
KEM which makes at most qy calls to the random oracle H, at most qsk calls to its
private key extraction oracle, it may request up to qpx public keys and make at most qp
decapsulation queries all for identities of its choice, subject to the usual restrictions.

Then there exists a PPT adversary B, against the OW-CPA™ security of the public-
key system, whose running time is essentially the same as that of A and which makes at
most gy + qp calls to the random oracle H, such that we have

AVEPEIT(A) < 2(qp + qp) (qrk + sk +qp)AdvACPAT (By).

Proof. Let A denote a Type-II adversary against our CL-KEM as specified in the
statement of the theorem.

Security is proved via three games Game(, Game| and Game,. We define ID*, pt*,
c* = (cf,c3), mi, m3, kj, ki, b, b, S; and Ask exactly as in Theorem 3.

We let Game( denote the original attack game and so

AdvelS (A) = [2Pr(Sol - 1]. (12)
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Game: In Game| we replace the public key request oracles, the private key extraction
oracles and the hash function H by the following oracle simulations.

— Public Key Request/Private Key Extraction: We keep a list Lx = {(ID, p¢, s¢)}
of length at most gpx + gsx + gp. When either oracle is called on an identity ID
we check whether this identity already appears on the list, if so we respond with
either pt or st as appropriate. Otherwise we call Gy to obtain a new pair (p€, 5¢)
insert (ID, p&, s€) into the list and then return the appropriate value of p€ or st.

— Hash Function: We keep a list Ly = {(k, c1, pt, m1,m>)} of length at most
gy + gp. If this oracle is called with input (c, p€, m, my) we see whether this
pair already appears on the list, if so we respond with the appropriate value
of k. Otherwise we generate k at random from the co-domain of H, we place
(k, c, pt, m1, my) into the list and return k.

— Decapsulation Queries: On input of ¢ = (¢, ¢2) and ID, the simulator for algo-
rithm A can decapsulate ¢, to obtain mj, since it knows the master key for the
identity-based scheme. Then, by making a call to the public key extraction oracle
we can obtain the public/private key pair (p€, s€) from the list L x corresponding to
the identity ID. Using s€ we can then decrypt c¢; to obtain m. The hash function
H can then be called on the input (c, p€, m1, m>) so as to obtain the encapsulated
key k, modifying the list Lz as above.

Since A is working in the random oracle model then the two games are identical. We
have

Pr[So] = Pr[S1] = Pr[S| A Ask] + Pr[S; A —Ask]
< Pr[S)|Ask] + Pr[S1|-Ask]

1
< Pr[s|ask] + 3 (13)

This last equality holds since H is a random oracle; if A does not make the critical query
then it is able to determine whether or not k; is the encapsulated key with probability at
most 1/2.

Game;: In this game a random value j is chosen from [1, ..., gpx + gskx + ¢gp]. With-
out loss of generality we can assume that the adversary makes the call to the public
key request oracle for the challenge identity ID*. In Game, we abort the game if the
j-th element of the Ly list is not on the identity ID*. Let F, denote the event that
Game; does not abort, then clearly Pr[F2] > 1/(gpx + gsx + ¢p). In addition we have
Pr[S»2|Ask A Fp] = Pr[S1|Ask]. Which gives us

Pr[S;|Ask]

Pr[S;|Ask] = Pr[S;|Ask] - Pr[Fp] > ——MmMm———.
qrk +4sk +4p

We claim that Pr{S,|Ask] = (gg + qu)Advg"Ig'CPA++ (By) for an algorithm B,. Algo-
rithm B, takes as input a public key p€*, it has access to a challenge oracle Of,, (),
which it can call only once. The challenge oracle will produce a ciphertext c}, and the
goal of B; is to deduce the corresponding value of m7.
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Algorithm B, runs as follows

1. (Mpe, Mge) < Grp(17).

2. (ID%,5) < AY (Mpe, Mop).

3. ¢ < O, 0.

4. my < Mi1p(Mpe), r <R 1p(Mye).
5. c;‘ < Erp(ID*, Myg, mo; 7).

6. k* —Kcr(Mpe).

7. c* < (cf.c3).

8. b < AD(c*, k*, s, ID).

9. Output b”.

Algorithm B, answers the oracle calls of the algorithm A just as the oracles do in
Game;. Except we make the following alterations:

— Public Key Request/Private Key Extraction: The j-th entry of the Lx list is
replaced by (ID*, pt*, L), where ID* is the challenge identity output by A and
p€* is the input public key for algorithm B,.

— Decapsulation Queries: We need to modify this when called with input (cq, ¢2)
and ID* as we no longer know s&*. We then perform the following steps:

e We decrypt ¢, so as to obtain m;.

e If ¢ is not a valid ciphertext, which can be determined via the ciphertext validity
oracle provided to the CPA™™" adversary B;, we return L.

o If (k,c1,pt, m1,mp) is in Ly then we check whether ¢ is a valid encryption
of my, using the plaintext/ciphertext checking oracle provided to the CPAT™
adversary B». If so we output k.

e Otherwise we check whether (k, ¢, pt, L, m») isin Ly, for a ciphertext ¢ which
encrypts the same message as ci, if so we output k. This uses the ciphertext
equality oracle provided to the CPA™ adversary B,.

e FElse we pick k at random, insert (k, c{, p¥, L, my) in Ly and return k.

— Hash Function: Here we modify the oracle to make it compatible with the above
decapsulation oracle. If H is called with input (cy, p¥, m, m>) then we respond as
follows:

o If (k,c1,pt, my, my) is in Ly then we output k.

o If (k,c1,pt, L,mp) is in Ly and c is a valid encryption of m; then we out-
put £ and update the entry to read (k,cy, p¥, my,mo). This uses the plain-
text/ciphertext checking oracle provided to the CPAT™ adversary B,.

o Else we pick k at random, place (k, c1, p¥, m1,mp) into Ly and return k.

With these simulations algorithm A cannot notice the difference between running in
Game, and running as a subroutine for algorithm B;. When algorithm B, terminates it
selects a random element from the Ly (k, c1, pt, m1, my), such that m| # L and returns
m1. There are at most gy + ¢gp elements in Ly and therefore, from (12) and (13) we
have

Pr[Sy|Aask]

qH + 4D
Pr[S|Ask]

>
~ (qu +qp)(gPk +qsk +4qp)

AdvRy PR (By) =
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Pr[So] — }
=
(9 +9p)gprk +9qsk +4qp)
_ Adve S (A)
2(9u +9p)(gprk +qsk +qp)’
The result follows. |
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